linux/fs/btrfs/backref.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/vmalloc.h>
  20#include "ctree.h"
  21#include "disk-io.h"
  22#include "backref.h"
  23#include "ulist.h"
  24#include "transaction.h"
  25#include "delayed-ref.h"
  26#include "locking.h"
  27
  28struct extent_inode_elem {
  29        u64 inum;
  30        u64 offset;
  31        struct extent_inode_elem *next;
  32};
  33
  34static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  35                                struct btrfs_file_extent_item *fi,
  36                                u64 extent_item_pos,
  37                                struct extent_inode_elem **eie)
  38{
  39        u64 data_offset;
  40        u64 data_len;
  41        struct extent_inode_elem *e;
  42
  43        data_offset = btrfs_file_extent_offset(eb, fi);
  44        data_len = btrfs_file_extent_num_bytes(eb, fi);
  45
  46        if (extent_item_pos < data_offset ||
  47            extent_item_pos >= data_offset + data_len)
  48                return 1;
  49
  50        e = kmalloc(sizeof(*e), GFP_NOFS);
  51        if (!e)
  52                return -ENOMEM;
  53
  54        e->next = *eie;
  55        e->inum = key->objectid;
  56        e->offset = key->offset + (extent_item_pos - data_offset);
  57        *eie = e;
  58
  59        return 0;
  60}
  61
  62static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  63                                u64 extent_item_pos,
  64                                struct extent_inode_elem **eie)
  65{
  66        u64 disk_byte;
  67        struct btrfs_key key;
  68        struct btrfs_file_extent_item *fi;
  69        int slot;
  70        int nritems;
  71        int extent_type;
  72        int ret;
  73
  74        /*
  75         * from the shared data ref, we only have the leaf but we need
  76         * the key. thus, we must look into all items and see that we
  77         * find one (some) with a reference to our extent item.
  78         */
  79        nritems = btrfs_header_nritems(eb);
  80        for (slot = 0; slot < nritems; ++slot) {
  81                btrfs_item_key_to_cpu(eb, &key, slot);
  82                if (key.type != BTRFS_EXTENT_DATA_KEY)
  83                        continue;
  84                fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  85                extent_type = btrfs_file_extent_type(eb, fi);
  86                if (extent_type == BTRFS_FILE_EXTENT_INLINE)
  87                        continue;
  88                /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
  89                disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  90                if (disk_byte != wanted_disk_byte)
  91                        continue;
  92
  93                ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
  94                if (ret < 0)
  95                        return ret;
  96        }
  97
  98        return 0;
  99}
 100
 101/*
 102 * this structure records all encountered refs on the way up to the root
 103 */
 104struct __prelim_ref {
 105        struct list_head list;
 106        u64 root_id;
 107        struct btrfs_key key_for_search;
 108        int level;
 109        int count;
 110        struct extent_inode_elem *inode_list;
 111        u64 parent;
 112        u64 wanted_disk_byte;
 113};
 114
 115/*
 116 * the rules for all callers of this function are:
 117 * - obtaining the parent is the goal
 118 * - if you add a key, you must know that it is a correct key
 119 * - if you cannot add the parent or a correct key, then we will look into the
 120 *   block later to set a correct key
 121 *
 122 * delayed refs
 123 * ============
 124 *        backref type | shared | indirect | shared | indirect
 125 * information         |   tree |     tree |   data |     data
 126 * --------------------+--------+----------+--------+----------
 127 *      parent logical |    y   |     -    |    -   |     -
 128 *      key to resolve |    -   |     y    |    y   |     y
 129 *  tree block logical |    -   |     -    |    -   |     -
 130 *  root for resolving |    y   |     y    |    y   |     y
 131 *
 132 * - column 1:       we've the parent -> done
 133 * - column 2, 3, 4: we use the key to find the parent
 134 *
 135 * on disk refs (inline or keyed)
 136 * ==============================
 137 *        backref type | shared | indirect | shared | indirect
 138 * information         |   tree |     tree |   data |     data
 139 * --------------------+--------+----------+--------+----------
 140 *      parent logical |    y   |     -    |    y   |     -
 141 *      key to resolve |    -   |     -    |    -   |     y
 142 *  tree block logical |    y   |     y    |    y   |     y
 143 *  root for resolving |    -   |     y    |    y   |     y
 144 *
 145 * - column 1, 3: we've the parent -> done
 146 * - column 2:    we take the first key from the block to find the parent
 147 *                (see __add_missing_keys)
 148 * - column 4:    we use the key to find the parent
 149 *
 150 * additional information that's available but not required to find the parent
 151 * block might help in merging entries to gain some speed.
 152 */
 153
 154static int __add_prelim_ref(struct list_head *head, u64 root_id,
 155                            struct btrfs_key *key, int level,
 156                            u64 parent, u64 wanted_disk_byte, int count)
 157{
 158        struct __prelim_ref *ref;
 159
 160        /* in case we're adding delayed refs, we're holding the refs spinlock */
 161        ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
 162        if (!ref)
 163                return -ENOMEM;
 164
 165        ref->root_id = root_id;
 166        if (key)
 167                ref->key_for_search = *key;
 168        else
 169                memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 170
 171        ref->inode_list = NULL;
 172        ref->level = level;
 173        ref->count = count;
 174        ref->parent = parent;
 175        ref->wanted_disk_byte = wanted_disk_byte;
 176        list_add_tail(&ref->list, head);
 177
 178        return 0;
 179}
 180
 181static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 182                                struct ulist *parents, int level,
 183                                struct btrfs_key *key_for_search, u64 time_seq,
 184                                u64 wanted_disk_byte,
 185                                const u64 *extent_item_pos)
 186{
 187        int ret = 0;
 188        int slot;
 189        struct extent_buffer *eb;
 190        struct btrfs_key key;
 191        struct btrfs_file_extent_item *fi;
 192        struct extent_inode_elem *eie = NULL;
 193        u64 disk_byte;
 194
 195        if (level != 0) {
 196                eb = path->nodes[level];
 197                ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 198                if (ret < 0)
 199                        return ret;
 200                return 0;
 201        }
 202
 203        /*
 204         * We normally enter this function with the path already pointing to
 205         * the first item to check. But sometimes, we may enter it with
 206         * slot==nritems. In that case, go to the next leaf before we continue.
 207         */
 208        if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
 209                ret = btrfs_next_old_leaf(root, path, time_seq);
 210
 211        while (!ret) {
 212                eb = path->nodes[0];
 213                slot = path->slots[0];
 214
 215                btrfs_item_key_to_cpu(eb, &key, slot);
 216
 217                if (key.objectid != key_for_search->objectid ||
 218                    key.type != BTRFS_EXTENT_DATA_KEY)
 219                        break;
 220
 221                fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 222                disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 223
 224                if (disk_byte == wanted_disk_byte) {
 225                        eie = NULL;
 226                        if (extent_item_pos) {
 227                                ret = check_extent_in_eb(&key, eb, fi,
 228                                                *extent_item_pos,
 229                                                &eie);
 230                                if (ret < 0)
 231                                        break;
 232                        }
 233                        if (!ret) {
 234                                ret = ulist_add(parents, eb->start,
 235                                                (uintptr_t)eie, GFP_NOFS);
 236                                if (ret < 0)
 237                                        break;
 238                                if (!extent_item_pos) {
 239                                        ret = btrfs_next_old_leaf(root, path,
 240                                                        time_seq);
 241                                        continue;
 242                                }
 243                        }
 244                }
 245                ret = btrfs_next_old_item(root, path, time_seq);
 246        }
 247
 248        if (ret > 0)
 249                ret = 0;
 250        return ret;
 251}
 252
 253/*
 254 * resolve an indirect backref in the form (root_id, key, level)
 255 * to a logical address
 256 */
 257static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 258                                        int search_commit_root,
 259                                        u64 time_seq,
 260                                        struct __prelim_ref *ref,
 261                                        struct ulist *parents,
 262                                        const u64 *extent_item_pos)
 263{
 264        struct btrfs_path *path;
 265        struct btrfs_root *root;
 266        struct btrfs_key root_key;
 267        struct extent_buffer *eb;
 268        int ret = 0;
 269        int root_level;
 270        int level = ref->level;
 271
 272        path = btrfs_alloc_path();
 273        if (!path)
 274                return -ENOMEM;
 275        path->search_commit_root = !!search_commit_root;
 276
 277        root_key.objectid = ref->root_id;
 278        root_key.type = BTRFS_ROOT_ITEM_KEY;
 279        root_key.offset = (u64)-1;
 280        root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 281        if (IS_ERR(root)) {
 282                ret = PTR_ERR(root);
 283                goto out;
 284        }
 285
 286        root_level = btrfs_old_root_level(root, time_seq);
 287
 288        if (root_level + 1 == level)
 289                goto out;
 290
 291        path->lowest_level = level;
 292        ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
 293        pr_debug("search slot in root %llu (level %d, ref count %d) returned "
 294                 "%d for key (%llu %u %llu)\n",
 295                 (unsigned long long)ref->root_id, level, ref->count, ret,
 296                 (unsigned long long)ref->key_for_search.objectid,
 297                 ref->key_for_search.type,
 298                 (unsigned long long)ref->key_for_search.offset);
 299        if (ret < 0)
 300                goto out;
 301
 302        eb = path->nodes[level];
 303        while (!eb) {
 304                if (!level) {
 305                        WARN_ON(1);
 306                        ret = 1;
 307                        goto out;
 308                }
 309                level--;
 310                eb = path->nodes[level];
 311        }
 312
 313        ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
 314                                time_seq, ref->wanted_disk_byte,
 315                                extent_item_pos);
 316out:
 317        btrfs_free_path(path);
 318        return ret;
 319}
 320
 321/*
 322 * resolve all indirect backrefs from the list
 323 */
 324static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 325                                   int search_commit_root, u64 time_seq,
 326                                   struct list_head *head,
 327                                   const u64 *extent_item_pos)
 328{
 329        int err;
 330        int ret = 0;
 331        struct __prelim_ref *ref;
 332        struct __prelim_ref *ref_safe;
 333        struct __prelim_ref *new_ref;
 334        struct ulist *parents;
 335        struct ulist_node *node;
 336        struct ulist_iterator uiter;
 337
 338        parents = ulist_alloc(GFP_NOFS);
 339        if (!parents)
 340                return -ENOMEM;
 341
 342        /*
 343         * _safe allows us to insert directly after the current item without
 344         * iterating over the newly inserted items.
 345         * we're also allowed to re-assign ref during iteration.
 346         */
 347        list_for_each_entry_safe(ref, ref_safe, head, list) {
 348                if (ref->parent)        /* already direct */
 349                        continue;
 350                if (ref->count == 0)
 351                        continue;
 352                err = __resolve_indirect_ref(fs_info, search_commit_root,
 353                                             time_seq, ref, parents,
 354                                             extent_item_pos);
 355                if (err)
 356                        continue;
 357
 358                /* we put the first parent into the ref at hand */
 359                ULIST_ITER_INIT(&uiter);
 360                node = ulist_next(parents, &uiter);
 361                ref->parent = node ? node->val : 0;
 362                ref->inode_list = node ?
 363                        (struct extent_inode_elem *)(uintptr_t)node->aux : 0;
 364
 365                /* additional parents require new refs being added here */
 366                while ((node = ulist_next(parents, &uiter))) {
 367                        new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
 368                        if (!new_ref) {
 369                                ret = -ENOMEM;
 370                                break;
 371                        }
 372                        memcpy(new_ref, ref, sizeof(*ref));
 373                        new_ref->parent = node->val;
 374                        new_ref->inode_list = (struct extent_inode_elem *)
 375                                                        (uintptr_t)node->aux;
 376                        list_add(&new_ref->list, &ref->list);
 377                }
 378                ulist_reinit(parents);
 379        }
 380
 381        ulist_free(parents);
 382        return ret;
 383}
 384
 385static inline int ref_for_same_block(struct __prelim_ref *ref1,
 386                                     struct __prelim_ref *ref2)
 387{
 388        if (ref1->level != ref2->level)
 389                return 0;
 390        if (ref1->root_id != ref2->root_id)
 391                return 0;
 392        if (ref1->key_for_search.type != ref2->key_for_search.type)
 393                return 0;
 394        if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
 395                return 0;
 396        if (ref1->key_for_search.offset != ref2->key_for_search.offset)
 397                return 0;
 398        if (ref1->parent != ref2->parent)
 399                return 0;
 400
 401        return 1;
 402}
 403
 404/*
 405 * read tree blocks and add keys where required.
 406 */
 407static int __add_missing_keys(struct btrfs_fs_info *fs_info,
 408                              struct list_head *head)
 409{
 410        struct list_head *pos;
 411        struct extent_buffer *eb;
 412
 413        list_for_each(pos, head) {
 414                struct __prelim_ref *ref;
 415                ref = list_entry(pos, struct __prelim_ref, list);
 416
 417                if (ref->parent)
 418                        continue;
 419                if (ref->key_for_search.type)
 420                        continue;
 421                BUG_ON(!ref->wanted_disk_byte);
 422                eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
 423                                     fs_info->tree_root->leafsize, 0);
 424                BUG_ON(!eb);
 425                btrfs_tree_read_lock(eb);
 426                if (btrfs_header_level(eb) == 0)
 427                        btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 428                else
 429                        btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 430                btrfs_tree_read_unlock(eb);
 431                free_extent_buffer(eb);
 432        }
 433        return 0;
 434}
 435
 436/*
 437 * merge two lists of backrefs and adjust counts accordingly
 438 *
 439 * mode = 1: merge identical keys, if key is set
 440 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 441 *           additionally, we could even add a key range for the blocks we
 442 *           looked into to merge even more (-> replace unresolved refs by those
 443 *           having a parent).
 444 * mode = 2: merge identical parents
 445 */
 446static int __merge_refs(struct list_head *head, int mode)
 447{
 448        struct list_head *pos1;
 449
 450        list_for_each(pos1, head) {
 451                struct list_head *n2;
 452                struct list_head *pos2;
 453                struct __prelim_ref *ref1;
 454
 455                ref1 = list_entry(pos1, struct __prelim_ref, list);
 456
 457                for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
 458                     pos2 = n2, n2 = pos2->next) {
 459                        struct __prelim_ref *ref2;
 460                        struct __prelim_ref *xchg;
 461                        struct extent_inode_elem *eie;
 462
 463                        ref2 = list_entry(pos2, struct __prelim_ref, list);
 464
 465                        if (mode == 1) {
 466                                if (!ref_for_same_block(ref1, ref2))
 467                                        continue;
 468                                if (!ref1->parent && ref2->parent) {
 469                                        xchg = ref1;
 470                                        ref1 = ref2;
 471                                        ref2 = xchg;
 472                                }
 473                        } else {
 474                                if (ref1->parent != ref2->parent)
 475                                        continue;
 476                        }
 477
 478                        eie = ref1->inode_list;
 479                        while (eie && eie->next)
 480                                eie = eie->next;
 481                        if (eie)
 482                                eie->next = ref2->inode_list;
 483                        else
 484                                ref1->inode_list = ref2->inode_list;
 485                        ref1->count += ref2->count;
 486
 487                        list_del(&ref2->list);
 488                        kfree(ref2);
 489                }
 490
 491        }
 492        return 0;
 493}
 494
 495/*
 496 * add all currently queued delayed refs from this head whose seq nr is
 497 * smaller or equal that seq to the list
 498 */
 499static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
 500                              struct list_head *prefs)
 501{
 502        struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 503        struct rb_node *n = &head->node.rb_node;
 504        struct btrfs_key key;
 505        struct btrfs_key op_key = {0};
 506        int sgn;
 507        int ret = 0;
 508
 509        if (extent_op && extent_op->update_key)
 510                btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
 511
 512        while ((n = rb_prev(n))) {
 513                struct btrfs_delayed_ref_node *node;
 514                node = rb_entry(n, struct btrfs_delayed_ref_node,
 515                                rb_node);
 516                if (node->bytenr != head->node.bytenr)
 517                        break;
 518                WARN_ON(node->is_head);
 519
 520                if (node->seq > seq)
 521                        continue;
 522
 523                switch (node->action) {
 524                case BTRFS_ADD_DELAYED_EXTENT:
 525                case BTRFS_UPDATE_DELAYED_HEAD:
 526                        WARN_ON(1);
 527                        continue;
 528                case BTRFS_ADD_DELAYED_REF:
 529                        sgn = 1;
 530                        break;
 531                case BTRFS_DROP_DELAYED_REF:
 532                        sgn = -1;
 533                        break;
 534                default:
 535                        BUG_ON(1);
 536                }
 537                switch (node->type) {
 538                case BTRFS_TREE_BLOCK_REF_KEY: {
 539                        struct btrfs_delayed_tree_ref *ref;
 540
 541                        ref = btrfs_delayed_node_to_tree_ref(node);
 542                        ret = __add_prelim_ref(prefs, ref->root, &op_key,
 543                                               ref->level + 1, 0, node->bytenr,
 544                                               node->ref_mod * sgn);
 545                        break;
 546                }
 547                case BTRFS_SHARED_BLOCK_REF_KEY: {
 548                        struct btrfs_delayed_tree_ref *ref;
 549
 550                        ref = btrfs_delayed_node_to_tree_ref(node);
 551                        ret = __add_prelim_ref(prefs, ref->root, NULL,
 552                                               ref->level + 1, ref->parent,
 553                                               node->bytenr,
 554                                               node->ref_mod * sgn);
 555                        break;
 556                }
 557                case BTRFS_EXTENT_DATA_REF_KEY: {
 558                        struct btrfs_delayed_data_ref *ref;
 559                        ref = btrfs_delayed_node_to_data_ref(node);
 560
 561                        key.objectid = ref->objectid;
 562                        key.type = BTRFS_EXTENT_DATA_KEY;
 563                        key.offset = ref->offset;
 564                        ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
 565                                               node->bytenr,
 566                                               node->ref_mod * sgn);
 567                        break;
 568                }
 569                case BTRFS_SHARED_DATA_REF_KEY: {
 570                        struct btrfs_delayed_data_ref *ref;
 571
 572                        ref = btrfs_delayed_node_to_data_ref(node);
 573
 574                        key.objectid = ref->objectid;
 575                        key.type = BTRFS_EXTENT_DATA_KEY;
 576                        key.offset = ref->offset;
 577                        ret = __add_prelim_ref(prefs, ref->root, &key, 0,
 578                                               ref->parent, node->bytenr,
 579                                               node->ref_mod * sgn);
 580                        break;
 581                }
 582                default:
 583                        WARN_ON(1);
 584                }
 585                BUG_ON(ret);
 586        }
 587
 588        return 0;
 589}
 590
 591/*
 592 * add all inline backrefs for bytenr to the list
 593 */
 594static int __add_inline_refs(struct btrfs_fs_info *fs_info,
 595                             struct btrfs_path *path, u64 bytenr,
 596                             int *info_level, struct list_head *prefs)
 597{
 598        int ret = 0;
 599        int slot;
 600        struct extent_buffer *leaf;
 601        struct btrfs_key key;
 602        unsigned long ptr;
 603        unsigned long end;
 604        struct btrfs_extent_item *ei;
 605        u64 flags;
 606        u64 item_size;
 607
 608        /*
 609         * enumerate all inline refs
 610         */
 611        leaf = path->nodes[0];
 612        slot = path->slots[0];
 613
 614        item_size = btrfs_item_size_nr(leaf, slot);
 615        BUG_ON(item_size < sizeof(*ei));
 616
 617        ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 618        flags = btrfs_extent_flags(leaf, ei);
 619
 620        ptr = (unsigned long)(ei + 1);
 621        end = (unsigned long)ei + item_size;
 622
 623        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 624                struct btrfs_tree_block_info *info;
 625
 626                info = (struct btrfs_tree_block_info *)ptr;
 627                *info_level = btrfs_tree_block_level(leaf, info);
 628                ptr += sizeof(struct btrfs_tree_block_info);
 629                BUG_ON(ptr > end);
 630        } else {
 631                BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 632        }
 633
 634        while (ptr < end) {
 635                struct btrfs_extent_inline_ref *iref;
 636                u64 offset;
 637                int type;
 638
 639                iref = (struct btrfs_extent_inline_ref *)ptr;
 640                type = btrfs_extent_inline_ref_type(leaf, iref);
 641                offset = btrfs_extent_inline_ref_offset(leaf, iref);
 642
 643                switch (type) {
 644                case BTRFS_SHARED_BLOCK_REF_KEY:
 645                        ret = __add_prelim_ref(prefs, 0, NULL,
 646                                                *info_level + 1, offset,
 647                                                bytenr, 1);
 648                        break;
 649                case BTRFS_SHARED_DATA_REF_KEY: {
 650                        struct btrfs_shared_data_ref *sdref;
 651                        int count;
 652
 653                        sdref = (struct btrfs_shared_data_ref *)(iref + 1);
 654                        count = btrfs_shared_data_ref_count(leaf, sdref);
 655                        ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
 656                                               bytenr, count);
 657                        break;
 658                }
 659                case BTRFS_TREE_BLOCK_REF_KEY:
 660                        ret = __add_prelim_ref(prefs, offset, NULL,
 661                                               *info_level + 1, 0,
 662                                               bytenr, 1);
 663                        break;
 664                case BTRFS_EXTENT_DATA_REF_KEY: {
 665                        struct btrfs_extent_data_ref *dref;
 666                        int count;
 667                        u64 root;
 668
 669                        dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 670                        count = btrfs_extent_data_ref_count(leaf, dref);
 671                        key.objectid = btrfs_extent_data_ref_objectid(leaf,
 672                                                                      dref);
 673                        key.type = BTRFS_EXTENT_DATA_KEY;
 674                        key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 675                        root = btrfs_extent_data_ref_root(leaf, dref);
 676                        ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 677                                               bytenr, count);
 678                        break;
 679                }
 680                default:
 681                        WARN_ON(1);
 682                }
 683                BUG_ON(ret);
 684                ptr += btrfs_extent_inline_ref_size(type);
 685        }
 686
 687        return 0;
 688}
 689
 690/*
 691 * add all non-inline backrefs for bytenr to the list
 692 */
 693static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
 694                            struct btrfs_path *path, u64 bytenr,
 695                            int info_level, struct list_head *prefs)
 696{
 697        struct btrfs_root *extent_root = fs_info->extent_root;
 698        int ret;
 699        int slot;
 700        struct extent_buffer *leaf;
 701        struct btrfs_key key;
 702
 703        while (1) {
 704                ret = btrfs_next_item(extent_root, path);
 705                if (ret < 0)
 706                        break;
 707                if (ret) {
 708                        ret = 0;
 709                        break;
 710                }
 711
 712                slot = path->slots[0];
 713                leaf = path->nodes[0];
 714                btrfs_item_key_to_cpu(leaf, &key, slot);
 715
 716                if (key.objectid != bytenr)
 717                        break;
 718                if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
 719                        continue;
 720                if (key.type > BTRFS_SHARED_DATA_REF_KEY)
 721                        break;
 722
 723                switch (key.type) {
 724                case BTRFS_SHARED_BLOCK_REF_KEY:
 725                        ret = __add_prelim_ref(prefs, 0, NULL,
 726                                                info_level + 1, key.offset,
 727                                                bytenr, 1);
 728                        break;
 729                case BTRFS_SHARED_DATA_REF_KEY: {
 730                        struct btrfs_shared_data_ref *sdref;
 731                        int count;
 732
 733                        sdref = btrfs_item_ptr(leaf, slot,
 734                                              struct btrfs_shared_data_ref);
 735                        count = btrfs_shared_data_ref_count(leaf, sdref);
 736                        ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
 737                                                bytenr, count);
 738                        break;
 739                }
 740                case BTRFS_TREE_BLOCK_REF_KEY:
 741                        ret = __add_prelim_ref(prefs, key.offset, NULL,
 742                                               info_level + 1, 0,
 743                                               bytenr, 1);
 744                        break;
 745                case BTRFS_EXTENT_DATA_REF_KEY: {
 746                        struct btrfs_extent_data_ref *dref;
 747                        int count;
 748                        u64 root;
 749
 750                        dref = btrfs_item_ptr(leaf, slot,
 751                                              struct btrfs_extent_data_ref);
 752                        count = btrfs_extent_data_ref_count(leaf, dref);
 753                        key.objectid = btrfs_extent_data_ref_objectid(leaf,
 754                                                                      dref);
 755                        key.type = BTRFS_EXTENT_DATA_KEY;
 756                        key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 757                        root = btrfs_extent_data_ref_root(leaf, dref);
 758                        ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 759                                               bytenr, count);
 760                        break;
 761                }
 762                default:
 763                        WARN_ON(1);
 764                }
 765                BUG_ON(ret);
 766        }
 767
 768        return ret;
 769}
 770
 771/*
 772 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 773 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 774 * indirect refs to their parent bytenr.
 775 * When roots are found, they're added to the roots list
 776 *
 777 * FIXME some caching might speed things up
 778 */
 779static int find_parent_nodes(struct btrfs_trans_handle *trans,
 780                             struct btrfs_fs_info *fs_info, u64 bytenr,
 781                             u64 time_seq, struct ulist *refs,
 782                             struct ulist *roots, const u64 *extent_item_pos)
 783{
 784        struct btrfs_key key;
 785        struct btrfs_path *path;
 786        struct btrfs_delayed_ref_root *delayed_refs = NULL;
 787        struct btrfs_delayed_ref_head *head;
 788        int info_level = 0;
 789        int ret;
 790        int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
 791        struct list_head prefs_delayed;
 792        struct list_head prefs;
 793        struct __prelim_ref *ref;
 794
 795        INIT_LIST_HEAD(&prefs);
 796        INIT_LIST_HEAD(&prefs_delayed);
 797
 798        key.objectid = bytenr;
 799        key.type = BTRFS_EXTENT_ITEM_KEY;
 800        key.offset = (u64)-1;
 801
 802        path = btrfs_alloc_path();
 803        if (!path)
 804                return -ENOMEM;
 805        path->search_commit_root = !!search_commit_root;
 806
 807        /*
 808         * grab both a lock on the path and a lock on the delayed ref head.
 809         * We need both to get a consistent picture of how the refs look
 810         * at a specified point in time
 811         */
 812again:
 813        head = NULL;
 814
 815        ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 816        if (ret < 0)
 817                goto out;
 818        BUG_ON(ret == 0);
 819
 820        if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
 821                /*
 822                 * look if there are updates for this ref queued and lock the
 823                 * head
 824                 */
 825                delayed_refs = &trans->transaction->delayed_refs;
 826                spin_lock(&delayed_refs->lock);
 827                head = btrfs_find_delayed_ref_head(trans, bytenr);
 828                if (head) {
 829                        if (!mutex_trylock(&head->mutex)) {
 830                                atomic_inc(&head->node.refs);
 831                                spin_unlock(&delayed_refs->lock);
 832
 833                                btrfs_release_path(path);
 834
 835                                /*
 836                                 * Mutex was contended, block until it's
 837                                 * released and try again
 838                                 */
 839                                mutex_lock(&head->mutex);
 840                                mutex_unlock(&head->mutex);
 841                                btrfs_put_delayed_ref(&head->node);
 842                                goto again;
 843                        }
 844                        ret = __add_delayed_refs(head, time_seq,
 845                                                 &prefs_delayed);
 846                        mutex_unlock(&head->mutex);
 847                        if (ret) {
 848                                spin_unlock(&delayed_refs->lock);
 849                                goto out;
 850                        }
 851                }
 852                spin_unlock(&delayed_refs->lock);
 853        }
 854
 855        if (path->slots[0]) {
 856                struct extent_buffer *leaf;
 857                int slot;
 858
 859                path->slots[0]--;
 860                leaf = path->nodes[0];
 861                slot = path->slots[0];
 862                btrfs_item_key_to_cpu(leaf, &key, slot);
 863                if (key.objectid == bytenr &&
 864                    key.type == BTRFS_EXTENT_ITEM_KEY) {
 865                        ret = __add_inline_refs(fs_info, path, bytenr,
 866                                                &info_level, &prefs);
 867                        if (ret)
 868                                goto out;
 869                        ret = __add_keyed_refs(fs_info, path, bytenr,
 870                                               info_level, &prefs);
 871                        if (ret)
 872                                goto out;
 873                }
 874        }
 875        btrfs_release_path(path);
 876
 877        list_splice_init(&prefs_delayed, &prefs);
 878
 879        ret = __add_missing_keys(fs_info, &prefs);
 880        if (ret)
 881                goto out;
 882
 883        ret = __merge_refs(&prefs, 1);
 884        if (ret)
 885                goto out;
 886
 887        ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
 888                                      &prefs, extent_item_pos);
 889        if (ret)
 890                goto out;
 891
 892        ret = __merge_refs(&prefs, 2);
 893        if (ret)
 894                goto out;
 895
 896        while (!list_empty(&prefs)) {
 897                ref = list_first_entry(&prefs, struct __prelim_ref, list);
 898                list_del(&ref->list);
 899                WARN_ON(ref->count < 0);
 900                if (ref->count && ref->root_id && ref->parent == 0) {
 901                        /* no parent == root of tree */
 902                        ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
 903                        BUG_ON(ret < 0);
 904                }
 905                if (ref->count && ref->parent) {
 906                        struct extent_inode_elem *eie = NULL;
 907                        if (extent_item_pos && !ref->inode_list) {
 908                                u32 bsz;
 909                                struct extent_buffer *eb;
 910                                bsz = btrfs_level_size(fs_info->extent_root,
 911                                                        info_level);
 912                                eb = read_tree_block(fs_info->extent_root,
 913                                                           ref->parent, bsz, 0);
 914                                BUG_ON(!eb);
 915                                ret = find_extent_in_eb(eb, bytenr,
 916                                                        *extent_item_pos, &eie);
 917                                ref->inode_list = eie;
 918                                free_extent_buffer(eb);
 919                        }
 920                        ret = ulist_add_merge(refs, ref->parent,
 921                                              (uintptr_t)ref->inode_list,
 922                                              (u64 *)&eie, GFP_NOFS);
 923                        if (!ret && extent_item_pos) {
 924                                /*
 925                                 * we've recorded that parent, so we must extend
 926                                 * its inode list here
 927                                 */
 928                                BUG_ON(!eie);
 929                                while (eie->next)
 930                                        eie = eie->next;
 931                                eie->next = ref->inode_list;
 932                        }
 933                        BUG_ON(ret < 0);
 934                }
 935                kfree(ref);
 936        }
 937
 938out:
 939        btrfs_free_path(path);
 940        while (!list_empty(&prefs)) {
 941                ref = list_first_entry(&prefs, struct __prelim_ref, list);
 942                list_del(&ref->list);
 943                kfree(ref);
 944        }
 945        while (!list_empty(&prefs_delayed)) {
 946                ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
 947                                       list);
 948                list_del(&ref->list);
 949                kfree(ref);
 950        }
 951
 952        return ret;
 953}
 954
 955static void free_leaf_list(struct ulist *blocks)
 956{
 957        struct ulist_node *node = NULL;
 958        struct extent_inode_elem *eie;
 959        struct extent_inode_elem *eie_next;
 960        struct ulist_iterator uiter;
 961
 962        ULIST_ITER_INIT(&uiter);
 963        while ((node = ulist_next(blocks, &uiter))) {
 964                if (!node->aux)
 965                        continue;
 966                eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
 967                for (; eie; eie = eie_next) {
 968                        eie_next = eie->next;
 969                        kfree(eie);
 970                }
 971                node->aux = 0;
 972        }
 973
 974        ulist_free(blocks);
 975}
 976
 977/*
 978 * Finds all leafs with a reference to the specified combination of bytenr and
 979 * offset. key_list_head will point to a list of corresponding keys (caller must
 980 * free each list element). The leafs will be stored in the leafs ulist, which
 981 * must be freed with ulist_free.
 982 *
 983 * returns 0 on success, <0 on error
 984 */
 985static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
 986                                struct btrfs_fs_info *fs_info, u64 bytenr,
 987                                u64 time_seq, struct ulist **leafs,
 988                                const u64 *extent_item_pos)
 989{
 990        struct ulist *tmp;
 991        int ret;
 992
 993        tmp = ulist_alloc(GFP_NOFS);
 994        if (!tmp)
 995                return -ENOMEM;
 996        *leafs = ulist_alloc(GFP_NOFS);
 997        if (!*leafs) {
 998                ulist_free(tmp);
 999                return -ENOMEM;
1000        }
1001
1002        ret = find_parent_nodes(trans, fs_info, bytenr,
1003                                time_seq, *leafs, tmp, extent_item_pos);
1004        ulist_free(tmp);
1005
1006        if (ret < 0 && ret != -ENOENT) {
1007                free_leaf_list(*leafs);
1008                return ret;
1009        }
1010
1011        return 0;
1012}
1013
1014/*
1015 * walk all backrefs for a given extent to find all roots that reference this
1016 * extent. Walking a backref means finding all extents that reference this
1017 * extent and in turn walk the backrefs of those, too. Naturally this is a
1018 * recursive process, but here it is implemented in an iterative fashion: We
1019 * find all referencing extents for the extent in question and put them on a
1020 * list. In turn, we find all referencing extents for those, further appending
1021 * to the list. The way we iterate the list allows adding more elements after
1022 * the current while iterating. The process stops when we reach the end of the
1023 * list. Found roots are added to the roots list.
1024 *
1025 * returns 0 on success, < 0 on error.
1026 */
1027int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1028                                struct btrfs_fs_info *fs_info, u64 bytenr,
1029                                u64 time_seq, struct ulist **roots)
1030{
1031        struct ulist *tmp;
1032        struct ulist_node *node = NULL;
1033        struct ulist_iterator uiter;
1034        int ret;
1035
1036        tmp = ulist_alloc(GFP_NOFS);
1037        if (!tmp)
1038                return -ENOMEM;
1039        *roots = ulist_alloc(GFP_NOFS);
1040        if (!*roots) {
1041                ulist_free(tmp);
1042                return -ENOMEM;
1043        }
1044
1045        ULIST_ITER_INIT(&uiter);
1046        while (1) {
1047                ret = find_parent_nodes(trans, fs_info, bytenr,
1048                                        time_seq, tmp, *roots, NULL);
1049                if (ret < 0 && ret != -ENOENT) {
1050                        ulist_free(tmp);
1051                        ulist_free(*roots);
1052                        return ret;
1053                }
1054                node = ulist_next(tmp, &uiter);
1055                if (!node)
1056                        break;
1057                bytenr = node->val;
1058        }
1059
1060        ulist_free(tmp);
1061        return 0;
1062}
1063
1064
1065static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1066                        struct btrfs_root *fs_root, struct btrfs_path *path,
1067                        struct btrfs_key *found_key)
1068{
1069        int ret;
1070        struct btrfs_key key;
1071        struct extent_buffer *eb;
1072
1073        key.type = key_type;
1074        key.objectid = inum;
1075        key.offset = ioff;
1076
1077        ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1078        if (ret < 0)
1079                return ret;
1080
1081        eb = path->nodes[0];
1082        if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1083                ret = btrfs_next_leaf(fs_root, path);
1084                if (ret)
1085                        return ret;
1086                eb = path->nodes[0];
1087        }
1088
1089        btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1090        if (found_key->type != key.type || found_key->objectid != key.objectid)
1091                return 1;
1092
1093        return 0;
1094}
1095
1096/*
1097 * this makes the path point to (inum INODE_ITEM ioff)
1098 */
1099int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1100                        struct btrfs_path *path)
1101{
1102        struct btrfs_key key;
1103        return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1104                                &key);
1105}
1106
1107static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1108                                struct btrfs_path *path,
1109                                struct btrfs_key *found_key)
1110{
1111        return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1112                                found_key);
1113}
1114
1115int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1116                          u64 start_off, struct btrfs_path *path,
1117                          struct btrfs_inode_extref **ret_extref,
1118                          u64 *found_off)
1119{
1120        int ret, slot;
1121        struct btrfs_key key;
1122        struct btrfs_key found_key;
1123        struct btrfs_inode_extref *extref;
1124        struct extent_buffer *leaf;
1125        unsigned long ptr;
1126
1127        key.objectid = inode_objectid;
1128        btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1129        key.offset = start_off;
1130
1131        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1132        if (ret < 0)
1133                return ret;
1134
1135        while (1) {
1136                leaf = path->nodes[0];
1137                slot = path->slots[0];
1138                if (slot >= btrfs_header_nritems(leaf)) {
1139                        /*
1140                         * If the item at offset is not found,
1141                         * btrfs_search_slot will point us to the slot
1142                         * where it should be inserted. In our case
1143                         * that will be the slot directly before the
1144                         * next INODE_REF_KEY_V2 item. In the case
1145                         * that we're pointing to the last slot in a
1146                         * leaf, we must move one leaf over.
1147                         */
1148                        ret = btrfs_next_leaf(root, path);
1149                        if (ret) {
1150                                if (ret >= 1)
1151                                        ret = -ENOENT;
1152                                break;
1153                        }
1154                        continue;
1155                }
1156
1157                btrfs_item_key_to_cpu(leaf, &found_key, slot);
1158
1159                /*
1160                 * Check that we're still looking at an extended ref key for
1161                 * this particular objectid. If we have different
1162                 * objectid or type then there are no more to be found
1163                 * in the tree and we can exit.
1164                 */
1165                ret = -ENOENT;
1166                if (found_key.objectid != inode_objectid)
1167                        break;
1168                if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1169                        break;
1170
1171                ret = 0;
1172                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1173                extref = (struct btrfs_inode_extref *)ptr;
1174                *ret_extref = extref;
1175                if (found_off)
1176                        *found_off = found_key.offset;
1177                break;
1178        }
1179
1180        return ret;
1181}
1182
1183char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1184                        u32 name_len, unsigned long name_off,
1185                        struct extent_buffer *eb_in, u64 parent,
1186                        char *dest, u32 size)
1187{
1188        int slot;
1189        u64 next_inum;
1190        int ret;
1191        s64 bytes_left = ((s64)size) - 1;
1192        struct extent_buffer *eb = eb_in;
1193        struct btrfs_key found_key;
1194        int leave_spinning = path->leave_spinning;
1195        struct btrfs_inode_ref *iref;
1196
1197        if (bytes_left >= 0)
1198                dest[bytes_left] = '\0';
1199
1200        path->leave_spinning = 1;
1201        while (1) {
1202                bytes_left -= name_len;
1203                if (bytes_left >= 0)
1204                        read_extent_buffer(eb, dest + bytes_left,
1205                                           name_off, name_len);
1206                if (eb != eb_in) {
1207                        btrfs_tree_read_unlock_blocking(eb);
1208                        free_extent_buffer(eb);
1209                }
1210                ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1211                if (ret > 0)
1212                        ret = -ENOENT;
1213                if (ret)
1214                        break;
1215
1216                next_inum = found_key.offset;
1217
1218                /* regular exit ahead */
1219                if (parent == next_inum)
1220                        break;
1221
1222                slot = path->slots[0];
1223                eb = path->nodes[0];
1224                /* make sure we can use eb after releasing the path */
1225                if (eb != eb_in) {
1226                        atomic_inc(&eb->refs);
1227                        btrfs_tree_read_lock(eb);
1228                        btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1229                }
1230                btrfs_release_path(path);
1231                iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1232
1233                name_len = btrfs_inode_ref_name_len(eb, iref);
1234                name_off = (unsigned long)(iref + 1);
1235
1236                parent = next_inum;
1237                --bytes_left;
1238                if (bytes_left >= 0)
1239                        dest[bytes_left] = '/';
1240        }
1241
1242        btrfs_release_path(path);
1243        path->leave_spinning = leave_spinning;
1244
1245        if (ret)
1246                return ERR_PTR(ret);
1247
1248        return dest + bytes_left;
1249}
1250
1251/*
1252 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
1253 * of the path are separated by '/' and the path is guaranteed to be
1254 * 0-terminated. the path is only given within the current file system.
1255 * Therefore, it never starts with a '/'. the caller is responsible to provide
1256 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1257 * the start point of the resulting string is returned. this pointer is within
1258 * dest, normally.
1259 * in case the path buffer would overflow, the pointer is decremented further
1260 * as if output was written to the buffer, though no more output is actually
1261 * generated. that way, the caller can determine how much space would be
1262 * required for the path to fit into the buffer. in that case, the returned
1263 * value will be smaller than dest. callers must check this!
1264 */
1265char *btrfs_iref_to_path(struct btrfs_root *fs_root,
1266                         struct btrfs_path *path,
1267                         struct btrfs_inode_ref *iref,
1268                         struct extent_buffer *eb_in, u64 parent,
1269                         char *dest, u32 size)
1270{
1271        return btrfs_ref_to_path(fs_root, path,
1272                                 btrfs_inode_ref_name_len(eb_in, iref),
1273                                 (unsigned long)(iref + 1),
1274                                 eb_in, parent, dest, size);
1275}
1276
1277/*
1278 * this makes the path point to (logical EXTENT_ITEM *)
1279 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1280 * tree blocks and <0 on error.
1281 */
1282int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1283                        struct btrfs_path *path, struct btrfs_key *found_key,
1284                        u64 *flags_ret)
1285{
1286        int ret;
1287        u64 flags;
1288        u32 item_size;
1289        struct extent_buffer *eb;
1290        struct btrfs_extent_item *ei;
1291        struct btrfs_key key;
1292
1293        key.type = BTRFS_EXTENT_ITEM_KEY;
1294        key.objectid = logical;
1295        key.offset = (u64)-1;
1296
1297        ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1298        if (ret < 0)
1299                return ret;
1300        ret = btrfs_previous_item(fs_info->extent_root, path,
1301                                        0, BTRFS_EXTENT_ITEM_KEY);
1302        if (ret < 0)
1303                return ret;
1304
1305        btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1306        if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1307            found_key->objectid > logical ||
1308            found_key->objectid + found_key->offset <= logical) {
1309                pr_debug("logical %llu is not within any extent\n",
1310                         (unsigned long long)logical);
1311                return -ENOENT;
1312        }
1313
1314        eb = path->nodes[0];
1315        item_size = btrfs_item_size_nr(eb, path->slots[0]);
1316        BUG_ON(item_size < sizeof(*ei));
1317
1318        ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1319        flags = btrfs_extent_flags(eb, ei);
1320
1321        pr_debug("logical %llu is at position %llu within the extent (%llu "
1322                 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1323                 (unsigned long long)logical,
1324                 (unsigned long long)(logical - found_key->objectid),
1325                 (unsigned long long)found_key->objectid,
1326                 (unsigned long long)found_key->offset,
1327                 (unsigned long long)flags, item_size);
1328
1329        WARN_ON(!flags_ret);
1330        if (flags_ret) {
1331                if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1332                        *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1333                else if (flags & BTRFS_EXTENT_FLAG_DATA)
1334                        *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1335                else
1336                        BUG_ON(1);
1337                return 0;
1338        }
1339
1340        return -EIO;
1341}
1342
1343/*
1344 * helper function to iterate extent inline refs. ptr must point to a 0 value
1345 * for the first call and may be modified. it is used to track state.
1346 * if more refs exist, 0 is returned and the next call to
1347 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1348 * next ref. after the last ref was processed, 1 is returned.
1349 * returns <0 on error
1350 */
1351static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1352                                struct btrfs_extent_item *ei, u32 item_size,
1353                                struct btrfs_extent_inline_ref **out_eiref,
1354                                int *out_type)
1355{
1356        unsigned long end;
1357        u64 flags;
1358        struct btrfs_tree_block_info *info;
1359
1360        if (!*ptr) {
1361                /* first call */
1362                flags = btrfs_extent_flags(eb, ei);
1363                if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1364                        info = (struct btrfs_tree_block_info *)(ei + 1);
1365                        *out_eiref =
1366                                (struct btrfs_extent_inline_ref *)(info + 1);
1367                } else {
1368                        *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1369                }
1370                *ptr = (unsigned long)*out_eiref;
1371                if ((void *)*ptr >= (void *)ei + item_size)
1372                        return -ENOENT;
1373        }
1374
1375        end = (unsigned long)ei + item_size;
1376        *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1377        *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1378
1379        *ptr += btrfs_extent_inline_ref_size(*out_type);
1380        WARN_ON(*ptr > end);
1381        if (*ptr == end)
1382                return 1; /* last */
1383
1384        return 0;
1385}
1386
1387/*
1388 * reads the tree block backref for an extent. tree level and root are returned
1389 * through out_level and out_root. ptr must point to a 0 value for the first
1390 * call and may be modified (see __get_extent_inline_ref comment).
1391 * returns 0 if data was provided, 1 if there was no more data to provide or
1392 * <0 on error.
1393 */
1394int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1395                                struct btrfs_extent_item *ei, u32 item_size,
1396                                u64 *out_root, u8 *out_level)
1397{
1398        int ret;
1399        int type;
1400        struct btrfs_tree_block_info *info;
1401        struct btrfs_extent_inline_ref *eiref;
1402
1403        if (*ptr == (unsigned long)-1)
1404                return 1;
1405
1406        while (1) {
1407                ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1408                                                &eiref, &type);
1409                if (ret < 0)
1410                        return ret;
1411
1412                if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1413                    type == BTRFS_SHARED_BLOCK_REF_KEY)
1414                        break;
1415
1416                if (ret == 1)
1417                        return 1;
1418        }
1419
1420        /* we can treat both ref types equally here */
1421        info = (struct btrfs_tree_block_info *)(ei + 1);
1422        *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1423        *out_level = btrfs_tree_block_level(eb, info);
1424
1425        if (ret == 1)
1426                *ptr = (unsigned long)-1;
1427
1428        return 0;
1429}
1430
1431static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1432                                u64 root, u64 extent_item_objectid,
1433                                iterate_extent_inodes_t *iterate, void *ctx)
1434{
1435        struct extent_inode_elem *eie;
1436        int ret = 0;
1437
1438        for (eie = inode_list; eie; eie = eie->next) {
1439                pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1440                         "root %llu\n", extent_item_objectid,
1441                         eie->inum, eie->offset, root);
1442                ret = iterate(eie->inum, eie->offset, root, ctx);
1443                if (ret) {
1444                        pr_debug("stopping iteration for %llu due to ret=%d\n",
1445                                 extent_item_objectid, ret);
1446                        break;
1447                }
1448        }
1449
1450        return ret;
1451}
1452
1453/*
1454 * calls iterate() for every inode that references the extent identified by
1455 * the given parameters.
1456 * when the iterator function returns a non-zero value, iteration stops.
1457 */
1458int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1459                                u64 extent_item_objectid, u64 extent_item_pos,
1460                                int search_commit_root,
1461                                iterate_extent_inodes_t *iterate, void *ctx)
1462{
1463        int ret;
1464        struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1465        struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
1466        struct btrfs_trans_handle *trans;
1467        struct ulist *refs = NULL;
1468        struct ulist *roots = NULL;
1469        struct ulist_node *ref_node = NULL;
1470        struct ulist_node *root_node = NULL;
1471        struct seq_list tree_mod_seq_elem = {};
1472        struct ulist_iterator ref_uiter;
1473        struct ulist_iterator root_uiter;
1474
1475        pr_debug("resolving all inodes for extent %llu\n",
1476                        extent_item_objectid);
1477
1478        if (search_commit_root) {
1479                trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1480        } else {
1481                trans = btrfs_join_transaction(fs_info->extent_root);
1482                if (IS_ERR(trans))
1483                        return PTR_ERR(trans);
1484                btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1485        }
1486
1487        ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1488                                   tree_mod_seq_elem.seq, &refs,
1489                                   &extent_item_pos);
1490        if (ret)
1491                goto out;
1492
1493        ULIST_ITER_INIT(&ref_uiter);
1494        while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1495                ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1496                                           tree_mod_seq_elem.seq, &roots);
1497                if (ret)
1498                        break;
1499                ULIST_ITER_INIT(&root_uiter);
1500                while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1501                        pr_debug("root %llu references leaf %llu, data list "
1502                                 "%#llx\n", root_node->val, ref_node->val,
1503                                 (long long)ref_node->aux);
1504                        ret = iterate_leaf_refs((struct extent_inode_elem *)
1505                                                (uintptr_t)ref_node->aux,
1506                                                root_node->val,
1507                                                extent_item_objectid,
1508                                                iterate, ctx);
1509                }
1510                ulist_free(roots);
1511                roots = NULL;
1512        }
1513
1514        free_leaf_list(refs);
1515        ulist_free(roots);
1516out:
1517        if (!search_commit_root) {
1518                btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1519                btrfs_end_transaction(trans, fs_info->extent_root);
1520        }
1521
1522        return ret;
1523}
1524
1525int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1526                                struct btrfs_path *path,
1527                                iterate_extent_inodes_t *iterate, void *ctx)
1528{
1529        int ret;
1530        u64 extent_item_pos;
1531        u64 flags = 0;
1532        struct btrfs_key found_key;
1533        int search_commit_root = path->search_commit_root;
1534
1535        ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1536        btrfs_release_path(path);
1537        if (ret < 0)
1538                return ret;
1539        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1540                return -EINVAL;
1541
1542        extent_item_pos = logical - found_key.objectid;
1543        ret = iterate_extent_inodes(fs_info, found_key.objectid,
1544                                        extent_item_pos, search_commit_root,
1545                                        iterate, ctx);
1546
1547        return ret;
1548}
1549
1550typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1551                              struct extent_buffer *eb, void *ctx);
1552
1553static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1554                              struct btrfs_path *path,
1555                              iterate_irefs_t *iterate, void *ctx)
1556{
1557        int ret = 0;
1558        int slot;
1559        u32 cur;
1560        u32 len;
1561        u32 name_len;
1562        u64 parent = 0;
1563        int found = 0;
1564        struct extent_buffer *eb;
1565        struct btrfs_item *item;
1566        struct btrfs_inode_ref *iref;
1567        struct btrfs_key found_key;
1568
1569        while (!ret) {
1570                path->leave_spinning = 1;
1571                ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1572                                     &found_key);
1573                if (ret < 0)
1574                        break;
1575                if (ret) {
1576                        ret = found ? 0 : -ENOENT;
1577                        break;
1578                }
1579                ++found;
1580
1581                parent = found_key.offset;
1582                slot = path->slots[0];
1583                eb = path->nodes[0];
1584                /* make sure we can use eb after releasing the path */
1585                atomic_inc(&eb->refs);
1586                btrfs_tree_read_lock(eb);
1587                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1588                btrfs_release_path(path);
1589
1590                item = btrfs_item_nr(eb, slot);
1591                iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1592
1593                for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1594                        name_len = btrfs_inode_ref_name_len(eb, iref);
1595                        /* path must be released before calling iterate()! */
1596                        pr_debug("following ref at offset %u for inode %llu in "
1597                                 "tree %llu\n", cur,
1598                                 (unsigned long long)found_key.objectid,
1599                                 (unsigned long long)fs_root->objectid);
1600                        ret = iterate(parent, name_len,
1601                                      (unsigned long)(iref + 1), eb, ctx);
1602                        if (ret)
1603                                break;
1604                        len = sizeof(*iref) + name_len;
1605                        iref = (struct btrfs_inode_ref *)((char *)iref + len);
1606                }
1607                btrfs_tree_read_unlock_blocking(eb);
1608                free_extent_buffer(eb);
1609        }
1610
1611        btrfs_release_path(path);
1612
1613        return ret;
1614}
1615
1616static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1617                                 struct btrfs_path *path,
1618                                 iterate_irefs_t *iterate, void *ctx)
1619{
1620        int ret;
1621        int slot;
1622        u64 offset = 0;
1623        u64 parent;
1624        int found = 0;
1625        struct extent_buffer *eb;
1626        struct btrfs_inode_extref *extref;
1627        struct extent_buffer *leaf;
1628        u32 item_size;
1629        u32 cur_offset;
1630        unsigned long ptr;
1631
1632        while (1) {
1633                ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1634                                            &offset);
1635                if (ret < 0)
1636                        break;
1637                if (ret) {
1638                        ret = found ? 0 : -ENOENT;
1639                        break;
1640                }
1641                ++found;
1642
1643                slot = path->slots[0];
1644                eb = path->nodes[0];
1645                /* make sure we can use eb after releasing the path */
1646                atomic_inc(&eb->refs);
1647
1648                btrfs_tree_read_lock(eb);
1649                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1650                btrfs_release_path(path);
1651
1652                leaf = path->nodes[0];
1653                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1654                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1655                cur_offset = 0;
1656
1657                while (cur_offset < item_size) {
1658                        u32 name_len;
1659
1660                        extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1661                        parent = btrfs_inode_extref_parent(eb, extref);
1662                        name_len = btrfs_inode_extref_name_len(eb, extref);
1663                        ret = iterate(parent, name_len,
1664                                      (unsigned long)&extref->name, eb, ctx);
1665                        if (ret)
1666                                break;
1667
1668                        cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1669                        cur_offset += sizeof(*extref);
1670                }
1671                btrfs_tree_read_unlock_blocking(eb);
1672                free_extent_buffer(eb);
1673
1674                offset++;
1675        }
1676
1677        btrfs_release_path(path);
1678
1679        return ret;
1680}
1681
1682static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1683                         struct btrfs_path *path, iterate_irefs_t *iterate,
1684                         void *ctx)
1685{
1686        int ret;
1687        int found_refs = 0;
1688
1689        ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1690        if (!ret)
1691                ++found_refs;
1692        else if (ret != -ENOENT)
1693                return ret;
1694
1695        ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1696        if (ret == -ENOENT && found_refs)
1697                return 0;
1698
1699        return ret;
1700}
1701
1702/*
1703 * returns 0 if the path could be dumped (probably truncated)
1704 * returns <0 in case of an error
1705 */
1706static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1707                         struct extent_buffer *eb, void *ctx)
1708{
1709        struct inode_fs_paths *ipath = ctx;
1710        char *fspath;
1711        char *fspath_min;
1712        int i = ipath->fspath->elem_cnt;
1713        const int s_ptr = sizeof(char *);
1714        u32 bytes_left;
1715
1716        bytes_left = ipath->fspath->bytes_left > s_ptr ?
1717                                        ipath->fspath->bytes_left - s_ptr : 0;
1718
1719        fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1720        fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1721                                   name_off, eb, inum, fspath_min, bytes_left);
1722        if (IS_ERR(fspath))
1723                return PTR_ERR(fspath);
1724
1725        if (fspath > fspath_min) {
1726                ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1727                ++ipath->fspath->elem_cnt;
1728                ipath->fspath->bytes_left = fspath - fspath_min;
1729        } else {
1730                ++ipath->fspath->elem_missed;
1731                ipath->fspath->bytes_missing += fspath_min - fspath;
1732                ipath->fspath->bytes_left = 0;
1733        }
1734
1735        return 0;
1736}
1737
1738/*
1739 * this dumps all file system paths to the inode into the ipath struct, provided
1740 * is has been created large enough. each path is zero-terminated and accessed
1741 * from ipath->fspath->val[i].
1742 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1743 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1744 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1745 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1746 * have been needed to return all paths.
1747 */
1748int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1749{
1750        return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1751                             inode_to_path, ipath);
1752}
1753
1754struct btrfs_data_container *init_data_container(u32 total_bytes)
1755{
1756        struct btrfs_data_container *data;
1757        size_t alloc_bytes;
1758
1759        alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1760        data = vmalloc(alloc_bytes);
1761        if (!data)
1762                return ERR_PTR(-ENOMEM);
1763
1764        if (total_bytes >= sizeof(*data)) {
1765                data->bytes_left = total_bytes - sizeof(*data);
1766                data->bytes_missing = 0;
1767        } else {
1768                data->bytes_missing = sizeof(*data) - total_bytes;
1769                data->bytes_left = 0;
1770        }
1771
1772        data->elem_cnt = 0;
1773        data->elem_missed = 0;
1774
1775        return data;
1776}
1777
1778/*
1779 * allocates space to return multiple file system paths for an inode.
1780 * total_bytes to allocate are passed, note that space usable for actual path
1781 * information will be total_bytes - sizeof(struct inode_fs_paths).
1782 * the returned pointer must be freed with free_ipath() in the end.
1783 */
1784struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1785                                        struct btrfs_path *path)
1786{
1787        struct inode_fs_paths *ifp;
1788        struct btrfs_data_container *fspath;
1789
1790        fspath = init_data_container(total_bytes);
1791        if (IS_ERR(fspath))
1792                return (void *)fspath;
1793
1794        ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1795        if (!ifp) {
1796                kfree(fspath);
1797                return ERR_PTR(-ENOMEM);
1798        }
1799
1800        ifp->btrfs_path = path;
1801        ifp->fspath = fspath;
1802        ifp->fs_root = fs_root;
1803
1804        return ifp;
1805}
1806
1807void free_ipath(struct inode_fs_paths *ipath)
1808{
1809        if (!ipath)
1810                return;
1811        vfree(ipath->fspath);
1812        kfree(ipath);
1813}
1814