linux/drivers/usb/core/hcd.c
<<
>>
Prefs
   1/*
   2 * (C) Copyright Linus Torvalds 1999
   3 * (C) Copyright Johannes Erdfelt 1999-2001
   4 * (C) Copyright Andreas Gal 1999
   5 * (C) Copyright Gregory P. Smith 1999
   6 * (C) Copyright Deti Fliegl 1999
   7 * (C) Copyright Randy Dunlap 2000
   8 * (C) Copyright David Brownell 2000-2002
   9 * 
  10 * This program is free software; you can redistribute it and/or modify it
  11 * under the terms of the GNU General Public License as published by the
  12 * Free Software Foundation; either version 2 of the License, or (at your
  13 * option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  17 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  18 * for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software Foundation,
  22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/bcd.h>
  26#include <linux/module.h>
  27#include <linux/version.h>
  28#include <linux/kernel.h>
  29#include <linux/slab.h>
  30#include <linux/completion.h>
  31#include <linux/utsname.h>
  32#include <linux/mm.h>
  33#include <asm/io.h>
  34#include <linux/device.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/mutex.h>
  37#include <asm/irq.h>
  38#include <asm/byteorder.h>
  39#include <asm/unaligned.h>
  40#include <linux/platform_device.h>
  41#include <linux/workqueue.h>
  42#include <linux/pm_runtime.h>
  43
  44#include <linux/usb.h>
  45#include <linux/usb/hcd.h>
  46
  47#include "usb.h"
  48
  49
  50/*-------------------------------------------------------------------------*/
  51
  52/*
  53 * USB Host Controller Driver framework
  54 *
  55 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
  56 * HCD-specific behaviors/bugs.
  57 *
  58 * This does error checks, tracks devices and urbs, and delegates to a
  59 * "hc_driver" only for code (and data) that really needs to know about
  60 * hardware differences.  That includes root hub registers, i/o queues,
  61 * and so on ... but as little else as possible.
  62 *
  63 * Shared code includes most of the "root hub" code (these are emulated,
  64 * though each HC's hardware works differently) and PCI glue, plus request
  65 * tracking overhead.  The HCD code should only block on spinlocks or on
  66 * hardware handshaking; blocking on software events (such as other kernel
  67 * threads releasing resources, or completing actions) is all generic.
  68 *
  69 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
  70 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
  71 * only by the hub driver ... and that neither should be seen or used by
  72 * usb client device drivers.
  73 *
  74 * Contributors of ideas or unattributed patches include: David Brownell,
  75 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
  76 *
  77 * HISTORY:
  78 * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
  79 *              associated cleanup.  "usb_hcd" still != "usb_bus".
  80 * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
  81 */
  82
  83/*-------------------------------------------------------------------------*/
  84
  85/* Keep track of which host controller drivers are loaded */
  86unsigned long usb_hcds_loaded;
  87EXPORT_SYMBOL_GPL(usb_hcds_loaded);
  88
  89/* host controllers we manage */
  90LIST_HEAD (usb_bus_list);
  91EXPORT_SYMBOL_GPL (usb_bus_list);
  92
  93/* used when allocating bus numbers */
  94#define USB_MAXBUS              64
  95struct usb_busmap {
  96        unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
  97};
  98static struct usb_busmap busmap;
  99
 100/* used when updating list of hcds */
 101DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
 102EXPORT_SYMBOL_GPL (usb_bus_list_lock);
 103
 104/* used for controlling access to virtual root hubs */
 105static DEFINE_SPINLOCK(hcd_root_hub_lock);
 106
 107/* used when updating an endpoint's URB list */
 108static DEFINE_SPINLOCK(hcd_urb_list_lock);
 109
 110/* used to protect against unlinking URBs after the device is gone */
 111static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
 112
 113/* wait queue for synchronous unlinks */
 114DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
 115
 116static inline int is_root_hub(struct usb_device *udev)
 117{
 118        return (udev->parent == NULL);
 119}
 120
 121/*-------------------------------------------------------------------------*/
 122
 123/*
 124 * Sharable chunks of root hub code.
 125 */
 126
 127/*-------------------------------------------------------------------------*/
 128#define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
 129#define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
 130
 131/* usb 3.0 root hub device descriptor */
 132static const u8 usb3_rh_dev_descriptor[18] = {
 133        0x12,       /*  __u8  bLength; */
 134        0x01,       /*  __u8  bDescriptorType; Device */
 135        0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
 136
 137        0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
 138        0x00,       /*  __u8  bDeviceSubClass; */
 139        0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
 140        0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 141
 142        0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 143        0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 144        KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 145
 146        0x03,       /*  __u8  iManufacturer; */
 147        0x02,       /*  __u8  iProduct; */
 148        0x01,       /*  __u8  iSerialNumber; */
 149        0x01        /*  __u8  bNumConfigurations; */
 150};
 151
 152/* usb 2.0 root hub device descriptor */
 153static const u8 usb2_rh_dev_descriptor [18] = {
 154        0x12,       /*  __u8  bLength; */
 155        0x01,       /*  __u8  bDescriptorType; Device */
 156        0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
 157
 158        0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
 159        0x00,       /*  __u8  bDeviceSubClass; */
 160        0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 161        0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 162
 163        0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 164        0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 165        KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 166
 167        0x03,       /*  __u8  iManufacturer; */
 168        0x02,       /*  __u8  iProduct; */
 169        0x01,       /*  __u8  iSerialNumber; */
 170        0x01        /*  __u8  bNumConfigurations; */
 171};
 172
 173/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
 174
 175/* usb 1.1 root hub device descriptor */
 176static const u8 usb11_rh_dev_descriptor [18] = {
 177        0x12,       /*  __u8  bLength; */
 178        0x01,       /*  __u8  bDescriptorType; Device */
 179        0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
 180
 181        0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
 182        0x00,       /*  __u8  bDeviceSubClass; */
 183        0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
 184        0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 185
 186        0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 187        0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
 188        KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 189
 190        0x03,       /*  __u8  iManufacturer; */
 191        0x02,       /*  __u8  iProduct; */
 192        0x01,       /*  __u8  iSerialNumber; */
 193        0x01        /*  __u8  bNumConfigurations; */
 194};
 195
 196
 197/*-------------------------------------------------------------------------*/
 198
 199/* Configuration descriptors for our root hubs */
 200
 201static const u8 fs_rh_config_descriptor [] = {
 202
 203        /* one configuration */
 204        0x09,       /*  __u8  bLength; */
 205        0x02,       /*  __u8  bDescriptorType; Configuration */
 206        0x19, 0x00, /*  __le16 wTotalLength; */
 207        0x01,       /*  __u8  bNumInterfaces; (1) */
 208        0x01,       /*  __u8  bConfigurationValue; */
 209        0x00,       /*  __u8  iConfiguration; */
 210        0xc0,       /*  __u8  bmAttributes; 
 211                                 Bit 7: must be set,
 212                                     6: Self-powered,
 213                                     5: Remote wakeup,
 214                                     4..0: resvd */
 215        0x00,       /*  __u8  MaxPower; */
 216      
 217        /* USB 1.1:
 218         * USB 2.0, single TT organization (mandatory):
 219         *      one interface, protocol 0
 220         *
 221         * USB 2.0, multiple TT organization (optional):
 222         *      two interfaces, protocols 1 (like single TT)
 223         *      and 2 (multiple TT mode) ... config is
 224         *      sometimes settable
 225         *      NOT IMPLEMENTED
 226         */
 227
 228        /* one interface */
 229        0x09,       /*  __u8  if_bLength; */
 230        0x04,       /*  __u8  if_bDescriptorType; Interface */
 231        0x00,       /*  __u8  if_bInterfaceNumber; */
 232        0x00,       /*  __u8  if_bAlternateSetting; */
 233        0x01,       /*  __u8  if_bNumEndpoints; */
 234        0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 235        0x00,       /*  __u8  if_bInterfaceSubClass; */
 236        0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 237        0x00,       /*  __u8  if_iInterface; */
 238     
 239        /* one endpoint (status change endpoint) */
 240        0x07,       /*  __u8  ep_bLength; */
 241        0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 242        0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 243        0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 244        0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
 245        0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
 246};
 247
 248static const u8 hs_rh_config_descriptor [] = {
 249
 250        /* one configuration */
 251        0x09,       /*  __u8  bLength; */
 252        0x02,       /*  __u8  bDescriptorType; Configuration */
 253        0x19, 0x00, /*  __le16 wTotalLength; */
 254        0x01,       /*  __u8  bNumInterfaces; (1) */
 255        0x01,       /*  __u8  bConfigurationValue; */
 256        0x00,       /*  __u8  iConfiguration; */
 257        0xc0,       /*  __u8  bmAttributes; 
 258                                 Bit 7: must be set,
 259                                     6: Self-powered,
 260                                     5: Remote wakeup,
 261                                     4..0: resvd */
 262        0x00,       /*  __u8  MaxPower; */
 263      
 264        /* USB 1.1:
 265         * USB 2.0, single TT organization (mandatory):
 266         *      one interface, protocol 0
 267         *
 268         * USB 2.0, multiple TT organization (optional):
 269         *      two interfaces, protocols 1 (like single TT)
 270         *      and 2 (multiple TT mode) ... config is
 271         *      sometimes settable
 272         *      NOT IMPLEMENTED
 273         */
 274
 275        /* one interface */
 276        0x09,       /*  __u8  if_bLength; */
 277        0x04,       /*  __u8  if_bDescriptorType; Interface */
 278        0x00,       /*  __u8  if_bInterfaceNumber; */
 279        0x00,       /*  __u8  if_bAlternateSetting; */
 280        0x01,       /*  __u8  if_bNumEndpoints; */
 281        0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 282        0x00,       /*  __u8  if_bInterfaceSubClass; */
 283        0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 284        0x00,       /*  __u8  if_iInterface; */
 285     
 286        /* one endpoint (status change endpoint) */
 287        0x07,       /*  __u8  ep_bLength; */
 288        0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 289        0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 290        0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 291                    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 292                     * see hub.c:hub_configure() for details. */
 293        (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 294        0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 295};
 296
 297static const u8 ss_rh_config_descriptor[] = {
 298        /* one configuration */
 299        0x09,       /*  __u8  bLength; */
 300        0x02,       /*  __u8  bDescriptorType; Configuration */
 301        0x1f, 0x00, /*  __le16 wTotalLength; */
 302        0x01,       /*  __u8  bNumInterfaces; (1) */
 303        0x01,       /*  __u8  bConfigurationValue; */
 304        0x00,       /*  __u8  iConfiguration; */
 305        0xc0,       /*  __u8  bmAttributes;
 306                                 Bit 7: must be set,
 307                                     6: Self-powered,
 308                                     5: Remote wakeup,
 309                                     4..0: resvd */
 310        0x00,       /*  __u8  MaxPower; */
 311
 312        /* one interface */
 313        0x09,       /*  __u8  if_bLength; */
 314        0x04,       /*  __u8  if_bDescriptorType; Interface */
 315        0x00,       /*  __u8  if_bInterfaceNumber; */
 316        0x00,       /*  __u8  if_bAlternateSetting; */
 317        0x01,       /*  __u8  if_bNumEndpoints; */
 318        0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 319        0x00,       /*  __u8  if_bInterfaceSubClass; */
 320        0x00,       /*  __u8  if_bInterfaceProtocol; */
 321        0x00,       /*  __u8  if_iInterface; */
 322
 323        /* one endpoint (status change endpoint) */
 324        0x07,       /*  __u8  ep_bLength; */
 325        0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 326        0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 327        0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 328                    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 329                     * see hub.c:hub_configure() for details. */
 330        (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 331        0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 332
 333        /* one SuperSpeed endpoint companion descriptor */
 334        0x06,        /* __u8 ss_bLength */
 335        0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
 336        0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
 337        0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
 338        0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
 339};
 340
 341/* authorized_default behaviour:
 342 * -1 is authorized for all devices except wireless (old behaviour)
 343 * 0 is unauthorized for all devices
 344 * 1 is authorized for all devices
 345 */
 346static int authorized_default = -1;
 347module_param(authorized_default, int, S_IRUGO|S_IWUSR);
 348MODULE_PARM_DESC(authorized_default,
 349                "Default USB device authorization: 0 is not authorized, 1 is "
 350                "authorized, -1 is authorized except for wireless USB (default, "
 351                "old behaviour");
 352/*-------------------------------------------------------------------------*/
 353
 354/**
 355 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
 356 * @s: Null-terminated ASCII (actually ISO-8859-1) string
 357 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
 358 * @len: Length (in bytes; may be odd) of descriptor buffer.
 359 *
 360 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
 361 * buflen, whichever is less.
 362 *
 363 * USB String descriptors can contain at most 126 characters; input
 364 * strings longer than that are truncated.
 365 */
 366static unsigned
 367ascii2desc(char const *s, u8 *buf, unsigned len)
 368{
 369        unsigned n, t = 2 + 2*strlen(s);
 370
 371        if (t > 254)
 372                t = 254;        /* Longest possible UTF string descriptor */
 373        if (len > t)
 374                len = t;
 375
 376        t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
 377
 378        n = len;
 379        while (n--) {
 380                *buf++ = t;
 381                if (!n--)
 382                        break;
 383                *buf++ = t >> 8;
 384                t = (unsigned char)*s++;
 385        }
 386        return len;
 387}
 388
 389/**
 390 * rh_string() - provides string descriptors for root hub
 391 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
 392 * @hcd: the host controller for this root hub
 393 * @data: buffer for output packet
 394 * @len: length of the provided buffer
 395 *
 396 * Produces either a manufacturer, product or serial number string for the
 397 * virtual root hub device.
 398 * Returns the number of bytes filled in: the length of the descriptor or
 399 * of the provided buffer, whichever is less.
 400 */
 401static unsigned
 402rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
 403{
 404        char buf[100];
 405        char const *s;
 406        static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
 407
 408        // language ids
 409        switch (id) {
 410        case 0:
 411                /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
 412                /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
 413                if (len > 4)
 414                        len = 4;
 415                memcpy(data, langids, len);
 416                return len;
 417        case 1:
 418                /* Serial number */
 419                s = hcd->self.bus_name;
 420                break;
 421        case 2:
 422                /* Product name */
 423                s = hcd->product_desc;
 424                break;
 425        case 3:
 426                /* Manufacturer */
 427                snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
 428                        init_utsname()->release, hcd->driver->description);
 429                s = buf;
 430                break;
 431        default:
 432                /* Can't happen; caller guarantees it */
 433                return 0;
 434        }
 435
 436        return ascii2desc(s, data, len);
 437}
 438
 439
 440/* Root hub control transfers execute synchronously */
 441static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
 442{
 443        struct usb_ctrlrequest *cmd;
 444        u16             typeReq, wValue, wIndex, wLength;
 445        u8              *ubuf = urb->transfer_buffer;
 446        /*
 447         * tbuf should be as big as the BOS descriptor and
 448         * the USB hub descriptor.
 449         */
 450        u8              tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE]
 451                __attribute__((aligned(4)));
 452        const u8        *bufp = tbuf;
 453        unsigned        len = 0;
 454        int             status;
 455        u8              patch_wakeup = 0;
 456        u8              patch_protocol = 0;
 457
 458        might_sleep();
 459
 460        spin_lock_irq(&hcd_root_hub_lock);
 461        status = usb_hcd_link_urb_to_ep(hcd, urb);
 462        spin_unlock_irq(&hcd_root_hub_lock);
 463        if (status)
 464                return status;
 465        urb->hcpriv = hcd;      /* Indicate it's queued */
 466
 467        cmd = (struct usb_ctrlrequest *) urb->setup_packet;
 468        typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
 469        wValue   = le16_to_cpu (cmd->wValue);
 470        wIndex   = le16_to_cpu (cmd->wIndex);
 471        wLength  = le16_to_cpu (cmd->wLength);
 472
 473        if (wLength > urb->transfer_buffer_length)
 474                goto error;
 475
 476        urb->actual_length = 0;
 477        switch (typeReq) {
 478
 479        /* DEVICE REQUESTS */
 480
 481        /* The root hub's remote wakeup enable bit is implemented using
 482         * driver model wakeup flags.  If this system supports wakeup
 483         * through USB, userspace may change the default "allow wakeup"
 484         * policy through sysfs or these calls.
 485         *
 486         * Most root hubs support wakeup from downstream devices, for
 487         * runtime power management (disabling USB clocks and reducing
 488         * VBUS power usage).  However, not all of them do so; silicon,
 489         * board, and BIOS bugs here are not uncommon, so these can't
 490         * be treated quite like external hubs.
 491         *
 492         * Likewise, not all root hubs will pass wakeup events upstream,
 493         * to wake up the whole system.  So don't assume root hub and
 494         * controller capabilities are identical.
 495         */
 496
 497        case DeviceRequest | USB_REQ_GET_STATUS:
 498                tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
 499                                        << USB_DEVICE_REMOTE_WAKEUP)
 500                                | (1 << USB_DEVICE_SELF_POWERED);
 501                tbuf [1] = 0;
 502                len = 2;
 503                break;
 504        case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
 505                if (wValue == USB_DEVICE_REMOTE_WAKEUP)
 506                        device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
 507                else
 508                        goto error;
 509                break;
 510        case DeviceOutRequest | USB_REQ_SET_FEATURE:
 511                if (device_can_wakeup(&hcd->self.root_hub->dev)
 512                                && wValue == USB_DEVICE_REMOTE_WAKEUP)
 513                        device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
 514                else
 515                        goto error;
 516                break;
 517        case DeviceRequest | USB_REQ_GET_CONFIGURATION:
 518                tbuf [0] = 1;
 519                len = 1;
 520                        /* FALLTHROUGH */
 521        case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
 522                break;
 523        case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 524                switch (wValue & 0xff00) {
 525                case USB_DT_DEVICE << 8:
 526                        switch (hcd->speed) {
 527                        case HCD_USB3:
 528                                bufp = usb3_rh_dev_descriptor;
 529                                break;
 530                        case HCD_USB2:
 531                                bufp = usb2_rh_dev_descriptor;
 532                                break;
 533                        case HCD_USB11:
 534                                bufp = usb11_rh_dev_descriptor;
 535                                break;
 536                        default:
 537                                goto error;
 538                        }
 539                        len = 18;
 540                        if (hcd->has_tt)
 541                                patch_protocol = 1;
 542                        break;
 543                case USB_DT_CONFIG << 8:
 544                        switch (hcd->speed) {
 545                        case HCD_USB3:
 546                                bufp = ss_rh_config_descriptor;
 547                                len = sizeof ss_rh_config_descriptor;
 548                                break;
 549                        case HCD_USB2:
 550                                bufp = hs_rh_config_descriptor;
 551                                len = sizeof hs_rh_config_descriptor;
 552                                break;
 553                        case HCD_USB11:
 554                                bufp = fs_rh_config_descriptor;
 555                                len = sizeof fs_rh_config_descriptor;
 556                                break;
 557                        default:
 558                                goto error;
 559                        }
 560                        if (device_can_wakeup(&hcd->self.root_hub->dev))
 561                                patch_wakeup = 1;
 562                        break;
 563                case USB_DT_STRING << 8:
 564                        if ((wValue & 0xff) < 4)
 565                                urb->actual_length = rh_string(wValue & 0xff,
 566                                                hcd, ubuf, wLength);
 567                        else /* unsupported IDs --> "protocol stall" */
 568                                goto error;
 569                        break;
 570                case USB_DT_BOS << 8:
 571                        goto nongeneric;
 572                default:
 573                        goto error;
 574                }
 575                break;
 576        case DeviceRequest | USB_REQ_GET_INTERFACE:
 577                tbuf [0] = 0;
 578                len = 1;
 579                        /* FALLTHROUGH */
 580        case DeviceOutRequest | USB_REQ_SET_INTERFACE:
 581                break;
 582        case DeviceOutRequest | USB_REQ_SET_ADDRESS:
 583                // wValue == urb->dev->devaddr
 584                dev_dbg (hcd->self.controller, "root hub device address %d\n",
 585                        wValue);
 586                break;
 587
 588        /* INTERFACE REQUESTS (no defined feature/status flags) */
 589
 590        /* ENDPOINT REQUESTS */
 591
 592        case EndpointRequest | USB_REQ_GET_STATUS:
 593                // ENDPOINT_HALT flag
 594                tbuf [0] = 0;
 595                tbuf [1] = 0;
 596                len = 2;
 597                        /* FALLTHROUGH */
 598        case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
 599        case EndpointOutRequest | USB_REQ_SET_FEATURE:
 600                dev_dbg (hcd->self.controller, "no endpoint features yet\n");
 601                break;
 602
 603        /* CLASS REQUESTS (and errors) */
 604
 605        default:
 606nongeneric:
 607                /* non-generic request */
 608                switch (typeReq) {
 609                case GetHubStatus:
 610                case GetPortStatus:
 611                        len = 4;
 612                        break;
 613                case GetHubDescriptor:
 614                        len = sizeof (struct usb_hub_descriptor);
 615                        break;
 616                case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 617                        /* len is returned by hub_control */
 618                        break;
 619                }
 620                status = hcd->driver->hub_control (hcd,
 621                        typeReq, wValue, wIndex,
 622                        tbuf, wLength);
 623
 624                if (typeReq == GetHubDescriptor)
 625                        usb_hub_adjust_deviceremovable(hcd->self.root_hub,
 626                                (struct usb_hub_descriptor *)tbuf);
 627                break;
 628error:
 629                /* "protocol stall" on error */
 630                status = -EPIPE;
 631        }
 632
 633        if (status < 0) {
 634                len = 0;
 635                if (status != -EPIPE) {
 636                        dev_dbg (hcd->self.controller,
 637                                "CTRL: TypeReq=0x%x val=0x%x "
 638                                "idx=0x%x len=%d ==> %d\n",
 639                                typeReq, wValue, wIndex,
 640                                wLength, status);
 641                }
 642        } else if (status > 0) {
 643                /* hub_control may return the length of data copied. */
 644                len = status;
 645                status = 0;
 646        }
 647        if (len) {
 648                if (urb->transfer_buffer_length < len)
 649                        len = urb->transfer_buffer_length;
 650                urb->actual_length = len;
 651                // always USB_DIR_IN, toward host
 652                memcpy (ubuf, bufp, len);
 653
 654                /* report whether RH hardware supports remote wakeup */
 655                if (patch_wakeup &&
 656                                len > offsetof (struct usb_config_descriptor,
 657                                                bmAttributes))
 658                        ((struct usb_config_descriptor *)ubuf)->bmAttributes
 659                                |= USB_CONFIG_ATT_WAKEUP;
 660
 661                /* report whether RH hardware has an integrated TT */
 662                if (patch_protocol &&
 663                                len > offsetof(struct usb_device_descriptor,
 664                                                bDeviceProtocol))
 665                        ((struct usb_device_descriptor *) ubuf)->
 666                                bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
 667        }
 668
 669        /* any errors get returned through the urb completion */
 670        spin_lock_irq(&hcd_root_hub_lock);
 671        usb_hcd_unlink_urb_from_ep(hcd, urb);
 672
 673        /* This peculiar use of spinlocks echoes what real HC drivers do.
 674         * Avoiding calls to local_irq_disable/enable makes the code
 675         * RT-friendly.
 676         */
 677        spin_unlock(&hcd_root_hub_lock);
 678        usb_hcd_giveback_urb(hcd, urb, status);
 679        spin_lock(&hcd_root_hub_lock);
 680
 681        spin_unlock_irq(&hcd_root_hub_lock);
 682        return 0;
 683}
 684
 685/*-------------------------------------------------------------------------*/
 686
 687/*
 688 * Root Hub interrupt transfers are polled using a timer if the
 689 * driver requests it; otherwise the driver is responsible for
 690 * calling usb_hcd_poll_rh_status() when an event occurs.
 691 *
 692 * Completions are called in_interrupt(), but they may or may not
 693 * be in_irq().
 694 */
 695void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
 696{
 697        struct urb      *urb;
 698        int             length;
 699        unsigned long   flags;
 700        char            buffer[6];      /* Any root hubs with > 31 ports? */
 701
 702        if (unlikely(!hcd->rh_pollable))
 703                return;
 704        if (!hcd->uses_new_polling && !hcd->status_urb)
 705                return;
 706
 707        length = hcd->driver->hub_status_data(hcd, buffer);
 708        if (length > 0) {
 709
 710                /* try to complete the status urb */
 711                spin_lock_irqsave(&hcd_root_hub_lock, flags);
 712                urb = hcd->status_urb;
 713                if (urb) {
 714                        clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 715                        hcd->status_urb = NULL;
 716                        urb->actual_length = length;
 717                        memcpy(urb->transfer_buffer, buffer, length);
 718
 719                        usb_hcd_unlink_urb_from_ep(hcd, urb);
 720                        spin_unlock(&hcd_root_hub_lock);
 721                        usb_hcd_giveback_urb(hcd, urb, 0);
 722                        spin_lock(&hcd_root_hub_lock);
 723                } else {
 724                        length = 0;
 725                        set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 726                }
 727                spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 728        }
 729
 730        /* The USB 2.0 spec says 256 ms.  This is close enough and won't
 731         * exceed that limit if HZ is 100. The math is more clunky than
 732         * maybe expected, this is to make sure that all timers for USB devices
 733         * fire at the same time to give the CPU a break in between */
 734        if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
 735                        (length == 0 && hcd->status_urb != NULL))
 736                mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 737}
 738EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
 739
 740/* timer callback */
 741static void rh_timer_func (unsigned long _hcd)
 742{
 743        usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
 744}
 745
 746/*-------------------------------------------------------------------------*/
 747
 748static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
 749{
 750        int             retval;
 751        unsigned long   flags;
 752        unsigned        len = 1 + (urb->dev->maxchild / 8);
 753
 754        spin_lock_irqsave (&hcd_root_hub_lock, flags);
 755        if (hcd->status_urb || urb->transfer_buffer_length < len) {
 756                dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
 757                retval = -EINVAL;
 758                goto done;
 759        }
 760
 761        retval = usb_hcd_link_urb_to_ep(hcd, urb);
 762        if (retval)
 763                goto done;
 764
 765        hcd->status_urb = urb;
 766        urb->hcpriv = hcd;      /* indicate it's queued */
 767        if (!hcd->uses_new_polling)
 768                mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 769
 770        /* If a status change has already occurred, report it ASAP */
 771        else if (HCD_POLL_PENDING(hcd))
 772                mod_timer(&hcd->rh_timer, jiffies);
 773        retval = 0;
 774 done:
 775        spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
 776        return retval;
 777}
 778
 779static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
 780{
 781        if (usb_endpoint_xfer_int(&urb->ep->desc))
 782                return rh_queue_status (hcd, urb);
 783        if (usb_endpoint_xfer_control(&urb->ep->desc))
 784                return rh_call_control (hcd, urb);
 785        return -EINVAL;
 786}
 787
 788/*-------------------------------------------------------------------------*/
 789
 790/* Unlinks of root-hub control URBs are legal, but they don't do anything
 791 * since these URBs always execute synchronously.
 792 */
 793static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 794{
 795        unsigned long   flags;
 796        int             rc;
 797
 798        spin_lock_irqsave(&hcd_root_hub_lock, flags);
 799        rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 800        if (rc)
 801                goto done;
 802
 803        if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
 804                ;       /* Do nothing */
 805
 806        } else {                                /* Status URB */
 807                if (!hcd->uses_new_polling)
 808                        del_timer (&hcd->rh_timer);
 809                if (urb == hcd->status_urb) {
 810                        hcd->status_urb = NULL;
 811                        usb_hcd_unlink_urb_from_ep(hcd, urb);
 812
 813                        spin_unlock(&hcd_root_hub_lock);
 814                        usb_hcd_giveback_urb(hcd, urb, status);
 815                        spin_lock(&hcd_root_hub_lock);
 816                }
 817        }
 818 done:
 819        spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 820        return rc;
 821}
 822
 823
 824
 825/*
 826 * Show & store the current value of authorized_default
 827 */
 828static ssize_t usb_host_authorized_default_show(struct device *dev,
 829                                                struct device_attribute *attr,
 830                                                char *buf)
 831{
 832        struct usb_device *rh_usb_dev = to_usb_device(dev);
 833        struct usb_bus *usb_bus = rh_usb_dev->bus;
 834        struct usb_hcd *usb_hcd;
 835
 836        if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
 837                return -ENODEV;
 838        usb_hcd = bus_to_hcd(usb_bus);
 839        return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
 840}
 841
 842static ssize_t usb_host_authorized_default_store(struct device *dev,
 843                                                 struct device_attribute *attr,
 844                                                 const char *buf, size_t size)
 845{
 846        ssize_t result;
 847        unsigned val;
 848        struct usb_device *rh_usb_dev = to_usb_device(dev);
 849        struct usb_bus *usb_bus = rh_usb_dev->bus;
 850        struct usb_hcd *usb_hcd;
 851
 852        if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
 853                return -ENODEV;
 854        usb_hcd = bus_to_hcd(usb_bus);
 855        result = sscanf(buf, "%u\n", &val);
 856        if (result == 1) {
 857                usb_hcd->authorized_default = val? 1 : 0;
 858                result = size;
 859        }
 860        else
 861                result = -EINVAL;
 862        return result;
 863}
 864
 865static DEVICE_ATTR(authorized_default, 0644,
 866            usb_host_authorized_default_show,
 867            usb_host_authorized_default_store);
 868
 869
 870/* Group all the USB bus attributes */
 871static struct attribute *usb_bus_attrs[] = {
 872                &dev_attr_authorized_default.attr,
 873                NULL,
 874};
 875
 876static struct attribute_group usb_bus_attr_group = {
 877        .name = NULL,   /* we want them in the same directory */
 878        .attrs = usb_bus_attrs,
 879};
 880
 881
 882
 883/*-------------------------------------------------------------------------*/
 884
 885/**
 886 * usb_bus_init - shared initialization code
 887 * @bus: the bus structure being initialized
 888 *
 889 * This code is used to initialize a usb_bus structure, memory for which is
 890 * separately managed.
 891 */
 892static void usb_bus_init (struct usb_bus *bus)
 893{
 894        memset (&bus->devmap, 0, sizeof(struct usb_devmap));
 895
 896        bus->devnum_next = 1;
 897
 898        bus->root_hub = NULL;
 899        bus->busnum = -1;
 900        bus->bandwidth_allocated = 0;
 901        bus->bandwidth_int_reqs  = 0;
 902        bus->bandwidth_isoc_reqs = 0;
 903
 904        INIT_LIST_HEAD (&bus->bus_list);
 905}
 906
 907/*-------------------------------------------------------------------------*/
 908
 909/**
 910 * usb_register_bus - registers the USB host controller with the usb core
 911 * @bus: pointer to the bus to register
 912 * Context: !in_interrupt()
 913 *
 914 * Assigns a bus number, and links the controller into usbcore data
 915 * structures so that it can be seen by scanning the bus list.
 916 */
 917static int usb_register_bus(struct usb_bus *bus)
 918{
 919        int result = -E2BIG;
 920        int busnum;
 921
 922        mutex_lock(&usb_bus_list_lock);
 923        busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
 924        if (busnum >= USB_MAXBUS) {
 925                printk (KERN_ERR "%s: too many buses\n", usbcore_name);
 926                goto error_find_busnum;
 927        }
 928        set_bit (busnum, busmap.busmap);
 929        bus->busnum = busnum;
 930
 931        /* Add it to the local list of buses */
 932        list_add (&bus->bus_list, &usb_bus_list);
 933        mutex_unlock(&usb_bus_list_lock);
 934
 935        usb_notify_add_bus(bus);
 936
 937        dev_info (bus->controller, "new USB bus registered, assigned bus "
 938                  "number %d\n", bus->busnum);
 939        return 0;
 940
 941error_find_busnum:
 942        mutex_unlock(&usb_bus_list_lock);
 943        return result;
 944}
 945
 946/**
 947 * usb_deregister_bus - deregisters the USB host controller
 948 * @bus: pointer to the bus to deregister
 949 * Context: !in_interrupt()
 950 *
 951 * Recycles the bus number, and unlinks the controller from usbcore data
 952 * structures so that it won't be seen by scanning the bus list.
 953 */
 954static void usb_deregister_bus (struct usb_bus *bus)
 955{
 956        dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
 957
 958        /*
 959         * NOTE: make sure that all the devices are removed by the
 960         * controller code, as well as having it call this when cleaning
 961         * itself up
 962         */
 963        mutex_lock(&usb_bus_list_lock);
 964        list_del (&bus->bus_list);
 965        mutex_unlock(&usb_bus_list_lock);
 966
 967        usb_notify_remove_bus(bus);
 968
 969        clear_bit (bus->busnum, busmap.busmap);
 970}
 971
 972/**
 973 * register_root_hub - called by usb_add_hcd() to register a root hub
 974 * @hcd: host controller for this root hub
 975 *
 976 * This function registers the root hub with the USB subsystem.  It sets up
 977 * the device properly in the device tree and then calls usb_new_device()
 978 * to register the usb device.  It also assigns the root hub's USB address
 979 * (always 1).
 980 */
 981static int register_root_hub(struct usb_hcd *hcd)
 982{
 983        struct device *parent_dev = hcd->self.controller;
 984        struct usb_device *usb_dev = hcd->self.root_hub;
 985        const int devnum = 1;
 986        int retval;
 987
 988        usb_dev->devnum = devnum;
 989        usb_dev->bus->devnum_next = devnum + 1;
 990        memset (&usb_dev->bus->devmap.devicemap, 0,
 991                        sizeof usb_dev->bus->devmap.devicemap);
 992        set_bit (devnum, usb_dev->bus->devmap.devicemap);
 993        usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
 994
 995        mutex_lock(&usb_bus_list_lock);
 996
 997        usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
 998        retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
 999        if (retval != sizeof usb_dev->descriptor) {
1000                mutex_unlock(&usb_bus_list_lock);
1001                dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1002                                dev_name(&usb_dev->dev), retval);
1003                return (retval < 0) ? retval : -EMSGSIZE;
1004        }
1005        if (usb_dev->speed == USB_SPEED_SUPER) {
1006                retval = usb_get_bos_descriptor(usb_dev);
1007                if (retval < 0) {
1008                        mutex_unlock(&usb_bus_list_lock);
1009                        dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1010                                        dev_name(&usb_dev->dev), retval);
1011                        return retval;
1012                }
1013        }
1014
1015        retval = usb_new_device (usb_dev);
1016        if (retval) {
1017                dev_err (parent_dev, "can't register root hub for %s, %d\n",
1018                                dev_name(&usb_dev->dev), retval);
1019        } else {
1020                spin_lock_irq (&hcd_root_hub_lock);
1021                hcd->rh_registered = 1;
1022                spin_unlock_irq (&hcd_root_hub_lock);
1023
1024                /* Did the HC die before the root hub was registered? */
1025                if (HCD_DEAD(hcd))
1026                        usb_hc_died (hcd);      /* This time clean up */
1027        }
1028        mutex_unlock(&usb_bus_list_lock);
1029
1030        return retval;
1031}
1032
1033/*
1034 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1035 * @bus: the bus which the root hub belongs to
1036 * @portnum: the port which is being resumed
1037 *
1038 * HCDs should call this function when they know that a resume signal is
1039 * being sent to a root-hub port.  The root hub will be prevented from
1040 * going into autosuspend until usb_hcd_end_port_resume() is called.
1041 *
1042 * The bus's private lock must be held by the caller.
1043 */
1044void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1045{
1046        unsigned bit = 1 << portnum;
1047
1048        if (!(bus->resuming_ports & bit)) {
1049                bus->resuming_ports |= bit;
1050                pm_runtime_get_noresume(&bus->root_hub->dev);
1051        }
1052}
1053EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1054
1055/*
1056 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1057 * @bus: the bus which the root hub belongs to
1058 * @portnum: the port which is being resumed
1059 *
1060 * HCDs should call this function when they know that a resume signal has
1061 * stopped being sent to a root-hub port.  The root hub will be allowed to
1062 * autosuspend again.
1063 *
1064 * The bus's private lock must be held by the caller.
1065 */
1066void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1067{
1068        unsigned bit = 1 << portnum;
1069
1070        if (bus->resuming_ports & bit) {
1071                bus->resuming_ports &= ~bit;
1072                pm_runtime_put_noidle(&bus->root_hub->dev);
1073        }
1074}
1075EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1076
1077/*-------------------------------------------------------------------------*/
1078
1079/**
1080 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1081 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1082 * @is_input: true iff the transaction sends data to the host
1083 * @isoc: true for isochronous transactions, false for interrupt ones
1084 * @bytecount: how many bytes in the transaction.
1085 *
1086 * Returns approximate bus time in nanoseconds for a periodic transaction.
1087 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1088 * scheduled in software, this function is only used for such scheduling.
1089 */
1090long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1091{
1092        unsigned long   tmp;
1093
1094        switch (speed) {
1095        case USB_SPEED_LOW:     /* INTR only */
1096                if (is_input) {
1097                        tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1098                        return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1099                } else {
1100                        tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1101                        return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1102                }
1103        case USB_SPEED_FULL:    /* ISOC or INTR */
1104                if (isoc) {
1105                        tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1106                        return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1107                } else {
1108                        tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1109                        return (9107L + BW_HOST_DELAY + tmp);
1110                }
1111        case USB_SPEED_HIGH:    /* ISOC or INTR */
1112                // FIXME adjust for input vs output
1113                if (isoc)
1114                        tmp = HS_NSECS_ISO (bytecount);
1115                else
1116                        tmp = HS_NSECS (bytecount);
1117                return tmp;
1118        default:
1119                pr_debug ("%s: bogus device speed!\n", usbcore_name);
1120                return -1;
1121        }
1122}
1123EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1124
1125
1126/*-------------------------------------------------------------------------*/
1127
1128/*
1129 * Generic HC operations.
1130 */
1131
1132/*-------------------------------------------------------------------------*/
1133
1134/**
1135 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1136 * @hcd: host controller to which @urb was submitted
1137 * @urb: URB being submitted
1138 *
1139 * Host controller drivers should call this routine in their enqueue()
1140 * method.  The HCD's private spinlock must be held and interrupts must
1141 * be disabled.  The actions carried out here are required for URB
1142 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1143 *
1144 * Returns 0 for no error, otherwise a negative error code (in which case
1145 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1146 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1147 * the private spinlock and returning.
1148 */
1149int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1150{
1151        int             rc = 0;
1152
1153        spin_lock(&hcd_urb_list_lock);
1154
1155        /* Check that the URB isn't being killed */
1156        if (unlikely(atomic_read(&urb->reject))) {
1157                rc = -EPERM;
1158                goto done;
1159        }
1160
1161        if (unlikely(!urb->ep->enabled)) {
1162                rc = -ENOENT;
1163                goto done;
1164        }
1165
1166        if (unlikely(!urb->dev->can_submit)) {
1167                rc = -EHOSTUNREACH;
1168                goto done;
1169        }
1170
1171        /*
1172         * Check the host controller's state and add the URB to the
1173         * endpoint's queue.
1174         */
1175        if (HCD_RH_RUNNING(hcd)) {
1176                urb->unlinked = 0;
1177                list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1178        } else {
1179                rc = -ESHUTDOWN;
1180                goto done;
1181        }
1182 done:
1183        spin_unlock(&hcd_urb_list_lock);
1184        return rc;
1185}
1186EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1187
1188/**
1189 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1190 * @hcd: host controller to which @urb was submitted
1191 * @urb: URB being checked for unlinkability
1192 * @status: error code to store in @urb if the unlink succeeds
1193 *
1194 * Host controller drivers should call this routine in their dequeue()
1195 * method.  The HCD's private spinlock must be held and interrupts must
1196 * be disabled.  The actions carried out here are required for making
1197 * sure than an unlink is valid.
1198 *
1199 * Returns 0 for no error, otherwise a negative error code (in which case
1200 * the dequeue() method must fail).  The possible error codes are:
1201 *
1202 *      -EIDRM: @urb was not submitted or has already completed.
1203 *              The completion function may not have been called yet.
1204 *
1205 *      -EBUSY: @urb has already been unlinked.
1206 */
1207int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1208                int status)
1209{
1210        struct list_head        *tmp;
1211
1212        /* insist the urb is still queued */
1213        list_for_each(tmp, &urb->ep->urb_list) {
1214                if (tmp == &urb->urb_list)
1215                        break;
1216        }
1217        if (tmp != &urb->urb_list)
1218                return -EIDRM;
1219
1220        /* Any status except -EINPROGRESS means something already started to
1221         * unlink this URB from the hardware.  So there's no more work to do.
1222         */
1223        if (urb->unlinked)
1224                return -EBUSY;
1225        urb->unlinked = status;
1226        return 0;
1227}
1228EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1229
1230/**
1231 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1232 * @hcd: host controller to which @urb was submitted
1233 * @urb: URB being unlinked
1234 *
1235 * Host controller drivers should call this routine before calling
1236 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1237 * interrupts must be disabled.  The actions carried out here are required
1238 * for URB completion.
1239 */
1240void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1241{
1242        /* clear all state linking urb to this dev (and hcd) */
1243        spin_lock(&hcd_urb_list_lock);
1244        list_del_init(&urb->urb_list);
1245        spin_unlock(&hcd_urb_list_lock);
1246}
1247EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1248
1249/*
1250 * Some usb host controllers can only perform dma using a small SRAM area.
1251 * The usb core itself is however optimized for host controllers that can dma
1252 * using regular system memory - like pci devices doing bus mastering.
1253 *
1254 * To support host controllers with limited dma capabilites we provide dma
1255 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1256 * For this to work properly the host controller code must first use the
1257 * function dma_declare_coherent_memory() to point out which memory area
1258 * that should be used for dma allocations.
1259 *
1260 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1261 * dma using dma_alloc_coherent() which in turn allocates from the memory
1262 * area pointed out with dma_declare_coherent_memory().
1263 *
1264 * So, to summarize...
1265 *
1266 * - We need "local" memory, canonical example being
1267 *   a small SRAM on a discrete controller being the
1268 *   only memory that the controller can read ...
1269 *   (a) "normal" kernel memory is no good, and
1270 *   (b) there's not enough to share
1271 *
1272 * - The only *portable* hook for such stuff in the
1273 *   DMA framework is dma_declare_coherent_memory()
1274 *
1275 * - So we use that, even though the primary requirement
1276 *   is that the memory be "local" (hence addressible
1277 *   by that device), not "coherent".
1278 *
1279 */
1280
1281static int hcd_alloc_coherent(struct usb_bus *bus,
1282                              gfp_t mem_flags, dma_addr_t *dma_handle,
1283                              void **vaddr_handle, size_t size,
1284                              enum dma_data_direction dir)
1285{
1286        unsigned char *vaddr;
1287
1288        if (*vaddr_handle == NULL) {
1289                WARN_ON_ONCE(1);
1290                return -EFAULT;
1291        }
1292
1293        vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1294                                 mem_flags, dma_handle);
1295        if (!vaddr)
1296                return -ENOMEM;
1297
1298        /*
1299         * Store the virtual address of the buffer at the end
1300         * of the allocated dma buffer. The size of the buffer
1301         * may be uneven so use unaligned functions instead
1302         * of just rounding up. It makes sense to optimize for
1303         * memory footprint over access speed since the amount
1304         * of memory available for dma may be limited.
1305         */
1306        put_unaligned((unsigned long)*vaddr_handle,
1307                      (unsigned long *)(vaddr + size));
1308
1309        if (dir == DMA_TO_DEVICE)
1310                memcpy(vaddr, *vaddr_handle, size);
1311
1312        *vaddr_handle = vaddr;
1313        return 0;
1314}
1315
1316static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1317                              void **vaddr_handle, size_t size,
1318                              enum dma_data_direction dir)
1319{
1320        unsigned char *vaddr = *vaddr_handle;
1321
1322        vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1323
1324        if (dir == DMA_FROM_DEVICE)
1325                memcpy(vaddr, *vaddr_handle, size);
1326
1327        hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1328
1329        *vaddr_handle = vaddr;
1330        *dma_handle = 0;
1331}
1332
1333void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1334{
1335        if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1336                dma_unmap_single(hcd->self.controller,
1337                                urb->setup_dma,
1338                                sizeof(struct usb_ctrlrequest),
1339                                DMA_TO_DEVICE);
1340        else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1341                hcd_free_coherent(urb->dev->bus,
1342                                &urb->setup_dma,
1343                                (void **) &urb->setup_packet,
1344                                sizeof(struct usb_ctrlrequest),
1345                                DMA_TO_DEVICE);
1346
1347        /* Make it safe to call this routine more than once */
1348        urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1349}
1350EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1351
1352static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1353{
1354        if (hcd->driver->unmap_urb_for_dma)
1355                hcd->driver->unmap_urb_for_dma(hcd, urb);
1356        else
1357                usb_hcd_unmap_urb_for_dma(hcd, urb);
1358}
1359
1360void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1361{
1362        enum dma_data_direction dir;
1363
1364        usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1365
1366        dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1367        if (urb->transfer_flags & URB_DMA_MAP_SG)
1368                dma_unmap_sg(hcd->self.controller,
1369                                urb->sg,
1370                                urb->num_sgs,
1371                                dir);
1372        else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1373                dma_unmap_page(hcd->self.controller,
1374                                urb->transfer_dma,
1375                                urb->transfer_buffer_length,
1376                                dir);
1377        else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1378                dma_unmap_single(hcd->self.controller,
1379                                urb->transfer_dma,
1380                                urb->transfer_buffer_length,
1381                                dir);
1382        else if (urb->transfer_flags & URB_MAP_LOCAL)
1383                hcd_free_coherent(urb->dev->bus,
1384                                &urb->transfer_dma,
1385                                &urb->transfer_buffer,
1386                                urb->transfer_buffer_length,
1387                                dir);
1388
1389        /* Make it safe to call this routine more than once */
1390        urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1391                        URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1392}
1393EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1394
1395static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1396                           gfp_t mem_flags)
1397{
1398        if (hcd->driver->map_urb_for_dma)
1399                return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1400        else
1401                return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1402}
1403
1404int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1405                            gfp_t mem_flags)
1406{
1407        enum dma_data_direction dir;
1408        int ret = 0;
1409
1410        /* Map the URB's buffers for DMA access.
1411         * Lower level HCD code should use *_dma exclusively,
1412         * unless it uses pio or talks to another transport,
1413         * or uses the provided scatter gather list for bulk.
1414         */
1415
1416        if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1417                if (hcd->self.uses_pio_for_control)
1418                        return ret;
1419                if (hcd->self.uses_dma) {
1420                        urb->setup_dma = dma_map_single(
1421                                        hcd->self.controller,
1422                                        urb->setup_packet,
1423                                        sizeof(struct usb_ctrlrequest),
1424                                        DMA_TO_DEVICE);
1425                        if (dma_mapping_error(hcd->self.controller,
1426                                                urb->setup_dma))
1427                                return -EAGAIN;
1428                        urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1429                } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1430                        ret = hcd_alloc_coherent(
1431                                        urb->dev->bus, mem_flags,
1432                                        &urb->setup_dma,
1433                                        (void **)&urb->setup_packet,
1434                                        sizeof(struct usb_ctrlrequest),
1435                                        DMA_TO_DEVICE);
1436                        if (ret)
1437                                return ret;
1438                        urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1439                }
1440        }
1441
1442        dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1443        if (urb->transfer_buffer_length != 0
1444            && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1445                if (hcd->self.uses_dma) {
1446                        if (urb->num_sgs) {
1447                                int n;
1448
1449                                /* We don't support sg for isoc transfers ! */
1450                                if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1451                                        WARN_ON(1);
1452                                        return -EINVAL;
1453                                }
1454
1455                                n = dma_map_sg(
1456                                                hcd->self.controller,
1457                                                urb->sg,
1458                                                urb->num_sgs,
1459                                                dir);
1460                                if (n <= 0)
1461                                        ret = -EAGAIN;
1462                                else
1463                                        urb->transfer_flags |= URB_DMA_MAP_SG;
1464                                urb->num_mapped_sgs = n;
1465                                if (n != urb->num_sgs)
1466                                        urb->transfer_flags |=
1467                                                        URB_DMA_SG_COMBINED;
1468                        } else if (urb->sg) {
1469                                struct scatterlist *sg = urb->sg;
1470                                urb->transfer_dma = dma_map_page(
1471                                                hcd->self.controller,
1472                                                sg_page(sg),
1473                                                sg->offset,
1474                                                urb->transfer_buffer_length,
1475                                                dir);
1476                                if (dma_mapping_error(hcd->self.controller,
1477                                                urb->transfer_dma))
1478                                        ret = -EAGAIN;
1479                                else
1480                                        urb->transfer_flags |= URB_DMA_MAP_PAGE;
1481                        } else {
1482                                urb->transfer_dma = dma_map_single(
1483                                                hcd->self.controller,
1484                                                urb->transfer_buffer,
1485                                                urb->transfer_buffer_length,
1486                                                dir);
1487                                if (dma_mapping_error(hcd->self.controller,
1488                                                urb->transfer_dma))
1489                                        ret = -EAGAIN;
1490                                else
1491                                        urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1492                        }
1493                } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1494                        ret = hcd_alloc_coherent(
1495                                        urb->dev->bus, mem_flags,
1496                                        &urb->transfer_dma,
1497                                        &urb->transfer_buffer,
1498                                        urb->transfer_buffer_length,
1499                                        dir);
1500                        if (ret == 0)
1501                                urb->transfer_flags |= URB_MAP_LOCAL;
1502                }
1503                if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1504                                URB_SETUP_MAP_LOCAL)))
1505                        usb_hcd_unmap_urb_for_dma(hcd, urb);
1506        }
1507        return ret;
1508}
1509EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1510
1511/*-------------------------------------------------------------------------*/
1512
1513/* may be called in any context with a valid urb->dev usecount
1514 * caller surrenders "ownership" of urb
1515 * expects usb_submit_urb() to have sanity checked and conditioned all
1516 * inputs in the urb
1517 */
1518int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1519{
1520        int                     status;
1521        struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1522
1523        /* increment urb's reference count as part of giving it to the HCD
1524         * (which will control it).  HCD guarantees that it either returns
1525         * an error or calls giveback(), but not both.
1526         */
1527        usb_get_urb(urb);
1528        atomic_inc(&urb->use_count);
1529        atomic_inc(&urb->dev->urbnum);
1530        usbmon_urb_submit(&hcd->self, urb);
1531
1532        /* NOTE requirements on root-hub callers (usbfs and the hub
1533         * driver, for now):  URBs' urb->transfer_buffer must be
1534         * valid and usb_buffer_{sync,unmap}() not be needed, since
1535         * they could clobber root hub response data.  Also, control
1536         * URBs must be submitted in process context with interrupts
1537         * enabled.
1538         */
1539
1540        if (is_root_hub(urb->dev)) {
1541                status = rh_urb_enqueue(hcd, urb);
1542        } else {
1543                status = map_urb_for_dma(hcd, urb, mem_flags);
1544                if (likely(status == 0)) {
1545                        status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1546                        if (unlikely(status))
1547                                unmap_urb_for_dma(hcd, urb);
1548                }
1549        }
1550
1551        if (unlikely(status)) {
1552                usbmon_urb_submit_error(&hcd->self, urb, status);
1553                urb->hcpriv = NULL;
1554                INIT_LIST_HEAD(&urb->urb_list);
1555                atomic_dec(&urb->use_count);
1556                atomic_dec(&urb->dev->urbnum);
1557                if (atomic_read(&urb->reject))
1558                        wake_up(&usb_kill_urb_queue);
1559                usb_put_urb(urb);
1560        }
1561        return status;
1562}
1563
1564/*-------------------------------------------------------------------------*/
1565
1566/* this makes the hcd giveback() the urb more quickly, by kicking it
1567 * off hardware queues (which may take a while) and returning it as
1568 * soon as practical.  we've already set up the urb's return status,
1569 * but we can't know if the callback completed already.
1570 */
1571static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1572{
1573        int             value;
1574
1575        if (is_root_hub(urb->dev))
1576                value = usb_rh_urb_dequeue(hcd, urb, status);
1577        else {
1578
1579                /* The only reason an HCD might fail this call is if
1580                 * it has not yet fully queued the urb to begin with.
1581                 * Such failures should be harmless. */
1582                value = hcd->driver->urb_dequeue(hcd, urb, status);
1583        }
1584        return value;
1585}
1586
1587/*
1588 * called in any context
1589 *
1590 * caller guarantees urb won't be recycled till both unlink()
1591 * and the urb's completion function return
1592 */
1593int usb_hcd_unlink_urb (struct urb *urb, int status)
1594{
1595        struct usb_hcd          *hcd;
1596        int                     retval = -EIDRM;
1597        unsigned long           flags;
1598
1599        /* Prevent the device and bus from going away while
1600         * the unlink is carried out.  If they are already gone
1601         * then urb->use_count must be 0, since disconnected
1602         * devices can't have any active URBs.
1603         */
1604        spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1605        if (atomic_read(&urb->use_count) > 0) {
1606                retval = 0;
1607                usb_get_dev(urb->dev);
1608        }
1609        spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1610        if (retval == 0) {
1611                hcd = bus_to_hcd(urb->dev->bus);
1612                retval = unlink1(hcd, urb, status);
1613                usb_put_dev(urb->dev);
1614        }
1615
1616        if (retval == 0)
1617                retval = -EINPROGRESS;
1618        else if (retval != -EIDRM && retval != -EBUSY)
1619                dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1620                                urb, retval);
1621        return retval;
1622}
1623
1624/*-------------------------------------------------------------------------*/
1625
1626/**
1627 * usb_hcd_giveback_urb - return URB from HCD to device driver
1628 * @hcd: host controller returning the URB
1629 * @urb: urb being returned to the USB device driver.
1630 * @status: completion status code for the URB.
1631 * Context: in_interrupt()
1632 *
1633 * This hands the URB from HCD to its USB device driver, using its
1634 * completion function.  The HCD has freed all per-urb resources
1635 * (and is done using urb->hcpriv).  It also released all HCD locks;
1636 * the device driver won't cause problems if it frees, modifies,
1637 * or resubmits this URB.
1638 *
1639 * If @urb was unlinked, the value of @status will be overridden by
1640 * @urb->unlinked.  Erroneous short transfers are detected in case
1641 * the HCD hasn't checked for them.
1642 */
1643void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1644{
1645        urb->hcpriv = NULL;
1646        if (unlikely(urb->unlinked))
1647                status = urb->unlinked;
1648        else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1649                        urb->actual_length < urb->transfer_buffer_length &&
1650                        !status))
1651                status = -EREMOTEIO;
1652
1653        unmap_urb_for_dma(hcd, urb);
1654        usbmon_urb_complete(&hcd->self, urb, status);
1655        usb_unanchor_urb(urb);
1656
1657        /* pass ownership to the completion handler */
1658        urb->status = status;
1659        urb->complete (urb);
1660        atomic_dec (&urb->use_count);
1661        if (unlikely(atomic_read(&urb->reject)))
1662                wake_up (&usb_kill_urb_queue);
1663        usb_put_urb (urb);
1664}
1665EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1666
1667/*-------------------------------------------------------------------------*/
1668
1669/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1670 * queue to drain completely.  The caller must first insure that no more
1671 * URBs can be submitted for this endpoint.
1672 */
1673void usb_hcd_flush_endpoint(struct usb_device *udev,
1674                struct usb_host_endpoint *ep)
1675{
1676        struct usb_hcd          *hcd;
1677        struct urb              *urb;
1678
1679        if (!ep)
1680                return;
1681        might_sleep();
1682        hcd = bus_to_hcd(udev->bus);
1683
1684        /* No more submits can occur */
1685        spin_lock_irq(&hcd_urb_list_lock);
1686rescan:
1687        list_for_each_entry (urb, &ep->urb_list, urb_list) {
1688                int     is_in;
1689
1690                if (urb->unlinked)
1691                        continue;
1692                usb_get_urb (urb);
1693                is_in = usb_urb_dir_in(urb);
1694                spin_unlock(&hcd_urb_list_lock);
1695
1696                /* kick hcd */
1697                unlink1(hcd, urb, -ESHUTDOWN);
1698                dev_dbg (hcd->self.controller,
1699                        "shutdown urb %p ep%d%s%s\n",
1700                        urb, usb_endpoint_num(&ep->desc),
1701                        is_in ? "in" : "out",
1702                        ({      char *s;
1703
1704                                 switch (usb_endpoint_type(&ep->desc)) {
1705                                 case USB_ENDPOINT_XFER_CONTROL:
1706                                        s = ""; break;
1707                                 case USB_ENDPOINT_XFER_BULK:
1708                                        s = "-bulk"; break;
1709                                 case USB_ENDPOINT_XFER_INT:
1710                                        s = "-intr"; break;
1711                                 default:
1712                                        s = "-iso"; break;
1713                                };
1714                                s;
1715                        }));
1716                usb_put_urb (urb);
1717
1718                /* list contents may have changed */
1719                spin_lock(&hcd_urb_list_lock);
1720                goto rescan;
1721        }
1722        spin_unlock_irq(&hcd_urb_list_lock);
1723
1724        /* Wait until the endpoint queue is completely empty */
1725        while (!list_empty (&ep->urb_list)) {
1726                spin_lock_irq(&hcd_urb_list_lock);
1727
1728                /* The list may have changed while we acquired the spinlock */
1729                urb = NULL;
1730                if (!list_empty (&ep->urb_list)) {
1731                        urb = list_entry (ep->urb_list.prev, struct urb,
1732                                        urb_list);
1733                        usb_get_urb (urb);
1734                }
1735                spin_unlock_irq(&hcd_urb_list_lock);
1736
1737                if (urb) {
1738                        usb_kill_urb (urb);
1739                        usb_put_urb (urb);
1740                }
1741        }
1742}
1743
1744/**
1745 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1746 *                              the bus bandwidth
1747 * @udev: target &usb_device
1748 * @new_config: new configuration to install
1749 * @cur_alt: the current alternate interface setting
1750 * @new_alt: alternate interface setting that is being installed
1751 *
1752 * To change configurations, pass in the new configuration in new_config,
1753 * and pass NULL for cur_alt and new_alt.
1754 *
1755 * To reset a device's configuration (put the device in the ADDRESSED state),
1756 * pass in NULL for new_config, cur_alt, and new_alt.
1757 *
1758 * To change alternate interface settings, pass in NULL for new_config,
1759 * pass in the current alternate interface setting in cur_alt,
1760 * and pass in the new alternate interface setting in new_alt.
1761 *
1762 * Returns an error if the requested bandwidth change exceeds the
1763 * bus bandwidth or host controller internal resources.
1764 */
1765int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1766                struct usb_host_config *new_config,
1767                struct usb_host_interface *cur_alt,
1768                struct usb_host_interface *new_alt)
1769{
1770        int num_intfs, i, j;
1771        struct usb_host_interface *alt = NULL;
1772        int ret = 0;
1773        struct usb_hcd *hcd;
1774        struct usb_host_endpoint *ep;
1775
1776        hcd = bus_to_hcd(udev->bus);
1777        if (!hcd->driver->check_bandwidth)
1778                return 0;
1779
1780        /* Configuration is being removed - set configuration 0 */
1781        if (!new_config && !cur_alt) {
1782                for (i = 1; i < 16; ++i) {
1783                        ep = udev->ep_out[i];
1784                        if (ep)
1785                                hcd->driver->drop_endpoint(hcd, udev, ep);
1786                        ep = udev->ep_in[i];
1787                        if (ep)
1788                                hcd->driver->drop_endpoint(hcd, udev, ep);
1789                }
1790                hcd->driver->check_bandwidth(hcd, udev);
1791                return 0;
1792        }
1793        /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1794         * each interface's alt setting 0 and ask the HCD to check the bandwidth
1795         * of the bus.  There will always be bandwidth for endpoint 0, so it's
1796         * ok to exclude it.
1797         */
1798        if (new_config) {
1799                num_intfs = new_config->desc.bNumInterfaces;
1800                /* Remove endpoints (except endpoint 0, which is always on the
1801                 * schedule) from the old config from the schedule
1802                 */
1803                for (i = 1; i < 16; ++i) {
1804                        ep = udev->ep_out[i];
1805                        if (ep) {
1806                                ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1807                                if (ret < 0)
1808                                        goto reset;
1809                        }
1810                        ep = udev->ep_in[i];
1811                        if (ep) {
1812                                ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1813                                if (ret < 0)
1814                                        goto reset;
1815                        }
1816                }
1817                for (i = 0; i < num_intfs; ++i) {
1818                        struct usb_host_interface *first_alt;
1819                        int iface_num;
1820
1821                        first_alt = &new_config->intf_cache[i]->altsetting[0];
1822                        iface_num = first_alt->desc.bInterfaceNumber;
1823                        /* Set up endpoints for alternate interface setting 0 */
1824                        alt = usb_find_alt_setting(new_config, iface_num, 0);
1825                        if (!alt)
1826                                /* No alt setting 0? Pick the first setting. */
1827                                alt = first_alt;
1828
1829                        for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1830                                ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1831                                if (ret < 0)
1832                                        goto reset;
1833                        }
1834                }
1835        }
1836        if (cur_alt && new_alt) {
1837                struct usb_interface *iface = usb_ifnum_to_if(udev,
1838                                cur_alt->desc.bInterfaceNumber);
1839
1840                if (!iface)
1841                        return -EINVAL;
1842                if (iface->resetting_device) {
1843                        /*
1844                         * The USB core just reset the device, so the xHCI host
1845                         * and the device will think alt setting 0 is installed.
1846                         * However, the USB core will pass in the alternate
1847                         * setting installed before the reset as cur_alt.  Dig
1848                         * out the alternate setting 0 structure, or the first
1849                         * alternate setting if a broken device doesn't have alt
1850                         * setting 0.
1851                         */
1852                        cur_alt = usb_altnum_to_altsetting(iface, 0);
1853                        if (!cur_alt)
1854                                cur_alt = &iface->altsetting[0];
1855                }
1856
1857                /* Drop all the endpoints in the current alt setting */
1858                for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1859                        ret = hcd->driver->drop_endpoint(hcd, udev,
1860                                        &cur_alt->endpoint[i]);
1861                        if (ret < 0)
1862                                goto reset;
1863                }
1864                /* Add all the endpoints in the new alt setting */
1865                for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1866                        ret = hcd->driver->add_endpoint(hcd, udev,
1867                                        &new_alt->endpoint[i]);
1868                        if (ret < 0)
1869                                goto reset;
1870                }
1871        }
1872        ret = hcd->driver->check_bandwidth(hcd, udev);
1873reset:
1874        if (ret < 0)
1875                hcd->driver->reset_bandwidth(hcd, udev);
1876        return ret;
1877}
1878
1879/* Disables the endpoint: synchronizes with the hcd to make sure all
1880 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1881 * have been called previously.  Use for set_configuration, set_interface,
1882 * driver removal, physical disconnect.
1883 *
1884 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1885 * type, maxpacket size, toggle, halt status, and scheduling.
1886 */
1887void usb_hcd_disable_endpoint(struct usb_device *udev,
1888                struct usb_host_endpoint *ep)
1889{
1890        struct usb_hcd          *hcd;
1891
1892        might_sleep();
1893        hcd = bus_to_hcd(udev->bus);
1894        if (hcd->driver->endpoint_disable)
1895                hcd->driver->endpoint_disable(hcd, ep);
1896}
1897
1898/**
1899 * usb_hcd_reset_endpoint - reset host endpoint state
1900 * @udev: USB device.
1901 * @ep:   the endpoint to reset.
1902 *
1903 * Resets any host endpoint state such as the toggle bit, sequence
1904 * number and current window.
1905 */
1906void usb_hcd_reset_endpoint(struct usb_device *udev,
1907                            struct usb_host_endpoint *ep)
1908{
1909        struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1910
1911        if (hcd->driver->endpoint_reset)
1912                hcd->driver->endpoint_reset(hcd, ep);
1913        else {
1914                int epnum = usb_endpoint_num(&ep->desc);
1915                int is_out = usb_endpoint_dir_out(&ep->desc);
1916                int is_control = usb_endpoint_xfer_control(&ep->desc);
1917
1918                usb_settoggle(udev, epnum, is_out, 0);
1919                if (is_control)
1920                        usb_settoggle(udev, epnum, !is_out, 0);
1921        }
1922}
1923
1924/**
1925 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1926 * @interface:          alternate setting that includes all endpoints.
1927 * @eps:                array of endpoints that need streams.
1928 * @num_eps:            number of endpoints in the array.
1929 * @num_streams:        number of streams to allocate.
1930 * @mem_flags:          flags hcd should use to allocate memory.
1931 *
1932 * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1933 * Drivers may queue multiple transfers to different stream IDs, which may
1934 * complete in a different order than they were queued.
1935 */
1936int usb_alloc_streams(struct usb_interface *interface,
1937                struct usb_host_endpoint **eps, unsigned int num_eps,
1938                unsigned int num_streams, gfp_t mem_flags)
1939{
1940        struct usb_hcd *hcd;
1941        struct usb_device *dev;
1942        int i;
1943
1944        dev = interface_to_usbdev(interface);
1945        hcd = bus_to_hcd(dev->bus);
1946        if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1947                return -EINVAL;
1948        if (dev->speed != USB_SPEED_SUPER)
1949                return -EINVAL;
1950
1951        /* Streams only apply to bulk endpoints. */
1952        for (i = 0; i < num_eps; i++)
1953                if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1954                        return -EINVAL;
1955
1956        return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1957                        num_streams, mem_flags);
1958}
1959EXPORT_SYMBOL_GPL(usb_alloc_streams);
1960
1961/**
1962 * usb_free_streams - free bulk endpoint stream IDs.
1963 * @interface:  alternate setting that includes all endpoints.
1964 * @eps:        array of endpoints to remove streams from.
1965 * @num_eps:    number of endpoints in the array.
1966 * @mem_flags:  flags hcd should use to allocate memory.
1967 *
1968 * Reverts a group of bulk endpoints back to not using stream IDs.
1969 * Can fail if we are given bad arguments, or HCD is broken.
1970 */
1971void usb_free_streams(struct usb_interface *interface,
1972                struct usb_host_endpoint **eps, unsigned int num_eps,
1973                gfp_t mem_flags)
1974{
1975        struct usb_hcd *hcd;
1976        struct usb_device *dev;
1977        int i;
1978
1979        dev = interface_to_usbdev(interface);
1980        hcd = bus_to_hcd(dev->bus);
1981        if (dev->speed != USB_SPEED_SUPER)
1982                return;
1983
1984        /* Streams only apply to bulk endpoints. */
1985        for (i = 0; i < num_eps; i++)
1986                if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1987                        return;
1988
1989        hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1990}
1991EXPORT_SYMBOL_GPL(usb_free_streams);
1992
1993/* Protect against drivers that try to unlink URBs after the device
1994 * is gone, by waiting until all unlinks for @udev are finished.
1995 * Since we don't currently track URBs by device, simply wait until
1996 * nothing is running in the locked region of usb_hcd_unlink_urb().
1997 */
1998void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1999{
2000        spin_lock_irq(&hcd_urb_unlink_lock);
2001        spin_unlock_irq(&hcd_urb_unlink_lock);
2002}
2003
2004/*-------------------------------------------------------------------------*/
2005
2006/* called in any context */
2007int usb_hcd_get_frame_number (struct usb_device *udev)
2008{
2009        struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2010
2011        if (!HCD_RH_RUNNING(hcd))
2012                return -ESHUTDOWN;
2013        return hcd->driver->get_frame_number (hcd);
2014}
2015
2016/*-------------------------------------------------------------------------*/
2017
2018#ifdef  CONFIG_PM
2019
2020int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2021{
2022        struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2023        int             status;
2024        int             old_state = hcd->state;
2025
2026        dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2027                        (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2028                        rhdev->do_remote_wakeup);
2029        if (HCD_DEAD(hcd)) {
2030                dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2031                return 0;
2032        }
2033
2034        if (!hcd->driver->bus_suspend) {
2035                status = -ENOENT;
2036        } else {
2037                clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2038                hcd->state = HC_STATE_QUIESCING;
2039                status = hcd->driver->bus_suspend(hcd);
2040        }
2041        if (status == 0) {
2042                usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2043                hcd->state = HC_STATE_SUSPENDED;
2044
2045                /* Did we race with a root-hub wakeup event? */
2046                if (rhdev->do_remote_wakeup) {
2047                        char    buffer[6];
2048
2049                        status = hcd->driver->hub_status_data(hcd, buffer);
2050                        if (status != 0) {
2051                                dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2052                                hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2053                                status = -EBUSY;
2054                        }
2055                }
2056        } else {
2057                spin_lock_irq(&hcd_root_hub_lock);
2058                if (!HCD_DEAD(hcd)) {
2059                        set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2060                        hcd->state = old_state;
2061                }
2062                spin_unlock_irq(&hcd_root_hub_lock);
2063                dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2064                                "suspend", status);
2065        }
2066        return status;
2067}
2068
2069int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2070{
2071        struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2072        int             status;
2073        int             old_state = hcd->state;
2074
2075        dev_dbg(&rhdev->dev, "usb %sresume\n",
2076                        (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2077        if (HCD_DEAD(hcd)) {
2078                dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2079                return 0;
2080        }
2081        if (!hcd->driver->bus_resume)
2082                return -ENOENT;
2083        if (HCD_RH_RUNNING(hcd))
2084                return 0;
2085
2086        hcd->state = HC_STATE_RESUMING;
2087        status = hcd->driver->bus_resume(hcd);
2088        clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2089        if (status == 0) {
2090                struct usb_device *udev;
2091                int port1;
2092
2093                spin_lock_irq(&hcd_root_hub_lock);
2094                if (!HCD_DEAD(hcd)) {
2095                        usb_set_device_state(rhdev, rhdev->actconfig
2096                                        ? USB_STATE_CONFIGURED
2097                                        : USB_STATE_ADDRESS);
2098                        set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2099                        hcd->state = HC_STATE_RUNNING;
2100                }
2101                spin_unlock_irq(&hcd_root_hub_lock);
2102
2103                /*
2104                 * Check whether any of the enabled ports on the root hub are
2105                 * unsuspended.  If they are then a TRSMRCY delay is needed
2106                 * (this is what the USB-2 spec calls a "global resume").
2107                 * Otherwise we can skip the delay.
2108                 */
2109                usb_hub_for_each_child(rhdev, port1, udev) {
2110                        if (udev->state != USB_STATE_NOTATTACHED &&
2111                                        !udev->port_is_suspended) {
2112                                usleep_range(10000, 11000);     /* TRSMRCY */
2113                                break;
2114                        }
2115                }
2116        } else {
2117                hcd->state = old_state;
2118                dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2119                                "resume", status);
2120                if (status != -ESHUTDOWN)
2121                        usb_hc_died(hcd);
2122        }
2123        return status;
2124}
2125
2126#endif  /* CONFIG_PM */
2127
2128#ifdef  CONFIG_USB_SUSPEND
2129
2130/* Workqueue routine for root-hub remote wakeup */
2131static void hcd_resume_work(struct work_struct *work)
2132{
2133        struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2134        struct usb_device *udev = hcd->self.root_hub;
2135
2136        usb_lock_device(udev);
2137        usb_remote_wakeup(udev);
2138        usb_unlock_device(udev);
2139}
2140
2141/**
2142 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
2143 * @hcd: host controller for this root hub
2144 *
2145 * The USB host controller calls this function when its root hub is
2146 * suspended (with the remote wakeup feature enabled) and a remote
2147 * wakeup request is received.  The routine submits a workqueue request
2148 * to resume the root hub (that is, manage its downstream ports again).
2149 */
2150void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2151{
2152        unsigned long flags;
2153
2154        spin_lock_irqsave (&hcd_root_hub_lock, flags);
2155        if (hcd->rh_registered) {
2156                set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2157                queue_work(pm_wq, &hcd->wakeup_work);
2158        }
2159        spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2160}
2161EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2162
2163#endif  /* CONFIG_USB_SUSPEND */
2164
2165/*-------------------------------------------------------------------------*/
2166
2167#ifdef  CONFIG_USB_OTG
2168
2169/**
2170 * usb_bus_start_enum - start immediate enumeration (for OTG)
2171 * @bus: the bus (must use hcd framework)
2172 * @port_num: 1-based number of port; usually bus->otg_port
2173 * Context: in_interrupt()
2174 *
2175 * Starts enumeration, with an immediate reset followed later by
2176 * khubd identifying and possibly configuring the device.
2177 * This is needed by OTG controller drivers, where it helps meet
2178 * HNP protocol timing requirements for starting a port reset.
2179 */
2180int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2181{
2182        struct usb_hcd          *hcd;
2183        int                     status = -EOPNOTSUPP;
2184
2185        /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2186         * boards with root hubs hooked up to internal devices (instead of
2187         * just the OTG port) may need more attention to resetting...
2188         */
2189        hcd = container_of (bus, struct usb_hcd, self);
2190        if (port_num && hcd->driver->start_port_reset)
2191                status = hcd->driver->start_port_reset(hcd, port_num);
2192
2193        /* run khubd shortly after (first) root port reset finishes;
2194         * it may issue others, until at least 50 msecs have passed.
2195         */
2196        if (status == 0)
2197                mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2198        return status;
2199}
2200EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2201
2202#endif
2203
2204/*-------------------------------------------------------------------------*/
2205
2206/**
2207 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2208 * @irq: the IRQ being raised
2209 * @__hcd: pointer to the HCD whose IRQ is being signaled
2210 *
2211 * If the controller isn't HALTed, calls the driver's irq handler.
2212 * Checks whether the controller is now dead.
2213 */
2214irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2215{
2216        struct usb_hcd          *hcd = __hcd;
2217        unsigned long           flags;
2218        irqreturn_t             rc;
2219
2220        /* IRQF_DISABLED doesn't work correctly with shared IRQs
2221         * when the first handler doesn't use it.  So let's just
2222         * assume it's never used.
2223         */
2224        local_irq_save(flags);
2225
2226        if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2227                rc = IRQ_NONE;
2228        else if (hcd->driver->irq(hcd) == IRQ_NONE)
2229                rc = IRQ_NONE;
2230        else
2231                rc = IRQ_HANDLED;
2232
2233        local_irq_restore(flags);
2234        return rc;
2235}
2236EXPORT_SYMBOL_GPL(usb_hcd_irq);
2237
2238/*-------------------------------------------------------------------------*/
2239
2240/**
2241 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2242 * @hcd: pointer to the HCD representing the controller
2243 *
2244 * This is called by bus glue to report a USB host controller that died
2245 * while operations may still have been pending.  It's called automatically
2246 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2247 *
2248 * Only call this function with the primary HCD.
2249 */
2250void usb_hc_died (struct usb_hcd *hcd)
2251{
2252        unsigned long flags;
2253
2254        dev_err (hcd->self.controller, "HC died; cleaning up\n");
2255
2256        spin_lock_irqsave (&hcd_root_hub_lock, flags);
2257        clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2258        set_bit(HCD_FLAG_DEAD, &hcd->flags);
2259        if (hcd->rh_registered) {
2260                clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2261
2262                /* make khubd clean up old urbs and devices */
2263                usb_set_device_state (hcd->self.root_hub,
2264                                USB_STATE_NOTATTACHED);
2265                usb_kick_khubd (hcd->self.root_hub);
2266        }
2267        if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2268                hcd = hcd->shared_hcd;
2269                if (hcd->rh_registered) {
2270                        clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2271
2272                        /* make khubd clean up old urbs and devices */
2273                        usb_set_device_state(hcd->self.root_hub,
2274                                        USB_STATE_NOTATTACHED);
2275                        usb_kick_khubd(hcd->self.root_hub);
2276                }
2277        }
2278        spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2279        /* Make sure that the other roothub is also deallocated. */
2280}
2281EXPORT_SYMBOL_GPL (usb_hc_died);
2282
2283/*-------------------------------------------------------------------------*/
2284
2285/**
2286 * usb_create_shared_hcd - create and initialize an HCD structure
2287 * @driver: HC driver that will use this hcd
2288 * @dev: device for this HC, stored in hcd->self.controller
2289 * @bus_name: value to store in hcd->self.bus_name
2290 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2291 *              PCI device.  Only allocate certain resources for the primary HCD
2292 * Context: !in_interrupt()
2293 *
2294 * Allocate a struct usb_hcd, with extra space at the end for the
2295 * HC driver's private data.  Initialize the generic members of the
2296 * hcd structure.
2297 *
2298 * If memory is unavailable, returns NULL.
2299 */
2300struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2301                struct device *dev, const char *bus_name,
2302                struct usb_hcd *primary_hcd)
2303{
2304        struct usb_hcd *hcd;
2305
2306        hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2307        if (!hcd) {
2308                dev_dbg (dev, "hcd alloc failed\n");
2309                return NULL;
2310        }
2311        if (primary_hcd == NULL) {
2312                hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2313                                GFP_KERNEL);
2314                if (!hcd->bandwidth_mutex) {
2315                        kfree(hcd);
2316                        dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2317                        return NULL;
2318                }
2319                mutex_init(hcd->bandwidth_mutex);
2320                dev_set_drvdata(dev, hcd);
2321        } else {
2322                hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2323                hcd->primary_hcd = primary_hcd;
2324                primary_hcd->primary_hcd = primary_hcd;
2325                hcd->shared_hcd = primary_hcd;
2326                primary_hcd->shared_hcd = hcd;
2327        }
2328
2329        kref_init(&hcd->kref);
2330
2331        usb_bus_init(&hcd->self);
2332        hcd->self.controller = dev;
2333        hcd->self.bus_name = bus_name;
2334        hcd->self.uses_dma = (dev->dma_mask != NULL);
2335
2336        init_timer(&hcd->rh_timer);
2337        hcd->rh_timer.function = rh_timer_func;
2338        hcd->rh_timer.data = (unsigned long) hcd;
2339#ifdef CONFIG_USB_SUSPEND
2340        INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2341#endif
2342
2343        hcd->driver = driver;
2344        hcd->speed = driver->flags & HCD_MASK;
2345        hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2346                        "USB Host Controller";
2347        return hcd;
2348}
2349EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2350
2351/**
2352 * usb_create_hcd - create and initialize an HCD structure
2353 * @driver: HC driver that will use this hcd
2354 * @dev: device for this HC, stored in hcd->self.controller
2355 * @bus_name: value to store in hcd->self.bus_name
2356 * Context: !in_interrupt()
2357 *
2358 * Allocate a struct usb_hcd, with extra space at the end for the
2359 * HC driver's private data.  Initialize the generic members of the
2360 * hcd structure.
2361 *
2362 * If memory is unavailable, returns NULL.
2363 */
2364struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2365                struct device *dev, const char *bus_name)
2366{
2367        return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2368}
2369EXPORT_SYMBOL_GPL(usb_create_hcd);
2370
2371/*
2372 * Roothubs that share one PCI device must also share the bandwidth mutex.
2373 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2374 * deallocated.
2375 *
2376 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2377 * freed.  When hcd_release() is called for the non-primary HCD, set the
2378 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2379 * freed shortly).
2380 */
2381static void hcd_release (struct kref *kref)
2382{
2383        struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2384
2385        if (usb_hcd_is_primary_hcd(hcd))
2386                kfree(hcd->bandwidth_mutex);
2387        else
2388                hcd->shared_hcd->shared_hcd = NULL;
2389        kfree(hcd);
2390}
2391
2392struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2393{
2394        if (hcd)
2395                kref_get (&hcd->kref);
2396        return hcd;
2397}
2398EXPORT_SYMBOL_GPL(usb_get_hcd);
2399
2400void usb_put_hcd (struct usb_hcd *hcd)
2401{
2402        if (hcd)
2403                kref_put (&hcd->kref, hcd_release);
2404}
2405EXPORT_SYMBOL_GPL(usb_put_hcd);
2406
2407int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2408{
2409        if (!hcd->primary_hcd)
2410                return 1;
2411        return hcd == hcd->primary_hcd;
2412}
2413EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2414
2415int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2416{
2417        if (!hcd->driver->find_raw_port_number)
2418                return port1;
2419
2420        return hcd->driver->find_raw_port_number(hcd, port1);
2421}
2422
2423static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2424                unsigned int irqnum, unsigned long irqflags)
2425{
2426        int retval;
2427
2428        if (hcd->driver->irq) {
2429
2430                /* IRQF_DISABLED doesn't work as advertised when used together
2431                 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2432                 * interrupts we can remove it here.
2433                 */
2434                if (irqflags & IRQF_SHARED)
2435                        irqflags &= ~IRQF_DISABLED;
2436
2437                snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2438                                hcd->driver->description, hcd->self.busnum);
2439                retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2440                                hcd->irq_descr, hcd);
2441                if (retval != 0) {
2442                        dev_err(hcd->self.controller,
2443                                        "request interrupt %d failed\n",
2444                                        irqnum);
2445                        return retval;
2446                }
2447                hcd->irq = irqnum;
2448                dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2449                                (hcd->driver->flags & HCD_MEMORY) ?
2450                                        "io mem" : "io base",
2451                                        (unsigned long long)hcd->rsrc_start);
2452        } else {
2453                hcd->irq = 0;
2454                if (hcd->rsrc_start)
2455                        dev_info(hcd->self.controller, "%s 0x%08llx\n",
2456                                        (hcd->driver->flags & HCD_MEMORY) ?
2457                                        "io mem" : "io base",
2458                                        (unsigned long long)hcd->rsrc_start);
2459        }
2460        return 0;
2461}
2462
2463/**
2464 * usb_add_hcd - finish generic HCD structure initialization and register
2465 * @hcd: the usb_hcd structure to initialize
2466 * @irqnum: Interrupt line to allocate
2467 * @irqflags: Interrupt type flags
2468 *
2469 * Finish the remaining parts of generic HCD initialization: allocate the
2470 * buffers of consistent memory, register the bus, request the IRQ line,
2471 * and call the driver's reset() and start() routines.
2472 */
2473int usb_add_hcd(struct usb_hcd *hcd,
2474                unsigned int irqnum, unsigned long irqflags)
2475{
2476        int retval;
2477        struct usb_device *rhdev;
2478
2479        dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2480
2481        /* Keep old behaviour if authorized_default is not in [0, 1]. */
2482        if (authorized_default < 0 || authorized_default > 1)
2483                hcd->authorized_default = hcd->wireless? 0 : 1;
2484        else
2485                hcd->authorized_default = authorized_default;
2486        set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2487
2488        /* HC is in reset state, but accessible.  Now do the one-time init,
2489         * bottom up so that hcds can customize the root hubs before khubd
2490         * starts talking to them.  (Note, bus id is assigned early too.)
2491         */
2492        if ((retval = hcd_buffer_create(hcd)) != 0) {
2493                dev_dbg(hcd->self.controller, "pool alloc failed\n");
2494                return retval;
2495        }
2496
2497        if ((retval = usb_register_bus(&hcd->self)) < 0)
2498                goto err_register_bus;
2499
2500        if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2501                dev_err(hcd->self.controller, "unable to allocate root hub\n");
2502                retval = -ENOMEM;
2503                goto err_allocate_root_hub;
2504        }
2505        hcd->self.root_hub = rhdev;
2506
2507        switch (hcd->speed) {
2508        case HCD_USB11:
2509                rhdev->speed = USB_SPEED_FULL;
2510                break;
2511        case HCD_USB2:
2512                rhdev->speed = USB_SPEED_HIGH;
2513                break;
2514        case HCD_USB3:
2515                rhdev->speed = USB_SPEED_SUPER;
2516                break;
2517        default:
2518                retval = -EINVAL;
2519                goto err_set_rh_speed;
2520        }
2521
2522        /* wakeup flag init defaults to "everything works" for root hubs,
2523         * but drivers can override it in reset() if needed, along with
2524         * recording the overall controller's system wakeup capability.
2525         */
2526        device_set_wakeup_capable(&rhdev->dev, 1);
2527
2528        /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2529         * registered.  But since the controller can die at any time,
2530         * let's initialize the flag before touching the hardware.
2531         */
2532        set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2533
2534        /* "reset" is misnamed; its role is now one-time init. the controller
2535         * should already have been reset (and boot firmware kicked off etc).
2536         */
2537        if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2538                dev_err(hcd->self.controller, "can't setup\n");
2539                goto err_hcd_driver_setup;
2540        }
2541        hcd->rh_pollable = 1;
2542
2543        /* NOTE: root hub and controller capabilities may not be the same */
2544        if (device_can_wakeup(hcd->self.controller)
2545                        && device_can_wakeup(&hcd->self.root_hub->dev))
2546                dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2547
2548        /* enable irqs just before we start the controller,
2549         * if the BIOS provides legacy PCI irqs.
2550         */
2551        if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2552                retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2553                if (retval)
2554                        goto err_request_irq;
2555        }
2556
2557        hcd->state = HC_STATE_RUNNING;
2558        retval = hcd->driver->start(hcd);
2559        if (retval < 0) {
2560                dev_err(hcd->self.controller, "startup error %d\n", retval);
2561                goto err_hcd_driver_start;
2562        }
2563
2564        /* starting here, usbcore will pay attention to this root hub */
2565        if ((retval = register_root_hub(hcd)) != 0)
2566                goto err_register_root_hub;
2567
2568        retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2569        if (retval < 0) {
2570                printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2571                       retval);
2572                goto error_create_attr_group;
2573        }
2574        if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2575                usb_hcd_poll_rh_status(hcd);
2576
2577        /*
2578         * Host controllers don't generate their own wakeup requests;
2579         * they only forward requests from the root hub.  Therefore
2580         * controllers should always be enabled for remote wakeup.
2581         */
2582        device_wakeup_enable(hcd->self.controller);
2583        return retval;
2584
2585error_create_attr_group:
2586        clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2587        if (HC_IS_RUNNING(hcd->state))
2588                hcd->state = HC_STATE_QUIESCING;
2589        spin_lock_irq(&hcd_root_hub_lock);
2590        hcd->rh_registered = 0;
2591        spin_unlock_irq(&hcd_root_hub_lock);
2592
2593#ifdef CONFIG_USB_SUSPEND
2594        cancel_work_sync(&hcd->wakeup_work);
2595#endif
2596        mutex_lock(&usb_bus_list_lock);
2597        usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2598        mutex_unlock(&usb_bus_list_lock);
2599err_register_root_hub:
2600        hcd->rh_pollable = 0;
2601        clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2602        del_timer_sync(&hcd->rh_timer);
2603        hcd->driver->stop(hcd);
2604        hcd->state = HC_STATE_HALT;
2605        clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2606        del_timer_sync(&hcd->rh_timer);
2607err_hcd_driver_start:
2608        if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2609                free_irq(irqnum, hcd);
2610err_request_irq:
2611err_hcd_driver_setup:
2612err_set_rh_speed:
2613        usb_put_dev(hcd->self.root_hub);
2614err_allocate_root_hub:
2615        usb_deregister_bus(&hcd->self);
2616err_register_bus:
2617        hcd_buffer_destroy(hcd);
2618        return retval;
2619} 
2620EXPORT_SYMBOL_GPL(usb_add_hcd);
2621
2622/**
2623 * usb_remove_hcd - shutdown processing for generic HCDs
2624 * @hcd: the usb_hcd structure to remove
2625 * Context: !in_interrupt()
2626 *
2627 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2628 * invoking the HCD's stop() method.
2629 */
2630void usb_remove_hcd(struct usb_hcd *hcd)
2631{
2632        struct usb_device *rhdev = hcd->self.root_hub;
2633
2634        dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2635
2636        usb_get_dev(rhdev);
2637        sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2638
2639        clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2640        if (HC_IS_RUNNING (hcd->state))
2641                hcd->state = HC_STATE_QUIESCING;
2642
2643        dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2644        spin_lock_irq (&hcd_root_hub_lock);
2645        hcd->rh_registered = 0;
2646        spin_unlock_irq (&hcd_root_hub_lock);
2647
2648#ifdef CONFIG_USB_SUSPEND
2649        cancel_work_sync(&hcd->wakeup_work);
2650#endif
2651
2652        mutex_lock(&usb_bus_list_lock);
2653        usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2654        mutex_unlock(&usb_bus_list_lock);
2655
2656        /* Prevent any more root-hub status calls from the timer.
2657         * The HCD might still restart the timer (if a port status change
2658         * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2659         * the hub_status_data() callback.
2660         */
2661        hcd->rh_pollable = 0;
2662        clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2663        del_timer_sync(&hcd->rh_timer);
2664
2665        hcd->driver->stop(hcd);
2666        hcd->state = HC_STATE_HALT;
2667
2668        /* In case the HCD restarted the timer, stop it again. */
2669        clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2670        del_timer_sync(&hcd->rh_timer);
2671
2672        if (usb_hcd_is_primary_hcd(hcd)) {
2673                if (hcd->irq > 0)
2674                        free_irq(hcd->irq, hcd);
2675        }
2676
2677        usb_put_dev(hcd->self.root_hub);
2678        usb_deregister_bus(&hcd->self);
2679        hcd_buffer_destroy(hcd);
2680}
2681EXPORT_SYMBOL_GPL(usb_remove_hcd);
2682
2683void
2684usb_hcd_platform_shutdown(struct platform_device* dev)
2685{
2686        struct usb_hcd *hcd = platform_get_drvdata(dev);
2687
2688        if (hcd->driver->shutdown)
2689                hcd->driver->shutdown(hcd);
2690}
2691EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2692
2693/*-------------------------------------------------------------------------*/
2694
2695#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2696
2697struct usb_mon_operations *mon_ops;
2698
2699/*
2700 * The registration is unlocked.
2701 * We do it this way because we do not want to lock in hot paths.
2702 *
2703 * Notice that the code is minimally error-proof. Because usbmon needs
2704 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2705 */
2706 
2707int usb_mon_register (struct usb_mon_operations *ops)
2708{
2709
2710        if (mon_ops)
2711                return -EBUSY;
2712
2713        mon_ops = ops;
2714        mb();
2715        return 0;
2716}
2717EXPORT_SYMBOL_GPL (usb_mon_register);
2718
2719void usb_mon_deregister (void)
2720{
2721
2722        if (mon_ops == NULL) {
2723                printk(KERN_ERR "USB: monitor was not registered\n");
2724                return;
2725        }
2726        mon_ops = NULL;
2727        mb();
2728}
2729EXPORT_SYMBOL_GPL (usb_mon_deregister);
2730
2731#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2732