linux/drivers/tty/serial/msm_serial_hs.c
<<
>>
Prefs
   1/*
   2 * MSM 7k/8k High speed uart driver
   3 *
   4 * Copyright (c) 2007-2011, Code Aurora Forum. All rights reserved.
   5 * Copyright (c) 2008 Google Inc.
   6 * Modified: Nick Pelly <npelly@google.com>
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License
  10 * version 2 as published by the Free Software Foundation.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15 * See the GNU General Public License for more details.
  16 *
  17 * Has optional support for uart power management independent of linux
  18 * suspend/resume:
  19 *
  20 * RX wakeup.
  21 * UART wakeup can be triggered by RX activity (using a wakeup GPIO on the
  22 * UART RX pin). This should only be used if there is not a wakeup
  23 * GPIO on the UART CTS, and the first RX byte is known (for example, with the
  24 * Bluetooth Texas Instruments HCILL protocol), since the first RX byte will
  25 * always be lost. RTS will be asserted even while the UART is off in this mode
  26 * of operation. See msm_serial_hs_platform_data.rx_wakeup_irq.
  27 */
  28
  29#include <linux/module.h>
  30
  31#include <linux/serial.h>
  32#include <linux/serial_core.h>
  33#include <linux/tty.h>
  34#include <linux/tty_flip.h>
  35#include <linux/slab.h>
  36#include <linux/init.h>
  37#include <linux/interrupt.h>
  38#include <linux/irq.h>
  39#include <linux/io.h>
  40#include <linux/ioport.h>
  41#include <linux/kernel.h>
  42#include <linux/timer.h>
  43#include <linux/clk.h>
  44#include <linux/platform_device.h>
  45#include <linux/pm_runtime.h>
  46#include <linux/dma-mapping.h>
  47#include <linux/dmapool.h>
  48#include <linux/wait.h>
  49#include <linux/workqueue.h>
  50
  51#include <linux/atomic.h>
  52#include <asm/irq.h>
  53
  54#include <mach/hardware.h>
  55#include <mach/dma.h>
  56#include <linux/platform_data/msm_serial_hs.h>
  57
  58/* HSUART Registers */
  59#define UARTDM_MR1_ADDR 0x0
  60#define UARTDM_MR2_ADDR 0x4
  61
  62/* Data Mover result codes */
  63#define RSLT_FIFO_CNTR_BMSK (0xE << 28)
  64#define RSLT_VLD            BIT(1)
  65
  66/* write only register */
  67#define UARTDM_CSR_ADDR 0x8
  68#define UARTDM_CSR_115200 0xFF
  69#define UARTDM_CSR_57600  0xEE
  70#define UARTDM_CSR_38400  0xDD
  71#define UARTDM_CSR_28800  0xCC
  72#define UARTDM_CSR_19200  0xBB
  73#define UARTDM_CSR_14400  0xAA
  74#define UARTDM_CSR_9600   0x99
  75#define UARTDM_CSR_7200   0x88
  76#define UARTDM_CSR_4800   0x77
  77#define UARTDM_CSR_3600   0x66
  78#define UARTDM_CSR_2400   0x55
  79#define UARTDM_CSR_1200   0x44
  80#define UARTDM_CSR_600    0x33
  81#define UARTDM_CSR_300    0x22
  82#define UARTDM_CSR_150    0x11
  83#define UARTDM_CSR_75     0x00
  84
  85/* write only register */
  86#define UARTDM_TF_ADDR 0x70
  87#define UARTDM_TF2_ADDR 0x74
  88#define UARTDM_TF3_ADDR 0x78
  89#define UARTDM_TF4_ADDR 0x7C
  90
  91/* write only register */
  92#define UARTDM_CR_ADDR 0x10
  93#define UARTDM_IMR_ADDR 0x14
  94
  95#define UARTDM_IPR_ADDR 0x18
  96#define UARTDM_TFWR_ADDR 0x1c
  97#define UARTDM_RFWR_ADDR 0x20
  98#define UARTDM_HCR_ADDR 0x24
  99#define UARTDM_DMRX_ADDR 0x34
 100#define UARTDM_IRDA_ADDR 0x38
 101#define UARTDM_DMEN_ADDR 0x3c
 102
 103/* UART_DM_NO_CHARS_FOR_TX */
 104#define UARTDM_NCF_TX_ADDR 0x40
 105
 106#define UARTDM_BADR_ADDR 0x44
 107
 108#define UARTDM_SIM_CFG_ADDR 0x80
 109/* Read Only register */
 110#define UARTDM_SR_ADDR 0x8
 111
 112/* Read Only register */
 113#define UARTDM_RF_ADDR  0x70
 114#define UARTDM_RF2_ADDR 0x74
 115#define UARTDM_RF3_ADDR 0x78
 116#define UARTDM_RF4_ADDR 0x7C
 117
 118/* Read Only register */
 119#define UARTDM_MISR_ADDR 0x10
 120
 121/* Read Only register */
 122#define UARTDM_ISR_ADDR 0x14
 123#define UARTDM_RX_TOTAL_SNAP_ADDR 0x38
 124
 125#define UARTDM_RXFS_ADDR 0x50
 126
 127/* Register field Mask Mapping */
 128#define UARTDM_SR_PAR_FRAME_BMSK        BIT(5)
 129#define UARTDM_SR_OVERRUN_BMSK          BIT(4)
 130#define UARTDM_SR_TXEMT_BMSK            BIT(3)
 131#define UARTDM_SR_TXRDY_BMSK            BIT(2)
 132#define UARTDM_SR_RXRDY_BMSK            BIT(0)
 133
 134#define UARTDM_CR_TX_DISABLE_BMSK       BIT(3)
 135#define UARTDM_CR_RX_DISABLE_BMSK       BIT(1)
 136#define UARTDM_CR_TX_EN_BMSK            BIT(2)
 137#define UARTDM_CR_RX_EN_BMSK            BIT(0)
 138
 139/* UARTDM_CR channel_comman bit value (register field is bits 8:4) */
 140#define RESET_RX                0x10
 141#define RESET_TX                0x20
 142#define RESET_ERROR_STATUS      0x30
 143#define RESET_BREAK_INT         0x40
 144#define START_BREAK             0x50
 145#define STOP_BREAK              0x60
 146#define RESET_CTS               0x70
 147#define RESET_STALE_INT         0x80
 148#define RFR_LOW                 0xD0
 149#define RFR_HIGH                0xE0
 150#define CR_PROTECTION_EN        0x100
 151#define STALE_EVENT_ENABLE      0x500
 152#define STALE_EVENT_DISABLE     0x600
 153#define FORCE_STALE_EVENT       0x400
 154#define CLEAR_TX_READY          0x300
 155#define RESET_TX_ERROR          0x800
 156#define RESET_TX_DONE           0x810
 157
 158#define UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK 0xffffff00
 159#define UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK 0x3f
 160#define UARTDM_MR1_CTS_CTL_BMSK 0x40
 161#define UARTDM_MR1_RX_RDY_CTL_BMSK 0x80
 162
 163#define UARTDM_MR2_ERROR_MODE_BMSK 0x40
 164#define UARTDM_MR2_BITS_PER_CHAR_BMSK 0x30
 165
 166/* bits per character configuration */
 167#define FIVE_BPC  (0 << 4)
 168#define SIX_BPC   (1 << 4)
 169#define SEVEN_BPC (2 << 4)
 170#define EIGHT_BPC (3 << 4)
 171
 172#define UARTDM_MR2_STOP_BIT_LEN_BMSK 0xc
 173#define STOP_BIT_ONE (1 << 2)
 174#define STOP_BIT_TWO (3 << 2)
 175
 176#define UARTDM_MR2_PARITY_MODE_BMSK 0x3
 177
 178/* Parity configuration */
 179#define NO_PARITY 0x0
 180#define EVEN_PARITY 0x1
 181#define ODD_PARITY 0x2
 182#define SPACE_PARITY 0x3
 183
 184#define UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK 0xffffff80
 185#define UARTDM_IPR_STALE_LSB_BMSK 0x1f
 186
 187/* These can be used for both ISR and IMR register */
 188#define UARTDM_ISR_TX_READY_BMSK        BIT(7)
 189#define UARTDM_ISR_CURRENT_CTS_BMSK     BIT(6)
 190#define UARTDM_ISR_DELTA_CTS_BMSK       BIT(5)
 191#define UARTDM_ISR_RXLEV_BMSK           BIT(4)
 192#define UARTDM_ISR_RXSTALE_BMSK         BIT(3)
 193#define UARTDM_ISR_RXBREAK_BMSK         BIT(2)
 194#define UARTDM_ISR_RXHUNT_BMSK          BIT(1)
 195#define UARTDM_ISR_TXLEV_BMSK           BIT(0)
 196
 197/* Field definitions for UART_DM_DMEN*/
 198#define UARTDM_TX_DM_EN_BMSK 0x1
 199#define UARTDM_RX_DM_EN_BMSK 0x2
 200
 201#define UART_FIFOSIZE 64
 202#define UARTCLK 7372800
 203
 204/* Rx DMA request states */
 205enum flush_reason {
 206        FLUSH_NONE,
 207        FLUSH_DATA_READY,
 208        FLUSH_DATA_INVALID,  /* values after this indicate invalid data */
 209        FLUSH_IGNORE = FLUSH_DATA_INVALID,
 210        FLUSH_STOP,
 211        FLUSH_SHUTDOWN,
 212};
 213
 214/* UART clock states */
 215enum msm_hs_clk_states_e {
 216        MSM_HS_CLK_PORT_OFF,     /* port not in use */
 217        MSM_HS_CLK_OFF,          /* clock disabled */
 218        MSM_HS_CLK_REQUEST_OFF,  /* disable after TX and RX flushed */
 219        MSM_HS_CLK_ON,           /* clock enabled */
 220};
 221
 222/* Track the forced RXSTALE flush during clock off sequence.
 223 * These states are only valid during MSM_HS_CLK_REQUEST_OFF */
 224enum msm_hs_clk_req_off_state_e {
 225        CLK_REQ_OFF_START,
 226        CLK_REQ_OFF_RXSTALE_ISSUED,
 227        CLK_REQ_OFF_FLUSH_ISSUED,
 228        CLK_REQ_OFF_RXSTALE_FLUSHED,
 229};
 230
 231/**
 232 * struct msm_hs_tx
 233 * @tx_ready_int_en: ok to dma more tx?
 234 * @dma_in_flight: tx dma in progress
 235 * @xfer: top level DMA command pointer structure
 236 * @command_ptr: third level command struct pointer
 237 * @command_ptr_ptr: second level command list struct pointer
 238 * @mapped_cmd_ptr: DMA view of third level command struct
 239 * @mapped_cmd_ptr_ptr: DMA view of second level command list struct
 240 * @tx_count: number of bytes to transfer in DMA transfer
 241 * @dma_base: DMA view of UART xmit buffer
 242 *
 243 * This structure describes a single Tx DMA transaction. MSM DMA
 244 * commands have two levels of indirection. The top level command
 245 * ptr points to a list of command ptr which in turn points to a
 246 * single DMA 'command'. In our case each Tx transaction consists
 247 * of a single second level pointer pointing to a 'box type' command.
 248 */
 249struct msm_hs_tx {
 250        unsigned int tx_ready_int_en;
 251        unsigned int dma_in_flight;
 252        struct msm_dmov_cmd xfer;
 253        dmov_box *command_ptr;
 254        u32 *command_ptr_ptr;
 255        dma_addr_t mapped_cmd_ptr;
 256        dma_addr_t mapped_cmd_ptr_ptr;
 257        int tx_count;
 258        dma_addr_t dma_base;
 259};
 260
 261/**
 262 * struct msm_hs_rx
 263 * @flush: Rx DMA request state
 264 * @xfer: top level DMA command pointer structure
 265 * @cmdptr_dmaaddr: DMA view of second level command structure
 266 * @command_ptr: third level DMA command pointer structure
 267 * @command_ptr_ptr: second level DMA command list pointer
 268 * @mapped_cmd_ptr: DMA view of the third level command structure
 269 * @wait: wait for DMA completion before shutdown
 270 * @buffer: destination buffer for RX DMA
 271 * @rbuffer: DMA view of buffer
 272 * @pool: dma pool out of which coherent rx buffer is allocated
 273 * @tty_work: private work-queue for tty flip buffer push task
 274 *
 275 * This structure describes a single Rx DMA transaction. Rx DMA
 276 * transactions use box mode DMA commands.
 277 */
 278struct msm_hs_rx {
 279        enum flush_reason flush;
 280        struct msm_dmov_cmd xfer;
 281        dma_addr_t cmdptr_dmaaddr;
 282        dmov_box *command_ptr;
 283        u32 *command_ptr_ptr;
 284        dma_addr_t mapped_cmd_ptr;
 285        wait_queue_head_t wait;
 286        dma_addr_t rbuffer;
 287        unsigned char *buffer;
 288        struct dma_pool *pool;
 289        struct work_struct tty_work;
 290};
 291
 292/**
 293 * struct msm_hs_rx_wakeup
 294 * @irq: IRQ line to be configured as interrupt source on Rx activity
 295 * @ignore: boolean value. 1 = ignore the wakeup interrupt
 296 * @rx_to_inject: extra character to be inserted to Rx tty on wakeup
 297 * @inject_rx: 1 = insert rx_to_inject. 0 = do not insert extra character
 298 *
 299 * This is an optional structure required for UART Rx GPIO IRQ based
 300 * wakeup from low power state. UART wakeup can be triggered by RX activity
 301 * (using a wakeup GPIO on the UART RX pin). This should only be used if
 302 * there is not a wakeup GPIO on the UART CTS, and the first RX byte is
 303 * known (eg., with the Bluetooth Texas Instruments HCILL protocol),
 304 * since the first RX byte will always be lost. RTS will be asserted even
 305 * while the UART is clocked off in this mode of operation.
 306 */
 307struct msm_hs_rx_wakeup {
 308        int irq;  /* < 0 indicates low power wakeup disabled */
 309        unsigned char ignore;
 310        unsigned char inject_rx;
 311        char rx_to_inject;
 312};
 313
 314/**
 315 * struct msm_hs_port
 316 * @uport: embedded uart port structure
 317 * @imr_reg: shadow value of UARTDM_IMR
 318 * @clk: uart input clock handle
 319 * @tx: Tx transaction related data structure
 320 * @rx: Rx transaction related data structure
 321 * @dma_tx_channel: Tx DMA command channel
 322 * @dma_rx_channel Rx DMA command channel
 323 * @dma_tx_crci: Tx channel rate control interface number
 324 * @dma_rx_crci: Rx channel rate control interface number
 325 * @clk_off_timer: Timer to poll DMA event completion before clock off
 326 * @clk_off_delay: clk_off_timer poll interval
 327 * @clk_state: overall clock state
 328 * @clk_req_off_state: post flush clock states
 329 * @rx_wakeup: optional rx_wakeup feature related data
 330 * @exit_lpm_cb: optional callback to exit low power mode
 331 *
 332 * Low level serial port structure.
 333 */
 334struct msm_hs_port {
 335        struct uart_port uport;
 336        unsigned long imr_reg;
 337        struct clk *clk;
 338        struct msm_hs_tx tx;
 339        struct msm_hs_rx rx;
 340
 341        int dma_tx_channel;
 342        int dma_rx_channel;
 343        int dma_tx_crci;
 344        int dma_rx_crci;
 345
 346        struct hrtimer clk_off_timer;
 347        ktime_t clk_off_delay;
 348        enum msm_hs_clk_states_e clk_state;
 349        enum msm_hs_clk_req_off_state_e clk_req_off_state;
 350
 351        struct msm_hs_rx_wakeup rx_wakeup;
 352        void (*exit_lpm_cb)(struct uart_port *);
 353};
 354
 355#define MSM_UARTDM_BURST_SIZE 16   /* DM burst size (in bytes) */
 356#define UARTDM_TX_BUF_SIZE UART_XMIT_SIZE
 357#define UARTDM_RX_BUF_SIZE 512
 358
 359#define UARTDM_NR 2
 360
 361static struct msm_hs_port q_uart_port[UARTDM_NR];
 362static struct platform_driver msm_serial_hs_platform_driver;
 363static struct uart_driver msm_hs_driver;
 364static struct uart_ops msm_hs_ops;
 365static struct workqueue_struct *msm_hs_workqueue;
 366
 367#define UARTDM_TO_MSM(uart_port) \
 368        container_of((uart_port), struct msm_hs_port, uport)
 369
 370static unsigned int use_low_power_rx_wakeup(struct msm_hs_port
 371                                                   *msm_uport)
 372{
 373        return (msm_uport->rx_wakeup.irq >= 0);
 374}
 375
 376static unsigned int msm_hs_read(struct uart_port *uport,
 377                                       unsigned int offset)
 378{
 379        return ioread32(uport->membase + offset);
 380}
 381
 382static void msm_hs_write(struct uart_port *uport, unsigned int offset,
 383                                 unsigned int value)
 384{
 385        iowrite32(value, uport->membase + offset);
 386}
 387
 388static void msm_hs_release_port(struct uart_port *port)
 389{
 390        iounmap(port->membase);
 391}
 392
 393static int msm_hs_request_port(struct uart_port *port)
 394{
 395        port->membase = ioremap(port->mapbase, PAGE_SIZE);
 396        if (unlikely(!port->membase))
 397                return -ENOMEM;
 398
 399        /* configure the CR Protection to Enable */
 400        msm_hs_write(port, UARTDM_CR_ADDR, CR_PROTECTION_EN);
 401        return 0;
 402}
 403
 404static int msm_hs_remove(struct platform_device *pdev)
 405{
 406
 407        struct msm_hs_port *msm_uport;
 408        struct device *dev;
 409
 410        if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
 411                printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id);
 412                return -EINVAL;
 413        }
 414
 415        msm_uport = &q_uart_port[pdev->id];
 416        dev = msm_uport->uport.dev;
 417
 418        dma_unmap_single(dev, msm_uport->rx.mapped_cmd_ptr, sizeof(dmov_box),
 419                         DMA_TO_DEVICE);
 420        dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer,
 421                      msm_uport->rx.rbuffer);
 422        dma_pool_destroy(msm_uport->rx.pool);
 423
 424        dma_unmap_single(dev, msm_uport->rx.cmdptr_dmaaddr, sizeof(u32),
 425                         DMA_TO_DEVICE);
 426        dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr_ptr, sizeof(u32),
 427                         DMA_TO_DEVICE);
 428        dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr, sizeof(dmov_box),
 429                         DMA_TO_DEVICE);
 430
 431        uart_remove_one_port(&msm_hs_driver, &msm_uport->uport);
 432        clk_put(msm_uport->clk);
 433
 434        /* Free the tx resources */
 435        kfree(msm_uport->tx.command_ptr);
 436        kfree(msm_uport->tx.command_ptr_ptr);
 437
 438        /* Free the rx resources */
 439        kfree(msm_uport->rx.command_ptr);
 440        kfree(msm_uport->rx.command_ptr_ptr);
 441
 442        iounmap(msm_uport->uport.membase);
 443
 444        return 0;
 445}
 446
 447static int msm_hs_init_clk_locked(struct uart_port *uport)
 448{
 449        int ret;
 450        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 451
 452        ret = clk_enable(msm_uport->clk);
 453        if (ret) {
 454                printk(KERN_ERR "Error could not turn on UART clk\n");
 455                return ret;
 456        }
 457
 458        /* Set up the MREG/NREG/DREG/MNDREG */
 459        ret = clk_set_rate(msm_uport->clk, uport->uartclk);
 460        if (ret) {
 461                printk(KERN_WARNING "Error setting clock rate on UART\n");
 462                clk_disable(msm_uport->clk);
 463                return ret;
 464        }
 465
 466        msm_uport->clk_state = MSM_HS_CLK_ON;
 467        return 0;
 468}
 469
 470/* Enable and Disable clocks  (Used for power management) */
 471static void msm_hs_pm(struct uart_port *uport, unsigned int state,
 472                      unsigned int oldstate)
 473{
 474        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 475
 476        if (use_low_power_rx_wakeup(msm_uport) ||
 477            msm_uport->exit_lpm_cb)
 478                return;  /* ignore linux PM states,
 479                            use msm_hs_request_clock API */
 480
 481        switch (state) {
 482        case 0:
 483                clk_enable(msm_uport->clk);
 484                break;
 485        case 3:
 486                clk_disable(msm_uport->clk);
 487                break;
 488        default:
 489                dev_err(uport->dev, "msm_serial: Unknown PM state %d\n",
 490                        state);
 491        }
 492}
 493
 494/*
 495 * programs the UARTDM_CSR register with correct bit rates
 496 *
 497 * Interrupts should be disabled before we are called, as
 498 * we modify Set Baud rate
 499 * Set receive stale interrupt level, dependent on Bit Rate
 500 * Goal is to have around 8 ms before indicate stale.
 501 * roundup (((Bit Rate * .008) / 10) + 1
 502 */
 503static void msm_hs_set_bps_locked(struct uart_port *uport,
 504                                  unsigned int bps)
 505{
 506        unsigned long rxstale;
 507        unsigned long data;
 508        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 509
 510        switch (bps) {
 511        case 300:
 512                msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_75);
 513                rxstale = 1;
 514                break;
 515        case 600:
 516                msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_150);
 517                rxstale = 1;
 518                break;
 519        case 1200:
 520                msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_300);
 521                rxstale = 1;
 522                break;
 523        case 2400:
 524                msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_600);
 525                rxstale = 1;
 526                break;
 527        case 4800:
 528                msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_1200);
 529                rxstale = 1;
 530                break;
 531        case 9600:
 532                msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_2400);
 533                rxstale = 2;
 534                break;
 535        case 14400:
 536                msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_3600);
 537                rxstale = 3;
 538                break;
 539        case 19200:
 540                msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_4800);
 541                rxstale = 4;
 542                break;
 543        case 28800:
 544                msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_7200);
 545                rxstale = 6;
 546                break;
 547        case 38400:
 548                msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_9600);
 549                rxstale = 8;
 550                break;
 551        case 57600:
 552                msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_14400);
 553                rxstale = 16;
 554                break;
 555        case 76800:
 556                msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_19200);
 557                rxstale = 16;
 558                break;
 559        case 115200:
 560                msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_28800);
 561                rxstale = 31;
 562                break;
 563        case 230400:
 564                msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_57600);
 565                rxstale = 31;
 566                break;
 567        case 460800:
 568                msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_115200);
 569                rxstale = 31;
 570                break;
 571        case 4000000:
 572        case 3686400:
 573        case 3200000:
 574        case 3500000:
 575        case 3000000:
 576        case 2500000:
 577        case 1500000:
 578        case 1152000:
 579        case 1000000:
 580        case 921600:
 581                msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_115200);
 582                rxstale = 31;
 583                break;
 584        default:
 585                msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_2400);
 586                /* default to 9600 */
 587                bps = 9600;
 588                rxstale = 2;
 589                break;
 590        }
 591        if (bps > 460800)
 592                uport->uartclk = bps * 16;
 593        else
 594                uport->uartclk = UARTCLK;
 595
 596        if (clk_set_rate(msm_uport->clk, uport->uartclk)) {
 597                printk(KERN_WARNING "Error setting clock rate on UART\n");
 598                return;
 599        }
 600
 601        data = rxstale & UARTDM_IPR_STALE_LSB_BMSK;
 602        data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2);
 603
 604        msm_hs_write(uport, UARTDM_IPR_ADDR, data);
 605}
 606
 607/*
 608 * termios :  new ktermios
 609 * oldtermios:  old ktermios previous setting
 610 *
 611 * Configure the serial port
 612 */
 613static void msm_hs_set_termios(struct uart_port *uport,
 614                               struct ktermios *termios,
 615                               struct ktermios *oldtermios)
 616{
 617        unsigned int bps;
 618        unsigned long data;
 619        unsigned long flags;
 620        unsigned int c_cflag = termios->c_cflag;
 621        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 622
 623        spin_lock_irqsave(&uport->lock, flags);
 624        clk_enable(msm_uport->clk);
 625
 626        /* 300 is the minimum baud support by the driver  */
 627        bps = uart_get_baud_rate(uport, termios, oldtermios, 200, 4000000);
 628
 629        /* Temporary remapping  200 BAUD to 3.2 mbps */
 630        if (bps == 200)
 631                bps = 3200000;
 632
 633        msm_hs_set_bps_locked(uport, bps);
 634
 635        data = msm_hs_read(uport, UARTDM_MR2_ADDR);
 636        data &= ~UARTDM_MR2_PARITY_MODE_BMSK;
 637        /* set parity */
 638        if (PARENB == (c_cflag & PARENB)) {
 639                if (PARODD == (c_cflag & PARODD))
 640                        data |= ODD_PARITY;
 641                else if (CMSPAR == (c_cflag & CMSPAR))
 642                        data |= SPACE_PARITY;
 643                else
 644                        data |= EVEN_PARITY;
 645        }
 646
 647        /* Set bits per char */
 648        data &= ~UARTDM_MR2_BITS_PER_CHAR_BMSK;
 649
 650        switch (c_cflag & CSIZE) {
 651        case CS5:
 652                data |= FIVE_BPC;
 653                break;
 654        case CS6:
 655                data |= SIX_BPC;
 656                break;
 657        case CS7:
 658                data |= SEVEN_BPC;
 659                break;
 660        default:
 661                data |= EIGHT_BPC;
 662                break;
 663        }
 664        /* stop bits */
 665        if (c_cflag & CSTOPB) {
 666                data |= STOP_BIT_TWO;
 667        } else {
 668                /* otherwise 1 stop bit */
 669                data |= STOP_BIT_ONE;
 670        }
 671        data |= UARTDM_MR2_ERROR_MODE_BMSK;
 672        /* write parity/bits per char/stop bit configuration */
 673        msm_hs_write(uport, UARTDM_MR2_ADDR, data);
 674
 675        /* Configure HW flow control */
 676        data = msm_hs_read(uport, UARTDM_MR1_ADDR);
 677
 678        data &= ~(UARTDM_MR1_CTS_CTL_BMSK | UARTDM_MR1_RX_RDY_CTL_BMSK);
 679
 680        if (c_cflag & CRTSCTS) {
 681                data |= UARTDM_MR1_CTS_CTL_BMSK;
 682                data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
 683        }
 684
 685        msm_hs_write(uport, UARTDM_MR1_ADDR, data);
 686
 687        uport->ignore_status_mask = termios->c_iflag & INPCK;
 688        uport->ignore_status_mask |= termios->c_iflag & IGNPAR;
 689        uport->read_status_mask = (termios->c_cflag & CREAD);
 690
 691        msm_hs_write(uport, UARTDM_IMR_ADDR, 0);
 692
 693        /* Set Transmit software time out */
 694        uart_update_timeout(uport, c_cflag, bps);
 695
 696        msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
 697        msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX);
 698
 699        if (msm_uport->rx.flush == FLUSH_NONE) {
 700                msm_uport->rx.flush = FLUSH_IGNORE;
 701                msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
 702        }
 703
 704        msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
 705
 706        clk_disable(msm_uport->clk);
 707        spin_unlock_irqrestore(&uport->lock, flags);
 708}
 709
 710/*
 711 *  Standard API, Transmitter
 712 *  Any character in the transmit shift register is sent
 713 */
 714static unsigned int msm_hs_tx_empty(struct uart_port *uport)
 715{
 716        unsigned int data;
 717        unsigned int ret = 0;
 718        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 719
 720        clk_enable(msm_uport->clk);
 721
 722        data = msm_hs_read(uport, UARTDM_SR_ADDR);
 723        if (data & UARTDM_SR_TXEMT_BMSK)
 724                ret = TIOCSER_TEMT;
 725
 726        clk_disable(msm_uport->clk);
 727
 728        return ret;
 729}
 730
 731/*
 732 *  Standard API, Stop transmitter.
 733 *  Any character in the transmit shift register is sent as
 734 *  well as the current data mover transfer .
 735 */
 736static void msm_hs_stop_tx_locked(struct uart_port *uport)
 737{
 738        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 739
 740        msm_uport->tx.tx_ready_int_en = 0;
 741}
 742
 743/*
 744 *  Standard API, Stop receiver as soon as possible.
 745 *
 746 *  Function immediately terminates the operation of the
 747 *  channel receiver and any incoming characters are lost. None
 748 *  of the receiver status bits are affected by this command and
 749 *  characters that are already in the receive FIFO there.
 750 */
 751static void msm_hs_stop_rx_locked(struct uart_port *uport)
 752{
 753        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 754        unsigned int data;
 755
 756        clk_enable(msm_uport->clk);
 757
 758        /* disable dlink */
 759        data = msm_hs_read(uport, UARTDM_DMEN_ADDR);
 760        data &= ~UARTDM_RX_DM_EN_BMSK;
 761        msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
 762
 763        /* Disable the receiver */
 764        if (msm_uport->rx.flush == FLUSH_NONE)
 765                msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
 766
 767        if (msm_uport->rx.flush != FLUSH_SHUTDOWN)
 768                msm_uport->rx.flush = FLUSH_STOP;
 769
 770        clk_disable(msm_uport->clk);
 771}
 772
 773/*  Transmit the next chunk of data */
 774static void msm_hs_submit_tx_locked(struct uart_port *uport)
 775{
 776        int left;
 777        int tx_count;
 778        dma_addr_t src_addr;
 779        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 780        struct msm_hs_tx *tx = &msm_uport->tx;
 781        struct circ_buf *tx_buf = &msm_uport->uport.state->xmit;
 782
 783        if (uart_circ_empty(tx_buf) || uport->state->port.tty->stopped) {
 784                msm_hs_stop_tx_locked(uport);
 785                return;
 786        }
 787
 788        tx->dma_in_flight = 1;
 789
 790        tx_count = uart_circ_chars_pending(tx_buf);
 791
 792        if (UARTDM_TX_BUF_SIZE < tx_count)
 793                tx_count = UARTDM_TX_BUF_SIZE;
 794
 795        left = UART_XMIT_SIZE - tx_buf->tail;
 796
 797        if (tx_count > left)
 798                tx_count = left;
 799
 800        src_addr = tx->dma_base + tx_buf->tail;
 801        dma_sync_single_for_device(uport->dev, src_addr, tx_count,
 802                                   DMA_TO_DEVICE);
 803
 804        tx->command_ptr->num_rows = (((tx_count + 15) >> 4) << 16) |
 805                                     ((tx_count + 15) >> 4);
 806        tx->command_ptr->src_row_addr = src_addr;
 807
 808        dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr,
 809                                   sizeof(dmov_box), DMA_TO_DEVICE);
 810
 811        *tx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(tx->mapped_cmd_ptr);
 812
 813        dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr_ptr,
 814                                   sizeof(u32), DMA_TO_DEVICE);
 815
 816        /* Save tx_count to use in Callback */
 817        tx->tx_count = tx_count;
 818        msm_hs_write(uport, UARTDM_NCF_TX_ADDR, tx_count);
 819
 820        /* Disable the tx_ready interrupt */
 821        msm_uport->imr_reg &= ~UARTDM_ISR_TX_READY_BMSK;
 822        msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
 823        msm_dmov_enqueue_cmd(msm_uport->dma_tx_channel, &tx->xfer);
 824}
 825
 826/* Start to receive the next chunk of data */
 827static void msm_hs_start_rx_locked(struct uart_port *uport)
 828{
 829        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 830
 831        msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
 832        msm_hs_write(uport, UARTDM_DMRX_ADDR, UARTDM_RX_BUF_SIZE);
 833        msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_ENABLE);
 834        msm_uport->imr_reg |= UARTDM_ISR_RXLEV_BMSK;
 835        msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
 836
 837        msm_uport->rx.flush = FLUSH_NONE;
 838        msm_dmov_enqueue_cmd(msm_uport->dma_rx_channel, &msm_uport->rx.xfer);
 839
 840        /* might have finished RX and be ready to clock off */
 841        hrtimer_start(&msm_uport->clk_off_timer, msm_uport->clk_off_delay,
 842                        HRTIMER_MODE_REL);
 843}
 844
 845/* Enable the transmitter Interrupt */
 846static void msm_hs_start_tx_locked(struct uart_port *uport)
 847{
 848        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 849
 850        clk_enable(msm_uport->clk);
 851
 852        if (msm_uport->exit_lpm_cb)
 853                msm_uport->exit_lpm_cb(uport);
 854
 855        if (msm_uport->tx.tx_ready_int_en == 0) {
 856                msm_uport->tx.tx_ready_int_en = 1;
 857                msm_hs_submit_tx_locked(uport);
 858        }
 859
 860        clk_disable(msm_uport->clk);
 861}
 862
 863/*
 864 *  This routine is called when we are done with a DMA transfer
 865 *
 866 *  This routine is registered with Data mover when we set
 867 *  up a Data Mover transfer. It is called from Data mover ISR
 868 *  when the DMA transfer is done.
 869 */
 870static void msm_hs_dmov_tx_callback(struct msm_dmov_cmd *cmd_ptr,
 871                                        unsigned int result,
 872                                        struct msm_dmov_errdata *err)
 873{
 874        unsigned long flags;
 875        struct msm_hs_port *msm_uport;
 876
 877        /* DMA did not finish properly */
 878        WARN_ON((((result & RSLT_FIFO_CNTR_BMSK) >> 28) == 1) &&
 879                !(result & RSLT_VLD));
 880
 881        msm_uport = container_of(cmd_ptr, struct msm_hs_port, tx.xfer);
 882
 883        spin_lock_irqsave(&msm_uport->uport.lock, flags);
 884        clk_enable(msm_uport->clk);
 885
 886        msm_uport->imr_reg |= UARTDM_ISR_TX_READY_BMSK;
 887        msm_hs_write(&msm_uport->uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
 888
 889        clk_disable(msm_uport->clk);
 890        spin_unlock_irqrestore(&msm_uport->uport.lock, flags);
 891}
 892
 893/*
 894 * This routine is called when we are done with a DMA transfer or the
 895 * a flush has been sent to the data mover driver.
 896 *
 897 * This routine is registered with Data mover when we set up a Data Mover
 898 *  transfer. It is called from Data mover ISR when the DMA transfer is done.
 899 */
 900static void msm_hs_dmov_rx_callback(struct msm_dmov_cmd *cmd_ptr,
 901                                        unsigned int result,
 902                                        struct msm_dmov_errdata *err)
 903{
 904        int retval;
 905        int rx_count;
 906        unsigned long status;
 907        unsigned int error_f = 0;
 908        unsigned long flags;
 909        unsigned int flush;
 910        struct tty_struct *tty;
 911        struct tty_port *port;
 912        struct uart_port *uport;
 913        struct msm_hs_port *msm_uport;
 914
 915        msm_uport = container_of(cmd_ptr, struct msm_hs_port, rx.xfer);
 916        uport = &msm_uport->uport;
 917
 918        spin_lock_irqsave(&uport->lock, flags);
 919        clk_enable(msm_uport->clk);
 920
 921        port = &uport->state->port;
 922        tty = port->tty;
 923
 924        msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE);
 925
 926        status = msm_hs_read(uport, UARTDM_SR_ADDR);
 927
 928        /* overflow is not connect to data in a FIFO */
 929        if (unlikely((status & UARTDM_SR_OVERRUN_BMSK) &&
 930                     (uport->read_status_mask & CREAD))) {
 931                tty_insert_flip_char(port, 0, TTY_OVERRUN);
 932                uport->icount.buf_overrun++;
 933                error_f = 1;
 934        }
 935
 936        if (!(uport->ignore_status_mask & INPCK))
 937                status = status & ~(UARTDM_SR_PAR_FRAME_BMSK);
 938
 939        if (unlikely(status & UARTDM_SR_PAR_FRAME_BMSK)) {
 940                /* Can not tell difference between parity & frame error */
 941                uport->icount.parity++;
 942                error_f = 1;
 943                if (uport->ignore_status_mask & IGNPAR)
 944                        tty_insert_flip_char(port, 0, TTY_PARITY);
 945        }
 946
 947        if (error_f)
 948                msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS);
 949
 950        if (msm_uport->clk_req_off_state == CLK_REQ_OFF_FLUSH_ISSUED)
 951                msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_FLUSHED;
 952
 953        flush = msm_uport->rx.flush;
 954        if (flush == FLUSH_IGNORE)
 955                msm_hs_start_rx_locked(uport);
 956        if (flush == FLUSH_STOP)
 957                msm_uport->rx.flush = FLUSH_SHUTDOWN;
 958        if (flush >= FLUSH_DATA_INVALID)
 959                goto out;
 960
 961        rx_count = msm_hs_read(uport, UARTDM_RX_TOTAL_SNAP_ADDR);
 962
 963        if (0 != (uport->read_status_mask & CREAD)) {
 964                retval = tty_insert_flip_string(port, msm_uport->rx.buffer,
 965                                                rx_count);
 966                BUG_ON(retval != rx_count);
 967        }
 968
 969        msm_hs_start_rx_locked(uport);
 970
 971out:
 972        clk_disable(msm_uport->clk);
 973
 974        spin_unlock_irqrestore(&uport->lock, flags);
 975
 976        if (flush < FLUSH_DATA_INVALID)
 977                queue_work(msm_hs_workqueue, &msm_uport->rx.tty_work);
 978}
 979
 980static void msm_hs_tty_flip_buffer_work(struct work_struct *work)
 981{
 982        struct msm_hs_port *msm_uport =
 983                        container_of(work, struct msm_hs_port, rx.tty_work);
 984
 985        tty_flip_buffer_push(&msm_uport->uport.state->port);
 986}
 987
 988/*
 989 *  Standard API, Current states of modem control inputs
 990 *
 991 * Since CTS can be handled entirely by HARDWARE we always
 992 * indicate clear to send and count on the TX FIFO to block when
 993 * it fills up.
 994 *
 995 * - TIOCM_DCD
 996 * - TIOCM_CTS
 997 * - TIOCM_DSR
 998 * - TIOCM_RI
 999 *  (Unsupported) DCD and DSR will return them high. RI will return low.
1000 */
1001static unsigned int msm_hs_get_mctrl_locked(struct uart_port *uport)
1002{
1003        return TIOCM_DSR | TIOCM_CAR | TIOCM_CTS;
1004}
1005
1006/*
1007 * True enables UART auto RFR, which indicates we are ready for data if the RX
1008 * buffer is not full. False disables auto RFR, and deasserts RFR to indicate
1009 * we are not ready for data. Must be called with UART clock on.
1010 */
1011static void set_rfr_locked(struct uart_port *uport, int auto_rfr)
1012{
1013        unsigned int data;
1014
1015        data = msm_hs_read(uport, UARTDM_MR1_ADDR);
1016
1017        if (auto_rfr) {
1018                /* enable auto ready-for-receiving */
1019                data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
1020                msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1021        } else {
1022                /* disable auto ready-for-receiving */
1023                data &= ~UARTDM_MR1_RX_RDY_CTL_BMSK;
1024                msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1025                /* RFR is active low, set high */
1026                msm_hs_write(uport, UARTDM_CR_ADDR, RFR_HIGH);
1027        }
1028}
1029
1030/*
1031 *  Standard API, used to set or clear RFR
1032 */
1033static void msm_hs_set_mctrl_locked(struct uart_port *uport,
1034                                    unsigned int mctrl)
1035{
1036        unsigned int auto_rfr;
1037        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1038
1039        clk_enable(msm_uport->clk);
1040
1041        auto_rfr = TIOCM_RTS & mctrl ? 1 : 0;
1042        set_rfr_locked(uport, auto_rfr);
1043
1044        clk_disable(msm_uport->clk);
1045}
1046
1047/* Standard API, Enable modem status (CTS) interrupt  */
1048static void msm_hs_enable_ms_locked(struct uart_port *uport)
1049{
1050        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1051
1052        clk_enable(msm_uport->clk);
1053
1054        /* Enable DELTA_CTS Interrupt */
1055        msm_uport->imr_reg |= UARTDM_ISR_DELTA_CTS_BMSK;
1056        msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1057
1058        clk_disable(msm_uport->clk);
1059
1060}
1061
1062/*
1063 *  Standard API, Break Signal
1064 *
1065 * Control the transmission of a break signal. ctl eq 0 => break
1066 * signal terminate ctl ne 0 => start break signal
1067 */
1068static void msm_hs_break_ctl(struct uart_port *uport, int ctl)
1069{
1070        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1071
1072        clk_enable(msm_uport->clk);
1073        msm_hs_write(uport, UARTDM_CR_ADDR, ctl ? START_BREAK : STOP_BREAK);
1074        clk_disable(msm_uport->clk);
1075}
1076
1077static void msm_hs_config_port(struct uart_port *uport, int cfg_flags)
1078{
1079        unsigned long flags;
1080
1081        spin_lock_irqsave(&uport->lock, flags);
1082        if (cfg_flags & UART_CONFIG_TYPE) {
1083                uport->type = PORT_MSM;
1084                msm_hs_request_port(uport);
1085        }
1086        spin_unlock_irqrestore(&uport->lock, flags);
1087}
1088
1089/*  Handle CTS changes (Called from interrupt handler) */
1090static void msm_hs_handle_delta_cts_locked(struct uart_port *uport)
1091{
1092        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1093
1094        clk_enable(msm_uport->clk);
1095
1096        /* clear interrupt */
1097        msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS);
1098        uport->icount.cts++;
1099
1100        clk_disable(msm_uport->clk);
1101
1102        /* clear the IOCTL TIOCMIWAIT if called */
1103        wake_up_interruptible(&uport->state->port.delta_msr_wait);
1104}
1105
1106/* check if the TX path is flushed, and if so clock off
1107 * returns 0 did not clock off, need to retry (still sending final byte)
1108 *        -1 did not clock off, do not retry
1109 *         1 if we clocked off
1110 */
1111static int msm_hs_check_clock_off_locked(struct uart_port *uport)
1112{
1113        unsigned long sr_status;
1114        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1115        struct circ_buf *tx_buf = &uport->state->xmit;
1116
1117        /* Cancel if tx tty buffer is not empty, dma is in flight,
1118         * or tx fifo is not empty, or rx fifo is not empty */
1119        if (msm_uport->clk_state != MSM_HS_CLK_REQUEST_OFF ||
1120            !uart_circ_empty(tx_buf) || msm_uport->tx.dma_in_flight ||
1121            (msm_uport->imr_reg & UARTDM_ISR_TXLEV_BMSK) ||
1122            !(msm_uport->imr_reg & UARTDM_ISR_RXLEV_BMSK))  {
1123                return -1;
1124        }
1125
1126        /* Make sure the uart is finished with the last byte */
1127        sr_status = msm_hs_read(uport, UARTDM_SR_ADDR);
1128        if (!(sr_status & UARTDM_SR_TXEMT_BMSK))
1129                return 0;  /* retry */
1130
1131        /* Make sure forced RXSTALE flush complete */
1132        switch (msm_uport->clk_req_off_state) {
1133        case CLK_REQ_OFF_START:
1134                msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_ISSUED;
1135                msm_hs_write(uport, UARTDM_CR_ADDR, FORCE_STALE_EVENT);
1136                return 0;  /* RXSTALE flush not complete - retry */
1137        case CLK_REQ_OFF_RXSTALE_ISSUED:
1138        case CLK_REQ_OFF_FLUSH_ISSUED:
1139                return 0;  /* RXSTALE flush not complete - retry */
1140        case CLK_REQ_OFF_RXSTALE_FLUSHED:
1141                break;  /* continue */
1142        }
1143
1144        if (msm_uport->rx.flush != FLUSH_SHUTDOWN) {
1145                if (msm_uport->rx.flush == FLUSH_NONE)
1146                        msm_hs_stop_rx_locked(uport);
1147                return 0;  /* come back later to really clock off */
1148        }
1149
1150        /* we really want to clock off */
1151        clk_disable(msm_uport->clk);
1152        msm_uport->clk_state = MSM_HS_CLK_OFF;
1153
1154        if (use_low_power_rx_wakeup(msm_uport)) {
1155                msm_uport->rx_wakeup.ignore = 1;
1156                enable_irq(msm_uport->rx_wakeup.irq);
1157        }
1158        return 1;
1159}
1160
1161static enum hrtimer_restart msm_hs_clk_off_retry(struct hrtimer *timer)
1162{
1163        unsigned long flags;
1164        int ret = HRTIMER_NORESTART;
1165        struct msm_hs_port *msm_uport = container_of(timer, struct msm_hs_port,
1166                                                     clk_off_timer);
1167        struct uart_port *uport = &msm_uport->uport;
1168
1169        spin_lock_irqsave(&uport->lock, flags);
1170
1171        if (!msm_hs_check_clock_off_locked(uport)) {
1172                hrtimer_forward_now(timer, msm_uport->clk_off_delay);
1173                ret = HRTIMER_RESTART;
1174        }
1175
1176        spin_unlock_irqrestore(&uport->lock, flags);
1177
1178        return ret;
1179}
1180
1181static irqreturn_t msm_hs_isr(int irq, void *dev)
1182{
1183        unsigned long flags;
1184        unsigned long isr_status;
1185        struct msm_hs_port *msm_uport = dev;
1186        struct uart_port *uport = &msm_uport->uport;
1187        struct circ_buf *tx_buf = &uport->state->xmit;
1188        struct msm_hs_tx *tx = &msm_uport->tx;
1189        struct msm_hs_rx *rx = &msm_uport->rx;
1190
1191        spin_lock_irqsave(&uport->lock, flags);
1192
1193        isr_status = msm_hs_read(uport, UARTDM_MISR_ADDR);
1194
1195        /* Uart RX starting */
1196        if (isr_status & UARTDM_ISR_RXLEV_BMSK) {
1197                msm_uport->imr_reg &= ~UARTDM_ISR_RXLEV_BMSK;
1198                msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1199        }
1200        /* Stale rx interrupt */
1201        if (isr_status & UARTDM_ISR_RXSTALE_BMSK) {
1202                msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE);
1203                msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
1204
1205                if (msm_uport->clk_req_off_state == CLK_REQ_OFF_RXSTALE_ISSUED)
1206                        msm_uport->clk_req_off_state =
1207                                        CLK_REQ_OFF_FLUSH_ISSUED;
1208                if (rx->flush == FLUSH_NONE) {
1209                        rx->flush = FLUSH_DATA_READY;
1210                        msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
1211                }
1212        }
1213        /* tx ready interrupt */
1214        if (isr_status & UARTDM_ISR_TX_READY_BMSK) {
1215                /* Clear  TX Ready */
1216                msm_hs_write(uport, UARTDM_CR_ADDR, CLEAR_TX_READY);
1217
1218                if (msm_uport->clk_state == MSM_HS_CLK_REQUEST_OFF) {
1219                        msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK;
1220                        msm_hs_write(uport, UARTDM_IMR_ADDR,
1221                                     msm_uport->imr_reg);
1222                }
1223
1224                /* Complete DMA TX transactions and submit new transactions */
1225                tx_buf->tail = (tx_buf->tail + tx->tx_count) & ~UART_XMIT_SIZE;
1226
1227                tx->dma_in_flight = 0;
1228
1229                uport->icount.tx += tx->tx_count;
1230                if (tx->tx_ready_int_en)
1231                        msm_hs_submit_tx_locked(uport);
1232
1233                if (uart_circ_chars_pending(tx_buf) < WAKEUP_CHARS)
1234                        uart_write_wakeup(uport);
1235        }
1236        if (isr_status & UARTDM_ISR_TXLEV_BMSK) {
1237                /* TX FIFO is empty */
1238                msm_uport->imr_reg &= ~UARTDM_ISR_TXLEV_BMSK;
1239                msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1240                if (!msm_hs_check_clock_off_locked(uport))
1241                        hrtimer_start(&msm_uport->clk_off_timer,
1242                                      msm_uport->clk_off_delay,
1243                                      HRTIMER_MODE_REL);
1244        }
1245
1246        /* Change in CTS interrupt */
1247        if (isr_status & UARTDM_ISR_DELTA_CTS_BMSK)
1248                msm_hs_handle_delta_cts_locked(uport);
1249
1250        spin_unlock_irqrestore(&uport->lock, flags);
1251
1252        return IRQ_HANDLED;
1253}
1254
1255void msm_hs_request_clock_off_locked(struct uart_port *uport)
1256{
1257        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1258
1259        if (msm_uport->clk_state == MSM_HS_CLK_ON) {
1260                msm_uport->clk_state = MSM_HS_CLK_REQUEST_OFF;
1261                msm_uport->clk_req_off_state = CLK_REQ_OFF_START;
1262                if (!use_low_power_rx_wakeup(msm_uport))
1263                        set_rfr_locked(uport, 0);
1264                msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK;
1265                msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1266        }
1267}
1268
1269/**
1270 * msm_hs_request_clock_off - request to (i.e. asynchronously) turn off uart
1271 * clock once pending TX is flushed and Rx DMA command is terminated.
1272 * @uport: uart_port structure for the device instance.
1273 *
1274 * This functions puts the device into a partially active low power mode. It
1275 * waits to complete all pending tx transactions, flushes ongoing Rx DMA
1276 * command and terminates UART side Rx transaction, puts UART HW in non DMA
1277 * mode and then clocks off the device. A client calls this when no UART
1278 * data is expected. msm_request_clock_on() must be called before any further
1279 * UART can be sent or received.
1280 */
1281void msm_hs_request_clock_off(struct uart_port *uport)
1282{
1283        unsigned long flags;
1284
1285        spin_lock_irqsave(&uport->lock, flags);
1286        msm_hs_request_clock_off_locked(uport);
1287        spin_unlock_irqrestore(&uport->lock, flags);
1288}
1289
1290void msm_hs_request_clock_on_locked(struct uart_port *uport)
1291{
1292        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1293        unsigned int data;
1294
1295        switch (msm_uport->clk_state) {
1296        case MSM_HS_CLK_OFF:
1297                clk_enable(msm_uport->clk);
1298                disable_irq_nosync(msm_uport->rx_wakeup.irq);
1299                /* fall-through */
1300        case MSM_HS_CLK_REQUEST_OFF:
1301                if (msm_uport->rx.flush == FLUSH_STOP ||
1302                    msm_uport->rx.flush == FLUSH_SHUTDOWN) {
1303                        msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
1304                        data = msm_hs_read(uport, UARTDM_DMEN_ADDR);
1305                        data |= UARTDM_RX_DM_EN_BMSK;
1306                        msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
1307                }
1308                hrtimer_try_to_cancel(&msm_uport->clk_off_timer);
1309                if (msm_uport->rx.flush == FLUSH_SHUTDOWN)
1310                        msm_hs_start_rx_locked(uport);
1311                if (!use_low_power_rx_wakeup(msm_uport))
1312                        set_rfr_locked(uport, 1);
1313                if (msm_uport->rx.flush == FLUSH_STOP)
1314                        msm_uport->rx.flush = FLUSH_IGNORE;
1315                msm_uport->clk_state = MSM_HS_CLK_ON;
1316                break;
1317        case MSM_HS_CLK_ON:
1318                break;
1319        case MSM_HS_CLK_PORT_OFF:
1320                break;
1321        }
1322}
1323
1324/**
1325 * msm_hs_request_clock_on - Switch the device from partially active low
1326 * power mode to fully active (i.e. clock on) mode.
1327 * @uport: uart_port structure for the device.
1328 *
1329 * This function switches on the input clock, puts UART HW into DMA mode
1330 * and enqueues an Rx DMA command if the device was in partially active
1331 * mode. It has no effect if called with the device in inactive state.
1332 */
1333void msm_hs_request_clock_on(struct uart_port *uport)
1334{
1335        unsigned long flags;
1336
1337        spin_lock_irqsave(&uport->lock, flags);
1338        msm_hs_request_clock_on_locked(uport);
1339        spin_unlock_irqrestore(&uport->lock, flags);
1340}
1341
1342static irqreturn_t msm_hs_rx_wakeup_isr(int irq, void *dev)
1343{
1344        unsigned int wakeup = 0;
1345        unsigned long flags;
1346        struct msm_hs_port *msm_uport = dev;
1347        struct uart_port *uport = &msm_uport->uport;
1348
1349        spin_lock_irqsave(&uport->lock, flags);
1350        if (msm_uport->clk_state == MSM_HS_CLK_OFF) {
1351                /* ignore the first irq - it is a pending irq that occurred
1352                 * before enable_irq() */
1353                if (msm_uport->rx_wakeup.ignore)
1354                        msm_uport->rx_wakeup.ignore = 0;
1355                else
1356                        wakeup = 1;
1357        }
1358
1359        if (wakeup) {
1360                /* the uart was clocked off during an rx, wake up and
1361                 * optionally inject char into tty rx */
1362                msm_hs_request_clock_on_locked(uport);
1363                if (msm_uport->rx_wakeup.inject_rx) {
1364                        tty_insert_flip_char(&uport->state->port,
1365                                             msm_uport->rx_wakeup.rx_to_inject,
1366                                             TTY_NORMAL);
1367                        queue_work(msm_hs_workqueue, &msm_uport->rx.tty_work);
1368                }
1369        }
1370
1371        spin_unlock_irqrestore(&uport->lock, flags);
1372
1373        return IRQ_HANDLED;
1374}
1375
1376static const char *msm_hs_type(struct uart_port *port)
1377{
1378        return (port->type == PORT_MSM) ? "MSM_HS_UART" : NULL;
1379}
1380
1381/* Called when port is opened */
1382static int msm_hs_startup(struct uart_port *uport)
1383{
1384        int ret;
1385        int rfr_level;
1386        unsigned long flags;
1387        unsigned int data;
1388        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1389        struct circ_buf *tx_buf = &uport->state->xmit;
1390        struct msm_hs_tx *tx = &msm_uport->tx;
1391        struct msm_hs_rx *rx = &msm_uport->rx;
1392
1393        rfr_level = uport->fifosize;
1394        if (rfr_level > 16)
1395                rfr_level -= 16;
1396
1397        tx->dma_base = dma_map_single(uport->dev, tx_buf->buf, UART_XMIT_SIZE,
1398                                      DMA_TO_DEVICE);
1399
1400        /* do not let tty layer execute RX in global workqueue, use a
1401         * dedicated workqueue managed by this driver */
1402        uport->state->port.low_latency = 1;
1403
1404        /* turn on uart clk */
1405        ret = msm_hs_init_clk_locked(uport);
1406        if (unlikely(ret)) {
1407                printk(KERN_ERR "Turning uartclk failed!\n");
1408                goto err_msm_hs_init_clk;
1409        }
1410
1411        /* Set auto RFR Level */
1412        data = msm_hs_read(uport, UARTDM_MR1_ADDR);
1413        data &= ~UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK;
1414        data &= ~UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK;
1415        data |= (UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK & (rfr_level << 2));
1416        data |= (UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK & rfr_level);
1417        msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1418
1419        /* Make sure RXSTALE count is non-zero */
1420        data = msm_hs_read(uport, UARTDM_IPR_ADDR);
1421        if (!data) {
1422                data |= 0x1f & UARTDM_IPR_STALE_LSB_BMSK;
1423                msm_hs_write(uport, UARTDM_IPR_ADDR, data);
1424        }
1425
1426        /* Enable Data Mover Mode */
1427        data = UARTDM_TX_DM_EN_BMSK | UARTDM_RX_DM_EN_BMSK;
1428        msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
1429
1430        /* Reset TX */
1431        msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX);
1432        msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
1433        msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS);
1434        msm_hs_write(uport, UARTDM_CR_ADDR, RESET_BREAK_INT);
1435        msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
1436        msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS);
1437        msm_hs_write(uport, UARTDM_CR_ADDR, RFR_LOW);
1438        /* Turn on Uart Receiver */
1439        msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_EN_BMSK);
1440
1441        /* Turn on Uart Transmitter */
1442        msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_EN_BMSK);
1443
1444        /* Initialize the tx */
1445        tx->tx_ready_int_en = 0;
1446        tx->dma_in_flight = 0;
1447
1448        tx->xfer.complete_func = msm_hs_dmov_tx_callback;
1449        tx->xfer.execute_func = NULL;
1450
1451        tx->command_ptr->cmd = CMD_LC |
1452            CMD_DST_CRCI(msm_uport->dma_tx_crci) | CMD_MODE_BOX;
1453
1454        tx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16)
1455                                           | (MSM_UARTDM_BURST_SIZE);
1456
1457        tx->command_ptr->row_offset = (MSM_UARTDM_BURST_SIZE << 16);
1458
1459        tx->command_ptr->dst_row_addr =
1460            msm_uport->uport.mapbase + UARTDM_TF_ADDR;
1461
1462
1463        /* Turn on Uart Receive */
1464        rx->xfer.complete_func = msm_hs_dmov_rx_callback;
1465        rx->xfer.execute_func = NULL;
1466
1467        rx->command_ptr->cmd = CMD_LC |
1468            CMD_SRC_CRCI(msm_uport->dma_rx_crci) | CMD_MODE_BOX;
1469
1470        rx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16)
1471                                           | (MSM_UARTDM_BURST_SIZE);
1472        rx->command_ptr->row_offset =  MSM_UARTDM_BURST_SIZE;
1473        rx->command_ptr->src_row_addr = uport->mapbase + UARTDM_RF_ADDR;
1474
1475
1476        msm_uport->imr_reg |= UARTDM_ISR_RXSTALE_BMSK;
1477        /* Enable reading the current CTS, no harm even if CTS is ignored */
1478        msm_uport->imr_reg |= UARTDM_ISR_CURRENT_CTS_BMSK;
1479
1480        msm_hs_write(uport, UARTDM_TFWR_ADDR, 0);  /* TXLEV on empty TX fifo */
1481
1482
1483        ret = request_irq(uport->irq, msm_hs_isr, IRQF_TRIGGER_HIGH,
1484                          "msm_hs_uart", msm_uport);
1485        if (unlikely(ret)) {
1486                printk(KERN_ERR "Request msm_hs_uart IRQ failed!\n");
1487                goto err_request_irq;
1488        }
1489        if (use_low_power_rx_wakeup(msm_uport)) {
1490                ret = request_irq(msm_uport->rx_wakeup.irq,
1491                                  msm_hs_rx_wakeup_isr,
1492                                  IRQF_TRIGGER_FALLING,
1493                                  "msm_hs_rx_wakeup", msm_uport);
1494                if (unlikely(ret)) {
1495                        printk(KERN_ERR "Request msm_hs_rx_wakeup IRQ failed!\n");
1496                        free_irq(uport->irq, msm_uport);
1497                        goto err_request_irq;
1498                }
1499                disable_irq(msm_uport->rx_wakeup.irq);
1500        }
1501
1502        spin_lock_irqsave(&uport->lock, flags);
1503
1504        msm_hs_write(uport, UARTDM_RFWR_ADDR, 0);
1505        msm_hs_start_rx_locked(uport);
1506
1507        spin_unlock_irqrestore(&uport->lock, flags);
1508        ret = pm_runtime_set_active(uport->dev);
1509        if (ret)
1510                dev_err(uport->dev, "set active error:%d\n", ret);
1511        pm_runtime_enable(uport->dev);
1512
1513        return 0;
1514
1515err_request_irq:
1516err_msm_hs_init_clk:
1517        dma_unmap_single(uport->dev, tx->dma_base,
1518                                UART_XMIT_SIZE, DMA_TO_DEVICE);
1519        return ret;
1520}
1521
1522/* Initialize tx and rx data structures */
1523static int uartdm_init_port(struct uart_port *uport)
1524{
1525        int ret = 0;
1526        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1527        struct msm_hs_tx *tx = &msm_uport->tx;
1528        struct msm_hs_rx *rx = &msm_uport->rx;
1529
1530        /* Allocate the command pointer. Needs to be 64 bit aligned */
1531        tx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA);
1532        if (!tx->command_ptr)
1533                return -ENOMEM;
1534
1535        tx->command_ptr_ptr = kmalloc(sizeof(u32), GFP_KERNEL | __GFP_DMA);
1536        if (!tx->command_ptr_ptr) {
1537                ret = -ENOMEM;
1538                goto err_tx_command_ptr_ptr;
1539        }
1540
1541        tx->mapped_cmd_ptr = dma_map_single(uport->dev, tx->command_ptr,
1542                                            sizeof(dmov_box), DMA_TO_DEVICE);
1543        tx->mapped_cmd_ptr_ptr = dma_map_single(uport->dev,
1544                                                tx->command_ptr_ptr,
1545                                                sizeof(u32), DMA_TO_DEVICE);
1546        tx->xfer.cmdptr = DMOV_CMD_ADDR(tx->mapped_cmd_ptr_ptr);
1547
1548        init_waitqueue_head(&rx->wait);
1549
1550        rx->pool = dma_pool_create("rx_buffer_pool", uport->dev,
1551                                   UARTDM_RX_BUF_SIZE, 16, 0);
1552        if (!rx->pool) {
1553                pr_err("%s(): cannot allocate rx_buffer_pool", __func__);
1554                ret = -ENOMEM;
1555                goto err_dma_pool_create;
1556        }
1557
1558        rx->buffer = dma_pool_alloc(rx->pool, GFP_KERNEL, &rx->rbuffer);
1559        if (!rx->buffer) {
1560                pr_err("%s(): cannot allocate rx->buffer", __func__);
1561                ret = -ENOMEM;
1562                goto err_dma_pool_alloc;
1563        }
1564
1565        /* Allocate the command pointer. Needs to be 64 bit aligned */
1566        rx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA);
1567        if (!rx->command_ptr) {
1568                pr_err("%s(): cannot allocate rx->command_ptr", __func__);
1569                ret = -ENOMEM;
1570                goto err_rx_command_ptr;
1571        }
1572
1573        rx->command_ptr_ptr = kmalloc(sizeof(u32), GFP_KERNEL | __GFP_DMA);
1574        if (!rx->command_ptr_ptr) {
1575                pr_err("%s(): cannot allocate rx->command_ptr_ptr", __func__);
1576                ret = -ENOMEM;
1577                goto err_rx_command_ptr_ptr;
1578        }
1579
1580        rx->command_ptr->num_rows = ((UARTDM_RX_BUF_SIZE >> 4) << 16) |
1581                                         (UARTDM_RX_BUF_SIZE >> 4);
1582
1583        rx->command_ptr->dst_row_addr = rx->rbuffer;
1584
1585        rx->mapped_cmd_ptr = dma_map_single(uport->dev, rx->command_ptr,
1586                                            sizeof(dmov_box), DMA_TO_DEVICE);
1587
1588        *rx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(rx->mapped_cmd_ptr);
1589
1590        rx->cmdptr_dmaaddr = dma_map_single(uport->dev, rx->command_ptr_ptr,
1591                                            sizeof(u32), DMA_TO_DEVICE);
1592        rx->xfer.cmdptr = DMOV_CMD_ADDR(rx->cmdptr_dmaaddr);
1593
1594        INIT_WORK(&rx->tty_work, msm_hs_tty_flip_buffer_work);
1595
1596        return ret;
1597
1598err_rx_command_ptr_ptr:
1599        kfree(rx->command_ptr);
1600err_rx_command_ptr:
1601        dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer,
1602                                                msm_uport->rx.rbuffer);
1603err_dma_pool_alloc:
1604        dma_pool_destroy(msm_uport->rx.pool);
1605err_dma_pool_create:
1606        dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr_ptr,
1607                                sizeof(u32), DMA_TO_DEVICE);
1608        dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr,
1609                                sizeof(dmov_box), DMA_TO_DEVICE);
1610        kfree(msm_uport->tx.command_ptr_ptr);
1611err_tx_command_ptr_ptr:
1612        kfree(msm_uport->tx.command_ptr);
1613        return ret;
1614}
1615
1616static int msm_hs_probe(struct platform_device *pdev)
1617{
1618        int ret;
1619        struct uart_port *uport;
1620        struct msm_hs_port *msm_uport;
1621        struct resource *resource;
1622        const struct msm_serial_hs_platform_data *pdata =
1623                                                pdev->dev.platform_data;
1624
1625        if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
1626                printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id);
1627                return -EINVAL;
1628        }
1629
1630        msm_uport = &q_uart_port[pdev->id];
1631        uport = &msm_uport->uport;
1632
1633        uport->dev = &pdev->dev;
1634
1635        resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1636        if (unlikely(!resource))
1637                return -ENXIO;
1638
1639        uport->mapbase = resource->start;
1640        uport->irq = platform_get_irq(pdev, 0);
1641        if (unlikely(uport->irq < 0))
1642                return -ENXIO;
1643
1644        if (unlikely(irq_set_irq_wake(uport->irq, 1)))
1645                return -ENXIO;
1646
1647        if (pdata == NULL || pdata->rx_wakeup_irq < 0)
1648                msm_uport->rx_wakeup.irq = -1;
1649        else {
1650                msm_uport->rx_wakeup.irq = pdata->rx_wakeup_irq;
1651                msm_uport->rx_wakeup.ignore = 1;
1652                msm_uport->rx_wakeup.inject_rx = pdata->inject_rx_on_wakeup;
1653                msm_uport->rx_wakeup.rx_to_inject = pdata->rx_to_inject;
1654
1655                if (unlikely(msm_uport->rx_wakeup.irq < 0))
1656                        return -ENXIO;
1657
1658                if (unlikely(irq_set_irq_wake(msm_uport->rx_wakeup.irq, 1)))
1659                        return -ENXIO;
1660        }
1661
1662        if (pdata == NULL)
1663                msm_uport->exit_lpm_cb = NULL;
1664        else
1665                msm_uport->exit_lpm_cb = pdata->exit_lpm_cb;
1666
1667        resource = platform_get_resource_byname(pdev, IORESOURCE_DMA,
1668                                                "uartdm_channels");
1669        if (unlikely(!resource))
1670                return -ENXIO;
1671
1672        msm_uport->dma_tx_channel = resource->start;
1673        msm_uport->dma_rx_channel = resource->end;
1674
1675        resource = platform_get_resource_byname(pdev, IORESOURCE_DMA,
1676                                                "uartdm_crci");
1677        if (unlikely(!resource))
1678                return -ENXIO;
1679
1680        msm_uport->dma_tx_crci = resource->start;
1681        msm_uport->dma_rx_crci = resource->end;
1682
1683        uport->iotype = UPIO_MEM;
1684        uport->fifosize = UART_FIFOSIZE;
1685        uport->ops = &msm_hs_ops;
1686        uport->flags = UPF_BOOT_AUTOCONF;
1687        uport->uartclk = UARTCLK;
1688        msm_uport->imr_reg = 0x0;
1689        msm_uport->clk = clk_get(&pdev->dev, "uartdm_clk");
1690        if (IS_ERR(msm_uport->clk))
1691                return PTR_ERR(msm_uport->clk);
1692
1693        ret = uartdm_init_port(uport);
1694        if (unlikely(ret))
1695                return ret;
1696
1697        msm_uport->clk_state = MSM_HS_CLK_PORT_OFF;
1698        hrtimer_init(&msm_uport->clk_off_timer, CLOCK_MONOTONIC,
1699                     HRTIMER_MODE_REL);
1700        msm_uport->clk_off_timer.function = msm_hs_clk_off_retry;
1701        msm_uport->clk_off_delay = ktime_set(0, 1000000);  /* 1ms */
1702
1703        uport->line = pdev->id;
1704        return uart_add_one_port(&msm_hs_driver, uport);
1705}
1706
1707static int __init msm_serial_hs_init(void)
1708{
1709        int ret, i;
1710
1711        /* Init all UARTS as non-configured */
1712        for (i = 0; i < UARTDM_NR; i++)
1713                q_uart_port[i].uport.type = PORT_UNKNOWN;
1714
1715        msm_hs_workqueue = create_singlethread_workqueue("msm_serial_hs");
1716        if (unlikely(!msm_hs_workqueue))
1717                return -ENOMEM;
1718
1719        ret = uart_register_driver(&msm_hs_driver);
1720        if (unlikely(ret)) {
1721                printk(KERN_ERR "%s failed to load\n", __func__);
1722                goto err_uart_register_driver;
1723        }
1724
1725        ret = platform_driver_register(&msm_serial_hs_platform_driver);
1726        if (ret) {
1727                printk(KERN_ERR "%s failed to load\n", __func__);
1728                goto err_platform_driver_register;
1729        }
1730
1731        return ret;
1732
1733err_platform_driver_register:
1734        uart_unregister_driver(&msm_hs_driver);
1735err_uart_register_driver:
1736        destroy_workqueue(msm_hs_workqueue);
1737        return ret;
1738}
1739module_init(msm_serial_hs_init);
1740
1741/*
1742 *  Called by the upper layer when port is closed.
1743 *     - Disables the port
1744 *     - Unhook the ISR
1745 */
1746static void msm_hs_shutdown(struct uart_port *uport)
1747{
1748        unsigned long flags;
1749        struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1750
1751        BUG_ON(msm_uport->rx.flush < FLUSH_STOP);
1752
1753        spin_lock_irqsave(&uport->lock, flags);
1754        clk_enable(msm_uport->clk);
1755
1756        /* Disable the transmitter */
1757        msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_DISABLE_BMSK);
1758        /* Disable the receiver */
1759        msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_DISABLE_BMSK);
1760
1761        pm_runtime_disable(uport->dev);
1762        pm_runtime_set_suspended(uport->dev);
1763
1764        /* Free the interrupt */
1765        free_irq(uport->irq, msm_uport);
1766        if (use_low_power_rx_wakeup(msm_uport))
1767                free_irq(msm_uport->rx_wakeup.irq, msm_uport);
1768
1769        msm_uport->imr_reg = 0;
1770        msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1771
1772        wait_event(msm_uport->rx.wait, msm_uport->rx.flush == FLUSH_SHUTDOWN);
1773
1774        clk_disable(msm_uport->clk);  /* to balance local clk_enable() */
1775        if (msm_uport->clk_state != MSM_HS_CLK_OFF)
1776                clk_disable(msm_uport->clk);  /* to balance clk_state */
1777        msm_uport->clk_state = MSM_HS_CLK_PORT_OFF;
1778
1779        dma_unmap_single(uport->dev, msm_uport->tx.dma_base,
1780                         UART_XMIT_SIZE, DMA_TO_DEVICE);
1781
1782        spin_unlock_irqrestore(&uport->lock, flags);
1783
1784        if (cancel_work_sync(&msm_uport->rx.tty_work))
1785                msm_hs_tty_flip_buffer_work(&msm_uport->rx.tty_work);
1786}
1787
1788static void __exit msm_serial_hs_exit(void)
1789{
1790        flush_workqueue(msm_hs_workqueue);
1791        destroy_workqueue(msm_hs_workqueue);
1792        platform_driver_unregister(&msm_serial_hs_platform_driver);
1793        uart_unregister_driver(&msm_hs_driver);
1794}
1795module_exit(msm_serial_hs_exit);
1796
1797#ifdef CONFIG_PM_RUNTIME
1798static int msm_hs_runtime_idle(struct device *dev)
1799{
1800        /*
1801         * returning success from idle results in runtime suspend to be
1802         * called
1803         */
1804        return 0;
1805}
1806
1807static int msm_hs_runtime_resume(struct device *dev)
1808{
1809        struct platform_device *pdev = container_of(dev, struct
1810                                                    platform_device, dev);
1811        struct msm_hs_port *msm_uport = &q_uart_port[pdev->id];
1812
1813        msm_hs_request_clock_on(&msm_uport->uport);
1814        return 0;
1815}
1816
1817static int msm_hs_runtime_suspend(struct device *dev)
1818{
1819        struct platform_device *pdev = container_of(dev, struct
1820                                                    platform_device, dev);
1821        struct msm_hs_port *msm_uport = &q_uart_port[pdev->id];
1822
1823        msm_hs_request_clock_off(&msm_uport->uport);
1824        return 0;
1825}
1826#else
1827#define msm_hs_runtime_idle NULL
1828#define msm_hs_runtime_resume NULL
1829#define msm_hs_runtime_suspend NULL
1830#endif
1831
1832static const struct dev_pm_ops msm_hs_dev_pm_ops = {
1833        .runtime_suspend = msm_hs_runtime_suspend,
1834        .runtime_resume  = msm_hs_runtime_resume,
1835        .runtime_idle    = msm_hs_runtime_idle,
1836};
1837
1838static struct platform_driver msm_serial_hs_platform_driver = {
1839        .probe = msm_hs_probe,
1840        .remove = msm_hs_remove,
1841        .driver = {
1842                .name = "msm_serial_hs",
1843                .owner = THIS_MODULE,
1844                .pm   = &msm_hs_dev_pm_ops,
1845        },
1846};
1847
1848static struct uart_driver msm_hs_driver = {
1849        .owner = THIS_MODULE,
1850        .driver_name = "msm_serial_hs",
1851        .dev_name = "ttyHS",
1852        .nr = UARTDM_NR,
1853        .cons = 0,
1854};
1855
1856static struct uart_ops msm_hs_ops = {
1857        .tx_empty = msm_hs_tx_empty,
1858        .set_mctrl = msm_hs_set_mctrl_locked,
1859        .get_mctrl = msm_hs_get_mctrl_locked,
1860        .stop_tx = msm_hs_stop_tx_locked,
1861        .start_tx = msm_hs_start_tx_locked,
1862        .stop_rx = msm_hs_stop_rx_locked,
1863        .enable_ms = msm_hs_enable_ms_locked,
1864        .break_ctl = msm_hs_break_ctl,
1865        .startup = msm_hs_startup,
1866        .shutdown = msm_hs_shutdown,
1867        .set_termios = msm_hs_set_termios,
1868        .pm = msm_hs_pm,
1869        .type = msm_hs_type,
1870        .config_port = msm_hs_config_port,
1871        .release_port = msm_hs_release_port,
1872        .request_port = msm_hs_request_port,
1873};
1874
1875MODULE_DESCRIPTION("High Speed UART Driver for the MSM chipset");
1876MODULE_VERSION("1.2");
1877MODULE_LICENSE("GPL v2");
1878