linux/kernel/sched/debug.c
<<
>>
Prefs
   1/*
   2 * kernel/sched/debug.c
   3 *
   4 * Print the CFS rbtree
   5 *
   6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/proc_fs.h>
  14#include <linux/sched.h>
  15#include <linux/seq_file.h>
  16#include <linux/kallsyms.h>
  17#include <linux/utsname.h>
  18
  19#include "sched.h"
  20
  21static DEFINE_SPINLOCK(sched_debug_lock);
  22
  23/*
  24 * This allows printing both to /proc/sched_debug and
  25 * to the console
  26 */
  27#define SEQ_printf(m, x...)                     \
  28 do {                                           \
  29        if (m)                                  \
  30                seq_printf(m, x);               \
  31        else                                    \
  32                printk(x);                      \
  33 } while (0)
  34
  35/*
  36 * Ease the printing of nsec fields:
  37 */
  38static long long nsec_high(unsigned long long nsec)
  39{
  40        if ((long long)nsec < 0) {
  41                nsec = -nsec;
  42                do_div(nsec, 1000000);
  43                return -nsec;
  44        }
  45        do_div(nsec, 1000000);
  46
  47        return nsec;
  48}
  49
  50static unsigned long nsec_low(unsigned long long nsec)
  51{
  52        if ((long long)nsec < 0)
  53                nsec = -nsec;
  54
  55        return do_div(nsec, 1000000);
  56}
  57
  58#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
  59
  60#ifdef CONFIG_FAIR_GROUP_SCHED
  61static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
  62{
  63        struct sched_entity *se = tg->se[cpu];
  64
  65#define P(F) \
  66        SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)F)
  67#define PN(F) \
  68        SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
  69
  70        if (!se) {
  71                struct sched_avg *avg = &cpu_rq(cpu)->avg;
  72                P(avg->runnable_avg_sum);
  73                P(avg->runnable_avg_period);
  74                return;
  75        }
  76
  77
  78        PN(se->exec_start);
  79        PN(se->vruntime);
  80        PN(se->sum_exec_runtime);
  81#ifdef CONFIG_SCHEDSTATS
  82        PN(se->statistics.wait_start);
  83        PN(se->statistics.sleep_start);
  84        PN(se->statistics.block_start);
  85        PN(se->statistics.sleep_max);
  86        PN(se->statistics.block_max);
  87        PN(se->statistics.exec_max);
  88        PN(se->statistics.slice_max);
  89        PN(se->statistics.wait_max);
  90        PN(se->statistics.wait_sum);
  91        P(se->statistics.wait_count);
  92#endif
  93        P(se->load.weight);
  94#ifdef CONFIG_SMP
  95        P(se->avg.runnable_avg_sum);
  96        P(se->avg.runnable_avg_period);
  97        P(se->avg.load_avg_contrib);
  98        P(se->avg.decay_count);
  99#endif
 100#undef PN
 101#undef P
 102}
 103#endif
 104
 105#ifdef CONFIG_CGROUP_SCHED
 106static char group_path[PATH_MAX];
 107
 108static char *task_group_path(struct task_group *tg)
 109{
 110        if (autogroup_path(tg, group_path, PATH_MAX))
 111                return group_path;
 112
 113        cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
 114        return group_path;
 115}
 116#endif
 117
 118static void
 119print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
 120{
 121        if (rq->curr == p)
 122                SEQ_printf(m, "R");
 123        else
 124                SEQ_printf(m, " ");
 125
 126        SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
 127                p->comm, p->pid,
 128                SPLIT_NS(p->se.vruntime),
 129                (long long)(p->nvcsw + p->nivcsw),
 130                p->prio);
 131#ifdef CONFIG_SCHEDSTATS
 132        SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
 133                SPLIT_NS(p->se.vruntime),
 134                SPLIT_NS(p->se.sum_exec_runtime),
 135                SPLIT_NS(p->se.statistics.sum_sleep_runtime));
 136#else
 137        SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
 138                0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
 139#endif
 140#ifdef CONFIG_CGROUP_SCHED
 141        SEQ_printf(m, " %s", task_group_path(task_group(p)));
 142#endif
 143
 144        SEQ_printf(m, "\n");
 145}
 146
 147static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
 148{
 149        struct task_struct *g, *p;
 150        unsigned long flags;
 151
 152        SEQ_printf(m,
 153        "\nrunnable tasks:\n"
 154        "            task   PID         tree-key  switches  prio"
 155        "     exec-runtime         sum-exec        sum-sleep\n"
 156        "------------------------------------------------------"
 157        "----------------------------------------------------\n");
 158
 159        read_lock_irqsave(&tasklist_lock, flags);
 160
 161        do_each_thread(g, p) {
 162                if (!p->on_rq || task_cpu(p) != rq_cpu)
 163                        continue;
 164
 165                print_task(m, rq, p);
 166        } while_each_thread(g, p);
 167
 168        read_unlock_irqrestore(&tasklist_lock, flags);
 169}
 170
 171void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 172{
 173        s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
 174                spread, rq0_min_vruntime, spread0;
 175        struct rq *rq = cpu_rq(cpu);
 176        struct sched_entity *last;
 177        unsigned long flags;
 178
 179#ifdef CONFIG_FAIR_GROUP_SCHED
 180        SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
 181#else
 182        SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
 183#endif
 184        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
 185                        SPLIT_NS(cfs_rq->exec_clock));
 186
 187        raw_spin_lock_irqsave(&rq->lock, flags);
 188        if (cfs_rq->rb_leftmost)
 189                MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
 190        last = __pick_last_entity(cfs_rq);
 191        if (last)
 192                max_vruntime = last->vruntime;
 193        min_vruntime = cfs_rq->min_vruntime;
 194        rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
 195        raw_spin_unlock_irqrestore(&rq->lock, flags);
 196        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
 197                        SPLIT_NS(MIN_vruntime));
 198        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
 199                        SPLIT_NS(min_vruntime));
 200        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
 201                        SPLIT_NS(max_vruntime));
 202        spread = max_vruntime - MIN_vruntime;
 203        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
 204                        SPLIT_NS(spread));
 205        spread0 = min_vruntime - rq0_min_vruntime;
 206        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
 207                        SPLIT_NS(spread0));
 208        SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
 209                        cfs_rq->nr_spread_over);
 210        SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
 211        SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
 212#ifdef CONFIG_FAIR_GROUP_SCHED
 213#ifdef CONFIG_SMP
 214        SEQ_printf(m, "  .%-30s: %lld\n", "runnable_load_avg",
 215                        cfs_rq->runnable_load_avg);
 216        SEQ_printf(m, "  .%-30s: %lld\n", "blocked_load_avg",
 217                        cfs_rq->blocked_load_avg);
 218        SEQ_printf(m, "  .%-30s: %lld\n", "tg_load_avg",
 219                        (unsigned long long)atomic64_read(&cfs_rq->tg->load_avg));
 220        SEQ_printf(m, "  .%-30s: %lld\n", "tg_load_contrib",
 221                        cfs_rq->tg_load_contrib);
 222        SEQ_printf(m, "  .%-30s: %d\n", "tg_runnable_contrib",
 223                        cfs_rq->tg_runnable_contrib);
 224        SEQ_printf(m, "  .%-30s: %d\n", "tg->runnable_avg",
 225                        atomic_read(&cfs_rq->tg->runnable_avg));
 226#endif
 227
 228        print_cfs_group_stats(m, cpu, cfs_rq->tg);
 229#endif
 230}
 231
 232void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
 233{
 234#ifdef CONFIG_RT_GROUP_SCHED
 235        SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
 236#else
 237        SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
 238#endif
 239
 240#define P(x) \
 241        SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
 242#define PN(x) \
 243        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
 244
 245        P(rt_nr_running);
 246        P(rt_throttled);
 247        PN(rt_time);
 248        PN(rt_runtime);
 249
 250#undef PN
 251#undef P
 252}
 253
 254extern __read_mostly int sched_clock_running;
 255
 256static void print_cpu(struct seq_file *m, int cpu)
 257{
 258        struct rq *rq = cpu_rq(cpu);
 259        unsigned long flags;
 260
 261#ifdef CONFIG_X86
 262        {
 263                unsigned int freq = cpu_khz ? : 1;
 264
 265                SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
 266                           cpu, freq / 1000, (freq % 1000));
 267        }
 268#else
 269        SEQ_printf(m, "cpu#%d\n", cpu);
 270#endif
 271
 272#define P(x)                                                            \
 273do {                                                                    \
 274        if (sizeof(rq->x) == 4)                                         \
 275                SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));    \
 276        else                                                            \
 277                SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
 278} while (0)
 279
 280#define PN(x) \
 281        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
 282
 283        P(nr_running);
 284        SEQ_printf(m, "  .%-30s: %lu\n", "load",
 285                   rq->load.weight);
 286        P(nr_switches);
 287        P(nr_load_updates);
 288        P(nr_uninterruptible);
 289        PN(next_balance);
 290        P(curr->pid);
 291        PN(clock);
 292        P(cpu_load[0]);
 293        P(cpu_load[1]);
 294        P(cpu_load[2]);
 295        P(cpu_load[3]);
 296        P(cpu_load[4]);
 297#undef P
 298#undef PN
 299
 300#ifdef CONFIG_SCHEDSTATS
 301#define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, rq->n);
 302#define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
 303
 304        P(yld_count);
 305
 306        P(sched_count);
 307        P(sched_goidle);
 308#ifdef CONFIG_SMP
 309        P64(avg_idle);
 310#endif
 311
 312        P(ttwu_count);
 313        P(ttwu_local);
 314
 315#undef P
 316#undef P64
 317#endif
 318        spin_lock_irqsave(&sched_debug_lock, flags);
 319        print_cfs_stats(m, cpu);
 320        print_rt_stats(m, cpu);
 321
 322        rcu_read_lock();
 323        print_rq(m, rq, cpu);
 324        rcu_read_unlock();
 325        spin_unlock_irqrestore(&sched_debug_lock, flags);
 326        SEQ_printf(m, "\n");
 327}
 328
 329static const char *sched_tunable_scaling_names[] = {
 330        "none",
 331        "logaritmic",
 332        "linear"
 333};
 334
 335static void sched_debug_header(struct seq_file *m)
 336{
 337        u64 ktime, sched_clk, cpu_clk;
 338        unsigned long flags;
 339
 340        local_irq_save(flags);
 341        ktime = ktime_to_ns(ktime_get());
 342        sched_clk = sched_clock();
 343        cpu_clk = local_clock();
 344        local_irq_restore(flags);
 345
 346        SEQ_printf(m, "Sched Debug Version: v0.10, %s %.*s\n",
 347                init_utsname()->release,
 348                (int)strcspn(init_utsname()->version, " "),
 349                init_utsname()->version);
 350
 351#define P(x) \
 352        SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
 353#define PN(x) \
 354        SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
 355        PN(ktime);
 356        PN(sched_clk);
 357        PN(cpu_clk);
 358        P(jiffies);
 359#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
 360        P(sched_clock_stable);
 361#endif
 362#undef PN
 363#undef P
 364
 365        SEQ_printf(m, "\n");
 366        SEQ_printf(m, "sysctl_sched\n");
 367
 368#define P(x) \
 369        SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
 370#define PN(x) \
 371        SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
 372        PN(sysctl_sched_latency);
 373        PN(sysctl_sched_min_granularity);
 374        PN(sysctl_sched_wakeup_granularity);
 375        P(sysctl_sched_child_runs_first);
 376        P(sysctl_sched_features);
 377#undef PN
 378#undef P
 379
 380        SEQ_printf(m, "  .%-40s: %d (%s)\n",
 381                "sysctl_sched_tunable_scaling",
 382                sysctl_sched_tunable_scaling,
 383                sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
 384        SEQ_printf(m, "\n");
 385}
 386
 387static int sched_debug_show(struct seq_file *m, void *v)
 388{
 389        int cpu = (unsigned long)(v - 2);
 390
 391        if (cpu != -1)
 392                print_cpu(m, cpu);
 393        else
 394                sched_debug_header(m);
 395
 396        return 0;
 397}
 398
 399void sysrq_sched_debug_show(void)
 400{
 401        int cpu;
 402
 403        sched_debug_header(NULL);
 404        for_each_online_cpu(cpu)
 405                print_cpu(NULL, cpu);
 406
 407}
 408
 409/*
 410 * This itererator needs some explanation.
 411 * It returns 1 for the header position.
 412 * This means 2 is cpu 0.
 413 * In a hotplugged system some cpus, including cpu 0, may be missing so we have
 414 * to use cpumask_* to iterate over the cpus.
 415 */
 416static void *sched_debug_start(struct seq_file *file, loff_t *offset)
 417{
 418        unsigned long n = *offset;
 419
 420        if (n == 0)
 421                return (void *) 1;
 422
 423        n--;
 424
 425        if (n > 0)
 426                n = cpumask_next(n - 1, cpu_online_mask);
 427        else
 428                n = cpumask_first(cpu_online_mask);
 429
 430        *offset = n + 1;
 431
 432        if (n < nr_cpu_ids)
 433                return (void *)(unsigned long)(n + 2);
 434        return NULL;
 435}
 436
 437static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
 438{
 439        (*offset)++;
 440        return sched_debug_start(file, offset);
 441}
 442
 443static void sched_debug_stop(struct seq_file *file, void *data)
 444{
 445}
 446
 447static const struct seq_operations sched_debug_sops = {
 448        .start = sched_debug_start,
 449        .next = sched_debug_next,
 450        .stop = sched_debug_stop,
 451        .show = sched_debug_show,
 452};
 453
 454static int sched_debug_release(struct inode *inode, struct file *file)
 455{
 456        seq_release(inode, file);
 457
 458        return 0;
 459}
 460
 461static int sched_debug_open(struct inode *inode, struct file *filp)
 462{
 463        int ret = 0;
 464
 465        ret = seq_open(filp, &sched_debug_sops);
 466
 467        return ret;
 468}
 469
 470static const struct file_operations sched_debug_fops = {
 471        .open           = sched_debug_open,
 472        .read           = seq_read,
 473        .llseek         = seq_lseek,
 474        .release        = sched_debug_release,
 475};
 476
 477static int __init init_sched_debug_procfs(void)
 478{
 479        struct proc_dir_entry *pe;
 480
 481        pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
 482        if (!pe)
 483                return -ENOMEM;
 484        return 0;
 485}
 486
 487__initcall(init_sched_debug_procfs);
 488
 489void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
 490{
 491        unsigned long nr_switches;
 492
 493        SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid,
 494                                                get_nr_threads(p));
 495        SEQ_printf(m,
 496                "---------------------------------------------------------\n");
 497#define __P(F) \
 498        SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F)
 499#define P(F) \
 500        SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F)
 501#define __PN(F) \
 502        SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
 503#define PN(F) \
 504        SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
 505
 506        PN(se.exec_start);
 507        PN(se.vruntime);
 508        PN(se.sum_exec_runtime);
 509
 510        nr_switches = p->nvcsw + p->nivcsw;
 511
 512#ifdef CONFIG_SCHEDSTATS
 513        PN(se.statistics.wait_start);
 514        PN(se.statistics.sleep_start);
 515        PN(se.statistics.block_start);
 516        PN(se.statistics.sleep_max);
 517        PN(se.statistics.block_max);
 518        PN(se.statistics.exec_max);
 519        PN(se.statistics.slice_max);
 520        PN(se.statistics.wait_max);
 521        PN(se.statistics.wait_sum);
 522        P(se.statistics.wait_count);
 523        PN(se.statistics.iowait_sum);
 524        P(se.statistics.iowait_count);
 525        P(se.nr_migrations);
 526        P(se.statistics.nr_migrations_cold);
 527        P(se.statistics.nr_failed_migrations_affine);
 528        P(se.statistics.nr_failed_migrations_running);
 529        P(se.statistics.nr_failed_migrations_hot);
 530        P(se.statistics.nr_forced_migrations);
 531        P(se.statistics.nr_wakeups);
 532        P(se.statistics.nr_wakeups_sync);
 533        P(se.statistics.nr_wakeups_migrate);
 534        P(se.statistics.nr_wakeups_local);
 535        P(se.statistics.nr_wakeups_remote);
 536        P(se.statistics.nr_wakeups_affine);
 537        P(se.statistics.nr_wakeups_affine_attempts);
 538        P(se.statistics.nr_wakeups_passive);
 539        P(se.statistics.nr_wakeups_idle);
 540
 541        {
 542                u64 avg_atom, avg_per_cpu;
 543
 544                avg_atom = p->se.sum_exec_runtime;
 545                if (nr_switches)
 546                        do_div(avg_atom, nr_switches);
 547                else
 548                        avg_atom = -1LL;
 549
 550                avg_per_cpu = p->se.sum_exec_runtime;
 551                if (p->se.nr_migrations) {
 552                        avg_per_cpu = div64_u64(avg_per_cpu,
 553                                                p->se.nr_migrations);
 554                } else {
 555                        avg_per_cpu = -1LL;
 556                }
 557
 558                __PN(avg_atom);
 559                __PN(avg_per_cpu);
 560        }
 561#endif
 562        __P(nr_switches);
 563        SEQ_printf(m, "%-35s:%21Ld\n",
 564                   "nr_voluntary_switches", (long long)p->nvcsw);
 565        SEQ_printf(m, "%-35s:%21Ld\n",
 566                   "nr_involuntary_switches", (long long)p->nivcsw);
 567
 568        P(se.load.weight);
 569        P(policy);
 570        P(prio);
 571#undef PN
 572#undef __PN
 573#undef P
 574#undef __P
 575
 576        {
 577                unsigned int this_cpu = raw_smp_processor_id();
 578                u64 t0, t1;
 579
 580                t0 = cpu_clock(this_cpu);
 581                t1 = cpu_clock(this_cpu);
 582                SEQ_printf(m, "%-35s:%21Ld\n",
 583                           "clock-delta", (long long)(t1-t0));
 584        }
 585}
 586
 587void proc_sched_set_task(struct task_struct *p)
 588{
 589#ifdef CONFIG_SCHEDSTATS
 590        memset(&p->se.statistics, 0, sizeof(p->se.statistics));
 591#endif
 592}
 593