linux/drivers/net/wireless/rt2x00/rt61pci.c
<<
>>
Prefs
   1/*
   2        Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3        <http://rt2x00.serialmonkey.com>
   4
   5        This program is free software; you can redistribute it and/or modify
   6        it under the terms of the GNU General Public License as published by
   7        the Free Software Foundation; either version 2 of the License, or
   8        (at your option) any later version.
   9
  10        This program is distributed in the hope that it will be useful,
  11        but WITHOUT ANY WARRANTY; without even the implied warranty of
  12        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13        GNU General Public License for more details.
  14
  15        You should have received a copy of the GNU General Public License
  16        along with this program; if not, write to the
  17        Free Software Foundation, Inc.,
  18        59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22        Module: rt61pci
  23        Abstract: rt61pci device specific routines.
  24        Supported chipsets: RT2561, RT2561s, RT2661.
  25 */
  26
  27#include <linux/crc-itu-t.h>
  28#include <linux/delay.h>
  29#include <linux/etherdevice.h>
  30#include <linux/init.h>
  31#include <linux/kernel.h>
  32#include <linux/module.h>
  33#include <linux/slab.h>
  34#include <linux/pci.h>
  35#include <linux/eeprom_93cx6.h>
  36
  37#include "rt2x00.h"
  38#include "rt2x00mmio.h"
  39#include "rt2x00pci.h"
  40#include "rt61pci.h"
  41
  42/*
  43 * Allow hardware encryption to be disabled.
  44 */
  45static bool modparam_nohwcrypt = false;
  46module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  47MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  48
  49/*
  50 * Register access.
  51 * BBP and RF register require indirect register access,
  52 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
  53 * These indirect registers work with busy bits,
  54 * and we will try maximal REGISTER_BUSY_COUNT times to access
  55 * the register while taking a REGISTER_BUSY_DELAY us delay
  56 * between each attempt. When the busy bit is still set at that time,
  57 * the access attempt is considered to have failed,
  58 * and we will print an error.
  59 */
  60#define WAIT_FOR_BBP(__dev, __reg) \
  61        rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
  62#define WAIT_FOR_RF(__dev, __reg) \
  63        rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
  64#define WAIT_FOR_MCU(__dev, __reg) \
  65        rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
  66                               H2M_MAILBOX_CSR_OWNER, (__reg))
  67
  68static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  69                              const unsigned int word, const u8 value)
  70{
  71        u32 reg;
  72
  73        mutex_lock(&rt2x00dev->csr_mutex);
  74
  75        /*
  76         * Wait until the BBP becomes available, afterwards we
  77         * can safely write the new data into the register.
  78         */
  79        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  80                reg = 0;
  81                rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
  82                rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  83                rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  84                rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
  85
  86                rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
  87        }
  88
  89        mutex_unlock(&rt2x00dev->csr_mutex);
  90}
  91
  92static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  93                             const unsigned int word, u8 *value)
  94{
  95        u32 reg;
  96
  97        mutex_lock(&rt2x00dev->csr_mutex);
  98
  99        /*
 100         * Wait until the BBP becomes available, afterwards we
 101         * can safely write the read request into the register.
 102         * After the data has been written, we wait until hardware
 103         * returns the correct value, if at any time the register
 104         * doesn't become available in time, reg will be 0xffffffff
 105         * which means we return 0xff to the caller.
 106         */
 107        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 108                reg = 0;
 109                rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
 110                rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
 111                rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
 112
 113                rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
 114
 115                WAIT_FOR_BBP(rt2x00dev, &reg);
 116        }
 117
 118        *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
 119
 120        mutex_unlock(&rt2x00dev->csr_mutex);
 121}
 122
 123static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
 124                             const unsigned int word, const u32 value)
 125{
 126        u32 reg;
 127
 128        mutex_lock(&rt2x00dev->csr_mutex);
 129
 130        /*
 131         * Wait until the RF becomes available, afterwards we
 132         * can safely write the new data into the register.
 133         */
 134        if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 135                reg = 0;
 136                rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
 137                rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
 138                rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
 139                rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
 140
 141                rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
 142                rt2x00_rf_write(rt2x00dev, word, value);
 143        }
 144
 145        mutex_unlock(&rt2x00dev->csr_mutex);
 146}
 147
 148static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
 149                                const u8 command, const u8 token,
 150                                const u8 arg0, const u8 arg1)
 151{
 152        u32 reg;
 153
 154        mutex_lock(&rt2x00dev->csr_mutex);
 155
 156        /*
 157         * Wait until the MCU becomes available, afterwards we
 158         * can safely write the new data into the register.
 159         */
 160        if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
 161                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
 162                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
 163                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
 164                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
 165                rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
 166
 167                rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
 168                rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
 169                rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
 170                rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
 171        }
 172
 173        mutex_unlock(&rt2x00dev->csr_mutex);
 174
 175}
 176
 177static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 178{
 179        struct rt2x00_dev *rt2x00dev = eeprom->data;
 180        u32 reg;
 181
 182        rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
 183
 184        eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
 185        eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
 186        eeprom->reg_data_clock =
 187            !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
 188        eeprom->reg_chip_select =
 189            !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
 190}
 191
 192static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 193{
 194        struct rt2x00_dev *rt2x00dev = eeprom->data;
 195        u32 reg = 0;
 196
 197        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
 198        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
 199        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
 200                           !!eeprom->reg_data_clock);
 201        rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
 202                           !!eeprom->reg_chip_select);
 203
 204        rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
 205}
 206
 207#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 208static const struct rt2x00debug rt61pci_rt2x00debug = {
 209        .owner  = THIS_MODULE,
 210        .csr    = {
 211                .read           = rt2x00pci_register_read,
 212                .write          = rt2x00pci_register_write,
 213                .flags          = RT2X00DEBUGFS_OFFSET,
 214                .word_base      = CSR_REG_BASE,
 215                .word_size      = sizeof(u32),
 216                .word_count     = CSR_REG_SIZE / sizeof(u32),
 217        },
 218        .eeprom = {
 219                .read           = rt2x00_eeprom_read,
 220                .write          = rt2x00_eeprom_write,
 221                .word_base      = EEPROM_BASE,
 222                .word_size      = sizeof(u16),
 223                .word_count     = EEPROM_SIZE / sizeof(u16),
 224        },
 225        .bbp    = {
 226                .read           = rt61pci_bbp_read,
 227                .write          = rt61pci_bbp_write,
 228                .word_base      = BBP_BASE,
 229                .word_size      = sizeof(u8),
 230                .word_count     = BBP_SIZE / sizeof(u8),
 231        },
 232        .rf     = {
 233                .read           = rt2x00_rf_read,
 234                .write          = rt61pci_rf_write,
 235                .word_base      = RF_BASE,
 236                .word_size      = sizeof(u32),
 237                .word_count     = RF_SIZE / sizeof(u32),
 238        },
 239};
 240#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 241
 242static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 243{
 244        u32 reg;
 245
 246        rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
 247        return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
 248}
 249
 250#ifdef CONFIG_RT2X00_LIB_LEDS
 251static void rt61pci_brightness_set(struct led_classdev *led_cdev,
 252                                   enum led_brightness brightness)
 253{
 254        struct rt2x00_led *led =
 255            container_of(led_cdev, struct rt2x00_led, led_dev);
 256        unsigned int enabled = brightness != LED_OFF;
 257        unsigned int a_mode =
 258            (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 259        unsigned int bg_mode =
 260            (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 261
 262        if (led->type == LED_TYPE_RADIO) {
 263                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 264                                   MCU_LEDCS_RADIO_STATUS, enabled);
 265
 266                rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 267                                    (led->rt2x00dev->led_mcu_reg & 0xff),
 268                                    ((led->rt2x00dev->led_mcu_reg >> 8)));
 269        } else if (led->type == LED_TYPE_ASSOC) {
 270                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 271                                   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
 272                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 273                                   MCU_LEDCS_LINK_A_STATUS, a_mode);
 274
 275                rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 276                                    (led->rt2x00dev->led_mcu_reg & 0xff),
 277                                    ((led->rt2x00dev->led_mcu_reg >> 8)));
 278        } else if (led->type == LED_TYPE_QUALITY) {
 279                /*
 280                 * The brightness is divided into 6 levels (0 - 5),
 281                 * this means we need to convert the brightness
 282                 * argument into the matching level within that range.
 283                 */
 284                rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
 285                                    brightness / (LED_FULL / 6), 0);
 286        }
 287}
 288
 289static int rt61pci_blink_set(struct led_classdev *led_cdev,
 290                             unsigned long *delay_on,
 291                             unsigned long *delay_off)
 292{
 293        struct rt2x00_led *led =
 294            container_of(led_cdev, struct rt2x00_led, led_dev);
 295        u32 reg;
 296
 297        rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
 298        rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
 299        rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
 300        rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
 301
 302        return 0;
 303}
 304
 305static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
 306                             struct rt2x00_led *led,
 307                             enum led_type type)
 308{
 309        led->rt2x00dev = rt2x00dev;
 310        led->type = type;
 311        led->led_dev.brightness_set = rt61pci_brightness_set;
 312        led->led_dev.blink_set = rt61pci_blink_set;
 313        led->flags = LED_INITIALIZED;
 314}
 315#endif /* CONFIG_RT2X00_LIB_LEDS */
 316
 317/*
 318 * Configuration handlers.
 319 */
 320static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
 321                                     struct rt2x00lib_crypto *crypto,
 322                                     struct ieee80211_key_conf *key)
 323{
 324        struct hw_key_entry key_entry;
 325        struct rt2x00_field32 field;
 326        u32 mask;
 327        u32 reg;
 328
 329        if (crypto->cmd == SET_KEY) {
 330                /*
 331                 * rt2x00lib can't determine the correct free
 332                 * key_idx for shared keys. We have 1 register
 333                 * with key valid bits. The goal is simple, read
 334                 * the register, if that is full we have no slots
 335                 * left.
 336                 * Note that each BSS is allowed to have up to 4
 337                 * shared keys, so put a mask over the allowed
 338                 * entries.
 339                 */
 340                mask = (0xf << crypto->bssidx);
 341
 342                rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
 343                reg &= mask;
 344
 345                if (reg && reg == mask)
 346                        return -ENOSPC;
 347
 348                key->hw_key_idx += reg ? ffz(reg) : 0;
 349
 350                /*
 351                 * Upload key to hardware
 352                 */
 353                memcpy(key_entry.key, crypto->key,
 354                       sizeof(key_entry.key));
 355                memcpy(key_entry.tx_mic, crypto->tx_mic,
 356                       sizeof(key_entry.tx_mic));
 357                memcpy(key_entry.rx_mic, crypto->rx_mic,
 358                       sizeof(key_entry.rx_mic));
 359
 360                reg = SHARED_KEY_ENTRY(key->hw_key_idx);
 361                rt2x00pci_register_multiwrite(rt2x00dev, reg,
 362                                              &key_entry, sizeof(key_entry));
 363
 364                /*
 365                 * The cipher types are stored over 2 registers.
 366                 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
 367                 * bssidx 1 and 2 keys are stored in SEC_CSR5.
 368                 * Using the correct defines correctly will cause overhead,
 369                 * so just calculate the correct offset.
 370                 */
 371                if (key->hw_key_idx < 8) {
 372                        field.bit_offset = (3 * key->hw_key_idx);
 373                        field.bit_mask = 0x7 << field.bit_offset;
 374
 375                        rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
 376                        rt2x00_set_field32(&reg, field, crypto->cipher);
 377                        rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
 378                } else {
 379                        field.bit_offset = (3 * (key->hw_key_idx - 8));
 380                        field.bit_mask = 0x7 << field.bit_offset;
 381
 382                        rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
 383                        rt2x00_set_field32(&reg, field, crypto->cipher);
 384                        rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
 385                }
 386
 387                /*
 388                 * The driver does not support the IV/EIV generation
 389                 * in hardware. However it doesn't support the IV/EIV
 390                 * inside the ieee80211 frame either, but requires it
 391                 * to be provided separately for the descriptor.
 392                 * rt2x00lib will cut the IV/EIV data out of all frames
 393                 * given to us by mac80211, but we must tell mac80211
 394                 * to generate the IV/EIV data.
 395                 */
 396                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 397        }
 398
 399        /*
 400         * SEC_CSR0 contains only single-bit fields to indicate
 401         * a particular key is valid. Because using the FIELD32()
 402         * defines directly will cause a lot of overhead, we use
 403         * a calculation to determine the correct bit directly.
 404         */
 405        mask = 1 << key->hw_key_idx;
 406
 407        rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
 408        if (crypto->cmd == SET_KEY)
 409                reg |= mask;
 410        else if (crypto->cmd == DISABLE_KEY)
 411                reg &= ~mask;
 412        rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
 413
 414        return 0;
 415}
 416
 417static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
 418                                       struct rt2x00lib_crypto *crypto,
 419                                       struct ieee80211_key_conf *key)
 420{
 421        struct hw_pairwise_ta_entry addr_entry;
 422        struct hw_key_entry key_entry;
 423        u32 mask;
 424        u32 reg;
 425
 426        if (crypto->cmd == SET_KEY) {
 427                /*
 428                 * rt2x00lib can't determine the correct free
 429                 * key_idx for pairwise keys. We have 2 registers
 430                 * with key valid bits. The goal is simple: read
 431                 * the first register. If that is full, move to
 432                 * the next register.
 433                 * When both registers are full, we drop the key.
 434                 * Otherwise, we use the first invalid entry.
 435                 */
 436                rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
 437                if (reg && reg == ~0) {
 438                        key->hw_key_idx = 32;
 439                        rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
 440                        if (reg && reg == ~0)
 441                                return -ENOSPC;
 442                }
 443
 444                key->hw_key_idx += reg ? ffz(reg) : 0;
 445
 446                /*
 447                 * Upload key to hardware
 448                 */
 449                memcpy(key_entry.key, crypto->key,
 450                       sizeof(key_entry.key));
 451                memcpy(key_entry.tx_mic, crypto->tx_mic,
 452                       sizeof(key_entry.tx_mic));
 453                memcpy(key_entry.rx_mic, crypto->rx_mic,
 454                       sizeof(key_entry.rx_mic));
 455
 456                memset(&addr_entry, 0, sizeof(addr_entry));
 457                memcpy(&addr_entry, crypto->address, ETH_ALEN);
 458                addr_entry.cipher = crypto->cipher;
 459
 460                reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
 461                rt2x00pci_register_multiwrite(rt2x00dev, reg,
 462                                              &key_entry, sizeof(key_entry));
 463
 464                reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
 465                rt2x00pci_register_multiwrite(rt2x00dev, reg,
 466                                              &addr_entry, sizeof(addr_entry));
 467
 468                /*
 469                 * Enable pairwise lookup table for given BSS idx.
 470                 * Without this, received frames will not be decrypted
 471                 * by the hardware.
 472                 */
 473                rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
 474                reg |= (1 << crypto->bssidx);
 475                rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
 476
 477                /*
 478                 * The driver does not support the IV/EIV generation
 479                 * in hardware. However it doesn't support the IV/EIV
 480                 * inside the ieee80211 frame either, but requires it
 481                 * to be provided separately for the descriptor.
 482                 * rt2x00lib will cut the IV/EIV data out of all frames
 483                 * given to us by mac80211, but we must tell mac80211
 484                 * to generate the IV/EIV data.
 485                 */
 486                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 487        }
 488
 489        /*
 490         * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
 491         * a particular key is valid. Because using the FIELD32()
 492         * defines directly will cause a lot of overhead, we use
 493         * a calculation to determine the correct bit directly.
 494         */
 495        if (key->hw_key_idx < 32) {
 496                mask = 1 << key->hw_key_idx;
 497
 498                rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
 499                if (crypto->cmd == SET_KEY)
 500                        reg |= mask;
 501                else if (crypto->cmd == DISABLE_KEY)
 502                        reg &= ~mask;
 503                rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
 504        } else {
 505                mask = 1 << (key->hw_key_idx - 32);
 506
 507                rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
 508                if (crypto->cmd == SET_KEY)
 509                        reg |= mask;
 510                else if (crypto->cmd == DISABLE_KEY)
 511                        reg &= ~mask;
 512                rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
 513        }
 514
 515        return 0;
 516}
 517
 518static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
 519                                  const unsigned int filter_flags)
 520{
 521        u32 reg;
 522
 523        /*
 524         * Start configuration steps.
 525         * Note that the version error will always be dropped
 526         * and broadcast frames will always be accepted since
 527         * there is no filter for it at this time.
 528         */
 529        rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
 530        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
 531                           !(filter_flags & FIF_FCSFAIL));
 532        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
 533                           !(filter_flags & FIF_PLCPFAIL));
 534        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
 535                           !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
 536        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
 537                           !(filter_flags & FIF_PROMISC_IN_BSS));
 538        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
 539                           !(filter_flags & FIF_PROMISC_IN_BSS) &&
 540                           !rt2x00dev->intf_ap_count);
 541        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
 542        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
 543                           !(filter_flags & FIF_ALLMULTI));
 544        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
 545        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
 546                           !(filter_flags & FIF_CONTROL));
 547        rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
 548}
 549
 550static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
 551                                struct rt2x00_intf *intf,
 552                                struct rt2x00intf_conf *conf,
 553                                const unsigned int flags)
 554{
 555        u32 reg;
 556
 557        if (flags & CONFIG_UPDATE_TYPE) {
 558                /*
 559                 * Enable synchronisation.
 560                 */
 561                rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
 562                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
 563                rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
 564        }
 565
 566        if (flags & CONFIG_UPDATE_MAC) {
 567                reg = le32_to_cpu(conf->mac[1]);
 568                rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
 569                conf->mac[1] = cpu_to_le32(reg);
 570
 571                rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
 572                                              conf->mac, sizeof(conf->mac));
 573        }
 574
 575        if (flags & CONFIG_UPDATE_BSSID) {
 576                reg = le32_to_cpu(conf->bssid[1]);
 577                rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
 578                conf->bssid[1] = cpu_to_le32(reg);
 579
 580                rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
 581                                              conf->bssid, sizeof(conf->bssid));
 582        }
 583}
 584
 585static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
 586                               struct rt2x00lib_erp *erp,
 587                               u32 changed)
 588{
 589        u32 reg;
 590
 591        rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
 592        rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
 593        rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
 594        rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
 595
 596        if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 597                rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
 598                rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
 599                rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
 600                                   !!erp->short_preamble);
 601                rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
 602        }
 603
 604        if (changed & BSS_CHANGED_BASIC_RATES)
 605                rt2x00pci_register_write(rt2x00dev, TXRX_CSR5,
 606                                         erp->basic_rates);
 607
 608        if (changed & BSS_CHANGED_BEACON_INT) {
 609                rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
 610                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
 611                                   erp->beacon_int * 16);
 612                rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
 613        }
 614
 615        if (changed & BSS_CHANGED_ERP_SLOT) {
 616                rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
 617                rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
 618                rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
 619
 620                rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
 621                rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
 622                rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
 623                rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
 624                rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
 625        }
 626}
 627
 628static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
 629                                      struct antenna_setup *ant)
 630{
 631        u8 r3;
 632        u8 r4;
 633        u8 r77;
 634
 635        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 636        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 637        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 638
 639        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
 640
 641        /*
 642         * Configure the RX antenna.
 643         */
 644        switch (ant->rx) {
 645        case ANTENNA_HW_DIVERSITY:
 646                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 647                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 648                                  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
 649                break;
 650        case ANTENNA_A:
 651                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 652                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 653                if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 654                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 655                else
 656                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 657                break;
 658        case ANTENNA_B:
 659        default:
 660                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 661                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 662                if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 663                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 664                else
 665                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 666                break;
 667        }
 668
 669        rt61pci_bbp_write(rt2x00dev, 77, r77);
 670        rt61pci_bbp_write(rt2x00dev, 3, r3);
 671        rt61pci_bbp_write(rt2x00dev, 4, r4);
 672}
 673
 674static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
 675                                      struct antenna_setup *ant)
 676{
 677        u8 r3;
 678        u8 r4;
 679        u8 r77;
 680
 681        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 682        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 683        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 684
 685        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
 686        rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 687                          !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags));
 688
 689        /*
 690         * Configure the RX antenna.
 691         */
 692        switch (ant->rx) {
 693        case ANTENNA_HW_DIVERSITY:
 694                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 695                break;
 696        case ANTENNA_A:
 697                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 698                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 699                break;
 700        case ANTENNA_B:
 701        default:
 702                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 703                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 704                break;
 705        }
 706
 707        rt61pci_bbp_write(rt2x00dev, 77, r77);
 708        rt61pci_bbp_write(rt2x00dev, 3, r3);
 709        rt61pci_bbp_write(rt2x00dev, 4, r4);
 710}
 711
 712static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
 713                                           const int p1, const int p2)
 714{
 715        u32 reg;
 716
 717        rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
 718
 719        rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
 720        rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
 721
 722        rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
 723        rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
 724
 725        rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
 726}
 727
 728static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
 729                                        struct antenna_setup *ant)
 730{
 731        u8 r3;
 732        u8 r4;
 733        u8 r77;
 734
 735        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 736        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 737        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 738
 739        /*
 740         * Configure the RX antenna.
 741         */
 742        switch (ant->rx) {
 743        case ANTENNA_A:
 744                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 745                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 746                rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
 747                break;
 748        case ANTENNA_HW_DIVERSITY:
 749                /*
 750                 * FIXME: Antenna selection for the rf 2529 is very confusing
 751                 * in the legacy driver. Just default to antenna B until the
 752                 * legacy code can be properly translated into rt2x00 code.
 753                 */
 754        case ANTENNA_B:
 755        default:
 756                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 757                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 758                rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
 759                break;
 760        }
 761
 762        rt61pci_bbp_write(rt2x00dev, 77, r77);
 763        rt61pci_bbp_write(rt2x00dev, 3, r3);
 764        rt61pci_bbp_write(rt2x00dev, 4, r4);
 765}
 766
 767struct antenna_sel {
 768        u8 word;
 769        /*
 770         * value[0] -> non-LNA
 771         * value[1] -> LNA
 772         */
 773        u8 value[2];
 774};
 775
 776static const struct antenna_sel antenna_sel_a[] = {
 777        { 96,  { 0x58, 0x78 } },
 778        { 104, { 0x38, 0x48 } },
 779        { 75,  { 0xfe, 0x80 } },
 780        { 86,  { 0xfe, 0x80 } },
 781        { 88,  { 0xfe, 0x80 } },
 782        { 35,  { 0x60, 0x60 } },
 783        { 97,  { 0x58, 0x58 } },
 784        { 98,  { 0x58, 0x58 } },
 785};
 786
 787static const struct antenna_sel antenna_sel_bg[] = {
 788        { 96,  { 0x48, 0x68 } },
 789        { 104, { 0x2c, 0x3c } },
 790        { 75,  { 0xfe, 0x80 } },
 791        { 86,  { 0xfe, 0x80 } },
 792        { 88,  { 0xfe, 0x80 } },
 793        { 35,  { 0x50, 0x50 } },
 794        { 97,  { 0x48, 0x48 } },
 795        { 98,  { 0x48, 0x48 } },
 796};
 797
 798static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
 799                               struct antenna_setup *ant)
 800{
 801        const struct antenna_sel *sel;
 802        unsigned int lna;
 803        unsigned int i;
 804        u32 reg;
 805
 806        /*
 807         * We should never come here because rt2x00lib is supposed
 808         * to catch this and send us the correct antenna explicitely.
 809         */
 810        BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 811               ant->tx == ANTENNA_SW_DIVERSITY);
 812
 813        if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
 814                sel = antenna_sel_a;
 815                lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
 816        } else {
 817                sel = antenna_sel_bg;
 818                lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
 819        }
 820
 821        for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
 822                rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
 823
 824        rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
 825
 826        rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
 827                           rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 828        rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
 829                           rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 830
 831        rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
 832
 833        if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
 834                rt61pci_config_antenna_5x(rt2x00dev, ant);
 835        else if (rt2x00_rf(rt2x00dev, RF2527))
 836                rt61pci_config_antenna_2x(rt2x00dev, ant);
 837        else if (rt2x00_rf(rt2x00dev, RF2529)) {
 838                if (test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags))
 839                        rt61pci_config_antenna_2x(rt2x00dev, ant);
 840                else
 841                        rt61pci_config_antenna_2529(rt2x00dev, ant);
 842        }
 843}
 844
 845static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
 846                                    struct rt2x00lib_conf *libconf)
 847{
 848        u16 eeprom;
 849        short lna_gain = 0;
 850
 851        if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
 852                if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags))
 853                        lna_gain += 14;
 854
 855                rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
 856                lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
 857        } else {
 858                if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags))
 859                        lna_gain += 14;
 860
 861                rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
 862                lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
 863        }
 864
 865        rt2x00dev->lna_gain = lna_gain;
 866}
 867
 868static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
 869                                   struct rf_channel *rf, const int txpower)
 870{
 871        u8 r3;
 872        u8 r94;
 873        u8 smart;
 874
 875        rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 876        rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
 877
 878        smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
 879
 880        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 881        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
 882        rt61pci_bbp_write(rt2x00dev, 3, r3);
 883
 884        r94 = 6;
 885        if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
 886                r94 += txpower - MAX_TXPOWER;
 887        else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
 888                r94 += txpower;
 889        rt61pci_bbp_write(rt2x00dev, 94, r94);
 890
 891        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 892        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 893        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 894        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 895
 896        udelay(200);
 897
 898        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 899        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 900        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
 901        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 902
 903        udelay(200);
 904
 905        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 906        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 907        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 908        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 909
 910        msleep(1);
 911}
 912
 913static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 914                                   const int txpower)
 915{
 916        struct rf_channel rf;
 917
 918        rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
 919        rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
 920        rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
 921        rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
 922
 923        rt61pci_config_channel(rt2x00dev, &rf, txpower);
 924}
 925
 926static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 927                                    struct rt2x00lib_conf *libconf)
 928{
 929        u32 reg;
 930
 931        rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
 932        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
 933        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
 934        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
 935        rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
 936                           libconf->conf->long_frame_max_tx_count);
 937        rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
 938                           libconf->conf->short_frame_max_tx_count);
 939        rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
 940}
 941
 942static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
 943                                struct rt2x00lib_conf *libconf)
 944{
 945        enum dev_state state =
 946            (libconf->conf->flags & IEEE80211_CONF_PS) ?
 947                STATE_SLEEP : STATE_AWAKE;
 948        u32 reg;
 949
 950        if (state == STATE_SLEEP) {
 951                rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
 952                rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
 953                                   rt2x00dev->beacon_int - 10);
 954                rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
 955                                   libconf->conf->listen_interval - 1);
 956                rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
 957
 958                /* We must first disable autowake before it can be enabled */
 959                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 960                rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
 961
 962                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
 963                rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
 964
 965                rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
 966                rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
 967                rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
 968
 969                rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
 970        } else {
 971                rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
 972                rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
 973                rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
 974                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 975                rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
 976                rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
 977
 978                rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
 979                rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
 980                rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
 981
 982                rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
 983        }
 984}
 985
 986static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
 987                           struct rt2x00lib_conf *libconf,
 988                           const unsigned int flags)
 989{
 990        /* Always recalculate LNA gain before changing configuration */
 991        rt61pci_config_lna_gain(rt2x00dev, libconf);
 992
 993        if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 994                rt61pci_config_channel(rt2x00dev, &libconf->rf,
 995                                       libconf->conf->power_level);
 996        if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 997            !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 998                rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
 999        if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1000                rt61pci_config_retry_limit(rt2x00dev, libconf);
1001        if (flags & IEEE80211_CONF_CHANGE_PS)
1002                rt61pci_config_ps(rt2x00dev, libconf);
1003}
1004
1005/*
1006 * Link tuning
1007 */
1008static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1009                               struct link_qual *qual)
1010{
1011        u32 reg;
1012
1013        /*
1014         * Update FCS error count from register.
1015         */
1016        rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1017        qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1018
1019        /*
1020         * Update False CCA count from register.
1021         */
1022        rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1023        qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1024}
1025
1026static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1027                                   struct link_qual *qual, u8 vgc_level)
1028{
1029        if (qual->vgc_level != vgc_level) {
1030                rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1031                qual->vgc_level = vgc_level;
1032                qual->vgc_level_reg = vgc_level;
1033        }
1034}
1035
1036static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1037                                struct link_qual *qual)
1038{
1039        rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1040}
1041
1042static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1043                               struct link_qual *qual, const u32 count)
1044{
1045        u8 up_bound;
1046        u8 low_bound;
1047
1048        /*
1049         * Determine r17 bounds.
1050         */
1051        if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1052                low_bound = 0x28;
1053                up_bound = 0x48;
1054                if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) {
1055                        low_bound += 0x10;
1056                        up_bound += 0x10;
1057                }
1058        } else {
1059                low_bound = 0x20;
1060                up_bound = 0x40;
1061                if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) {
1062                        low_bound += 0x10;
1063                        up_bound += 0x10;
1064                }
1065        }
1066
1067        /*
1068         * If we are not associated, we should go straight to the
1069         * dynamic CCA tuning.
1070         */
1071        if (!rt2x00dev->intf_associated)
1072                goto dynamic_cca_tune;
1073
1074        /*
1075         * Special big-R17 for very short distance
1076         */
1077        if (qual->rssi >= -35) {
1078                rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1079                return;
1080        }
1081
1082        /*
1083         * Special big-R17 for short distance
1084         */
1085        if (qual->rssi >= -58) {
1086                rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1087                return;
1088        }
1089
1090        /*
1091         * Special big-R17 for middle-short distance
1092         */
1093        if (qual->rssi >= -66) {
1094                rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1095                return;
1096        }
1097
1098        /*
1099         * Special mid-R17 for middle distance
1100         */
1101        if (qual->rssi >= -74) {
1102                rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1103                return;
1104        }
1105
1106        /*
1107         * Special case: Change up_bound based on the rssi.
1108         * Lower up_bound when rssi is weaker then -74 dBm.
1109         */
1110        up_bound -= 2 * (-74 - qual->rssi);
1111        if (low_bound > up_bound)
1112                up_bound = low_bound;
1113
1114        if (qual->vgc_level > up_bound) {
1115                rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1116                return;
1117        }
1118
1119dynamic_cca_tune:
1120
1121        /*
1122         * r17 does not yet exceed upper limit, continue and base
1123         * the r17 tuning on the false CCA count.
1124         */
1125        if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1126                rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1127        else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1128                rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1129}
1130
1131/*
1132 * Queue handlers.
1133 */
1134static void rt61pci_start_queue(struct data_queue *queue)
1135{
1136        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1137        u32 reg;
1138
1139        switch (queue->qid) {
1140        case QID_RX:
1141                rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1142                rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1143                rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1144                break;
1145        case QID_BEACON:
1146                rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1147                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1148                rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1149                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1150                rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1151                break;
1152        default:
1153                break;
1154        }
1155}
1156
1157static void rt61pci_kick_queue(struct data_queue *queue)
1158{
1159        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1160        u32 reg;
1161
1162        switch (queue->qid) {
1163        case QID_AC_VO:
1164                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1165                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1166                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1167                break;
1168        case QID_AC_VI:
1169                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1170                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1171                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1172                break;
1173        case QID_AC_BE:
1174                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1175                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1176                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1177                break;
1178        case QID_AC_BK:
1179                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1180                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1181                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1182                break;
1183        default:
1184                break;
1185        }
1186}
1187
1188static void rt61pci_stop_queue(struct data_queue *queue)
1189{
1190        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1191        u32 reg;
1192
1193        switch (queue->qid) {
1194        case QID_AC_VO:
1195                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1196                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1197                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1198                break;
1199        case QID_AC_VI:
1200                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1201                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1202                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1203                break;
1204        case QID_AC_BE:
1205                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1206                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1207                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1208                break;
1209        case QID_AC_BK:
1210                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1211                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1212                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1213                break;
1214        case QID_RX:
1215                rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1216                rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1217                rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1218                break;
1219        case QID_BEACON:
1220                rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1221                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1222                rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1223                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1224                rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1225
1226                /*
1227                 * Wait for possibly running tbtt tasklets.
1228                 */
1229                tasklet_kill(&rt2x00dev->tbtt_tasklet);
1230                break;
1231        default:
1232                break;
1233        }
1234}
1235
1236/*
1237 * Firmware functions
1238 */
1239static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1240{
1241        u16 chip;
1242        char *fw_name;
1243
1244        pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1245        switch (chip) {
1246        case RT2561_PCI_ID:
1247                fw_name = FIRMWARE_RT2561;
1248                break;
1249        case RT2561s_PCI_ID:
1250                fw_name = FIRMWARE_RT2561s;
1251                break;
1252        case RT2661_PCI_ID:
1253                fw_name = FIRMWARE_RT2661;
1254                break;
1255        default:
1256                fw_name = NULL;
1257                break;
1258        }
1259
1260        return fw_name;
1261}
1262
1263static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1264                                  const u8 *data, const size_t len)
1265{
1266        u16 fw_crc;
1267        u16 crc;
1268
1269        /*
1270         * Only support 8kb firmware files.
1271         */
1272        if (len != 8192)
1273                return FW_BAD_LENGTH;
1274
1275        /*
1276         * The last 2 bytes in the firmware array are the crc checksum itself.
1277         * This means that we should never pass those 2 bytes to the crc
1278         * algorithm.
1279         */
1280        fw_crc = (data[len - 2] << 8 | data[len - 1]);
1281
1282        /*
1283         * Use the crc itu-t algorithm.
1284         */
1285        crc = crc_itu_t(0, data, len - 2);
1286        crc = crc_itu_t_byte(crc, 0);
1287        crc = crc_itu_t_byte(crc, 0);
1288
1289        return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1290}
1291
1292static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1293                                 const u8 *data, const size_t len)
1294{
1295        int i;
1296        u32 reg;
1297
1298        /*
1299         * Wait for stable hardware.
1300         */
1301        for (i = 0; i < 100; i++) {
1302                rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1303                if (reg)
1304                        break;
1305                msleep(1);
1306        }
1307
1308        if (!reg) {
1309                ERROR(rt2x00dev, "Unstable hardware.\n");
1310                return -EBUSY;
1311        }
1312
1313        /*
1314         * Prepare MCU and mailbox for firmware loading.
1315         */
1316        reg = 0;
1317        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1318        rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1319        rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1320        rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1321        rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1322
1323        /*
1324         * Write firmware to device.
1325         */
1326        reg = 0;
1327        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1328        rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1329        rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1330
1331        rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1332                                      data, len);
1333
1334        rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1335        rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1336
1337        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1338        rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1339
1340        for (i = 0; i < 100; i++) {
1341                rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1342                if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1343                        break;
1344                msleep(1);
1345        }
1346
1347        if (i == 100) {
1348                ERROR(rt2x00dev, "MCU Control register not ready.\n");
1349                return -EBUSY;
1350        }
1351
1352        /*
1353         * Hardware needs another millisecond before it is ready.
1354         */
1355        msleep(1);
1356
1357        /*
1358         * Reset MAC and BBP registers.
1359         */
1360        reg = 0;
1361        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1362        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1363        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1364
1365        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1366        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1367        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1368        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1369
1370        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1371        rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1372        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1373
1374        return 0;
1375}
1376
1377/*
1378 * Initialization functions.
1379 */
1380static bool rt61pci_get_entry_state(struct queue_entry *entry)
1381{
1382        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1383        u32 word;
1384
1385        if (entry->queue->qid == QID_RX) {
1386                rt2x00_desc_read(entry_priv->desc, 0, &word);
1387
1388                return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1389        } else {
1390                rt2x00_desc_read(entry_priv->desc, 0, &word);
1391
1392                return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1393                        rt2x00_get_field32(word, TXD_W0_VALID));
1394        }
1395}
1396
1397static void rt61pci_clear_entry(struct queue_entry *entry)
1398{
1399        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1400        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1401        u32 word;
1402
1403        if (entry->queue->qid == QID_RX) {
1404                rt2x00_desc_read(entry_priv->desc, 5, &word);
1405                rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1406                                   skbdesc->skb_dma);
1407                rt2x00_desc_write(entry_priv->desc, 5, word);
1408
1409                rt2x00_desc_read(entry_priv->desc, 0, &word);
1410                rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1411                rt2x00_desc_write(entry_priv->desc, 0, word);
1412        } else {
1413                rt2x00_desc_read(entry_priv->desc, 0, &word);
1414                rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1415                rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1416                rt2x00_desc_write(entry_priv->desc, 0, word);
1417        }
1418}
1419
1420static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1421{
1422        struct queue_entry_priv_pci *entry_priv;
1423        u32 reg;
1424
1425        /*
1426         * Initialize registers.
1427         */
1428        rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1429        rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1430                           rt2x00dev->tx[0].limit);
1431        rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1432                           rt2x00dev->tx[1].limit);
1433        rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1434                           rt2x00dev->tx[2].limit);
1435        rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1436                           rt2x00dev->tx[3].limit);
1437        rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1438
1439        rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1440        rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1441                           rt2x00dev->tx[0].desc_size / 4);
1442        rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1443
1444        entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1445        rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1446        rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1447                           entry_priv->desc_dma);
1448        rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1449
1450        entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1451        rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1452        rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1453                           entry_priv->desc_dma);
1454        rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1455
1456        entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1457        rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1458        rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1459                           entry_priv->desc_dma);
1460        rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1461
1462        entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1463        rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1464        rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1465                           entry_priv->desc_dma);
1466        rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1467
1468        rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1469        rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1470        rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1471                           rt2x00dev->rx->desc_size / 4);
1472        rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1473        rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1474
1475        entry_priv = rt2x00dev->rx->entries[0].priv_data;
1476        rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1477        rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1478                           entry_priv->desc_dma);
1479        rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1480
1481        rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1482        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1483        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1484        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1485        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1486        rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1487
1488        rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1489        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1490        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1491        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1492        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1493        rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1494
1495        rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1496        rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1497        rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1498
1499        return 0;
1500}
1501
1502static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1503{
1504        u32 reg;
1505
1506        rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1507        rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1508        rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1509        rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1510        rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1511
1512        rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1513        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1514        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1515        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1516        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1517        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1518        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1519        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1520        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1521        rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1522
1523        /*
1524         * CCK TXD BBP registers
1525         */
1526        rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1527        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1528        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1529        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1530        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1531        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1532        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1533        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1534        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1535        rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1536
1537        /*
1538         * OFDM TXD BBP registers
1539         */
1540        rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1541        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1542        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1543        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1544        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1545        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1546        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1547        rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1548
1549        rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1550        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1551        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1552        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1553        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1554        rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1555
1556        rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1557        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1558        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1559        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1560        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1561        rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1562
1563        rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1564        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1565        rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1566        rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1567        rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1568        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1569        rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1570        rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1571
1572        rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1573
1574        rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1575
1576        rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1577        rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1578        rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1579
1580        rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1581
1582        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1583                return -EBUSY;
1584
1585        rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1586
1587        /*
1588         * Invalidate all Shared Keys (SEC_CSR0),
1589         * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1590         */
1591        rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1592        rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1593        rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1594
1595        rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1596        rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1597        rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1598        rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1599
1600        rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1601
1602        rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1603
1604        rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1605
1606        /*
1607         * Clear all beacons
1608         * For the Beacon base registers we only need to clear
1609         * the first byte since that byte contains the VALID and OWNER
1610         * bits which (when set to 0) will invalidate the entire beacon.
1611         */
1612        rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1613        rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1614        rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1615        rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1616
1617        /*
1618         * We must clear the error counters.
1619         * These registers are cleared on read,
1620         * so we may pass a useless variable to store the value.
1621         */
1622        rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1623        rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1624        rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1625
1626        /*
1627         * Reset MAC and BBP registers.
1628         */
1629        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1630        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1631        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1632        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1633
1634        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1635        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1636        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1637        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1638
1639        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1640        rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1641        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1642
1643        return 0;
1644}
1645
1646static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1647{
1648        unsigned int i;
1649        u8 value;
1650
1651        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1652                rt61pci_bbp_read(rt2x00dev, 0, &value);
1653                if ((value != 0xff) && (value != 0x00))
1654                        return 0;
1655                udelay(REGISTER_BUSY_DELAY);
1656        }
1657
1658        ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1659        return -EACCES;
1660}
1661
1662static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1663{
1664        unsigned int i;
1665        u16 eeprom;
1666        u8 reg_id;
1667        u8 value;
1668
1669        if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1670                return -EACCES;
1671
1672        rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1673        rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1674        rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1675        rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1676        rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1677        rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1678        rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1679        rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1680        rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1681        rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1682        rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1683        rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1684        rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1685        rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1686        rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1687        rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1688        rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1689        rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1690        rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1691        rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1692        rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1693        rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1694        rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1695        rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1696
1697        for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1698                rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1699
1700                if (eeprom != 0xffff && eeprom != 0x0000) {
1701                        reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1702                        value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1703                        rt61pci_bbp_write(rt2x00dev, reg_id, value);
1704                }
1705        }
1706
1707        return 0;
1708}
1709
1710/*
1711 * Device state switch handlers.
1712 */
1713static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1714                               enum dev_state state)
1715{
1716        int mask = (state == STATE_RADIO_IRQ_OFF);
1717        u32 reg;
1718        unsigned long flags;
1719
1720        /*
1721         * When interrupts are being enabled, the interrupt registers
1722         * should clear the register to assure a clean state.
1723         */
1724        if (state == STATE_RADIO_IRQ_ON) {
1725                rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1726                rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1727
1728                rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1729                rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1730        }
1731
1732        /*
1733         * Only toggle the interrupts bits we are going to use.
1734         * Non-checked interrupt bits are disabled by default.
1735         */
1736        spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1737
1738        rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1739        rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1740        rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1741        rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1742        rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1743        rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1744        rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1745
1746        rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1747        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1748        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1749        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1750        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1751        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1752        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1753        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1754        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1755        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1756        rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1757
1758        spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1759
1760        if (state == STATE_RADIO_IRQ_OFF) {
1761                /*
1762                 * Ensure that all tasklets are finished.
1763                 */
1764                tasklet_kill(&rt2x00dev->txstatus_tasklet);
1765                tasklet_kill(&rt2x00dev->rxdone_tasklet);
1766                tasklet_kill(&rt2x00dev->autowake_tasklet);
1767                tasklet_kill(&rt2x00dev->tbtt_tasklet);
1768        }
1769}
1770
1771static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1772{
1773        u32 reg;
1774
1775        /*
1776         * Initialize all registers.
1777         */
1778        if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1779                     rt61pci_init_registers(rt2x00dev) ||
1780                     rt61pci_init_bbp(rt2x00dev)))
1781                return -EIO;
1782
1783        /*
1784         * Enable RX.
1785         */
1786        rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1787        rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1788        rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1789
1790        return 0;
1791}
1792
1793static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1794{
1795        /*
1796         * Disable power
1797         */
1798        rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1799}
1800
1801static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1802{
1803        u32 reg, reg2;
1804        unsigned int i;
1805        char put_to_sleep;
1806
1807        put_to_sleep = (state != STATE_AWAKE);
1808
1809        rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1810        rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1811        rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1812        rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1813
1814        /*
1815         * Device is not guaranteed to be in the requested state yet.
1816         * We must wait until the register indicates that the
1817         * device has entered the correct state.
1818         */
1819        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1820                rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg2);
1821                state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1822                if (state == !put_to_sleep)
1823                        return 0;
1824                rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1825                msleep(10);
1826        }
1827
1828        return -EBUSY;
1829}
1830
1831static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1832                                    enum dev_state state)
1833{
1834        int retval = 0;
1835
1836        switch (state) {
1837        case STATE_RADIO_ON:
1838                retval = rt61pci_enable_radio(rt2x00dev);
1839                break;
1840        case STATE_RADIO_OFF:
1841                rt61pci_disable_radio(rt2x00dev);
1842                break;
1843        case STATE_RADIO_IRQ_ON:
1844        case STATE_RADIO_IRQ_OFF:
1845                rt61pci_toggle_irq(rt2x00dev, state);
1846                break;
1847        case STATE_DEEP_SLEEP:
1848        case STATE_SLEEP:
1849        case STATE_STANDBY:
1850        case STATE_AWAKE:
1851                retval = rt61pci_set_state(rt2x00dev, state);
1852                break;
1853        default:
1854                retval = -ENOTSUPP;
1855                break;
1856        }
1857
1858        if (unlikely(retval))
1859                ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1860                      state, retval);
1861
1862        return retval;
1863}
1864
1865/*
1866 * TX descriptor initialization
1867 */
1868static void rt61pci_write_tx_desc(struct queue_entry *entry,
1869                                  struct txentry_desc *txdesc)
1870{
1871        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1872        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1873        __le32 *txd = entry_priv->desc;
1874        u32 word;
1875
1876        /*
1877         * Start writing the descriptor words.
1878         */
1879        rt2x00_desc_read(txd, 1, &word);
1880        rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1881        rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1882        rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1883        rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1884        rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1885        rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1886                           test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1887        rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1888        rt2x00_desc_write(txd, 1, word);
1889
1890        rt2x00_desc_read(txd, 2, &word);
1891        rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1892        rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1893        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1894                           txdesc->u.plcp.length_low);
1895        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1896                           txdesc->u.plcp.length_high);
1897        rt2x00_desc_write(txd, 2, word);
1898
1899        if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1900                _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1901                _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1902        }
1903
1904        rt2x00_desc_read(txd, 5, &word);
1905        rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1906        rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1907                           skbdesc->entry->entry_idx);
1908        rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1909                           TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1910        rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1911        rt2x00_desc_write(txd, 5, word);
1912
1913        if (entry->queue->qid != QID_BEACON) {
1914                rt2x00_desc_read(txd, 6, &word);
1915                rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1916                                   skbdesc->skb_dma);
1917                rt2x00_desc_write(txd, 6, word);
1918
1919                rt2x00_desc_read(txd, 11, &word);
1920                rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1921                                   txdesc->length);
1922                rt2x00_desc_write(txd, 11, word);
1923        }
1924
1925        /*
1926         * Writing TXD word 0 must the last to prevent a race condition with
1927         * the device, whereby the device may take hold of the TXD before we
1928         * finished updating it.
1929         */
1930        rt2x00_desc_read(txd, 0, &word);
1931        rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1932        rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1933        rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1934                           test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1935        rt2x00_set_field32(&word, TXD_W0_ACK,
1936                           test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1937        rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1938                           test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1939        rt2x00_set_field32(&word, TXD_W0_OFDM,
1940                           (txdesc->rate_mode == RATE_MODE_OFDM));
1941        rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1942        rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1943                           test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1944        rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1945                           test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1946        rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1947                           test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1948        rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1949        rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1950        rt2x00_set_field32(&word, TXD_W0_BURST,
1951                           test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1952        rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1953        rt2x00_desc_write(txd, 0, word);
1954
1955        /*
1956         * Register descriptor details in skb frame descriptor.
1957         */
1958        skbdesc->desc = txd;
1959        skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1960                            TXD_DESC_SIZE;
1961}
1962
1963/*
1964 * TX data initialization
1965 */
1966static void rt61pci_write_beacon(struct queue_entry *entry,
1967                                 struct txentry_desc *txdesc)
1968{
1969        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1970        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1971        unsigned int beacon_base;
1972        unsigned int padding_len;
1973        u32 orig_reg, reg;
1974
1975        /*
1976         * Disable beaconing while we are reloading the beacon data,
1977         * otherwise we might be sending out invalid data.
1978         */
1979        rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1980        orig_reg = reg;
1981        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1982        rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1983
1984        /*
1985         * Write the TX descriptor for the beacon.
1986         */
1987        rt61pci_write_tx_desc(entry, txdesc);
1988
1989        /*
1990         * Dump beacon to userspace through debugfs.
1991         */
1992        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1993
1994        /*
1995         * Write entire beacon with descriptor and padding to register.
1996         */
1997        padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1998        if (padding_len && skb_pad(entry->skb, padding_len)) {
1999                ERROR(rt2x00dev, "Failure padding beacon, aborting\n");
2000                /* skb freed by skb_pad() on failure */
2001                entry->skb = NULL;
2002                rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2003                return;
2004        }
2005
2006        beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2007        rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
2008                                      entry_priv->desc, TXINFO_SIZE);
2009        rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2010                                      entry->skb->data,
2011                                      entry->skb->len + padding_len);
2012
2013        /*
2014         * Enable beaconing again.
2015         *
2016         * For Wi-Fi faily generated beacons between participating
2017         * stations. Set TBTT phase adaptive adjustment step to 8us.
2018         */
2019        rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2020
2021        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2022        rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2023
2024        /*
2025         * Clean up beacon skb.
2026         */
2027        dev_kfree_skb_any(entry->skb);
2028        entry->skb = NULL;
2029}
2030
2031static void rt61pci_clear_beacon(struct queue_entry *entry)
2032{
2033        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2034        u32 reg;
2035
2036        /*
2037         * Disable beaconing while we are reloading the beacon data,
2038         * otherwise we might be sending out invalid data.
2039         */
2040        rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
2041        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2042        rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2043
2044        /*
2045         * Clear beacon.
2046         */
2047        rt2x00pci_register_write(rt2x00dev,
2048                                 HW_BEACON_OFFSET(entry->entry_idx), 0);
2049
2050        /*
2051         * Enable beaconing again.
2052         */
2053        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2054        rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2055}
2056
2057/*
2058 * RX control handlers
2059 */
2060static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2061{
2062        u8 offset = rt2x00dev->lna_gain;
2063        u8 lna;
2064
2065        lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2066        switch (lna) {
2067        case 3:
2068                offset += 90;
2069                break;
2070        case 2:
2071                offset += 74;
2072                break;
2073        case 1:
2074                offset += 64;
2075                break;
2076        default:
2077                return 0;
2078        }
2079
2080        if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2081                if (lna == 3 || lna == 2)
2082                        offset += 10;
2083        }
2084
2085        return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2086}
2087
2088static void rt61pci_fill_rxdone(struct queue_entry *entry,
2089                                struct rxdone_entry_desc *rxdesc)
2090{
2091        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2092        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
2093        u32 word0;
2094        u32 word1;
2095
2096        rt2x00_desc_read(entry_priv->desc, 0, &word0);
2097        rt2x00_desc_read(entry_priv->desc, 1, &word1);
2098
2099        if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2100                rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2101
2102        rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2103        rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2104
2105        if (rxdesc->cipher != CIPHER_NONE) {
2106                _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2107                _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2108                rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2109
2110                _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2111                rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2112
2113                /*
2114                 * Hardware has stripped IV/EIV data from 802.11 frame during
2115                 * decryption. It has provided the data separately but rt2x00lib
2116                 * should decide if it should be reinserted.
2117                 */
2118                rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2119
2120                /*
2121                 * The hardware has already checked the Michael Mic and has
2122                 * stripped it from the frame. Signal this to mac80211.
2123                 */
2124                rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2125
2126                if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2127                        rxdesc->flags |= RX_FLAG_DECRYPTED;
2128                else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2129                        rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2130        }
2131
2132        /*
2133         * Obtain the status about this packet.
2134         * When frame was received with an OFDM bitrate,
2135         * the signal is the PLCP value. If it was received with
2136         * a CCK bitrate the signal is the rate in 100kbit/s.
2137         */
2138        rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2139        rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2140        rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2141
2142        if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2143                rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2144        else
2145                rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2146        if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2147                rxdesc->dev_flags |= RXDONE_MY_BSS;
2148}
2149
2150/*
2151 * Interrupt functions.
2152 */
2153static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2154{
2155        struct data_queue *queue;
2156        struct queue_entry *entry;
2157        struct queue_entry *entry_done;
2158        struct queue_entry_priv_pci *entry_priv;
2159        struct txdone_entry_desc txdesc;
2160        u32 word;
2161        u32 reg;
2162        int type;
2163        int index;
2164        int i;
2165
2166        /*
2167         * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2168         * at most X times and also stop processing once the TX_STA_FIFO_VALID
2169         * flag is not set anymore.
2170         *
2171         * The legacy drivers use X=TX_RING_SIZE but state in a comment
2172         * that the TX_STA_FIFO stack has a size of 16. We stick to our
2173         * tx ring size for now.
2174         */
2175        for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
2176                rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2177                if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2178                        break;
2179
2180                /*
2181                 * Skip this entry when it contains an invalid
2182                 * queue identication number.
2183                 */
2184                type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2185                queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2186                if (unlikely(!queue))
2187                        continue;
2188
2189                /*
2190                 * Skip this entry when it contains an invalid
2191                 * index number.
2192                 */
2193                index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2194                if (unlikely(index >= queue->limit))
2195                        continue;
2196
2197                entry = &queue->entries[index];
2198                entry_priv = entry->priv_data;
2199                rt2x00_desc_read(entry_priv->desc, 0, &word);
2200
2201                if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2202                    !rt2x00_get_field32(word, TXD_W0_VALID))
2203                        return;
2204
2205                entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2206                while (entry != entry_done) {
2207                        /* Catch up.
2208                         * Just report any entries we missed as failed.
2209                         */
2210                        WARNING(rt2x00dev,
2211                                "TX status report missed for entry %d\n",
2212                                entry_done->entry_idx);
2213
2214                        rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2215                        entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2216                }
2217
2218                /*
2219                 * Obtain the status about this packet.
2220                 */
2221                txdesc.flags = 0;
2222                switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2223                case 0: /* Success, maybe with retry */
2224                        __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2225                        break;
2226                case 6: /* Failure, excessive retries */
2227                        __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2228                        /* Don't break, this is a failed frame! */
2229                default: /* Failure */
2230                        __set_bit(TXDONE_FAILURE, &txdesc.flags);
2231                }
2232                txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2233
2234                /*
2235                 * the frame was retried at least once
2236                 * -> hw used fallback rates
2237                 */
2238                if (txdesc.retry)
2239                        __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2240
2241                rt2x00lib_txdone(entry, &txdesc);
2242        }
2243}
2244
2245static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2246{
2247        struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
2248
2249        rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2250}
2251
2252static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2253                                            struct rt2x00_field32 irq_field)
2254{
2255        u32 reg;
2256
2257        /*
2258         * Enable a single interrupt. The interrupt mask register
2259         * access needs locking.
2260         */
2261        spin_lock_irq(&rt2x00dev->irqmask_lock);
2262
2263        rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2264        rt2x00_set_field32(&reg, irq_field, 0);
2265        rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
2266
2267        spin_unlock_irq(&rt2x00dev->irqmask_lock);
2268}
2269
2270static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2271                                         struct rt2x00_field32 irq_field)
2272{
2273        u32 reg;
2274
2275        /*
2276         * Enable a single MCU interrupt. The interrupt mask register
2277         * access needs locking.
2278         */
2279        spin_lock_irq(&rt2x00dev->irqmask_lock);
2280
2281        rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2282        rt2x00_set_field32(&reg, irq_field, 0);
2283        rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2284
2285        spin_unlock_irq(&rt2x00dev->irqmask_lock);
2286}
2287
2288static void rt61pci_txstatus_tasklet(unsigned long data)
2289{
2290        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2291        rt61pci_txdone(rt2x00dev);
2292        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2293                rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2294}
2295
2296static void rt61pci_tbtt_tasklet(unsigned long data)
2297{
2298        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2299        rt2x00lib_beacondone(rt2x00dev);
2300        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2301                rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2302}
2303
2304static void rt61pci_rxdone_tasklet(unsigned long data)
2305{
2306        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2307        if (rt2x00pci_rxdone(rt2x00dev))
2308                tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2309        else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2310                rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2311}
2312
2313static void rt61pci_autowake_tasklet(unsigned long data)
2314{
2315        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2316        rt61pci_wakeup(rt2x00dev);
2317        rt2x00pci_register_write(rt2x00dev,
2318                                 M2H_CMD_DONE_CSR, 0xffffffff);
2319        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2320                rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2321}
2322
2323static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2324{
2325        struct rt2x00_dev *rt2x00dev = dev_instance;
2326        u32 reg_mcu, mask_mcu;
2327        u32 reg, mask;
2328
2329        /*
2330         * Get the interrupt sources & saved to local variable.
2331         * Write register value back to clear pending interrupts.
2332         */
2333        rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2334        rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2335
2336        rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2337        rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2338
2339        if (!reg && !reg_mcu)
2340                return IRQ_NONE;
2341
2342        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2343                return IRQ_HANDLED;
2344
2345        /*
2346         * Schedule tasklets for interrupt handling.
2347         */
2348        if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2349                tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2350
2351        if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2352                tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2353
2354        if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2355                tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2356
2357        if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2358                tasklet_schedule(&rt2x00dev->autowake_tasklet);
2359
2360        /*
2361         * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2362         * for interrupts and interrupt masks we can just use the value of
2363         * INT_SOURCE_CSR to create the interrupt mask.
2364         */
2365        mask = reg;
2366        mask_mcu = reg_mcu;
2367
2368        /*
2369         * Disable all interrupts for which a tasklet was scheduled right now,
2370         * the tasklet will reenable the appropriate interrupts.
2371         */
2372        spin_lock(&rt2x00dev->irqmask_lock);
2373
2374        rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2375        reg |= mask;
2376        rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
2377
2378        rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2379        reg |= mask_mcu;
2380        rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2381
2382        spin_unlock(&rt2x00dev->irqmask_lock);
2383
2384        return IRQ_HANDLED;
2385}
2386
2387/*
2388 * Device probe functions.
2389 */
2390static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2391{
2392        struct eeprom_93cx6 eeprom;
2393        u32 reg;
2394        u16 word;
2395        u8 *mac;
2396        s8 value;
2397
2398        rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2399
2400        eeprom.data = rt2x00dev;
2401        eeprom.register_read = rt61pci_eepromregister_read;
2402        eeprom.register_write = rt61pci_eepromregister_write;
2403        eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2404            PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2405        eeprom.reg_data_in = 0;
2406        eeprom.reg_data_out = 0;
2407        eeprom.reg_data_clock = 0;
2408        eeprom.reg_chip_select = 0;
2409
2410        eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2411                               EEPROM_SIZE / sizeof(u16));
2412
2413        /*
2414         * Start validation of the data that has been read.
2415         */
2416        mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2417        if (!is_valid_ether_addr(mac)) {
2418                eth_random_addr(mac);
2419                EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2420        }
2421
2422        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2423        if (word == 0xffff) {
2424                rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2425                rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2426                                   ANTENNA_B);
2427                rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2428                                   ANTENNA_B);
2429                rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2430                rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2431                rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2432                rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2433                rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2434                EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2435        }
2436
2437        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2438        if (word == 0xffff) {
2439                rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2440                rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2441                rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2442                rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2443                rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2444                rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2445                rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2446                rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2447                EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2448        }
2449
2450        rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2451        if (word == 0xffff) {
2452                rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2453                                   LED_MODE_DEFAULT);
2454                rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2455                EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2456        }
2457
2458        rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2459        if (word == 0xffff) {
2460                rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2461                rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2462                rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2463                EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2464        }
2465
2466        rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2467        if (word == 0xffff) {
2468                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2469                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2470                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2471                EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2472        } else {
2473                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2474                if (value < -10 || value > 10)
2475                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2476                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2477                if (value < -10 || value > 10)
2478                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2479                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2480        }
2481
2482        rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2483        if (word == 0xffff) {
2484                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2485                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2486                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2487                EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2488        } else {
2489                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2490                if (value < -10 || value > 10)
2491                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2492                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2493                if (value < -10 || value > 10)
2494                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2495                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2496        }
2497
2498        return 0;
2499}
2500
2501static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2502{
2503        u32 reg;
2504        u16 value;
2505        u16 eeprom;
2506
2507        /*
2508         * Read EEPROM word for configuration.
2509         */
2510        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2511
2512        /*
2513         * Identify RF chipset.
2514         */
2515        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2516        rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2517        rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2518                        value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2519
2520        if (!rt2x00_rf(rt2x00dev, RF5225) &&
2521            !rt2x00_rf(rt2x00dev, RF5325) &&
2522            !rt2x00_rf(rt2x00dev, RF2527) &&
2523            !rt2x00_rf(rt2x00dev, RF2529)) {
2524                ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2525                return -ENODEV;
2526        }
2527
2528        /*
2529         * Determine number of antennas.
2530         */
2531        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2532                __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2533
2534        /*
2535         * Identify default antenna configuration.
2536         */
2537        rt2x00dev->default_ant.tx =
2538            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2539        rt2x00dev->default_ant.rx =
2540            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2541
2542        /*
2543         * Read the Frame type.
2544         */
2545        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2546                __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2547
2548        /*
2549         * Detect if this device has a hardware controlled radio.
2550         */
2551        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2552                __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2553
2554        /*
2555         * Read frequency offset and RF programming sequence.
2556         */
2557        rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2558        if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2559                __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2560
2561        rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2562
2563        /*
2564         * Read external LNA informations.
2565         */
2566        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2567
2568        if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2569                __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2570        if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2571                __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2572
2573        /*
2574         * When working with a RF2529 chip without double antenna,
2575         * the antenna settings should be gathered from the NIC
2576         * eeprom word.
2577         */
2578        if (rt2x00_rf(rt2x00dev, RF2529) &&
2579            !test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags)) {
2580                rt2x00dev->default_ant.rx =
2581                    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2582                rt2x00dev->default_ant.tx =
2583                    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2584
2585                if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2586                        rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2587                if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2588                        rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2589        }
2590
2591        /*
2592         * Store led settings, for correct led behaviour.
2593         * If the eeprom value is invalid,
2594         * switch to default led mode.
2595         */
2596#ifdef CONFIG_RT2X00_LIB_LEDS
2597        rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2598        value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2599
2600        rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2601        rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2602        if (value == LED_MODE_SIGNAL_STRENGTH)
2603                rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2604                                 LED_TYPE_QUALITY);
2605
2606        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2607        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2608                           rt2x00_get_field16(eeprom,
2609                                              EEPROM_LED_POLARITY_GPIO_0));
2610        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2611                           rt2x00_get_field16(eeprom,
2612                                              EEPROM_LED_POLARITY_GPIO_1));
2613        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2614                           rt2x00_get_field16(eeprom,
2615                                              EEPROM_LED_POLARITY_GPIO_2));
2616        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2617                           rt2x00_get_field16(eeprom,
2618                                              EEPROM_LED_POLARITY_GPIO_3));
2619        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2620                           rt2x00_get_field16(eeprom,
2621                                              EEPROM_LED_POLARITY_GPIO_4));
2622        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2623                           rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2624        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2625                           rt2x00_get_field16(eeprom,
2626                                              EEPROM_LED_POLARITY_RDY_G));
2627        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2628                           rt2x00_get_field16(eeprom,
2629                                              EEPROM_LED_POLARITY_RDY_A));
2630#endif /* CONFIG_RT2X00_LIB_LEDS */
2631
2632        return 0;
2633}
2634
2635/*
2636 * RF value list for RF5225 & RF5325
2637 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2638 */
2639static const struct rf_channel rf_vals_noseq[] = {
2640        { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2641        { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2642        { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2643        { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2644        { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2645        { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2646        { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2647        { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2648        { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2649        { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2650        { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2651        { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2652        { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2653        { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2654
2655        /* 802.11 UNI / HyperLan 2 */
2656        { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2657        { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2658        { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2659        { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2660        { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2661        { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2662        { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2663        { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2664
2665        /* 802.11 HyperLan 2 */
2666        { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2667        { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2668        { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2669        { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2670        { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2671        { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2672        { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2673        { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2674        { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2675        { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2676
2677        /* 802.11 UNII */
2678        { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2679        { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2680        { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2681        { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2682        { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2683        { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2684
2685        /* MMAC(Japan)J52 ch 34,38,42,46 */
2686        { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2687        { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2688        { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2689        { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2690};
2691
2692/*
2693 * RF value list for RF5225 & RF5325
2694 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2695 */
2696static const struct rf_channel rf_vals_seq[] = {
2697        { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2698        { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2699        { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2700        { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2701        { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2702        { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2703        { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2704        { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2705        { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2706        { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2707        { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2708        { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2709        { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2710        { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2711
2712        /* 802.11 UNI / HyperLan 2 */
2713        { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2714        { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2715        { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2716        { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2717        { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2718        { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2719        { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2720        { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2721
2722        /* 802.11 HyperLan 2 */
2723        { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2724        { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2725        { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2726        { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2727        { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2728        { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2729        { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2730        { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2731        { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2732        { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2733
2734        /* 802.11 UNII */
2735        { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2736        { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2737        { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2738        { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2739        { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2740        { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2741
2742        /* MMAC(Japan)J52 ch 34,38,42,46 */
2743        { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2744        { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2745        { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2746        { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2747};
2748
2749static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2750{
2751        struct hw_mode_spec *spec = &rt2x00dev->spec;
2752        struct channel_info *info;
2753        char *tx_power;
2754        unsigned int i;
2755
2756        /*
2757         * Disable powersaving as default.
2758         */
2759        rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2760
2761        /*
2762         * Initialize all hw fields.
2763         */
2764        rt2x00dev->hw->flags =
2765            IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2766            IEEE80211_HW_SIGNAL_DBM |
2767            IEEE80211_HW_SUPPORTS_PS |
2768            IEEE80211_HW_PS_NULLFUNC_STACK;
2769
2770        SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2771        SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2772                                rt2x00_eeprom_addr(rt2x00dev,
2773                                                   EEPROM_MAC_ADDR_0));
2774
2775        /*
2776         * As rt61 has a global fallback table we cannot specify
2777         * more then one tx rate per frame but since the hw will
2778         * try several rates (based on the fallback table) we should
2779         * initialize max_report_rates to the maximum number of rates
2780         * we are going to try. Otherwise mac80211 will truncate our
2781         * reported tx rates and the rc algortihm will end up with
2782         * incorrect data.
2783         */
2784        rt2x00dev->hw->max_rates = 1;
2785        rt2x00dev->hw->max_report_rates = 7;
2786        rt2x00dev->hw->max_rate_tries = 1;
2787
2788        /*
2789         * Initialize hw_mode information.
2790         */
2791        spec->supported_bands = SUPPORT_BAND_2GHZ;
2792        spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2793
2794        if (!test_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags)) {
2795                spec->num_channels = 14;
2796                spec->channels = rf_vals_noseq;
2797        } else {
2798                spec->num_channels = 14;
2799                spec->channels = rf_vals_seq;
2800        }
2801
2802        if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2803                spec->supported_bands |= SUPPORT_BAND_5GHZ;
2804                spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2805        }
2806
2807        /*
2808         * Create channel information array
2809         */
2810        info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2811        if (!info)
2812                return -ENOMEM;
2813
2814        spec->channels_info = info;
2815
2816        tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2817        for (i = 0; i < 14; i++) {
2818                info[i].max_power = MAX_TXPOWER;
2819                info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2820        }
2821
2822        if (spec->num_channels > 14) {
2823                tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2824                for (i = 14; i < spec->num_channels; i++) {
2825                        info[i].max_power = MAX_TXPOWER;
2826                        info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2827                }
2828        }
2829
2830        return 0;
2831}
2832
2833static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2834{
2835        int retval;
2836        u32 reg;
2837
2838        /*
2839         * Disable power saving.
2840         */
2841        rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2842
2843        /*
2844         * Allocate eeprom data.
2845         */
2846        retval = rt61pci_validate_eeprom(rt2x00dev);
2847        if (retval)
2848                return retval;
2849
2850        retval = rt61pci_init_eeprom(rt2x00dev);
2851        if (retval)
2852                return retval;
2853
2854        /*
2855         * Enable rfkill polling by setting GPIO direction of the
2856         * rfkill switch GPIO pin correctly.
2857         */
2858        rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
2859        rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
2860        rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
2861
2862        /*
2863         * Initialize hw specifications.
2864         */
2865        retval = rt61pci_probe_hw_mode(rt2x00dev);
2866        if (retval)
2867                return retval;
2868
2869        /*
2870         * This device has multiple filters for control frames,
2871         * but has no a separate filter for PS Poll frames.
2872         */
2873        __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2874
2875        /*
2876         * This device requires firmware and DMA mapped skbs.
2877         */
2878        __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2879        __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2880        if (!modparam_nohwcrypt)
2881                __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2882        __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2883
2884        /*
2885         * Set the rssi offset.
2886         */
2887        rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2888
2889        return 0;
2890}
2891
2892/*
2893 * IEEE80211 stack callback functions.
2894 */
2895static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2896                           struct ieee80211_vif *vif, u16 queue_idx,
2897                           const struct ieee80211_tx_queue_params *params)
2898{
2899        struct rt2x00_dev *rt2x00dev = hw->priv;
2900        struct data_queue *queue;
2901        struct rt2x00_field32 field;
2902        int retval;
2903        u32 reg;
2904        u32 offset;
2905
2906        /*
2907         * First pass the configuration through rt2x00lib, that will
2908         * update the queue settings and validate the input. After that
2909         * we are free to update the registers based on the value
2910         * in the queue parameter.
2911         */
2912        retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2913        if (retval)
2914                return retval;
2915
2916        /*
2917         * We only need to perform additional register initialization
2918         * for WMM queues.
2919         */
2920        if (queue_idx >= 4)
2921                return 0;
2922
2923        queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2924
2925        /* Update WMM TXOP register */
2926        offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2927        field.bit_offset = (queue_idx & 1) * 16;
2928        field.bit_mask = 0xffff << field.bit_offset;
2929
2930        rt2x00pci_register_read(rt2x00dev, offset, &reg);
2931        rt2x00_set_field32(&reg, field, queue->txop);
2932        rt2x00pci_register_write(rt2x00dev, offset, reg);
2933
2934        /* Update WMM registers */
2935        field.bit_offset = queue_idx * 4;
2936        field.bit_mask = 0xf << field.bit_offset;
2937
2938        rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2939        rt2x00_set_field32(&reg, field, queue->aifs);
2940        rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2941
2942        rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2943        rt2x00_set_field32(&reg, field, queue->cw_min);
2944        rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2945
2946        rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2947        rt2x00_set_field32(&reg, field, queue->cw_max);
2948        rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2949
2950        return 0;
2951}
2952
2953static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2954{
2955        struct rt2x00_dev *rt2x00dev = hw->priv;
2956        u64 tsf;
2957        u32 reg;
2958
2959        rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2960        tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2961        rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2962        tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2963
2964        return tsf;
2965}
2966
2967static const struct ieee80211_ops rt61pci_mac80211_ops = {
2968        .tx                     = rt2x00mac_tx,
2969        .start                  = rt2x00mac_start,
2970        .stop                   = rt2x00mac_stop,
2971        .add_interface          = rt2x00mac_add_interface,
2972        .remove_interface       = rt2x00mac_remove_interface,
2973        .config                 = rt2x00mac_config,
2974        .configure_filter       = rt2x00mac_configure_filter,
2975        .set_key                = rt2x00mac_set_key,
2976        .sw_scan_start          = rt2x00mac_sw_scan_start,
2977        .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2978        .get_stats              = rt2x00mac_get_stats,
2979        .bss_info_changed       = rt2x00mac_bss_info_changed,
2980        .conf_tx                = rt61pci_conf_tx,
2981        .get_tsf                = rt61pci_get_tsf,
2982        .rfkill_poll            = rt2x00mac_rfkill_poll,
2983        .flush                  = rt2x00mac_flush,
2984        .set_antenna            = rt2x00mac_set_antenna,
2985        .get_antenna            = rt2x00mac_get_antenna,
2986        .get_ringparam          = rt2x00mac_get_ringparam,
2987        .tx_frames_pending      = rt2x00mac_tx_frames_pending,
2988};
2989
2990static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2991        .irq_handler            = rt61pci_interrupt,
2992        .txstatus_tasklet       = rt61pci_txstatus_tasklet,
2993        .tbtt_tasklet           = rt61pci_tbtt_tasklet,
2994        .rxdone_tasklet         = rt61pci_rxdone_tasklet,
2995        .autowake_tasklet       = rt61pci_autowake_tasklet,
2996        .probe_hw               = rt61pci_probe_hw,
2997        .get_firmware_name      = rt61pci_get_firmware_name,
2998        .check_firmware         = rt61pci_check_firmware,
2999        .load_firmware          = rt61pci_load_firmware,
3000        .initialize             = rt2x00pci_initialize,
3001        .uninitialize           = rt2x00pci_uninitialize,
3002        .get_entry_state        = rt61pci_get_entry_state,
3003        .clear_entry            = rt61pci_clear_entry,
3004        .set_device_state       = rt61pci_set_device_state,
3005        .rfkill_poll            = rt61pci_rfkill_poll,
3006        .link_stats             = rt61pci_link_stats,
3007        .reset_tuner            = rt61pci_reset_tuner,
3008        .link_tuner             = rt61pci_link_tuner,
3009        .start_queue            = rt61pci_start_queue,
3010        .kick_queue             = rt61pci_kick_queue,
3011        .stop_queue             = rt61pci_stop_queue,
3012        .flush_queue            = rt2x00pci_flush_queue,
3013        .write_tx_desc          = rt61pci_write_tx_desc,
3014        .write_beacon           = rt61pci_write_beacon,
3015        .clear_beacon           = rt61pci_clear_beacon,
3016        .fill_rxdone            = rt61pci_fill_rxdone,
3017        .config_shared_key      = rt61pci_config_shared_key,
3018        .config_pairwise_key    = rt61pci_config_pairwise_key,
3019        .config_filter          = rt61pci_config_filter,
3020        .config_intf            = rt61pci_config_intf,
3021        .config_erp             = rt61pci_config_erp,
3022        .config_ant             = rt61pci_config_ant,
3023        .config                 = rt61pci_config,
3024};
3025
3026static const struct data_queue_desc rt61pci_queue_rx = {
3027        .entry_num              = 32,
3028        .data_size              = DATA_FRAME_SIZE,
3029        .desc_size              = RXD_DESC_SIZE,
3030        .priv_size              = sizeof(struct queue_entry_priv_pci),
3031};
3032
3033static const struct data_queue_desc rt61pci_queue_tx = {
3034        .entry_num              = 32,
3035        .data_size              = DATA_FRAME_SIZE,
3036        .desc_size              = TXD_DESC_SIZE,
3037        .priv_size              = sizeof(struct queue_entry_priv_pci),
3038};
3039
3040static const struct data_queue_desc rt61pci_queue_bcn = {
3041        .entry_num              = 4,
3042        .data_size              = 0, /* No DMA required for beacons */
3043        .desc_size              = TXINFO_SIZE,
3044        .priv_size              = sizeof(struct queue_entry_priv_pci),
3045};
3046
3047static const struct rt2x00_ops rt61pci_ops = {
3048        .name                   = KBUILD_MODNAME,
3049        .max_ap_intf            = 4,
3050        .eeprom_size            = EEPROM_SIZE,
3051        .rf_size                = RF_SIZE,
3052        .tx_queues              = NUM_TX_QUEUES,
3053        .extra_tx_headroom      = 0,
3054        .rx                     = &rt61pci_queue_rx,
3055        .tx                     = &rt61pci_queue_tx,
3056        .bcn                    = &rt61pci_queue_bcn,
3057        .lib                    = &rt61pci_rt2x00_ops,
3058        .hw                     = &rt61pci_mac80211_ops,
3059#ifdef CONFIG_RT2X00_LIB_DEBUGFS
3060        .debugfs                = &rt61pci_rt2x00debug,
3061#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3062};
3063
3064/*
3065 * RT61pci module information.
3066 */
3067static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
3068        /* RT2561s */
3069        { PCI_DEVICE(0x1814, 0x0301) },
3070        /* RT2561 v2 */
3071        { PCI_DEVICE(0x1814, 0x0302) },
3072        /* RT2661 */
3073        { PCI_DEVICE(0x1814, 0x0401) },
3074        { 0, }
3075};
3076
3077MODULE_AUTHOR(DRV_PROJECT);
3078MODULE_VERSION(DRV_VERSION);
3079MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3080MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3081                        "PCI & PCMCIA chipset based cards");
3082MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3083MODULE_FIRMWARE(FIRMWARE_RT2561);
3084MODULE_FIRMWARE(FIRMWARE_RT2561s);
3085MODULE_FIRMWARE(FIRMWARE_RT2661);
3086MODULE_LICENSE("GPL");
3087
3088static int rt61pci_probe(struct pci_dev *pci_dev,
3089                         const struct pci_device_id *id)
3090{
3091        return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3092}
3093
3094static struct pci_driver rt61pci_driver = {
3095        .name           = KBUILD_MODNAME,
3096        .id_table       = rt61pci_device_table,
3097        .probe          = rt61pci_probe,
3098        .remove         = rt2x00pci_remove,
3099        .suspend        = rt2x00pci_suspend,
3100        .resume         = rt2x00pci_resume,
3101};
3102
3103module_pci_driver(rt61pci_driver);
3104