linux/drivers/net/wimax/i2400m/fw.c
<<
>>
Prefs
   1/*
   2 * Intel Wireless WiMAX Connection 2400m
   3 * Firmware uploader
   4 *
   5 *
   6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
   7 *
   8 * Redistribution and use in source and binary forms, with or without
   9 * modification, are permitted provided that the following conditions
  10 * are met:
  11 *
  12 *   * Redistributions of source code must retain the above copyright
  13 *     notice, this list of conditions and the following disclaimer.
  14 *   * Redistributions in binary form must reproduce the above copyright
  15 *     notice, this list of conditions and the following disclaimer in
  16 *     the documentation and/or other materials provided with the
  17 *     distribution.
  18 *   * Neither the name of Intel Corporation nor the names of its
  19 *     contributors may be used to endorse or promote products derived
  20 *     from this software without specific prior written permission.
  21 *
  22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  33 *
  34 *
  35 * Intel Corporation <linux-wimax@intel.com>
  36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
  37 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
  38 *  - Initial implementation
  39 *
  40 *
  41 * THE PROCEDURE
  42 *
  43 * The 2400m and derived devices work in two modes: boot-mode or
  44 * normal mode. In boot mode we can execute only a handful of commands
  45 * targeted at uploading the firmware and launching it.
  46 *
  47 * The 2400m enters boot mode when it is first connected to the
  48 * system, when it crashes and when you ask it to reboot. There are
  49 * two submodes of the boot mode: signed and non-signed. Signed takes
  50 * firmwares signed with a certain private key, non-signed takes any
  51 * firmware. Normal hardware takes only signed firmware.
  52 *
  53 * On boot mode, in USB, we write to the device using the bulk out
  54 * endpoint and read from it in the notification endpoint.
  55 *
  56 * Upon entrance to boot mode, the device sends (preceded with a few
  57 * zero length packets (ZLPs) on the notification endpoint in USB) a
  58 * reboot barker (4 le32 words with the same value). We ack it by
  59 * sending the same barker to the device. The device acks with a
  60 * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
  61 * then is fully booted. At this point we can upload the firmware.
  62 *
  63 * Note that different iterations of the device and EEPROM
  64 * configurations will send different [re]boot barkers; these are
  65 * collected in i2400m_barker_db along with the firmware
  66 * characteristics they require.
  67 *
  68 * This process is accomplished by the i2400m_bootrom_init()
  69 * function. All the device interaction happens through the
  70 * i2400m_bm_cmd() [boot mode command]. Special return values will
  71 * indicate if the device did reset during the process.
  72 *
  73 * After this, we read the MAC address and then (if needed)
  74 * reinitialize the device. We need to read it ahead of time because
  75 * in the future, we might not upload the firmware until userspace
  76 * 'ifconfig up's the device.
  77 *
  78 * We can then upload the firmware file. The file is composed of a BCF
  79 * header (basic data, keys and signatures) and a list of write
  80 * commands and payloads. Optionally more BCF headers might follow the
  81 * main payload. We first upload the header [i2400m_dnload_init()] and
  82 * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
  83 * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
  84 * the new firmware [i2400m_dnload_finalize()].
  85 *
  86 * Once firmware is uploaded, we are good to go :)
  87 *
  88 * When we don't know in which mode we are, we first try by sending a
  89 * warm reset request that will take us to boot-mode. If we time out
  90 * waiting for a reboot barker, that means maybe we are already in
  91 * boot mode, so we send a reboot barker.
  92 *
  93 * COMMAND EXECUTION
  94 *
  95 * This code (and process) is single threaded; for executing commands,
  96 * we post a URB to the notification endpoint, post the command, wait
  97 * for data on the notification buffer. We don't need to worry about
  98 * others as we know we are the only ones in there.
  99 *
 100 * BACKEND IMPLEMENTATION
 101 *
 102 * This code is bus-generic; the bus-specific driver provides back end
 103 * implementations to send a boot mode command to the device and to
 104 * read an acknolwedgement from it (or an asynchronous notification)
 105 * from it.
 106 *
 107 * FIRMWARE LOADING
 108 *
 109 * Note that in some cases, we can't just load a firmware file (for
 110 * example, when resuming). For that, we might cache the firmware
 111 * file. Thus, when doing the bootstrap, if there is a cache firmware
 112 * file, it is used; if not, loading from disk is attempted.
 113 *
 114 * ROADMAP
 115 *
 116 * i2400m_barker_db_init              Called by i2400m_driver_init()
 117 *   i2400m_barker_db_add
 118 *
 119 * i2400m_barker_db_exit              Called by i2400m_driver_exit()
 120 *
 121 * i2400m_dev_bootstrap               Called by __i2400m_dev_start()
 122 *   request_firmware
 123 *   i2400m_fw_bootstrap
 124 *     i2400m_fw_check
 125 *       i2400m_fw_hdr_check
 126 *     i2400m_fw_dnload
 127 *   release_firmware
 128 *
 129 * i2400m_fw_dnload
 130 *   i2400m_bootrom_init
 131 *     i2400m_bm_cmd
 132 *     i2400m_reset
 133 *   i2400m_dnload_init
 134 *     i2400m_dnload_init_signed
 135 *     i2400m_dnload_init_nonsigned
 136 *       i2400m_download_chunk
 137 *         i2400m_bm_cmd
 138 *   i2400m_dnload_bcf
 139 *     i2400m_bm_cmd
 140 *   i2400m_dnload_finalize
 141 *     i2400m_bm_cmd
 142 *
 143 * i2400m_bm_cmd
 144 *   i2400m->bus_bm_cmd_send()
 145 *   i2400m->bus_bm_wait_for_ack
 146 *   __i2400m_bm_ack_verify
 147 *     i2400m_is_boot_barker
 148 *
 149 * i2400m_bm_cmd_prepare              Used by bus-drivers to prep
 150 *                                    commands before sending
 151 *
 152 * i2400m_pm_notifier                 Called on Power Management events
 153 *   i2400m_fw_cache
 154 *   i2400m_fw_uncache
 155 */
 156#include <linux/firmware.h>
 157#include <linux/sched.h>
 158#include <linux/slab.h>
 159#include <linux/usb.h>
 160#include <linux/export.h>
 161#include "i2400m.h"
 162
 163
 164#define D_SUBMODULE fw
 165#include "debug-levels.h"
 166
 167
 168static const __le32 i2400m_ACK_BARKER[4] = {
 169        cpu_to_le32(I2400M_ACK_BARKER),
 170        cpu_to_le32(I2400M_ACK_BARKER),
 171        cpu_to_le32(I2400M_ACK_BARKER),
 172        cpu_to_le32(I2400M_ACK_BARKER)
 173};
 174
 175
 176/**
 177 * Prepare a boot-mode command for delivery
 178 *
 179 * @cmd: pointer to bootrom header to prepare
 180 *
 181 * Computes checksum if so needed. After calling this function, DO NOT
 182 * modify the command or header as the checksum won't work anymore.
 183 *
 184 * We do it from here because some times we cannot do it in the
 185 * original context the command was sent (it is a const), so when we
 186 * copy it to our staging buffer, we add the checksum there.
 187 */
 188void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
 189{
 190        if (i2400m_brh_get_use_checksum(cmd)) {
 191                int i;
 192                u32 checksum = 0;
 193                const u32 *checksum_ptr = (void *) cmd->payload;
 194                for (i = 0; i < cmd->data_size / 4; i++)
 195                        checksum += cpu_to_le32(*checksum_ptr++);
 196                checksum += cmd->command + cmd->target_addr + cmd->data_size;
 197                cmd->block_checksum = cpu_to_le32(checksum);
 198        }
 199}
 200EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
 201
 202
 203/*
 204 * Database of known barkers.
 205 *
 206 * A barker is what the device sends indicating he is ready to be
 207 * bootloaded. Different versions of the device will send different
 208 * barkers. Depending on the barker, it might mean the device wants
 209 * some kind of firmware or the other.
 210 */
 211static struct i2400m_barker_db {
 212        __le32 data[4];
 213} *i2400m_barker_db;
 214static size_t i2400m_barker_db_used, i2400m_barker_db_size;
 215
 216
 217static
 218int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
 219                       gfp_t gfp_flags)
 220{
 221        size_t old_count = *_count,
 222                new_count = old_count ? 2 * old_count : 2,
 223                old_size = el_size * old_count,
 224                new_size = el_size * new_count;
 225        void *nptr = krealloc(*ptr, new_size, gfp_flags);
 226        if (nptr) {
 227                /* zero the other half or the whole thing if old_count
 228                 * was zero */
 229                if (old_size == 0)
 230                        memset(nptr, 0, new_size);
 231                else
 232                        memset(nptr + old_size, 0, old_size);
 233                *_count = new_count;
 234                *ptr = nptr;
 235                return 0;
 236        } else
 237                return -ENOMEM;
 238}
 239
 240
 241/*
 242 * Add a barker to the database
 243 *
 244 * This cannot used outside of this module and only at at module_init
 245 * time. This is to avoid the need to do locking.
 246 */
 247static
 248int i2400m_barker_db_add(u32 barker_id)
 249{
 250        int result;
 251
 252        struct i2400m_barker_db *barker;
 253        if (i2400m_barker_db_used >= i2400m_barker_db_size) {
 254                result = i2400m_zrealloc_2x(
 255                        (void **) &i2400m_barker_db, &i2400m_barker_db_size,
 256                        sizeof(i2400m_barker_db[0]), GFP_KERNEL);
 257                if (result < 0)
 258                        return result;
 259        }
 260        barker = i2400m_barker_db + i2400m_barker_db_used++;
 261        barker->data[0] = le32_to_cpu(barker_id);
 262        barker->data[1] = le32_to_cpu(barker_id);
 263        barker->data[2] = le32_to_cpu(barker_id);
 264        barker->data[3] = le32_to_cpu(barker_id);
 265        return 0;
 266}
 267
 268
 269void i2400m_barker_db_exit(void)
 270{
 271        kfree(i2400m_barker_db);
 272        i2400m_barker_db = NULL;
 273        i2400m_barker_db_size = 0;
 274        i2400m_barker_db_used = 0;
 275}
 276
 277
 278/*
 279 * Helper function to add all the known stable barkers to the barker
 280 * database.
 281 */
 282static
 283int i2400m_barker_db_known_barkers(void)
 284{
 285        int result;
 286
 287        result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
 288        if (result < 0)
 289                goto error_add;
 290        result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
 291        if (result < 0)
 292                goto error_add;
 293        result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
 294        if (result < 0)
 295                goto error_add;
 296error_add:
 297       return result;
 298}
 299
 300
 301/*
 302 * Initialize the barker database
 303 *
 304 * This can only be used from the module_init function for this
 305 * module; this is to avoid the need to do locking.
 306 *
 307 * @options: command line argument with extra barkers to
 308 *     recognize. This is a comma-separated list of 32-bit hex
 309 *     numbers. They are appended to the existing list. Setting 0
 310 *     cleans the existing list and starts a new one.
 311 */
 312int i2400m_barker_db_init(const char *_options)
 313{
 314        int result;
 315        char *options = NULL, *options_orig, *token;
 316
 317        i2400m_barker_db = NULL;
 318        i2400m_barker_db_size = 0;
 319        i2400m_barker_db_used = 0;
 320
 321        result = i2400m_barker_db_known_barkers();
 322        if (result < 0)
 323                goto error_add;
 324        /* parse command line options from i2400m.barkers */
 325        if (_options != NULL) {
 326                unsigned barker;
 327
 328                options_orig = kstrdup(_options, GFP_KERNEL);
 329                if (options_orig == NULL) {
 330                        result = -ENOMEM;
 331                        goto error_parse;
 332                }
 333                options = options_orig;
 334
 335                while ((token = strsep(&options, ",")) != NULL) {
 336                        if (*token == '\0')     /* eat joint commas */
 337                                continue;
 338                        if (sscanf(token, "%x", &barker) != 1
 339                            || barker > 0xffffffff) {
 340                                printk(KERN_ERR "%s: can't recognize "
 341                                       "i2400m.barkers value '%s' as "
 342                                       "a 32-bit number\n",
 343                                       __func__, token);
 344                                result = -EINVAL;
 345                                goto error_parse;
 346                        }
 347                        if (barker == 0) {
 348                                /* clean list and start new */
 349                                i2400m_barker_db_exit();
 350                                continue;
 351                        }
 352                        result = i2400m_barker_db_add(barker);
 353                        if (result < 0)
 354                                goto error_add;
 355                }
 356                kfree(options_orig);
 357        }
 358        return 0;
 359
 360error_parse:
 361error_add:
 362        kfree(i2400m_barker_db);
 363        return result;
 364}
 365
 366
 367/*
 368 * Recognize a boot barker
 369 *
 370 * @buf: buffer where the boot barker.
 371 * @buf_size: size of the buffer (has to be 16 bytes). It is passed
 372 *     here so the function can check it for the caller.
 373 *
 374 * Note that as a side effect, upon identifying the obtained boot
 375 * barker, this function will set i2400m->barker to point to the right
 376 * barker database entry. Subsequent calls to the function will result
 377 * in verifying that the same type of boot barker is returned when the
 378 * device [re]boots (as long as the same device instance is used).
 379 *
 380 * Return: 0 if @buf matches a known boot barker. -ENOENT if the
 381 *     buffer in @buf doesn't match any boot barker in the database or
 382 *     -EILSEQ if the buffer doesn't have the right size.
 383 */
 384int i2400m_is_boot_barker(struct i2400m *i2400m,
 385                          const void *buf, size_t buf_size)
 386{
 387        int result;
 388        struct device *dev = i2400m_dev(i2400m);
 389        struct i2400m_barker_db *barker;
 390        int i;
 391
 392        result = -ENOENT;
 393        if (buf_size != sizeof(i2400m_barker_db[i].data))
 394                return result;
 395
 396        /* Short circuit if we have already discovered the barker
 397         * associated with the device. */
 398        if (i2400m->barker
 399            && !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data))) {
 400                unsigned index = (i2400m->barker - i2400m_barker_db)
 401                        / sizeof(*i2400m->barker);
 402                d_printf(2, dev, "boot barker cache-confirmed #%u/%08x\n",
 403                         index, le32_to_cpu(i2400m->barker->data[0]));
 404                return 0;
 405        }
 406
 407        for (i = 0; i < i2400m_barker_db_used; i++) {
 408                barker = &i2400m_barker_db[i];
 409                BUILD_BUG_ON(sizeof(barker->data) != 16);
 410                if (memcmp(buf, barker->data, sizeof(barker->data)))
 411                        continue;
 412
 413                if (i2400m->barker == NULL) {
 414                        i2400m->barker = barker;
 415                        d_printf(1, dev, "boot barker set to #%u/%08x\n",
 416                                 i, le32_to_cpu(barker->data[0]));
 417                        if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
 418                                i2400m->sboot = 0;
 419                        else
 420                                i2400m->sboot = 1;
 421                } else if (i2400m->barker != barker) {
 422                        dev_err(dev, "HW inconsistency: device "
 423                                "reports a different boot barker "
 424                                "than set (from %08x to %08x)\n",
 425                                le32_to_cpu(i2400m->barker->data[0]),
 426                                le32_to_cpu(barker->data[0]));
 427                        result = -EIO;
 428                } else
 429                        d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
 430                                 i, le32_to_cpu(barker->data[0]));
 431                result = 0;
 432                break;
 433        }
 434        return result;
 435}
 436EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
 437
 438
 439/*
 440 * Verify the ack data received
 441 *
 442 * Given a reply to a boot mode command, chew it and verify everything
 443 * is ok.
 444 *
 445 * @opcode: opcode which generated this ack. For error messages.
 446 * @ack: pointer to ack data we received
 447 * @ack_size: size of that data buffer
 448 * @flags: I2400M_BM_CMD_* flags we called the command with.
 449 *
 450 * Way too long function -- maybe it should be further split
 451 */
 452static
 453ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
 454                               struct i2400m_bootrom_header *ack,
 455                               size_t ack_size, int flags)
 456{
 457        ssize_t result = -ENOMEM;
 458        struct device *dev = i2400m_dev(i2400m);
 459
 460        d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
 461                  i2400m, opcode, ack, ack_size);
 462        if (ack_size < sizeof(*ack)) {
 463                result = -EIO;
 464                dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
 465                        "return enough data (%zu bytes vs %zu expected)\n",
 466                        opcode, ack_size, sizeof(*ack));
 467                goto error_ack_short;
 468        }
 469        result = i2400m_is_boot_barker(i2400m, ack, ack_size);
 470        if (result >= 0) {
 471                result = -ERESTARTSYS;
 472                d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
 473                goto error_reboot;
 474        }
 475        if (ack_size == sizeof(i2400m_ACK_BARKER)
 476                 && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
 477                result = -EISCONN;
 478                d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
 479                         opcode);
 480                goto error_reboot_ack;
 481        }
 482        result = 0;
 483        if (flags & I2400M_BM_CMD_RAW)
 484                goto out_raw;
 485        ack->data_size = le32_to_cpu(ack->data_size);
 486        ack->target_addr = le32_to_cpu(ack->target_addr);
 487        ack->block_checksum = le32_to_cpu(ack->block_checksum);
 488        d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
 489                 "response %u csum %u rr %u da %u\n",
 490                 opcode, i2400m_brh_get_opcode(ack),
 491                 i2400m_brh_get_response(ack),
 492                 i2400m_brh_get_use_checksum(ack),
 493                 i2400m_brh_get_response_required(ack),
 494                 i2400m_brh_get_direct_access(ack));
 495        result = -EIO;
 496        if (i2400m_brh_get_signature(ack) != 0xcbbc) {
 497                dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
 498                        "0x%04x\n", opcode, i2400m_brh_get_signature(ack));
 499                goto error_ack_signature;
 500        }
 501        if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
 502                dev_err(dev, "boot-mode cmd %d: HW BUG? "
 503                        "received response for opcode %u, expected %u\n",
 504                        opcode, i2400m_brh_get_opcode(ack), opcode);
 505                goto error_ack_opcode;
 506        }
 507        if (i2400m_brh_get_response(ack) != 0) {        /* failed? */
 508                dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
 509                        opcode, i2400m_brh_get_response(ack));
 510                goto error_ack_failed;
 511        }
 512        if (ack_size < ack->data_size + sizeof(*ack)) {
 513                dev_err(dev, "boot-mode cmd %d: SW BUG "
 514                        "driver provided only %zu bytes for %zu bytes "
 515                        "of data\n", opcode, ack_size,
 516                        (size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
 517                goto error_ack_short_buffer;
 518        }
 519        result = ack_size;
 520        /* Don't you love this stack of empty targets? Well, I don't
 521         * either, but it helps track exactly who comes in here and
 522         * why :) */
 523error_ack_short_buffer:
 524error_ack_failed:
 525error_ack_opcode:
 526error_ack_signature:
 527out_raw:
 528error_reboot_ack:
 529error_reboot:
 530error_ack_short:
 531        d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
 532                i2400m, opcode, ack, ack_size, (int) result);
 533        return result;
 534}
 535
 536
 537/**
 538 * i2400m_bm_cmd - Execute a boot mode command
 539 *
 540 * @cmd: buffer containing the command data (pointing at the header).
 541 *     This data can be ANYWHERE (for USB, we will copy it to an
 542 *     specific buffer). Make sure everything is in proper little
 543 *     endian.
 544 *
 545 *     A raw buffer can be also sent, just cast it and set flags to
 546 *     I2400M_BM_CMD_RAW.
 547 *
 548 *     This function will generate a checksum for you if the
 549 *     checksum bit in the command is set (unless I2400M_BM_CMD_RAW
 550 *     is set).
 551 *
 552 *     You can use the i2400m->bm_cmd_buf to stage your commands and
 553 *     send them.
 554 *
 555 *     If NULL, no command is sent (we just wait for an ack).
 556 *
 557 * @cmd_size: size of the command. Will be auto padded to the
 558 *     bus-specific drivers padding requirements.
 559 *
 560 * @ack: buffer where to place the acknowledgement. If it is a regular
 561 *     command response, all fields will be returned with the right,
 562 *     native endianess.
 563 *
 564 *     You *cannot* use i2400m->bm_ack_buf for this buffer.
 565 *
 566 * @ack_size: size of @ack, 16 aligned; you need to provide at least
 567 *     sizeof(*ack) bytes and then enough to contain the return data
 568 *     from the command
 569 *
 570 * @flags: see I2400M_BM_CMD_* above.
 571 *
 572 * @returns: bytes received by the notification; if < 0, an errno code
 573 *     denoting an error or:
 574 *
 575 *     -ERESTARTSYS  The device has rebooted
 576 *
 577 * Executes a boot-mode command and waits for a response, doing basic
 578 * validation on it; if a zero length response is received, it retries
 579 * waiting for a response until a non-zero one is received (timing out
 580 * after %I2400M_BOOT_RETRIES retries).
 581 */
 582static
 583ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
 584                      const struct i2400m_bootrom_header *cmd, size_t cmd_size,
 585                      struct i2400m_bootrom_header *ack, size_t ack_size,
 586                      int flags)
 587{
 588        ssize_t result = -ENOMEM, rx_bytes;
 589        struct device *dev = i2400m_dev(i2400m);
 590        int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
 591
 592        d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
 593                  i2400m, cmd, cmd_size, ack, ack_size);
 594        BUG_ON(ack_size < sizeof(*ack));
 595        BUG_ON(i2400m->boot_mode == 0);
 596
 597        if (cmd != NULL) {              /* send the command */
 598                result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
 599                if (result < 0)
 600                        goto error_cmd_send;
 601                if ((flags & I2400M_BM_CMD_RAW) == 0)
 602                        d_printf(5, dev,
 603                                 "boot-mode cmd %d csum %u rr %u da %u: "
 604                                 "addr 0x%04x size %u block csum 0x%04x\n",
 605                                 opcode, i2400m_brh_get_use_checksum(cmd),
 606                                 i2400m_brh_get_response_required(cmd),
 607                                 i2400m_brh_get_direct_access(cmd),
 608                                 cmd->target_addr, cmd->data_size,
 609                                 cmd->block_checksum);
 610        }
 611        result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
 612        if (result < 0) {
 613                dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
 614                        opcode, (int) result);  /* bah, %zd doesn't work */
 615                goto error_wait_for_ack;
 616        }
 617        rx_bytes = result;
 618        /* verify the ack and read more if necessary [result is the
 619         * final amount of bytes we get in the ack]  */
 620        result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
 621        if (result < 0)
 622                goto error_bad_ack;
 623        /* Don't you love this stack of empty targets? Well, I don't
 624         * either, but it helps track exactly who comes in here and
 625         * why :) */
 626        result = rx_bytes;
 627error_bad_ack:
 628error_wait_for_ack:
 629error_cmd_send:
 630        d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
 631                i2400m, cmd, cmd_size, ack, ack_size, (int) result);
 632        return result;
 633}
 634
 635
 636/**
 637 * i2400m_download_chunk - write a single chunk of data to the device's memory
 638 *
 639 * @i2400m: device descriptor
 640 * @buf: the buffer to write
 641 * @buf_len: length of the buffer to write
 642 * @addr: address in the device memory space
 643 * @direct: bootrom write mode
 644 * @do_csum: should a checksum validation be performed
 645 */
 646static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
 647                                 size_t __chunk_len, unsigned long addr,
 648                                 unsigned int direct, unsigned int do_csum)
 649{
 650        int ret;
 651        size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
 652        struct device *dev = i2400m_dev(i2400m);
 653        struct {
 654                struct i2400m_bootrom_header cmd;
 655                u8 cmd_payload[chunk_len];
 656        } __packed *buf;
 657        struct i2400m_bootrom_header ack;
 658
 659        d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
 660                  "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
 661                  addr, direct, do_csum);
 662        buf = i2400m->bm_cmd_buf;
 663        memcpy(buf->cmd_payload, chunk, __chunk_len);
 664        memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
 665
 666        buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
 667                                              __chunk_len & 0x3 ? 0 : do_csum,
 668                                              __chunk_len & 0xf ? 0 : direct);
 669        buf->cmd.target_addr = cpu_to_le32(addr);
 670        buf->cmd.data_size = cpu_to_le32(__chunk_len);
 671        ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
 672                            &ack, sizeof(ack), 0);
 673        if (ret >= 0)
 674                ret = 0;
 675        d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
 676                "direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
 677                addr, direct, do_csum, ret);
 678        return ret;
 679}
 680
 681
 682/*
 683 * Download a BCF file's sections to the device
 684 *
 685 * @i2400m: device descriptor
 686 * @bcf: pointer to firmware data (first header followed by the
 687 *     payloads). Assumed verified and consistent.
 688 * @bcf_len: length (in bytes) of the @bcf buffer.
 689 *
 690 * Returns: < 0 errno code on error or the offset to the jump instruction.
 691 *
 692 * Given a BCF file, downloads each section (a command and a payload)
 693 * to the device's address space. Actually, it just executes each
 694 * command i the BCF file.
 695 *
 696 * The section size has to be aligned to 4 bytes AND the padding has
 697 * to be taken from the firmware file, as the signature takes it into
 698 * account.
 699 */
 700static
 701ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
 702                          const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
 703{
 704        ssize_t ret;
 705        struct device *dev = i2400m_dev(i2400m);
 706        size_t offset,          /* iterator offset */
 707                data_size,      /* Size of the data payload */
 708                section_size,   /* Size of the whole section (cmd + payload) */
 709                section = 1;
 710        const struct i2400m_bootrom_header *bh;
 711        struct i2400m_bootrom_header ack;
 712
 713        d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
 714                  i2400m, bcf, bcf_len);
 715        /* Iterate over the command blocks in the BCF file that start
 716         * after the header */
 717        offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
 718        while (1) {     /* start sending the file */
 719                bh = (void *) bcf + offset;
 720                data_size = le32_to_cpu(bh->data_size);
 721                section_size = ALIGN(sizeof(*bh) + data_size, 4);
 722                d_printf(7, dev,
 723                         "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
 724                         section, offset, sizeof(*bh) + data_size,
 725                         le32_to_cpu(bh->target_addr));
 726                /*
 727                 * We look for JUMP cmd from the bootmode header,
 728                 * either I2400M_BRH_SIGNED_JUMP for secure boot
 729                 * or I2400M_BRH_JUMP for unsecure boot, the last chunk
 730                 * should be the bootmode header with JUMP cmd.
 731                 */
 732                if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
 733                        i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
 734                        d_printf(5, dev,  "jump found @%zu\n", offset);
 735                        break;
 736                }
 737                if (offset + section_size > bcf_len) {
 738                        dev_err(dev, "fw %s: bad section #%zu, "
 739                                "end (@%zu) beyond EOF (@%zu)\n",
 740                                i2400m->fw_name, section,
 741                                offset + section_size,  bcf_len);
 742                        ret = -EINVAL;
 743                        goto error_section_beyond_eof;
 744                }
 745                __i2400m_msleep(20);
 746                ret = i2400m_bm_cmd(i2400m, bh, section_size,
 747                                    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
 748                if (ret < 0) {
 749                        dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
 750                                "failed %d\n", i2400m->fw_name, section,
 751                                offset, sizeof(*bh) + data_size, (int) ret);
 752                        goto error_send;
 753                }
 754                offset += section_size;
 755                section++;
 756        }
 757        ret = offset;
 758error_section_beyond_eof:
 759error_send:
 760        d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
 761                i2400m, bcf, bcf_len, (int) ret);
 762        return ret;
 763}
 764
 765
 766/*
 767 * Indicate if the device emitted a reboot barker that indicates
 768 * "signed boot"
 769 */
 770static
 771unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
 772{
 773        return likely(i2400m->sboot);
 774}
 775
 776
 777/*
 778 * Do the final steps of uploading firmware
 779 *
 780 * @bcf_hdr: BCF header we are actually using
 781 * @bcf: pointer to the firmware image (which matches the first header
 782 *     that is followed by the actual payloads).
 783 * @offset: [byte] offset into @bcf for the command we need to send.
 784 *
 785 * Depending on the boot mode (signed vs non-signed), different
 786 * actions need to be taken.
 787 */
 788static
 789int i2400m_dnload_finalize(struct i2400m *i2400m,
 790                           const struct i2400m_bcf_hdr *bcf_hdr,
 791                           const struct i2400m_bcf_hdr *bcf, size_t offset)
 792{
 793        int ret = 0;
 794        struct device *dev = i2400m_dev(i2400m);
 795        struct i2400m_bootrom_header *cmd, ack;
 796        struct {
 797                struct i2400m_bootrom_header cmd;
 798                u8 cmd_pl[0];
 799        } __packed *cmd_buf;
 800        size_t signature_block_offset, signature_block_size;
 801
 802        d_fnstart(3, dev, "offset %zu\n", offset);
 803        cmd = (void *) bcf + offset;
 804        if (i2400m_boot_is_signed(i2400m) == 0) {
 805                struct i2400m_bootrom_header jump_ack;
 806                d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
 807                        le32_to_cpu(cmd->target_addr));
 808                cmd_buf = i2400m->bm_cmd_buf;
 809                memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
 810                cmd = &cmd_buf->cmd;
 811                /* now cmd points to the actual bootrom_header in cmd_buf */
 812                i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
 813                cmd->data_size = 0;
 814                ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
 815                                    &jump_ack, sizeof(jump_ack), 0);
 816        } else {
 817                d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
 818                         le32_to_cpu(cmd->target_addr));
 819                cmd_buf = i2400m->bm_cmd_buf;
 820                memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
 821                signature_block_offset =
 822                        sizeof(*bcf_hdr)
 823                        + le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
 824                        + le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
 825                signature_block_size =
 826                        le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
 827                memcpy(cmd_buf->cmd_pl,
 828                       (void *) bcf_hdr + signature_block_offset,
 829                       signature_block_size);
 830                ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
 831                                    sizeof(cmd_buf->cmd) + signature_block_size,
 832                                    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
 833        }
 834        d_fnend(3, dev, "returning %d\n", ret);
 835        return ret;
 836}
 837
 838
 839/**
 840 * i2400m_bootrom_init - Reboots a powered device into boot mode
 841 *
 842 * @i2400m: device descriptor
 843 * @flags:
 844 *      I2400M_BRI_SOFT: a reboot barker has been seen
 845 *          already, so don't wait for it.
 846 *
 847 *      I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
 848 *          for a reboot barker notification. This is a one shot; if
 849 *          the state machine needs to send a reboot command it will.
 850 *
 851 * Returns:
 852 *
 853 *     < 0 errno code on error, 0 if ok.
 854 *
 855 * Description:
 856 *
 857 * Tries hard enough to put the device in boot-mode. There are two
 858 * main phases to this:
 859 *
 860 * a. (1) send a reboot command and (2) get a reboot barker
 861 *
 862 * b. (1) echo/ack the reboot sending the reboot barker back and (2)
 863 *        getting an ack barker in return
 864 *
 865 * We want to skip (a) in some cases [soft]. The state machine is
 866 * horrible, but it is basically: on each phase, send what has to be
 867 * sent (if any), wait for the answer and act on the answer. We might
 868 * have to backtrack and retry, so we keep a max tries counter for
 869 * that.
 870 *
 871 * It sucks because we don't know ahead of time which is going to be
 872 * the reboot barker (the device might send different ones depending
 873 * on its EEPROM config) and once the device reboots and waits for the
 874 * echo/ack reboot barker being sent back, it doesn't understand
 875 * anything else. So we can be left at the point where we don't know
 876 * what to send to it -- cold reset and bus reset seem to have little
 877 * effect. So the function iterates (in this case) through all the
 878 * known barkers and tries them all until an ACK is
 879 * received. Otherwise, it gives up.
 880 *
 881 * If we get a timeout after sending a warm reset, we do it again.
 882 */
 883int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
 884{
 885        int result;
 886        struct device *dev = i2400m_dev(i2400m);
 887        struct i2400m_bootrom_header *cmd;
 888        struct i2400m_bootrom_header ack;
 889        int count = i2400m->bus_bm_retries;
 890        int ack_timeout_cnt = 1;
 891        unsigned i;
 892
 893        BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
 894        BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
 895
 896        d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
 897        result = -ENOMEM;
 898        cmd = i2400m->bm_cmd_buf;
 899        if (flags & I2400M_BRI_SOFT)
 900                goto do_reboot_ack;
 901do_reboot:
 902        ack_timeout_cnt = 1;
 903        if (--count < 0)
 904                goto error_timeout;
 905        d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
 906                 count);
 907        if ((flags & I2400M_BRI_NO_REBOOT) == 0)
 908                i2400m_reset(i2400m, I2400M_RT_WARM);
 909        result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
 910                               I2400M_BM_CMD_RAW);
 911        flags &= ~I2400M_BRI_NO_REBOOT;
 912        switch (result) {
 913        case -ERESTARTSYS:
 914                /*
 915                 * at this point, i2400m_bm_cmd(), through
 916                 * __i2400m_bm_ack_process(), has updated
 917                 * i2400m->barker and we are good to go.
 918                 */
 919                d_printf(4, dev, "device reboot: got reboot barker\n");
 920                break;
 921        case -EISCONN:  /* we don't know how it got here...but we follow it */
 922                d_printf(4, dev, "device reboot: got ack barker - whatever\n");
 923                goto do_reboot;
 924        case -ETIMEDOUT:
 925                /*
 926                 * Device has timed out, we might be in boot mode
 927                 * already and expecting an ack; if we don't know what
 928                 * the barker is, we just send them all. Cold reset
 929                 * and bus reset don't work. Beats me.
 930                 */
 931                if (i2400m->barker != NULL) {
 932                        dev_err(dev, "device boot: reboot barker timed out, "
 933                                "trying (set) %08x echo/ack\n",
 934                                le32_to_cpu(i2400m->barker->data[0]));
 935                        goto do_reboot_ack;
 936                }
 937                for (i = 0; i < i2400m_barker_db_used; i++) {
 938                        struct i2400m_barker_db *barker = &i2400m_barker_db[i];
 939                        memcpy(cmd, barker->data, sizeof(barker->data));
 940                        result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
 941                                               &ack, sizeof(ack),
 942                                               I2400M_BM_CMD_RAW);
 943                        if (result == -EISCONN) {
 944                                dev_warn(dev, "device boot: got ack barker "
 945                                         "after sending echo/ack barker "
 946                                         "#%d/%08x; rebooting j.i.c.\n",
 947                                         i, le32_to_cpu(barker->data[0]));
 948                                flags &= ~I2400M_BRI_NO_REBOOT;
 949                                goto do_reboot;
 950                        }
 951                }
 952                dev_err(dev, "device boot: tried all the echo/acks, could "
 953                        "not get device to respond; giving up");
 954                result = -ESHUTDOWN;
 955        case -EPROTO:
 956        case -ESHUTDOWN:        /* dev is gone */
 957        case -EINTR:            /* user cancelled */
 958                goto error_dev_gone;
 959        default:
 960                dev_err(dev, "device reboot: error %d while waiting "
 961                        "for reboot barker - rebooting\n", result);
 962                d_dump(1, dev, &ack, result);
 963                goto do_reboot;
 964        }
 965        /* At this point we ack back with 4 REBOOT barkers and expect
 966         * 4 ACK barkers. This is ugly, as we send a raw command --
 967         * hence the cast. _bm_cmd() will catch the reboot ack
 968         * notification and report it as -EISCONN. */
 969do_reboot_ack:
 970        d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
 971        memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
 972        result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
 973                               &ack, sizeof(ack), I2400M_BM_CMD_RAW);
 974        switch (result) {
 975        case -ERESTARTSYS:
 976                d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
 977                if (--count < 0)
 978                        goto error_timeout;
 979                goto do_reboot_ack;
 980        case -EISCONN:
 981                d_printf(4, dev, "reboot ack: got ack barker - good\n");
 982                break;
 983        case -ETIMEDOUT:        /* no response, maybe it is the other type? */
 984                if (ack_timeout_cnt-- < 0) {
 985                        d_printf(4, dev, "reboot ack timedout: retrying\n");
 986                        goto do_reboot_ack;
 987                } else {
 988                        dev_err(dev, "reboot ack timedout too long: "
 989                                "trying reboot\n");
 990                        goto do_reboot;
 991                }
 992                break;
 993        case -EPROTO:
 994        case -ESHUTDOWN:        /* dev is gone */
 995                goto error_dev_gone;
 996        default:
 997                dev_err(dev, "device reboot ack: error %d while waiting for "
 998                        "reboot ack barker - rebooting\n", result);
 999                goto do_reboot;
1000        }
1001        d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
1002        result = 0;
1003exit_timeout:
1004error_dev_gone:
1005        d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
1006                i2400m, flags, result);
1007        return result;
1008
1009error_timeout:
1010        dev_err(dev, "Timed out waiting for reboot ack\n");
1011        result = -ETIMEDOUT;
1012        goto exit_timeout;
1013}
1014
1015
1016/*
1017 * Read the MAC addr
1018 *
1019 * The position this function reads is fixed in device memory and
1020 * always available, even without firmware.
1021 *
1022 * Note we specify we want to read only six bytes, but provide space
1023 * for 16, as we always get it rounded up.
1024 */
1025int i2400m_read_mac_addr(struct i2400m *i2400m)
1026{
1027        int result;
1028        struct device *dev = i2400m_dev(i2400m);
1029        struct net_device *net_dev = i2400m->wimax_dev.net_dev;
1030        struct i2400m_bootrom_header *cmd;
1031        struct {
1032                struct i2400m_bootrom_header ack;
1033                u8 ack_pl[16];
1034        } __packed ack_buf;
1035
1036        d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1037        cmd = i2400m->bm_cmd_buf;
1038        cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
1039        cmd->target_addr = cpu_to_le32(0x00203fe8);
1040        cmd->data_size = cpu_to_le32(6);
1041        result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
1042                               &ack_buf.ack, sizeof(ack_buf), 0);
1043        if (result < 0) {
1044                dev_err(dev, "BM: read mac addr failed: %d\n", result);
1045                goto error_read_mac;
1046        }
1047        d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
1048        if (i2400m->bus_bm_mac_addr_impaired == 1) {
1049                ack_buf.ack_pl[0] = 0x00;
1050                ack_buf.ack_pl[1] = 0x16;
1051                ack_buf.ack_pl[2] = 0xd3;
1052                get_random_bytes(&ack_buf.ack_pl[3], 3);
1053                dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
1054                        "mac addr is %pM\n", ack_buf.ack_pl);
1055                result = 0;
1056        }
1057        net_dev->addr_len = ETH_ALEN;
1058        memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
1059error_read_mac:
1060        d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
1061        return result;
1062}
1063
1064
1065/*
1066 * Initialize a non signed boot
1067 *
1068 * This implies sending some magic values to the device's memory. Note
1069 * we convert the values to little endian in the same array
1070 * declaration.
1071 */
1072static
1073int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
1074{
1075        unsigned i = 0;
1076        int ret = 0;
1077        struct device *dev = i2400m_dev(i2400m);
1078        d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1079        if (i2400m->bus_bm_pokes_table) {
1080                while (i2400m->bus_bm_pokes_table[i].address) {
1081                        ret = i2400m_download_chunk(
1082                                i2400m,
1083                                &i2400m->bus_bm_pokes_table[i].data,
1084                                sizeof(i2400m->bus_bm_pokes_table[i].data),
1085                                i2400m->bus_bm_pokes_table[i].address, 1, 1);
1086                        if (ret < 0)
1087                                break;
1088                        i++;
1089                }
1090        }
1091        d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1092        return ret;
1093}
1094
1095
1096/*
1097 * Initialize the signed boot process
1098 *
1099 * @i2400m: device descriptor
1100 *
1101 * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1102 *     memory (it has gone through basic validation).
1103 *
1104 * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1105 *     rebooted.
1106 *
1107 * This writes the firmware BCF header to the device using the
1108 * HASH_PAYLOAD_ONLY command.
1109 */
1110static
1111int i2400m_dnload_init_signed(struct i2400m *i2400m,
1112                              const struct i2400m_bcf_hdr *bcf_hdr)
1113{
1114        int ret;
1115        struct device *dev = i2400m_dev(i2400m);
1116        struct {
1117                struct i2400m_bootrom_header cmd;
1118                struct i2400m_bcf_hdr cmd_pl;
1119        } __packed *cmd_buf;
1120        struct i2400m_bootrom_header ack;
1121
1122        d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
1123        cmd_buf = i2400m->bm_cmd_buf;
1124        cmd_buf->cmd.command =
1125                i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
1126        cmd_buf->cmd.target_addr = 0;
1127        cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
1128        memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
1129        ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
1130                            &ack, sizeof(ack), 0);
1131        if (ret >= 0)
1132                ret = 0;
1133        d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
1134        return ret;
1135}
1136
1137
1138/*
1139 * Initialize the firmware download at the device size
1140 *
1141 * Multiplex to the one that matters based on the device's mode
1142 * (signed or non-signed).
1143 */
1144static
1145int i2400m_dnload_init(struct i2400m *i2400m,
1146                       const struct i2400m_bcf_hdr *bcf_hdr)
1147{
1148        int result;
1149        struct device *dev = i2400m_dev(i2400m);
1150
1151        if (i2400m_boot_is_signed(i2400m)) {
1152                d_printf(1, dev, "signed boot\n");
1153                result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
1154                if (result == -ERESTARTSYS)
1155                        return result;
1156                if (result < 0)
1157                        dev_err(dev, "firmware %s: signed boot download "
1158                                "initialization failed: %d\n",
1159                                i2400m->fw_name, result);
1160        } else {
1161                /* non-signed boot process without pokes */
1162                d_printf(1, dev, "non-signed boot\n");
1163                result = i2400m_dnload_init_nonsigned(i2400m);
1164                if (result == -ERESTARTSYS)
1165                        return result;
1166                if (result < 0)
1167                        dev_err(dev, "firmware %s: non-signed download "
1168                                "initialization failed: %d\n",
1169                                i2400m->fw_name, result);
1170        }
1171        return result;
1172}
1173
1174
1175/*
1176 * Run consistency tests on the firmware file and load up headers
1177 *
1178 * Check for the firmware being made for the i2400m device,
1179 * etc...These checks are mostly informative, as the device will make
1180 * them too; but the driver's response is more informative on what
1181 * went wrong.
1182 *
1183 * This will also look at all the headers present on the firmware
1184 * file, and update i2400m->fw_bcf_hdr to point to them.
1185 */
1186static
1187int i2400m_fw_hdr_check(struct i2400m *i2400m,
1188                        const struct i2400m_bcf_hdr *bcf_hdr,
1189                        size_t index, size_t offset)
1190{
1191        struct device *dev = i2400m_dev(i2400m);
1192
1193        unsigned module_type, header_len, major_version, minor_version,
1194                module_id, module_vendor, date, size;
1195
1196        module_type = le32_to_cpu(bcf_hdr->module_type);
1197        header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1198        major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
1199                >> 16;
1200        minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
1201        module_id = le32_to_cpu(bcf_hdr->module_id);
1202        module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
1203        date = le32_to_cpu(bcf_hdr->date);
1204        size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1205
1206        d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
1207                 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1208                 i2400m->fw_name, index, offset,
1209                 module_type, module_vendor, module_id,
1210                 major_version, minor_version, header_len, size, date);
1211
1212        /* Hard errors */
1213        if (major_version != 1) {
1214                dev_err(dev, "firmware %s #%zd@%08zx: major header version "
1215                        "v%u.%u not supported\n",
1216                        i2400m->fw_name, index, offset,
1217                        major_version, minor_version);
1218                return -EBADF;
1219        }
1220
1221        if (module_type != 6) {         /* built for the right hardware? */
1222                dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1223                        "type 0x%x; aborting\n",
1224                        i2400m->fw_name, index, offset,
1225                        module_type);
1226                return -EBADF;
1227        }
1228
1229        if (module_vendor != 0x8086) {
1230                dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1231                        "vendor 0x%x; aborting\n",
1232                        i2400m->fw_name, index, offset, module_vendor);
1233                return -EBADF;
1234        }
1235
1236        if (date < 0x20080300)
1237                dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
1238                         "too old; unsupported\n",
1239                         i2400m->fw_name, index, offset, date);
1240        return 0;
1241}
1242
1243
1244/*
1245 * Run consistency tests on the firmware file and load up headers
1246 *
1247 * Check for the firmware being made for the i2400m device,
1248 * etc...These checks are mostly informative, as the device will make
1249 * them too; but the driver's response is more informative on what
1250 * went wrong.
1251 *
1252 * This will also look at all the headers present on the firmware
1253 * file, and update i2400m->fw_hdrs to point to them.
1254 */
1255static
1256int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
1257{
1258        int result;
1259        struct device *dev = i2400m_dev(i2400m);
1260        size_t headers = 0;
1261        const struct i2400m_bcf_hdr *bcf_hdr;
1262        const void *itr, *next, *top;
1263        size_t slots = 0, used_slots = 0;
1264
1265        for (itr = bcf, top = itr + bcf_size;
1266             itr < top;
1267             headers++, itr = next) {
1268                size_t leftover, offset, header_len, size;
1269
1270                leftover = top - itr;
1271                offset = itr - bcf;
1272                if (leftover <= sizeof(*bcf_hdr)) {
1273                        dev_err(dev, "firmware %s: %zu B left at @%zx, "
1274                                "not enough for BCF header\n",
1275                                i2400m->fw_name, leftover, offset);
1276                        break;
1277                }
1278                bcf_hdr = itr;
1279                /* Only the first header is supposed to be followed by
1280                 * payload */
1281                header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1282                size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1283                if (headers == 0)
1284                        next = itr + size;
1285                else
1286                        next = itr + header_len;
1287
1288                result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
1289                if (result < 0)
1290                        continue;
1291                if (used_slots + 1 >= slots) {
1292                        /* +1 -> we need to account for the one we'll
1293                         * occupy and at least an extra one for
1294                         * always being NULL */
1295                        result = i2400m_zrealloc_2x(
1296                                (void **) &i2400m->fw_hdrs, &slots,
1297                                sizeof(i2400m->fw_hdrs[0]),
1298                                GFP_KERNEL);
1299                        if (result < 0)
1300                                goto error_zrealloc;
1301                }
1302                i2400m->fw_hdrs[used_slots] = bcf_hdr;
1303                used_slots++;
1304        }
1305        if (headers == 0) {
1306                dev_err(dev, "firmware %s: no usable headers found\n",
1307                        i2400m->fw_name);
1308                result = -EBADF;
1309        } else
1310                result = 0;
1311error_zrealloc:
1312        return result;
1313}
1314
1315
1316/*
1317 * Match a barker to a BCF header module ID
1318 *
1319 * The device sends a barker which tells the firmware loader which
1320 * header in the BCF file has to be used. This does the matching.
1321 */
1322static
1323unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
1324                              const struct i2400m_bcf_hdr *bcf_hdr)
1325{
1326        u32 barker = le32_to_cpu(i2400m->barker->data[0])
1327                & 0x7fffffff;
1328        u32 module_id = le32_to_cpu(bcf_hdr->module_id)
1329                & 0x7fffffff;   /* high bit used for something else */
1330
1331        /* special case for 5x50 */
1332        if (barker == I2400M_SBOOT_BARKER && module_id == 0)
1333                return 1;
1334        if (module_id == barker)
1335                return 1;
1336        return 0;
1337}
1338
1339static
1340const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
1341{
1342        struct device *dev = i2400m_dev(i2400m);
1343        const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
1344        unsigned i = 0;
1345        u32 barker = le32_to_cpu(i2400m->barker->data[0]);
1346
1347        d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
1348        if (barker == I2400M_NBOOT_BARKER) {
1349                bcf_hdr = i2400m->fw_hdrs[0];
1350                d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
1351                         "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
1352                return bcf_hdr;
1353        }
1354        for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
1355                bcf_hdr = *bcf_itr;
1356                if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
1357                        d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
1358                                 i, le32_to_cpu(bcf_hdr->module_id));
1359                        return bcf_hdr;
1360                } else
1361                        d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
1362                                 i, le32_to_cpu(bcf_hdr->module_id));
1363        }
1364        dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
1365                barker);
1366        return NULL;
1367}
1368
1369
1370/*
1371 * Download the firmware to the device
1372 *
1373 * @i2400m: device descriptor
1374 * @bcf: pointer to loaded (and minimally verified for consistency)
1375 *    firmware
1376 * @bcf_size: size of the @bcf buffer (header plus payloads)
1377 *
1378 * The process for doing this is described in this file's header.
1379 *
1380 * Note we only reinitialize boot-mode if the flags say so. Some hw
1381 * iterations need it, some don't. In any case, if we loop, we always
1382 * need to reinitialize the boot room, hence the flags modification.
1383 */
1384static
1385int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
1386                     size_t fw_size, enum i2400m_bri flags)
1387{
1388        int ret = 0;
1389        struct device *dev = i2400m_dev(i2400m);
1390        int count = i2400m->bus_bm_retries;
1391        const struct i2400m_bcf_hdr *bcf_hdr;
1392        size_t bcf_size;
1393
1394        d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
1395                  i2400m, bcf, fw_size);
1396        i2400m->boot_mode = 1;
1397        wmb();          /* Make sure other readers see it */
1398hw_reboot:
1399        if (count-- == 0) {
1400                ret = -ERESTARTSYS;
1401                dev_err(dev, "device rebooted too many times, aborting\n");
1402                goto error_too_many_reboots;
1403        }
1404        if (flags & I2400M_BRI_MAC_REINIT) {
1405                ret = i2400m_bootrom_init(i2400m, flags);
1406                if (ret < 0) {
1407                        dev_err(dev, "bootrom init failed: %d\n", ret);
1408                        goto error_bootrom_init;
1409                }
1410        }
1411        flags |= I2400M_BRI_MAC_REINIT;
1412
1413        /*
1414         * Initialize the download, push the bytes to the device and
1415         * then jump to the new firmware. Note @ret is passed with the
1416         * offset of the jump instruction to _dnload_finalize()
1417         *
1418         * Note we need to use the BCF header in the firmware image
1419         * that matches the barker that the device sent when it
1420         * rebooted, so it has to be passed along.
1421         */
1422        ret = -EBADF;
1423        bcf_hdr = i2400m_bcf_hdr_find(i2400m);
1424        if (bcf_hdr == NULL)
1425                goto error_bcf_hdr_find;
1426
1427        ret = i2400m_dnload_init(i2400m, bcf_hdr);
1428        if (ret == -ERESTARTSYS)
1429                goto error_dev_rebooted;
1430        if (ret < 0)
1431                goto error_dnload_init;
1432
1433        /*
1434         * bcf_size refers to one header size plus the fw sections size
1435         * indicated by the header,ie. if there are other extended headers
1436         * at the tail, they are not counted
1437         */
1438        bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1439        ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
1440        if (ret == -ERESTARTSYS)
1441                goto error_dev_rebooted;
1442        if (ret < 0) {
1443                dev_err(dev, "fw %s: download failed: %d\n",
1444                        i2400m->fw_name, ret);
1445                goto error_dnload_bcf;
1446        }
1447
1448        ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
1449        if (ret == -ERESTARTSYS)
1450                goto error_dev_rebooted;
1451        if (ret < 0) {
1452                dev_err(dev, "fw %s: "
1453                        "download finalization failed: %d\n",
1454                        i2400m->fw_name, ret);
1455                goto error_dnload_finalize;
1456        }
1457
1458        d_printf(2, dev, "fw %s successfully uploaded\n",
1459                 i2400m->fw_name);
1460        i2400m->boot_mode = 0;
1461        wmb();          /* Make sure i2400m_msg_to_dev() sees boot_mode */
1462error_dnload_finalize:
1463error_dnload_bcf:
1464error_dnload_init:
1465error_bcf_hdr_find:
1466error_bootrom_init:
1467error_too_many_reboots:
1468        d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1469                i2400m, bcf, fw_size, ret);
1470        return ret;
1471
1472error_dev_rebooted:
1473        dev_err(dev, "device rebooted, %d tries left\n", count);
1474        /* we got the notification already, no need to wait for it again */
1475        flags |= I2400M_BRI_SOFT;
1476        goto hw_reboot;
1477}
1478
1479static
1480int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
1481                        enum i2400m_bri flags)
1482{
1483        int ret;
1484        struct device *dev = i2400m_dev(i2400m);
1485        const struct i2400m_bcf_hdr *bcf;       /* Firmware data */
1486
1487        d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1488        bcf = (void *) fw->data;
1489        ret = i2400m_fw_check(i2400m, bcf, fw->size);
1490        if (ret >= 0)
1491                ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1492        if (ret < 0)
1493                dev_err(dev, "%s: cannot use: %d, skipping\n",
1494                        i2400m->fw_name, ret);
1495        kfree(i2400m->fw_hdrs);
1496        i2400m->fw_hdrs = NULL;
1497        d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1498        return ret;
1499}
1500
1501
1502/* Refcounted container for firmware data */
1503struct i2400m_fw {
1504        struct kref kref;
1505        const struct firmware *fw;
1506};
1507
1508
1509static
1510void i2400m_fw_destroy(struct kref *kref)
1511{
1512        struct i2400m_fw *i2400m_fw =
1513                container_of(kref, struct i2400m_fw, kref);
1514        release_firmware(i2400m_fw->fw);
1515        kfree(i2400m_fw);
1516}
1517
1518
1519static
1520struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
1521{
1522        if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1523                kref_get(&i2400m_fw->kref);
1524        return i2400m_fw;
1525}
1526
1527
1528static
1529void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
1530{
1531        kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
1532}
1533
1534
1535/**
1536 * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1537 *
1538 * @i2400m: device descriptor
1539 *
1540 * Returns: >= 0 if ok, < 0 errno code on error.
1541 *
1542 * This sets up the firmware upload environment, loads the firmware
1543 * file from disk, verifies and then calls the firmware upload process
1544 * per se.
1545 *
1546 * Can be called either from probe, or after a warm reset.  Can not be
1547 * called from within an interrupt.  All the flow in this code is
1548 * single-threade; all I/Os are synchronous.
1549 */
1550int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1551{
1552        int ret, itr;
1553        struct device *dev = i2400m_dev(i2400m);
1554        struct i2400m_fw *i2400m_fw;
1555        const struct i2400m_bcf_hdr *bcf;       /* Firmware data */
1556        const struct firmware *fw;
1557        const char *fw_name;
1558
1559        d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1560
1561        ret = -ENODEV;
1562        spin_lock(&i2400m->rx_lock);
1563        i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
1564        spin_unlock(&i2400m->rx_lock);
1565        if (i2400m_fw == (void *) ~0) {
1566                dev_err(dev, "can't load firmware now!");
1567                goto out;
1568        } else if (i2400m_fw != NULL) {
1569                dev_info(dev, "firmware %s: loading from cache\n",
1570                         i2400m->fw_name);
1571                ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
1572                i2400m_fw_put(i2400m_fw);
1573                goto out;
1574        }
1575
1576        /* Load firmware files to memory. */
1577        for (itr = 0, bcf = NULL, ret = -ENOENT; ; itr++) {
1578                fw_name = i2400m->bus_fw_names[itr];
1579                if (fw_name == NULL) {
1580                        dev_err(dev, "Could not find a usable firmware image\n");
1581                        break;
1582                }
1583                d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
1584                ret = request_firmware(&fw, fw_name, dev);
1585                if (ret < 0) {
1586                        dev_err(dev, "fw %s: cannot load file: %d\n",
1587                                fw_name, ret);
1588                        continue;
1589                }
1590                i2400m->fw_name = fw_name;
1591                ret = i2400m_fw_bootstrap(i2400m, fw, flags);
1592                release_firmware(fw);
1593                if (ret >= 0)   /* firmware loaded successfully */
1594                        break;
1595                i2400m->fw_name = NULL;
1596        }
1597out:
1598        d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1599        return ret;
1600}
1601EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
1602
1603
1604void i2400m_fw_cache(struct i2400m *i2400m)
1605{
1606        int result;
1607        struct i2400m_fw *i2400m_fw;
1608        struct device *dev = i2400m_dev(i2400m);
1609
1610        /* if there is anything there, free it -- now, this'd be weird */
1611        spin_lock(&i2400m->rx_lock);
1612        i2400m_fw = i2400m->fw_cached;
1613        spin_unlock(&i2400m->rx_lock);
1614        if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
1615                i2400m_fw_put(i2400m_fw);
1616                WARN(1, "%s:%u: still cached fw still present?\n",
1617                     __func__, __LINE__);
1618        }
1619
1620        if (i2400m->fw_name == NULL) {
1621                dev_err(dev, "firmware n/a: can't cache\n");
1622                i2400m_fw = (void *) ~0;
1623                goto out;
1624        }
1625
1626        i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
1627        if (i2400m_fw == NULL)
1628                goto out;
1629        kref_init(&i2400m_fw->kref);
1630        result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
1631        if (result < 0) {
1632                dev_err(dev, "firmware %s: failed to cache: %d\n",
1633                        i2400m->fw_name, result);
1634                kfree(i2400m_fw);
1635                i2400m_fw = (void *) ~0;
1636        } else
1637                dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
1638out:
1639        spin_lock(&i2400m->rx_lock);
1640        i2400m->fw_cached = i2400m_fw;
1641        spin_unlock(&i2400m->rx_lock);
1642}
1643
1644
1645void i2400m_fw_uncache(struct i2400m *i2400m)
1646{
1647        struct i2400m_fw *i2400m_fw;
1648
1649        spin_lock(&i2400m->rx_lock);
1650        i2400m_fw = i2400m->fw_cached;
1651        i2400m->fw_cached = NULL;
1652        spin_unlock(&i2400m->rx_lock);
1653
1654        if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1655                i2400m_fw_put(i2400m_fw);
1656}
1657
1658