linux/drivers/net/wireless/zd1211rw/zd_chip.c
<<
>>
Prefs
   1/* ZD1211 USB-WLAN driver for Linux
   2 *
   3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
   4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19 */
  20
  21/* This file implements all the hardware specific functions for the ZD1211
  22 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
  23 * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
  24 */
  25
  26#include <linux/kernel.h>
  27#include <linux/errno.h>
  28#include <linux/slab.h>
  29
  30#include "zd_def.h"
  31#include "zd_chip.h"
  32#include "zd_mac.h"
  33#include "zd_rf.h"
  34
  35void zd_chip_init(struct zd_chip *chip,
  36                 struct ieee80211_hw *hw,
  37                 struct usb_interface *intf)
  38{
  39        memset(chip, 0, sizeof(*chip));
  40        mutex_init(&chip->mutex);
  41        zd_usb_init(&chip->usb, hw, intf);
  42        zd_rf_init(&chip->rf);
  43}
  44
  45void zd_chip_clear(struct zd_chip *chip)
  46{
  47        ZD_ASSERT(!mutex_is_locked(&chip->mutex));
  48        zd_usb_clear(&chip->usb);
  49        zd_rf_clear(&chip->rf);
  50        mutex_destroy(&chip->mutex);
  51        ZD_MEMCLEAR(chip, sizeof(*chip));
  52}
  53
  54static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
  55{
  56        u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
  57        return scnprintf(buffer, size, "%02x-%02x-%02x",
  58                         addr[0], addr[1], addr[2]);
  59}
  60
  61/* Prints an identifier line, which will support debugging. */
  62static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
  63{
  64        int i = 0;
  65
  66        i = scnprintf(buffer, size, "zd1211%s chip ",
  67                      zd_chip_is_zd1211b(chip) ? "b" : "");
  68        i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
  69        i += scnprintf(buffer+i, size-i, " ");
  70        i += scnprint_mac_oui(chip, buffer+i, size-i);
  71        i += scnprintf(buffer+i, size-i, " ");
  72        i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
  73        i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
  74                chip->patch_cck_gain ? 'g' : '-',
  75                chip->patch_cr157 ? '7' : '-',
  76                chip->patch_6m_band_edge ? '6' : '-',
  77                chip->new_phy_layout ? 'N' : '-',
  78                chip->al2230s_bit ? 'S' : '-');
  79        return i;
  80}
  81
  82static void print_id(struct zd_chip *chip)
  83{
  84        char buffer[80];
  85
  86        scnprint_id(chip, buffer, sizeof(buffer));
  87        buffer[sizeof(buffer)-1] = 0;
  88        dev_info(zd_chip_dev(chip), "%s\n", buffer);
  89}
  90
  91static zd_addr_t inc_addr(zd_addr_t addr)
  92{
  93        u16 a = (u16)addr;
  94        /* Control registers use byte addressing, but everything else uses word
  95         * addressing. */
  96        if ((a & 0xf000) == CR_START)
  97                a += 2;
  98        else
  99                a += 1;
 100        return (zd_addr_t)a;
 101}
 102
 103/* Read a variable number of 32-bit values. Parameter count is not allowed to
 104 * exceed USB_MAX_IOREAD32_COUNT.
 105 */
 106int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
 107                 unsigned int count)
 108{
 109        int r;
 110        int i;
 111        zd_addr_t a16[USB_MAX_IOREAD32_COUNT * 2];
 112        u16 v16[USB_MAX_IOREAD32_COUNT * 2];
 113        unsigned int count16;
 114
 115        if (count > USB_MAX_IOREAD32_COUNT)
 116                return -EINVAL;
 117
 118        /* Use stack for values and addresses. */
 119        count16 = 2 * count;
 120        BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16));
 121        BUG_ON(count16 * sizeof(u16) > sizeof(v16));
 122
 123        for (i = 0; i < count; i++) {
 124                int j = 2*i;
 125                /* We read the high word always first. */
 126                a16[j] = inc_addr(addr[i]);
 127                a16[j+1] = addr[i];
 128        }
 129
 130        r = zd_ioread16v_locked(chip, v16, a16, count16);
 131        if (r) {
 132                dev_dbg_f(zd_chip_dev(chip),
 133                          "error: zd_ioread16v_locked. Error number %d\n", r);
 134                return r;
 135        }
 136
 137        for (i = 0; i < count; i++) {
 138                int j = 2*i;
 139                values[i] = (v16[j] << 16) | v16[j+1];
 140        }
 141
 142        return 0;
 143}
 144
 145static int _zd_iowrite32v_async_locked(struct zd_chip *chip,
 146                                       const struct zd_ioreq32 *ioreqs,
 147                                       unsigned int count)
 148{
 149        int i, j, r;
 150        struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2];
 151        unsigned int count16;
 152
 153        /* Use stack for values and addresses. */
 154
 155        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 156
 157        if (count == 0)
 158                return 0;
 159        if (count > USB_MAX_IOWRITE32_COUNT)
 160                return -EINVAL;
 161
 162        count16 = 2 * count;
 163        BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16));
 164
 165        for (i = 0; i < count; i++) {
 166                j = 2*i;
 167                /* We write the high word always first. */
 168                ioreqs16[j].value   = ioreqs[i].value >> 16;
 169                ioreqs16[j].addr    = inc_addr(ioreqs[i].addr);
 170                ioreqs16[j+1].value = ioreqs[i].value;
 171                ioreqs16[j+1].addr  = ioreqs[i].addr;
 172        }
 173
 174        r = zd_usb_iowrite16v_async(&chip->usb, ioreqs16, count16);
 175#ifdef DEBUG
 176        if (r) {
 177                dev_dbg_f(zd_chip_dev(chip),
 178                          "error %d in zd_usb_write16v\n", r);
 179        }
 180#endif /* DEBUG */
 181        return r;
 182}
 183
 184int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
 185                          unsigned int count)
 186{
 187        int r;
 188
 189        zd_usb_iowrite16v_async_start(&chip->usb);
 190        r = _zd_iowrite32v_async_locked(chip, ioreqs, count);
 191        if (r) {
 192                zd_usb_iowrite16v_async_end(&chip->usb, 0);
 193                return r;
 194        }
 195        return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
 196}
 197
 198int zd_iowrite16a_locked(struct zd_chip *chip,
 199                  const struct zd_ioreq16 *ioreqs, unsigned int count)
 200{
 201        int r;
 202        unsigned int i, j, t, max;
 203
 204        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 205        zd_usb_iowrite16v_async_start(&chip->usb);
 206
 207        for (i = 0; i < count; i += j + t) {
 208                t = 0;
 209                max = count-i;
 210                if (max > USB_MAX_IOWRITE16_COUNT)
 211                        max = USB_MAX_IOWRITE16_COUNT;
 212                for (j = 0; j < max; j++) {
 213                        if (!ioreqs[i+j].addr) {
 214                                t = 1;
 215                                break;
 216                        }
 217                }
 218
 219                r = zd_usb_iowrite16v_async(&chip->usb, &ioreqs[i], j);
 220                if (r) {
 221                        zd_usb_iowrite16v_async_end(&chip->usb, 0);
 222                        dev_dbg_f(zd_chip_dev(chip),
 223                                  "error zd_usb_iowrite16v. Error number %d\n",
 224                                  r);
 225                        return r;
 226                }
 227        }
 228
 229        return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
 230}
 231
 232/* Writes a variable number of 32 bit registers. The functions will split
 233 * that in several USB requests. A split can be forced by inserting an IO
 234 * request with an zero address field.
 235 */
 236int zd_iowrite32a_locked(struct zd_chip *chip,
 237                  const struct zd_ioreq32 *ioreqs, unsigned int count)
 238{
 239        int r;
 240        unsigned int i, j, t, max;
 241
 242        zd_usb_iowrite16v_async_start(&chip->usb);
 243
 244        for (i = 0; i < count; i += j + t) {
 245                t = 0;
 246                max = count-i;
 247                if (max > USB_MAX_IOWRITE32_COUNT)
 248                        max = USB_MAX_IOWRITE32_COUNT;
 249                for (j = 0; j < max; j++) {
 250                        if (!ioreqs[i+j].addr) {
 251                                t = 1;
 252                                break;
 253                        }
 254                }
 255
 256                r = _zd_iowrite32v_async_locked(chip, &ioreqs[i], j);
 257                if (r) {
 258                        zd_usb_iowrite16v_async_end(&chip->usb, 0);
 259                        dev_dbg_f(zd_chip_dev(chip),
 260                                "error _zd_iowrite32v_locked."
 261                                " Error number %d\n", r);
 262                        return r;
 263                }
 264        }
 265
 266        return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
 267}
 268
 269int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
 270{
 271        int r;
 272
 273        mutex_lock(&chip->mutex);
 274        r = zd_ioread16_locked(chip, value, addr);
 275        mutex_unlock(&chip->mutex);
 276        return r;
 277}
 278
 279int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
 280{
 281        int r;
 282
 283        mutex_lock(&chip->mutex);
 284        r = zd_ioread32_locked(chip, value, addr);
 285        mutex_unlock(&chip->mutex);
 286        return r;
 287}
 288
 289int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
 290{
 291        int r;
 292
 293        mutex_lock(&chip->mutex);
 294        r = zd_iowrite16_locked(chip, value, addr);
 295        mutex_unlock(&chip->mutex);
 296        return r;
 297}
 298
 299int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
 300{
 301        int r;
 302
 303        mutex_lock(&chip->mutex);
 304        r = zd_iowrite32_locked(chip, value, addr);
 305        mutex_unlock(&chip->mutex);
 306        return r;
 307}
 308
 309int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
 310                  u32 *values, unsigned int count)
 311{
 312        int r;
 313
 314        mutex_lock(&chip->mutex);
 315        r = zd_ioread32v_locked(chip, values, addresses, count);
 316        mutex_unlock(&chip->mutex);
 317        return r;
 318}
 319
 320int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
 321                  unsigned int count)
 322{
 323        int r;
 324
 325        mutex_lock(&chip->mutex);
 326        r = zd_iowrite32a_locked(chip, ioreqs, count);
 327        mutex_unlock(&chip->mutex);
 328        return r;
 329}
 330
 331static int read_pod(struct zd_chip *chip, u8 *rf_type)
 332{
 333        int r;
 334        u32 value;
 335
 336        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 337        r = zd_ioread32_locked(chip, &value, E2P_POD);
 338        if (r)
 339                goto error;
 340        dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
 341
 342        /* FIXME: AL2230 handling (Bit 7 in POD) */
 343        *rf_type = value & 0x0f;
 344        chip->pa_type = (value >> 16) & 0x0f;
 345        chip->patch_cck_gain = (value >> 8) & 0x1;
 346        chip->patch_cr157 = (value >> 13) & 0x1;
 347        chip->patch_6m_band_edge = (value >> 21) & 0x1;
 348        chip->new_phy_layout = (value >> 31) & 0x1;
 349        chip->al2230s_bit = (value >> 7) & 0x1;
 350        chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
 351        chip->supports_tx_led = 1;
 352        if (value & (1 << 24)) { /* LED scenario */
 353                if (value & (1 << 29))
 354                        chip->supports_tx_led = 0;
 355        }
 356
 357        dev_dbg_f(zd_chip_dev(chip),
 358                "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
 359                "patch 6M %d new PHY %d link LED%d tx led %d\n",
 360                zd_rf_name(*rf_type), *rf_type,
 361                chip->pa_type, chip->patch_cck_gain,
 362                chip->patch_cr157, chip->patch_6m_band_edge,
 363                chip->new_phy_layout,
 364                chip->link_led == LED1 ? 1 : 2,
 365                chip->supports_tx_led);
 366        return 0;
 367error:
 368        *rf_type = 0;
 369        chip->pa_type = 0;
 370        chip->patch_cck_gain = 0;
 371        chip->patch_cr157 = 0;
 372        chip->patch_6m_band_edge = 0;
 373        chip->new_phy_layout = 0;
 374        return r;
 375}
 376
 377static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr,
 378                                    const struct zd_ioreq32 *in_reqs,
 379                                    const char *type)
 380{
 381        int r;
 382        struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]};
 383
 384        if (mac_addr) {
 385                reqs[0].value = (mac_addr[3] << 24)
 386                              | (mac_addr[2] << 16)
 387                              | (mac_addr[1] <<  8)
 388                              |  mac_addr[0];
 389                reqs[1].value = (mac_addr[5] <<  8)
 390                              |  mac_addr[4];
 391                dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr);
 392        } else {
 393                dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type);
 394        }
 395
 396        mutex_lock(&chip->mutex);
 397        r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
 398        mutex_unlock(&chip->mutex);
 399        return r;
 400}
 401
 402/* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
 403 *              CR_MAC_ADDR_P2 must be overwritten
 404 */
 405int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
 406{
 407        static const struct zd_ioreq32 reqs[2] = {
 408                [0] = { .addr = CR_MAC_ADDR_P1 },
 409                [1] = { .addr = CR_MAC_ADDR_P2 },
 410        };
 411
 412        return zd_write_mac_addr_common(chip, mac_addr, reqs, "mac");
 413}
 414
 415int zd_write_bssid(struct zd_chip *chip, const u8 *bssid)
 416{
 417        static const struct zd_ioreq32 reqs[2] = {
 418                [0] = { .addr = CR_BSSID_P1 },
 419                [1] = { .addr = CR_BSSID_P2 },
 420        };
 421
 422        return zd_write_mac_addr_common(chip, bssid, reqs, "bssid");
 423}
 424
 425int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
 426{
 427        int r;
 428        u32 value;
 429
 430        mutex_lock(&chip->mutex);
 431        r = zd_ioread32_locked(chip, &value, E2P_SUBID);
 432        mutex_unlock(&chip->mutex);
 433        if (r)
 434                return r;
 435
 436        *regdomain = value >> 16;
 437        dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
 438
 439        return 0;
 440}
 441
 442static int read_values(struct zd_chip *chip, u8 *values, size_t count,
 443                       zd_addr_t e2p_addr, u32 guard)
 444{
 445        int r;
 446        int i;
 447        u32 v;
 448
 449        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 450        for (i = 0;;) {
 451                r = zd_ioread32_locked(chip, &v,
 452                                       (zd_addr_t)((u16)e2p_addr+i/2));
 453                if (r)
 454                        return r;
 455                v -= guard;
 456                if (i+4 < count) {
 457                        values[i++] = v;
 458                        values[i++] = v >>  8;
 459                        values[i++] = v >> 16;
 460                        values[i++] = v >> 24;
 461                        continue;
 462                }
 463                for (;i < count; i++)
 464                        values[i] = v >> (8*(i%3));
 465                return 0;
 466        }
 467}
 468
 469static int read_pwr_cal_values(struct zd_chip *chip)
 470{
 471        return read_values(chip, chip->pwr_cal_values,
 472                        E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
 473                        0);
 474}
 475
 476static int read_pwr_int_values(struct zd_chip *chip)
 477{
 478        return read_values(chip, chip->pwr_int_values,
 479                        E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
 480                        E2P_PWR_INT_GUARD);
 481}
 482
 483static int read_ofdm_cal_values(struct zd_chip *chip)
 484{
 485        int r;
 486        int i;
 487        static const zd_addr_t addresses[] = {
 488                E2P_36M_CAL_VALUE1,
 489                E2P_48M_CAL_VALUE1,
 490                E2P_54M_CAL_VALUE1,
 491        };
 492
 493        for (i = 0; i < 3; i++) {
 494                r = read_values(chip, chip->ofdm_cal_values[i],
 495                                E2P_CHANNEL_COUNT, addresses[i], 0);
 496                if (r)
 497                        return r;
 498        }
 499        return 0;
 500}
 501
 502static int read_cal_int_tables(struct zd_chip *chip)
 503{
 504        int r;
 505
 506        r = read_pwr_cal_values(chip);
 507        if (r)
 508                return r;
 509        r = read_pwr_int_values(chip);
 510        if (r)
 511                return r;
 512        r = read_ofdm_cal_values(chip);
 513        if (r)
 514                return r;
 515        return 0;
 516}
 517
 518/* phy means physical registers */
 519int zd_chip_lock_phy_regs(struct zd_chip *chip)
 520{
 521        int r;
 522        u32 tmp;
 523
 524        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 525        r = zd_ioread32_locked(chip, &tmp, CR_REG1);
 526        if (r) {
 527                dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
 528                return r;
 529        }
 530
 531        tmp &= ~UNLOCK_PHY_REGS;
 532
 533        r = zd_iowrite32_locked(chip, tmp, CR_REG1);
 534        if (r)
 535                dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
 536        return r;
 537}
 538
 539int zd_chip_unlock_phy_regs(struct zd_chip *chip)
 540{
 541        int r;
 542        u32 tmp;
 543
 544        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 545        r = zd_ioread32_locked(chip, &tmp, CR_REG1);
 546        if (r) {
 547                dev_err(zd_chip_dev(chip),
 548                        "error ioread32(CR_REG1): %d\n", r);
 549                return r;
 550        }
 551
 552        tmp |= UNLOCK_PHY_REGS;
 553
 554        r = zd_iowrite32_locked(chip, tmp, CR_REG1);
 555        if (r)
 556                dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
 557        return r;
 558}
 559
 560/* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
 561static int patch_cr157(struct zd_chip *chip)
 562{
 563        int r;
 564        u16 value;
 565
 566        if (!chip->patch_cr157)
 567                return 0;
 568
 569        r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
 570        if (r)
 571                return r;
 572
 573        dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
 574        return zd_iowrite32_locked(chip, value >> 8, ZD_CR157);
 575}
 576
 577/*
 578 * 6M band edge can be optionally overwritten for certain RF's
 579 * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
 580 * bit (for AL2230, AL2230S)
 581 */
 582static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
 583{
 584        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 585        if (!chip->patch_6m_band_edge)
 586                return 0;
 587
 588        return zd_rf_patch_6m_band_edge(&chip->rf, channel);
 589}
 590
 591/* Generic implementation of 6M band edge patching, used by most RFs via
 592 * zd_rf_generic_patch_6m() */
 593int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
 594{
 595        struct zd_ioreq16 ioreqs[] = {
 596                { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
 597                { ZD_CR47,  0x1e },
 598        };
 599
 600        /* FIXME: Channel 11 is not the edge for all regulatory domains. */
 601        if (channel == 1 || channel == 11)
 602                ioreqs[0].value = 0x12;
 603
 604        dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
 605        return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 606}
 607
 608static int zd1211_hw_reset_phy(struct zd_chip *chip)
 609{
 610        static const struct zd_ioreq16 ioreqs[] = {
 611                { ZD_CR0,   0x0a }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
 612                { ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xa0 },
 613                { ZD_CR10,  0x81 }, { ZD_CR11,  0x00 }, { ZD_CR12,  0x7f },
 614                { ZD_CR13,  0x8c }, { ZD_CR14,  0x80 }, { ZD_CR15,  0x3d },
 615                { ZD_CR16,  0x20 }, { ZD_CR17,  0x1e }, { ZD_CR18,  0x0a },
 616                { ZD_CR19,  0x48 }, { ZD_CR20,  0x0c }, { ZD_CR21,  0x0c },
 617                { ZD_CR22,  0x23 }, { ZD_CR23,  0x90 }, { ZD_CR24,  0x14 },
 618                { ZD_CR25,  0x40 }, { ZD_CR26,  0x10 }, { ZD_CR27,  0x19 },
 619                { ZD_CR28,  0x7f }, { ZD_CR29,  0x80 }, { ZD_CR30,  0x4b },
 620                { ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
 621                { ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
 622                { ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
 623                { ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
 624                { ZD_CR43,  0x10 }, { ZD_CR44,  0x12 }, { ZD_CR46,  0xff },
 625                { ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
 626                { ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
 627                { ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
 628                { ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
 629                { ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
 630                { ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
 631                { ZD_CR79,  0x68 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
 632                { ZD_CR82,  0x00 }, { ZD_CR83,  0x00 }, { ZD_CR84,  0x00 },
 633                { ZD_CR85,  0x02 }, { ZD_CR86,  0x00 }, { ZD_CR87,  0x00 },
 634                { ZD_CR88,  0xff }, { ZD_CR89,  0xfc }, { ZD_CR90,  0x00 },
 635                { ZD_CR91,  0x00 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x08 },
 636                { ZD_CR94,  0x00 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0xff },
 637                { ZD_CR97,  0xe7 }, { ZD_CR98,  0x00 }, { ZD_CR99,  0x00 },
 638                { ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 },
 639                { ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 },
 640                { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a },
 641                { ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 },
 642                { ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e },
 643                { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
 644                { },
 645                { ZD_CR5,   0x00 }, { ZD_CR6,   0x00 }, { ZD_CR7,   0x00 },
 646                { ZD_CR8,   0x00 }, { ZD_CR9,   0x20 }, { ZD_CR12,  0xf0 },
 647                { ZD_CR20,  0x0e }, { ZD_CR21,  0x0e }, { ZD_CR27,  0x10 },
 648                { ZD_CR44,  0x33 }, { ZD_CR47,  0x1E }, { ZD_CR83,  0x24 },
 649                { ZD_CR84,  0x04 }, { ZD_CR85,  0x00 }, { ZD_CR86,  0x0C },
 650                { ZD_CR87,  0x12 }, { ZD_CR88,  0x0C }, { ZD_CR89,  0x00 },
 651                { ZD_CR90,  0x10 }, { ZD_CR91,  0x08 }, { ZD_CR93,  0x00 },
 652                { ZD_CR94,  0x01 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0x50 },
 653                { ZD_CR97,  0x37 }, { ZD_CR98,  0x35 }, { ZD_CR101, 0x13 },
 654                { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
 655                { ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
 656                { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
 657                { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
 658                { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f },
 659                { ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 },
 660                { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C },
 661                { ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 },
 662                { ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 },
 663                { ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c },
 664                { ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 },
 665                { ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe },
 666                { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
 667                { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
 668                { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
 669                { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
 670                /* Note: ZD_CR204 must lead the ZD_CR203 */
 671                { ZD_CR204, 0x7d },
 672                { },
 673                { ZD_CR203, 0x30 },
 674        };
 675
 676        int r, t;
 677
 678        dev_dbg_f(zd_chip_dev(chip), "\n");
 679
 680        r = zd_chip_lock_phy_regs(chip);
 681        if (r)
 682                goto out;
 683
 684        r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 685        if (r)
 686                goto unlock;
 687
 688        r = patch_cr157(chip);
 689unlock:
 690        t = zd_chip_unlock_phy_regs(chip);
 691        if (t && !r)
 692                r = t;
 693out:
 694        return r;
 695}
 696
 697static int zd1211b_hw_reset_phy(struct zd_chip *chip)
 698{
 699        static const struct zd_ioreq16 ioreqs[] = {
 700                { ZD_CR0,   0x14 }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
 701                { ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xe0 },
 702                { ZD_CR10,  0x81 },
 703                /* power control { { ZD_CR11,  1 << 6 }, */
 704                { ZD_CR11,  0x00 },
 705                { ZD_CR12,  0xf0 }, { ZD_CR13,  0x8c }, { ZD_CR14,  0x80 },
 706                { ZD_CR15,  0x3d }, { ZD_CR16,  0x20 }, { ZD_CR17,  0x1e },
 707                { ZD_CR18,  0x0a }, { ZD_CR19,  0x48 },
 708                { ZD_CR20,  0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
 709                { ZD_CR21,  0x0e }, { ZD_CR22,  0x23 }, { ZD_CR23,  0x90 },
 710                { ZD_CR24,  0x14 }, { ZD_CR25,  0x40 }, { ZD_CR26,  0x10 },
 711                { ZD_CR27,  0x10 }, { ZD_CR28,  0x7f }, { ZD_CR29,  0x80 },
 712                { ZD_CR30,  0x4b }, /* ASIC/FWT, no jointly decoder */
 713                { ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
 714                { ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
 715                { ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
 716                { ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
 717                { ZD_CR43,  0x10 }, { ZD_CR44,  0x33 }, { ZD_CR46,  0xff },
 718                { ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
 719                { ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
 720                { ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
 721                { ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
 722                { ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
 723                { ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
 724                { ZD_CR79,  0xf0 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
 725                { ZD_CR82,  0x00 }, { ZD_CR83,  0x24 }, { ZD_CR84,  0x04 },
 726                { ZD_CR85,  0x00 }, { ZD_CR86,  0x0c }, { ZD_CR87,  0x12 },
 727                { ZD_CR88,  0x0c }, { ZD_CR89,  0x00 }, { ZD_CR90,  0x58 },
 728                { ZD_CR91,  0x04 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x00 },
 729                { ZD_CR94,  0x01 },
 730                { ZD_CR95,  0x20 }, /* ZD1211B */
 731                { ZD_CR96,  0x50 }, { ZD_CR97,  0x37 }, { ZD_CR98,  0x35 },
 732                { ZD_CR99,  0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 },
 733                { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
 734                { ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 },
 735                { ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
 736                { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
 737                { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
 738                { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e },
 739                { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
 740                { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
 741                { ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 },
 742                { ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 },
 743                { ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c },
 744                { ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 },
 745                { ZD_CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
 746                { ZD_CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
 747                { ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe },
 748                { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
 749                { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
 750                { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
 751                { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
 752                /* Note: ZD_CR204 must lead the ZD_CR203 */
 753                { ZD_CR204, 0x7d },
 754                {},
 755                { ZD_CR203, 0x30 },
 756        };
 757
 758        int r, t;
 759
 760        dev_dbg_f(zd_chip_dev(chip), "\n");
 761
 762        r = zd_chip_lock_phy_regs(chip);
 763        if (r)
 764                goto out;
 765
 766        r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 767        t = zd_chip_unlock_phy_regs(chip);
 768        if (t && !r)
 769                r = t;
 770out:
 771        return r;
 772}
 773
 774static int hw_reset_phy(struct zd_chip *chip)
 775{
 776        return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
 777                                  zd1211_hw_reset_phy(chip);
 778}
 779
 780static int zd1211_hw_init_hmac(struct zd_chip *chip)
 781{
 782        static const struct zd_ioreq32 ioreqs[] = {
 783                { CR_ZD1211_RETRY_MAX,          ZD1211_RETRY_COUNT },
 784                { CR_RX_THRESHOLD,              0x000c0640 },
 785        };
 786
 787        dev_dbg_f(zd_chip_dev(chip), "\n");
 788        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 789        return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 790}
 791
 792static int zd1211b_hw_init_hmac(struct zd_chip *chip)
 793{
 794        static const struct zd_ioreq32 ioreqs[] = {
 795                { CR_ZD1211B_RETRY_MAX,         ZD1211B_RETRY_COUNT },
 796                { CR_ZD1211B_CWIN_MAX_MIN_AC0,  0x007f003f },
 797                { CR_ZD1211B_CWIN_MAX_MIN_AC1,  0x007f003f },
 798                { CR_ZD1211B_CWIN_MAX_MIN_AC2,  0x003f001f },
 799                { CR_ZD1211B_CWIN_MAX_MIN_AC3,  0x001f000f },
 800                { CR_ZD1211B_AIFS_CTL1,         0x00280028 },
 801                { CR_ZD1211B_AIFS_CTL2,         0x008C003C },
 802                { CR_ZD1211B_TXOP,              0x01800824 },
 803                { CR_RX_THRESHOLD,              0x000c0eff, },
 804        };
 805
 806        dev_dbg_f(zd_chip_dev(chip), "\n");
 807        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 808        return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 809}
 810
 811static int hw_init_hmac(struct zd_chip *chip)
 812{
 813        int r;
 814        static const struct zd_ioreq32 ioreqs[] = {
 815                { CR_ACK_TIMEOUT_EXT,           0x20 },
 816                { CR_ADDA_MBIAS_WARMTIME,       0x30000808 },
 817                { CR_SNIFFER_ON,                0 },
 818                { CR_RX_FILTER,                 STA_RX_FILTER },
 819                { CR_GROUP_HASH_P1,             0x00 },
 820                { CR_GROUP_HASH_P2,             0x80000000 },
 821                { CR_REG1,                      0xa4 },
 822                { CR_ADDA_PWR_DWN,              0x7f },
 823                { CR_BCN_PLCP_CFG,              0x00f00401 },
 824                { CR_PHY_DELAY,                 0x00 },
 825                { CR_ACK_TIMEOUT_EXT,           0x80 },
 826                { CR_ADDA_PWR_DWN,              0x00 },
 827                { CR_ACK_TIME_80211,            0x100 },
 828                { CR_RX_PE_DELAY,               0x70 },
 829                { CR_PS_CTRL,                   0x10000000 },
 830                { CR_RTS_CTS_RATE,              0x02030203 },
 831                { CR_AFTER_PNP,                 0x1 },
 832                { CR_WEP_PROTECT,               0x114 },
 833                { CR_IFS_VALUE,                 IFS_VALUE_DEFAULT },
 834                { CR_CAM_MODE,                  MODE_AP_WDS},
 835        };
 836
 837        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 838        r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 839        if (r)
 840                return r;
 841
 842        return zd_chip_is_zd1211b(chip) ?
 843                zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
 844}
 845
 846struct aw_pt_bi {
 847        u32 atim_wnd_period;
 848        u32 pre_tbtt;
 849        u32 beacon_interval;
 850};
 851
 852static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
 853{
 854        int r;
 855        static const zd_addr_t aw_pt_bi_addr[] =
 856                { CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
 857        u32 values[3];
 858
 859        r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
 860                         ARRAY_SIZE(aw_pt_bi_addr));
 861        if (r) {
 862                memset(s, 0, sizeof(*s));
 863                return r;
 864        }
 865
 866        s->atim_wnd_period = values[0];
 867        s->pre_tbtt = values[1];
 868        s->beacon_interval = values[2];
 869        return 0;
 870}
 871
 872static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
 873{
 874        struct zd_ioreq32 reqs[3];
 875        u16 b_interval = s->beacon_interval & 0xffff;
 876
 877        if (b_interval <= 5)
 878                b_interval = 5;
 879        if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval)
 880                s->pre_tbtt = b_interval - 1;
 881        if (s->atim_wnd_period >= s->pre_tbtt)
 882                s->atim_wnd_period = s->pre_tbtt - 1;
 883
 884        reqs[0].addr = CR_ATIM_WND_PERIOD;
 885        reqs[0].value = s->atim_wnd_period;
 886        reqs[1].addr = CR_PRE_TBTT;
 887        reqs[1].value = s->pre_tbtt;
 888        reqs[2].addr = CR_BCN_INTERVAL;
 889        reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval;
 890
 891        return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
 892}
 893
 894
 895static int set_beacon_interval(struct zd_chip *chip, u16 interval,
 896                               u8 dtim_period, int type)
 897{
 898        int r;
 899        struct aw_pt_bi s;
 900        u32 b_interval, mode_flag;
 901
 902        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 903
 904        if (interval > 0) {
 905                switch (type) {
 906                case NL80211_IFTYPE_ADHOC:
 907                case NL80211_IFTYPE_MESH_POINT:
 908                        mode_flag = BCN_MODE_IBSS;
 909                        break;
 910                case NL80211_IFTYPE_AP:
 911                        mode_flag = BCN_MODE_AP;
 912                        break;
 913                default:
 914                        mode_flag = 0;
 915                        break;
 916                }
 917        } else {
 918                dtim_period = 0;
 919                mode_flag = 0;
 920        }
 921
 922        b_interval = mode_flag | (dtim_period << 16) | interval;
 923
 924        r = zd_iowrite32_locked(chip, b_interval, CR_BCN_INTERVAL);
 925        if (r)
 926                return r;
 927        r = get_aw_pt_bi(chip, &s);
 928        if (r)
 929                return r;
 930        return set_aw_pt_bi(chip, &s);
 931}
 932
 933int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period,
 934                           int type)
 935{
 936        int r;
 937
 938        mutex_lock(&chip->mutex);
 939        r = set_beacon_interval(chip, interval, dtim_period, type);
 940        mutex_unlock(&chip->mutex);
 941        return r;
 942}
 943
 944static int hw_init(struct zd_chip *chip)
 945{
 946        int r;
 947
 948        dev_dbg_f(zd_chip_dev(chip), "\n");
 949        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 950        r = hw_reset_phy(chip);
 951        if (r)
 952                return r;
 953
 954        r = hw_init_hmac(chip);
 955        if (r)
 956                return r;
 957
 958        return set_beacon_interval(chip, 100, 0, NL80211_IFTYPE_UNSPECIFIED);
 959}
 960
 961static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
 962{
 963        return (zd_addr_t)((u16)chip->fw_regs_base + offset);
 964}
 965
 966#ifdef DEBUG
 967static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
 968                   const char *addr_string)
 969{
 970        int r;
 971        u32 value;
 972
 973        r = zd_ioread32_locked(chip, &value, addr);
 974        if (r) {
 975                dev_dbg_f(zd_chip_dev(chip),
 976                        "error reading %s. Error number %d\n", addr_string, r);
 977                return r;
 978        }
 979
 980        dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
 981                addr_string, (unsigned int)value);
 982        return 0;
 983}
 984
 985static int test_init(struct zd_chip *chip)
 986{
 987        int r;
 988
 989        r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
 990        if (r)
 991                return r;
 992        r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
 993        if (r)
 994                return r;
 995        return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
 996}
 997
 998static void dump_fw_registers(struct zd_chip *chip)
 999{
1000        const zd_addr_t addr[4] = {
1001                fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
1002                fw_reg_addr(chip, FW_REG_USB_SPEED),
1003                fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
1004                fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1005        };
1006
1007        int r;
1008        u16 values[4];
1009
1010        r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
1011                         ARRAY_SIZE(addr));
1012        if (r) {
1013                dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
1014                         r);
1015                return;
1016        }
1017
1018        dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
1019        dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
1020        dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
1021        dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
1022}
1023#endif /* DEBUG */
1024
1025static int print_fw_version(struct zd_chip *chip)
1026{
1027        struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy;
1028        int r;
1029        u16 version;
1030
1031        r = zd_ioread16_locked(chip, &version,
1032                fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
1033        if (r)
1034                return r;
1035
1036        dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
1037
1038        snprintf(wiphy->fw_version, sizeof(wiphy->fw_version),
1039                        "%04hx", version);
1040
1041        return 0;
1042}
1043
1044static int set_mandatory_rates(struct zd_chip *chip, int gmode)
1045{
1046        u32 rates;
1047        ZD_ASSERT(mutex_is_locked(&chip->mutex));
1048        /* This sets the mandatory rates, which only depend from the standard
1049         * that the device is supporting. Until further notice we should try
1050         * to support 802.11g also for full speed USB.
1051         */
1052        if (!gmode)
1053                rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
1054        else
1055                rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
1056                        CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
1057
1058        return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
1059}
1060
1061int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
1062                                    int preamble)
1063{
1064        u32 value = 0;
1065
1066        dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
1067        value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1068        value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1069
1070        /* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1071        value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
1072        value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
1073        value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
1074        value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1075
1076        return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1077}
1078
1079int zd_chip_enable_hwint(struct zd_chip *chip)
1080{
1081        int r;
1082
1083        mutex_lock(&chip->mutex);
1084        r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1085        mutex_unlock(&chip->mutex);
1086        return r;
1087}
1088
1089static int disable_hwint(struct zd_chip *chip)
1090{
1091        return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1092}
1093
1094int zd_chip_disable_hwint(struct zd_chip *chip)
1095{
1096        int r;
1097
1098        mutex_lock(&chip->mutex);
1099        r = disable_hwint(chip);
1100        mutex_unlock(&chip->mutex);
1101        return r;
1102}
1103
1104static int read_fw_regs_offset(struct zd_chip *chip)
1105{
1106        int r;
1107
1108        ZD_ASSERT(mutex_is_locked(&chip->mutex));
1109        r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
1110                               FWRAW_REGS_ADDR);
1111        if (r)
1112                return r;
1113        dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1114                  (u16)chip->fw_regs_base);
1115
1116        return 0;
1117}
1118
1119/* Read mac address using pre-firmware interface */
1120int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1121{
1122        dev_dbg_f(zd_chip_dev(chip), "\n");
1123        return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
1124                ETH_ALEN);
1125}
1126
1127int zd_chip_init_hw(struct zd_chip *chip)
1128{
1129        int r;
1130        u8 rf_type;
1131
1132        dev_dbg_f(zd_chip_dev(chip), "\n");
1133
1134        mutex_lock(&chip->mutex);
1135
1136#ifdef DEBUG
1137        r = test_init(chip);
1138        if (r)
1139                goto out;
1140#endif
1141        r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
1142        if (r)
1143                goto out;
1144
1145        r = read_fw_regs_offset(chip);
1146        if (r)
1147                goto out;
1148
1149        /* GPI is always disabled, also in the other driver.
1150         */
1151        r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
1152        if (r)
1153                goto out;
1154        r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1155        if (r)
1156                goto out;
1157        /* Currently we support IEEE 802.11g for full and high speed USB.
1158         * It might be discussed, whether we should support pure b mode for
1159         * full speed USB.
1160         */
1161        r = set_mandatory_rates(chip, 1);
1162        if (r)
1163                goto out;
1164        /* Disabling interrupts is certainly a smart thing here.
1165         */
1166        r = disable_hwint(chip);
1167        if (r)
1168                goto out;
1169        r = read_pod(chip, &rf_type);
1170        if (r)
1171                goto out;
1172        r = hw_init(chip);
1173        if (r)
1174                goto out;
1175        r = zd_rf_init_hw(&chip->rf, rf_type);
1176        if (r)
1177                goto out;
1178
1179        r = print_fw_version(chip);
1180        if (r)
1181                goto out;
1182
1183#ifdef DEBUG
1184        dump_fw_registers(chip);
1185        r = test_init(chip);
1186        if (r)
1187                goto out;
1188#endif /* DEBUG */
1189
1190        r = read_cal_int_tables(chip);
1191        if (r)
1192                goto out;
1193
1194        print_id(chip);
1195out:
1196        mutex_unlock(&chip->mutex);
1197        return r;
1198}
1199
1200static int update_pwr_int(struct zd_chip *chip, u8 channel)
1201{
1202        u8 value = chip->pwr_int_values[channel - 1];
1203        return zd_iowrite16_locked(chip, value, ZD_CR31);
1204}
1205
1206static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1207{
1208        u8 value = chip->pwr_cal_values[channel-1];
1209        return zd_iowrite16_locked(chip, value, ZD_CR68);
1210}
1211
1212static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1213{
1214        struct zd_ioreq16 ioreqs[3];
1215
1216        ioreqs[0].addr = ZD_CR67;
1217        ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1218        ioreqs[1].addr = ZD_CR66;
1219        ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1220        ioreqs[2].addr = ZD_CR65;
1221        ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1222
1223        return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1224}
1225
1226static int update_channel_integration_and_calibration(struct zd_chip *chip,
1227                                                      u8 channel)
1228{
1229        int r;
1230
1231        if (!zd_rf_should_update_pwr_int(&chip->rf))
1232                return 0;
1233
1234        r = update_pwr_int(chip, channel);
1235        if (r)
1236                return r;
1237        if (zd_chip_is_zd1211b(chip)) {
1238                static const struct zd_ioreq16 ioreqs[] = {
1239                        { ZD_CR69, 0x28 },
1240                        {},
1241                        { ZD_CR69, 0x2a },
1242                };
1243
1244                r = update_ofdm_cal(chip, channel);
1245                if (r)
1246                        return r;
1247                r = update_pwr_cal(chip, channel);
1248                if (r)
1249                        return r;
1250                r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1251                if (r)
1252                        return r;
1253        }
1254
1255        return 0;
1256}
1257
1258/* The CCK baseband gain can be optionally patched by the EEPROM */
1259static int patch_cck_gain(struct zd_chip *chip)
1260{
1261        int r;
1262        u32 value;
1263
1264        if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
1265                return 0;
1266
1267        ZD_ASSERT(mutex_is_locked(&chip->mutex));
1268        r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
1269        if (r)
1270                return r;
1271        dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
1272        return zd_iowrite16_locked(chip, value & 0xff, ZD_CR47);
1273}
1274
1275int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1276{
1277        int r, t;
1278
1279        mutex_lock(&chip->mutex);
1280        r = zd_chip_lock_phy_regs(chip);
1281        if (r)
1282                goto out;
1283        r = zd_rf_set_channel(&chip->rf, channel);
1284        if (r)
1285                goto unlock;
1286        r = update_channel_integration_and_calibration(chip, channel);
1287        if (r)
1288                goto unlock;
1289        r = patch_cck_gain(chip);
1290        if (r)
1291                goto unlock;
1292        r = patch_6m_band_edge(chip, channel);
1293        if (r)
1294                goto unlock;
1295        r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
1296unlock:
1297        t = zd_chip_unlock_phy_regs(chip);
1298        if (t && !r)
1299                r = t;
1300out:
1301        mutex_unlock(&chip->mutex);
1302        return r;
1303}
1304
1305u8 zd_chip_get_channel(struct zd_chip *chip)
1306{
1307        u8 channel;
1308
1309        mutex_lock(&chip->mutex);
1310        channel = chip->rf.channel;
1311        mutex_unlock(&chip->mutex);
1312        return channel;
1313}
1314
1315int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
1316{
1317        const zd_addr_t a[] = {
1318                fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1319                CR_LED,
1320        };
1321
1322        int r;
1323        u16 v[ARRAY_SIZE(a)];
1324        struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
1325                [0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
1326                [1] = { CR_LED },
1327        };
1328        u16 other_led;
1329
1330        mutex_lock(&chip->mutex);
1331        r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
1332        if (r)
1333                goto out;
1334
1335        other_led = chip->link_led == LED1 ? LED2 : LED1;
1336
1337        switch (status) {
1338        case ZD_LED_OFF:
1339                ioreqs[0].value = FW_LINK_OFF;
1340                ioreqs[1].value = v[1] & ~(LED1|LED2);
1341                break;
1342        case ZD_LED_SCANNING:
1343                ioreqs[0].value = FW_LINK_OFF;
1344                ioreqs[1].value = v[1] & ~other_led;
1345                if (get_seconds() % 3 == 0) {
1346                        ioreqs[1].value &= ~chip->link_led;
1347                } else {
1348                        ioreqs[1].value |= chip->link_led;
1349                }
1350                break;
1351        case ZD_LED_ASSOCIATED:
1352                ioreqs[0].value = FW_LINK_TX;
1353                ioreqs[1].value = v[1] & ~other_led;
1354                ioreqs[1].value |= chip->link_led;
1355                break;
1356        default:
1357                r = -EINVAL;
1358                goto out;
1359        }
1360
1361        if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1362                r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1363                if (r)
1364                        goto out;
1365        }
1366        r = 0;
1367out:
1368        mutex_unlock(&chip->mutex);
1369        return r;
1370}
1371
1372int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
1373{
1374        int r;
1375
1376        if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1377                return -EINVAL;
1378
1379        mutex_lock(&chip->mutex);
1380        r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1381        mutex_unlock(&chip->mutex);
1382        return r;
1383}
1384
1385static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1386{
1387        return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
1388}
1389
1390/**
1391 * zd_rx_rate - report zd-rate
1392 * @rx_frame - received frame
1393 * @rx_status - rx_status as given by the device
1394 *
1395 * This function converts the rate as encoded in the received packet to the
1396 * zd-rate, we are using on other places in the driver.
1397 */
1398u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
1399{
1400        u8 zd_rate;
1401        if (status->frame_status & ZD_RX_OFDM) {
1402                zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
1403        } else {
1404                switch (zd_cck_plcp_header_signal(rx_frame)) {
1405                case ZD_CCK_PLCP_SIGNAL_1M:
1406                        zd_rate = ZD_CCK_RATE_1M;
1407                        break;
1408                case ZD_CCK_PLCP_SIGNAL_2M:
1409                        zd_rate = ZD_CCK_RATE_2M;
1410                        break;
1411                case ZD_CCK_PLCP_SIGNAL_5M5:
1412                        zd_rate = ZD_CCK_RATE_5_5M;
1413                        break;
1414                case ZD_CCK_PLCP_SIGNAL_11M:
1415                        zd_rate = ZD_CCK_RATE_11M;
1416                        break;
1417                default:
1418                        zd_rate = 0;
1419                }
1420        }
1421
1422        return zd_rate;
1423}
1424
1425int zd_chip_switch_radio_on(struct zd_chip *chip)
1426{
1427        int r;
1428
1429        mutex_lock(&chip->mutex);
1430        r = zd_switch_radio_on(&chip->rf);
1431        mutex_unlock(&chip->mutex);
1432        return r;
1433}
1434
1435int zd_chip_switch_radio_off(struct zd_chip *chip)
1436{
1437        int r;
1438
1439        mutex_lock(&chip->mutex);
1440        r = zd_switch_radio_off(&chip->rf);
1441        mutex_unlock(&chip->mutex);
1442        return r;
1443}
1444
1445int zd_chip_enable_int(struct zd_chip *chip)
1446{
1447        int r;
1448
1449        mutex_lock(&chip->mutex);
1450        r = zd_usb_enable_int(&chip->usb);
1451        mutex_unlock(&chip->mutex);
1452        return r;
1453}
1454
1455void zd_chip_disable_int(struct zd_chip *chip)
1456{
1457        mutex_lock(&chip->mutex);
1458        zd_usb_disable_int(&chip->usb);
1459        mutex_unlock(&chip->mutex);
1460
1461        /* cancel pending interrupt work */
1462        cancel_work_sync(&zd_chip_to_mac(chip)->process_intr);
1463}
1464
1465int zd_chip_enable_rxtx(struct zd_chip *chip)
1466{
1467        int r;
1468
1469        mutex_lock(&chip->mutex);
1470        zd_usb_enable_tx(&chip->usb);
1471        r = zd_usb_enable_rx(&chip->usb);
1472        zd_tx_watchdog_enable(&chip->usb);
1473        mutex_unlock(&chip->mutex);
1474        return r;
1475}
1476
1477void zd_chip_disable_rxtx(struct zd_chip *chip)
1478{
1479        mutex_lock(&chip->mutex);
1480        zd_tx_watchdog_disable(&chip->usb);
1481        zd_usb_disable_rx(&chip->usb);
1482        zd_usb_disable_tx(&chip->usb);
1483        mutex_unlock(&chip->mutex);
1484}
1485
1486int zd_rfwritev_locked(struct zd_chip *chip,
1487                       const u32* values, unsigned int count, u8 bits)
1488{
1489        int r;
1490        unsigned int i;
1491
1492        for (i = 0; i < count; i++) {
1493                r = zd_rfwrite_locked(chip, values[i], bits);
1494                if (r)
1495                        return r;
1496        }
1497
1498        return 0;
1499}
1500
1501/*
1502 * We can optionally program the RF directly through CR regs, if supported by
1503 * the hardware. This is much faster than the older method.
1504 */
1505int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
1506{
1507        const struct zd_ioreq16 ioreqs[] = {
1508                { ZD_CR244, (value >> 16) & 0xff },
1509                { ZD_CR243, (value >>  8) & 0xff },
1510                { ZD_CR242,  value        & 0xff },
1511        };
1512        ZD_ASSERT(mutex_is_locked(&chip->mutex));
1513        return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1514}
1515
1516int zd_rfwritev_cr_locked(struct zd_chip *chip,
1517                          const u32 *values, unsigned int count)
1518{
1519        int r;
1520        unsigned int i;
1521
1522        for (i = 0; i < count; i++) {
1523                r = zd_rfwrite_cr_locked(chip, values[i]);
1524                if (r)
1525                        return r;
1526        }
1527
1528        return 0;
1529}
1530
1531int zd_chip_set_multicast_hash(struct zd_chip *chip,
1532                               struct zd_mc_hash *hash)
1533{
1534        const struct zd_ioreq32 ioreqs[] = {
1535                { CR_GROUP_HASH_P1, hash->low },
1536                { CR_GROUP_HASH_P2, hash->high },
1537        };
1538
1539        return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1540}
1541
1542u64 zd_chip_get_tsf(struct zd_chip *chip)
1543{
1544        int r;
1545        static const zd_addr_t aw_pt_bi_addr[] =
1546                { CR_TSF_LOW_PART, CR_TSF_HIGH_PART };
1547        u32 values[2];
1548        u64 tsf;
1549
1550        mutex_lock(&chip->mutex);
1551        r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
1552                                ARRAY_SIZE(aw_pt_bi_addr));
1553        mutex_unlock(&chip->mutex);
1554        if (r)
1555                return 0;
1556
1557        tsf = values[1];
1558        tsf = (tsf << 32) | values[0];
1559
1560        return tsf;
1561}
1562