linux/fs/f2fs/checkpoint.c
<<
>>
Prefs
   1/*
   2 * fs/f2fs/checkpoint.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/bio.h>
  13#include <linux/mpage.h>
  14#include <linux/writeback.h>
  15#include <linux/blkdev.h>
  16#include <linux/f2fs_fs.h>
  17#include <linux/pagevec.h>
  18#include <linux/swap.h>
  19
  20#include "f2fs.h"
  21#include "node.h"
  22#include "segment.h"
  23
  24static struct kmem_cache *orphan_entry_slab;
  25static struct kmem_cache *inode_entry_slab;
  26
  27/*
  28 * We guarantee no failure on the returned page.
  29 */
  30struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  31{
  32        struct address_space *mapping = sbi->meta_inode->i_mapping;
  33        struct page *page = NULL;
  34repeat:
  35        page = grab_cache_page(mapping, index);
  36        if (!page) {
  37                cond_resched();
  38                goto repeat;
  39        }
  40
  41        /* We wait writeback only inside grab_meta_page() */
  42        wait_on_page_writeback(page);
  43        SetPageUptodate(page);
  44        return page;
  45}
  46
  47/*
  48 * We guarantee no failure on the returned page.
  49 */
  50struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  51{
  52        struct address_space *mapping = sbi->meta_inode->i_mapping;
  53        struct page *page;
  54repeat:
  55        page = grab_cache_page(mapping, index);
  56        if (!page) {
  57                cond_resched();
  58                goto repeat;
  59        }
  60        if (f2fs_readpage(sbi, page, index, READ_SYNC)) {
  61                f2fs_put_page(page, 1);
  62                goto repeat;
  63        }
  64        mark_page_accessed(page);
  65
  66        /* We do not allow returning an errorneous page */
  67        return page;
  68}
  69
  70static int f2fs_write_meta_page(struct page *page,
  71                                struct writeback_control *wbc)
  72{
  73        struct inode *inode = page->mapping->host;
  74        struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  75
  76        /* Should not write any meta pages, if any IO error was occurred */
  77        if (wbc->for_reclaim ||
  78                        is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
  79                dec_page_count(sbi, F2FS_DIRTY_META);
  80                wbc->pages_skipped++;
  81                set_page_dirty(page);
  82                return AOP_WRITEPAGE_ACTIVATE;
  83        }
  84
  85        wait_on_page_writeback(page);
  86
  87        write_meta_page(sbi, page);
  88        dec_page_count(sbi, F2FS_DIRTY_META);
  89        unlock_page(page);
  90        return 0;
  91}
  92
  93static int f2fs_write_meta_pages(struct address_space *mapping,
  94                                struct writeback_control *wbc)
  95{
  96        struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  97        struct block_device *bdev = sbi->sb->s_bdev;
  98        long written;
  99
 100        if (wbc->for_kupdate)
 101                return 0;
 102
 103        if (get_pages(sbi, F2FS_DIRTY_META) == 0)
 104                return 0;
 105
 106        /* if mounting is failed, skip writing node pages */
 107        mutex_lock(&sbi->cp_mutex);
 108        written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
 109        mutex_unlock(&sbi->cp_mutex);
 110        wbc->nr_to_write -= written;
 111        return 0;
 112}
 113
 114long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
 115                                                long nr_to_write)
 116{
 117        struct address_space *mapping = sbi->meta_inode->i_mapping;
 118        pgoff_t index = 0, end = LONG_MAX;
 119        struct pagevec pvec;
 120        long nwritten = 0;
 121        struct writeback_control wbc = {
 122                .for_reclaim = 0,
 123        };
 124
 125        pagevec_init(&pvec, 0);
 126
 127        while (index <= end) {
 128                int i, nr_pages;
 129                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 130                                PAGECACHE_TAG_DIRTY,
 131                                min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 132                if (nr_pages == 0)
 133                        break;
 134
 135                for (i = 0; i < nr_pages; i++) {
 136                        struct page *page = pvec.pages[i];
 137                        lock_page(page);
 138                        BUG_ON(page->mapping != mapping);
 139                        BUG_ON(!PageDirty(page));
 140                        clear_page_dirty_for_io(page);
 141                        if (f2fs_write_meta_page(page, &wbc)) {
 142                                unlock_page(page);
 143                                break;
 144                        }
 145                        if (nwritten++ >= nr_to_write)
 146                                break;
 147                }
 148                pagevec_release(&pvec);
 149                cond_resched();
 150        }
 151
 152        if (nwritten)
 153                f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
 154
 155        return nwritten;
 156}
 157
 158static int f2fs_set_meta_page_dirty(struct page *page)
 159{
 160        struct address_space *mapping = page->mapping;
 161        struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
 162
 163        SetPageUptodate(page);
 164        if (!PageDirty(page)) {
 165                __set_page_dirty_nobuffers(page);
 166                inc_page_count(sbi, F2FS_DIRTY_META);
 167                return 1;
 168        }
 169        return 0;
 170}
 171
 172const struct address_space_operations f2fs_meta_aops = {
 173        .writepage      = f2fs_write_meta_page,
 174        .writepages     = f2fs_write_meta_pages,
 175        .set_page_dirty = f2fs_set_meta_page_dirty,
 176};
 177
 178int check_orphan_space(struct f2fs_sb_info *sbi)
 179{
 180        unsigned int max_orphans;
 181        int err = 0;
 182
 183        /*
 184         * considering 512 blocks in a segment 5 blocks are needed for cp
 185         * and log segment summaries. Remaining blocks are used to keep
 186         * orphan entries with the limitation one reserved segment
 187         * for cp pack we can have max 1020*507 orphan entries
 188         */
 189        max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
 190        mutex_lock(&sbi->orphan_inode_mutex);
 191        if (sbi->n_orphans >= max_orphans)
 192                err = -ENOSPC;
 193        mutex_unlock(&sbi->orphan_inode_mutex);
 194        return err;
 195}
 196
 197void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 198{
 199        struct list_head *head, *this;
 200        struct orphan_inode_entry *new = NULL, *orphan = NULL;
 201
 202        mutex_lock(&sbi->orphan_inode_mutex);
 203        head = &sbi->orphan_inode_list;
 204        list_for_each(this, head) {
 205                orphan = list_entry(this, struct orphan_inode_entry, list);
 206                if (orphan->ino == ino)
 207                        goto out;
 208                if (orphan->ino > ino)
 209                        break;
 210                orphan = NULL;
 211        }
 212retry:
 213        new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
 214        if (!new) {
 215                cond_resched();
 216                goto retry;
 217        }
 218        new->ino = ino;
 219
 220        /* add new_oentry into list which is sorted by inode number */
 221        if (orphan)
 222                list_add(&new->list, this->prev);
 223        else
 224                list_add_tail(&new->list, head);
 225
 226        sbi->n_orphans++;
 227out:
 228        mutex_unlock(&sbi->orphan_inode_mutex);
 229}
 230
 231void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 232{
 233        struct list_head *this, *next, *head;
 234        struct orphan_inode_entry *orphan;
 235
 236        mutex_lock(&sbi->orphan_inode_mutex);
 237        head = &sbi->orphan_inode_list;
 238        list_for_each_safe(this, next, head) {
 239                orphan = list_entry(this, struct orphan_inode_entry, list);
 240                if (orphan->ino == ino) {
 241                        list_del(&orphan->list);
 242                        kmem_cache_free(orphan_entry_slab, orphan);
 243                        sbi->n_orphans--;
 244                        break;
 245                }
 246        }
 247        mutex_unlock(&sbi->orphan_inode_mutex);
 248}
 249
 250static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 251{
 252        struct inode *inode = f2fs_iget(sbi->sb, ino);
 253        BUG_ON(IS_ERR(inode));
 254        clear_nlink(inode);
 255
 256        /* truncate all the data during iput */
 257        iput(inode);
 258}
 259
 260int recover_orphan_inodes(struct f2fs_sb_info *sbi)
 261{
 262        block_t start_blk, orphan_blkaddr, i, j;
 263
 264        if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
 265                return 0;
 266
 267        sbi->por_doing = 1;
 268        start_blk = __start_cp_addr(sbi) + 1;
 269        orphan_blkaddr = __start_sum_addr(sbi) - 1;
 270
 271        for (i = 0; i < orphan_blkaddr; i++) {
 272                struct page *page = get_meta_page(sbi, start_blk + i);
 273                struct f2fs_orphan_block *orphan_blk;
 274
 275                orphan_blk = (struct f2fs_orphan_block *)page_address(page);
 276                for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
 277                        nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
 278                        recover_orphan_inode(sbi, ino);
 279                }
 280                f2fs_put_page(page, 1);
 281        }
 282        /* clear Orphan Flag */
 283        clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
 284        sbi->por_doing = 0;
 285        return 0;
 286}
 287
 288static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
 289{
 290        struct list_head *head, *this, *next;
 291        struct f2fs_orphan_block *orphan_blk = NULL;
 292        struct page *page = NULL;
 293        unsigned int nentries = 0;
 294        unsigned short index = 1;
 295        unsigned short orphan_blocks;
 296
 297        orphan_blocks = (unsigned short)((sbi->n_orphans +
 298                (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
 299
 300        mutex_lock(&sbi->orphan_inode_mutex);
 301        head = &sbi->orphan_inode_list;
 302
 303        /* loop for each orphan inode entry and write them in Jornal block */
 304        list_for_each_safe(this, next, head) {
 305                struct orphan_inode_entry *orphan;
 306
 307                orphan = list_entry(this, struct orphan_inode_entry, list);
 308
 309                if (nentries == F2FS_ORPHANS_PER_BLOCK) {
 310                        /*
 311                         * an orphan block is full of 1020 entries,
 312                         * then we need to flush current orphan blocks
 313                         * and bring another one in memory
 314                         */
 315                        orphan_blk->blk_addr = cpu_to_le16(index);
 316                        orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 317                        orphan_blk->entry_count = cpu_to_le32(nentries);
 318                        set_page_dirty(page);
 319                        f2fs_put_page(page, 1);
 320                        index++;
 321                        start_blk++;
 322                        nentries = 0;
 323                        page = NULL;
 324                }
 325                if (page)
 326                        goto page_exist;
 327
 328                page = grab_meta_page(sbi, start_blk);
 329                orphan_blk = (struct f2fs_orphan_block *)page_address(page);
 330                memset(orphan_blk, 0, sizeof(*orphan_blk));
 331page_exist:
 332                orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
 333        }
 334        if (!page)
 335                goto end;
 336
 337        orphan_blk->blk_addr = cpu_to_le16(index);
 338        orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 339        orphan_blk->entry_count = cpu_to_le32(nentries);
 340        set_page_dirty(page);
 341        f2fs_put_page(page, 1);
 342end:
 343        mutex_unlock(&sbi->orphan_inode_mutex);
 344}
 345
 346static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
 347                                block_t cp_addr, unsigned long long *version)
 348{
 349        struct page *cp_page_1, *cp_page_2 = NULL;
 350        unsigned long blk_size = sbi->blocksize;
 351        struct f2fs_checkpoint *cp_block;
 352        unsigned long long cur_version = 0, pre_version = 0;
 353        unsigned int crc = 0;
 354        size_t crc_offset;
 355
 356        /* Read the 1st cp block in this CP pack */
 357        cp_page_1 = get_meta_page(sbi, cp_addr);
 358
 359        /* get the version number */
 360        cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
 361        crc_offset = le32_to_cpu(cp_block->checksum_offset);
 362        if (crc_offset >= blk_size)
 363                goto invalid_cp1;
 364
 365        crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
 366        if (!f2fs_crc_valid(crc, cp_block, crc_offset))
 367                goto invalid_cp1;
 368
 369        pre_version = le64_to_cpu(cp_block->checkpoint_ver);
 370
 371        /* Read the 2nd cp block in this CP pack */
 372        cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
 373        cp_page_2 = get_meta_page(sbi, cp_addr);
 374
 375        cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
 376        crc_offset = le32_to_cpu(cp_block->checksum_offset);
 377        if (crc_offset >= blk_size)
 378                goto invalid_cp2;
 379
 380        crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
 381        if (!f2fs_crc_valid(crc, cp_block, crc_offset))
 382                goto invalid_cp2;
 383
 384        cur_version = le64_to_cpu(cp_block->checkpoint_ver);
 385
 386        if (cur_version == pre_version) {
 387                *version = cur_version;
 388                f2fs_put_page(cp_page_2, 1);
 389                return cp_page_1;
 390        }
 391invalid_cp2:
 392        f2fs_put_page(cp_page_2, 1);
 393invalid_cp1:
 394        f2fs_put_page(cp_page_1, 1);
 395        return NULL;
 396}
 397
 398int get_valid_checkpoint(struct f2fs_sb_info *sbi)
 399{
 400        struct f2fs_checkpoint *cp_block;
 401        struct f2fs_super_block *fsb = sbi->raw_super;
 402        struct page *cp1, *cp2, *cur_page;
 403        unsigned long blk_size = sbi->blocksize;
 404        unsigned long long cp1_version = 0, cp2_version = 0;
 405        unsigned long long cp_start_blk_no;
 406
 407        sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
 408        if (!sbi->ckpt)
 409                return -ENOMEM;
 410        /*
 411         * Finding out valid cp block involves read both
 412         * sets( cp pack1 and cp pack 2)
 413         */
 414        cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 415        cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
 416
 417        /* The second checkpoint pack should start at the next segment */
 418        cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
 419        cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
 420
 421        if (cp1 && cp2) {
 422                if (ver_after(cp2_version, cp1_version))
 423                        cur_page = cp2;
 424                else
 425                        cur_page = cp1;
 426        } else if (cp1) {
 427                cur_page = cp1;
 428        } else if (cp2) {
 429                cur_page = cp2;
 430        } else {
 431                goto fail_no_cp;
 432        }
 433
 434        cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
 435        memcpy(sbi->ckpt, cp_block, blk_size);
 436
 437        f2fs_put_page(cp1, 1);
 438        f2fs_put_page(cp2, 1);
 439        return 0;
 440
 441fail_no_cp:
 442        kfree(sbi->ckpt);
 443        return -EINVAL;
 444}
 445
 446void set_dirty_dir_page(struct inode *inode, struct page *page)
 447{
 448        struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 449        struct list_head *head = &sbi->dir_inode_list;
 450        struct dir_inode_entry *new;
 451        struct list_head *this;
 452
 453        if (!S_ISDIR(inode->i_mode))
 454                return;
 455retry:
 456        new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
 457        if (!new) {
 458                cond_resched();
 459                goto retry;
 460        }
 461        new->inode = inode;
 462        INIT_LIST_HEAD(&new->list);
 463
 464        spin_lock(&sbi->dir_inode_lock);
 465        list_for_each(this, head) {
 466                struct dir_inode_entry *entry;
 467                entry = list_entry(this, struct dir_inode_entry, list);
 468                if (entry->inode == inode) {
 469                        kmem_cache_free(inode_entry_slab, new);
 470                        goto out;
 471                }
 472        }
 473        list_add_tail(&new->list, head);
 474        sbi->n_dirty_dirs++;
 475
 476        BUG_ON(!S_ISDIR(inode->i_mode));
 477out:
 478        inc_page_count(sbi, F2FS_DIRTY_DENTS);
 479        inode_inc_dirty_dents(inode);
 480        SetPagePrivate(page);
 481
 482        spin_unlock(&sbi->dir_inode_lock);
 483}
 484
 485void remove_dirty_dir_inode(struct inode *inode)
 486{
 487        struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 488        struct list_head *head = &sbi->dir_inode_list;
 489        struct list_head *this;
 490
 491        if (!S_ISDIR(inode->i_mode))
 492                return;
 493
 494        spin_lock(&sbi->dir_inode_lock);
 495        if (atomic_read(&F2FS_I(inode)->dirty_dents))
 496                goto out;
 497
 498        list_for_each(this, head) {
 499                struct dir_inode_entry *entry;
 500                entry = list_entry(this, struct dir_inode_entry, list);
 501                if (entry->inode == inode) {
 502                        list_del(&entry->list);
 503                        kmem_cache_free(inode_entry_slab, entry);
 504                        sbi->n_dirty_dirs--;
 505                        break;
 506                }
 507        }
 508out:
 509        spin_unlock(&sbi->dir_inode_lock);
 510}
 511
 512void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
 513{
 514        struct list_head *head = &sbi->dir_inode_list;
 515        struct dir_inode_entry *entry;
 516        struct inode *inode;
 517retry:
 518        spin_lock(&sbi->dir_inode_lock);
 519        if (list_empty(head)) {
 520                spin_unlock(&sbi->dir_inode_lock);
 521                return;
 522        }
 523        entry = list_entry(head->next, struct dir_inode_entry, list);
 524        inode = igrab(entry->inode);
 525        spin_unlock(&sbi->dir_inode_lock);
 526        if (inode) {
 527                filemap_flush(inode->i_mapping);
 528                iput(inode);
 529        } else {
 530                /*
 531                 * We should submit bio, since it exists several
 532                 * wribacking dentry pages in the freeing inode.
 533                 */
 534                f2fs_submit_bio(sbi, DATA, true);
 535        }
 536        goto retry;
 537}
 538
 539/*
 540 * Freeze all the FS-operations for checkpoint.
 541 */
 542static void block_operations(struct f2fs_sb_info *sbi)
 543{
 544        int t;
 545        struct writeback_control wbc = {
 546                .sync_mode = WB_SYNC_ALL,
 547                .nr_to_write = LONG_MAX,
 548                .for_reclaim = 0,
 549        };
 550
 551        /* Stop renaming operation */
 552        mutex_lock_op(sbi, RENAME);
 553        mutex_lock_op(sbi, DENTRY_OPS);
 554
 555retry_dents:
 556        /* write all the dirty dentry pages */
 557        sync_dirty_dir_inodes(sbi);
 558
 559        mutex_lock_op(sbi, DATA_WRITE);
 560        if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
 561                mutex_unlock_op(sbi, DATA_WRITE);
 562                goto retry_dents;
 563        }
 564
 565        /* block all the operations */
 566        for (t = DATA_NEW; t <= NODE_TRUNC; t++)
 567                mutex_lock_op(sbi, t);
 568
 569        mutex_lock(&sbi->write_inode);
 570
 571        /*
 572         * POR: we should ensure that there is no dirty node pages
 573         * until finishing nat/sit flush.
 574         */
 575retry:
 576        sync_node_pages(sbi, 0, &wbc);
 577
 578        mutex_lock_op(sbi, NODE_WRITE);
 579
 580        if (get_pages(sbi, F2FS_DIRTY_NODES)) {
 581                mutex_unlock_op(sbi, NODE_WRITE);
 582                goto retry;
 583        }
 584        mutex_unlock(&sbi->write_inode);
 585}
 586
 587static void unblock_operations(struct f2fs_sb_info *sbi)
 588{
 589        int t;
 590        for (t = NODE_WRITE; t >= RENAME; t--)
 591                mutex_unlock_op(sbi, t);
 592}
 593
 594static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
 595{
 596        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 597        nid_t last_nid = 0;
 598        block_t start_blk;
 599        struct page *cp_page;
 600        unsigned int data_sum_blocks, orphan_blocks;
 601        unsigned int crc32 = 0;
 602        void *kaddr;
 603        int i;
 604
 605        /* Flush all the NAT/SIT pages */
 606        while (get_pages(sbi, F2FS_DIRTY_META))
 607                sync_meta_pages(sbi, META, LONG_MAX);
 608
 609        next_free_nid(sbi, &last_nid);
 610
 611        /*
 612         * modify checkpoint
 613         * version number is already updated
 614         */
 615        ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
 616        ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
 617        ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
 618        for (i = 0; i < 3; i++) {
 619                ckpt->cur_node_segno[i] =
 620                        cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
 621                ckpt->cur_node_blkoff[i] =
 622                        cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
 623                ckpt->alloc_type[i + CURSEG_HOT_NODE] =
 624                                curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
 625        }
 626        for (i = 0; i < 3; i++) {
 627                ckpt->cur_data_segno[i] =
 628                        cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
 629                ckpt->cur_data_blkoff[i] =
 630                        cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
 631                ckpt->alloc_type[i + CURSEG_HOT_DATA] =
 632                                curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
 633        }
 634
 635        ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
 636        ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
 637        ckpt->next_free_nid = cpu_to_le32(last_nid);
 638
 639        /* 2 cp  + n data seg summary + orphan inode blocks */
 640        data_sum_blocks = npages_for_summary_flush(sbi);
 641        if (data_sum_blocks < 3)
 642                set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
 643        else
 644                clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
 645
 646        orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
 647                                        / F2FS_ORPHANS_PER_BLOCK;
 648        ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
 649
 650        if (is_umount) {
 651                set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
 652                ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
 653                        data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
 654        } else {
 655                clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
 656                ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
 657                        data_sum_blocks + orphan_blocks);
 658        }
 659
 660        if (sbi->n_orphans)
 661                set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
 662        else
 663                clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
 664
 665        /* update SIT/NAT bitmap */
 666        get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
 667        get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
 668
 669        crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
 670        *(__le32 *)((unsigned char *)ckpt +
 671                                le32_to_cpu(ckpt->checksum_offset))
 672                                = cpu_to_le32(crc32);
 673
 674        start_blk = __start_cp_addr(sbi);
 675
 676        /* write out checkpoint buffer at block 0 */
 677        cp_page = grab_meta_page(sbi, start_blk++);
 678        kaddr = page_address(cp_page);
 679        memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
 680        set_page_dirty(cp_page);
 681        f2fs_put_page(cp_page, 1);
 682
 683        if (sbi->n_orphans) {
 684                write_orphan_inodes(sbi, start_blk);
 685                start_blk += orphan_blocks;
 686        }
 687
 688        write_data_summaries(sbi, start_blk);
 689        start_blk += data_sum_blocks;
 690        if (is_umount) {
 691                write_node_summaries(sbi, start_blk);
 692                start_blk += NR_CURSEG_NODE_TYPE;
 693        }
 694
 695        /* writeout checkpoint block */
 696        cp_page = grab_meta_page(sbi, start_blk);
 697        kaddr = page_address(cp_page);
 698        memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
 699        set_page_dirty(cp_page);
 700        f2fs_put_page(cp_page, 1);
 701
 702        /* wait for previous submitted node/meta pages writeback */
 703        while (get_pages(sbi, F2FS_WRITEBACK))
 704                congestion_wait(BLK_RW_ASYNC, HZ / 50);
 705
 706        filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
 707        filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
 708
 709        /* update user_block_counts */
 710        sbi->last_valid_block_count = sbi->total_valid_block_count;
 711        sbi->alloc_valid_block_count = 0;
 712
 713        /* Here, we only have one bio having CP pack */
 714        sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
 715
 716        if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
 717                clear_prefree_segments(sbi);
 718                F2FS_RESET_SB_DIRT(sbi);
 719        }
 720}
 721
 722/*
 723 * We guarantee that this checkpoint procedure should not fail.
 724 */
 725void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
 726{
 727        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 728        unsigned long long ckpt_ver;
 729
 730        mutex_lock(&sbi->cp_mutex);
 731        block_operations(sbi);
 732
 733        f2fs_submit_bio(sbi, DATA, true);
 734        f2fs_submit_bio(sbi, NODE, true);
 735        f2fs_submit_bio(sbi, META, true);
 736
 737        /*
 738         * update checkpoint pack index
 739         * Increase the version number so that
 740         * SIT entries and seg summaries are written at correct place
 741         */
 742        ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
 743        ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
 744
 745        /* write cached NAT/SIT entries to NAT/SIT area */
 746        flush_nat_entries(sbi);
 747        flush_sit_entries(sbi);
 748
 749        reset_victim_segmap(sbi);
 750
 751        /* unlock all the fs_lock[] in do_checkpoint() */
 752        do_checkpoint(sbi, is_umount);
 753
 754        unblock_operations(sbi);
 755        mutex_unlock(&sbi->cp_mutex);
 756}
 757
 758void init_orphan_info(struct f2fs_sb_info *sbi)
 759{
 760        mutex_init(&sbi->orphan_inode_mutex);
 761        INIT_LIST_HEAD(&sbi->orphan_inode_list);
 762        sbi->n_orphans = 0;
 763}
 764
 765int __init create_checkpoint_caches(void)
 766{
 767        orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
 768                        sizeof(struct orphan_inode_entry), NULL);
 769        if (unlikely(!orphan_entry_slab))
 770                return -ENOMEM;
 771        inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
 772                        sizeof(struct dir_inode_entry), NULL);
 773        if (unlikely(!inode_entry_slab)) {
 774                kmem_cache_destroy(orphan_entry_slab);
 775                return -ENOMEM;
 776        }
 777        return 0;
 778}
 779
 780void destroy_checkpoint_caches(void)
 781{
 782        kmem_cache_destroy(orphan_entry_slab);
 783        kmem_cache_destroy(inode_entry_slab);
 784}
 785