linux/security/selinux/ss/services.c
<<
>>
Prefs
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *           James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *      Support for enhanced MLS infrastructure.
  10 *      Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *      Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *      This program is free software; you can redistribute it and/or modify
  39 *      it under the terms of the GNU General Public License as published by
  40 *      the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
  73int selinux_policycap_netpeer;
  74int selinux_policycap_openperm;
  75
  76static DEFINE_RWLOCK(policy_rwlock);
  77
  78static struct sidtab sidtab;
  79struct policydb policydb;
  80int ss_initialized;
  81
  82/*
  83 * The largest sequence number that has been used when
  84 * providing an access decision to the access vector cache.
  85 * The sequence number only changes when a policy change
  86 * occurs.
  87 */
  88static u32 latest_granting;
  89
  90/* Forward declaration. */
  91static int context_struct_to_string(struct context *context, char **scontext,
  92                                    u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct context *scontext,
  95                                      struct context *tcontext,
  96                                      u16 tclass,
  97                                      struct av_decision *avd);
  98
  99struct selinux_mapping {
 100        u16 value; /* policy value */
 101        unsigned num_perms;
 102        u32 perms[sizeof(u32) * 8];
 103};
 104
 105static struct selinux_mapping *current_mapping;
 106static u16 current_mapping_size;
 107
 108static int selinux_set_mapping(struct policydb *pol,
 109                               struct security_class_mapping *map,
 110                               struct selinux_mapping **out_map_p,
 111                               u16 *out_map_size)
 112{
 113        struct selinux_mapping *out_map = NULL;
 114        size_t size = sizeof(struct selinux_mapping);
 115        u16 i, j;
 116        unsigned k;
 117        bool print_unknown_handle = false;
 118
 119        /* Find number of classes in the input mapping */
 120        if (!map)
 121                return -EINVAL;
 122        i = 0;
 123        while (map[i].name)
 124                i++;
 125
 126        /* Allocate space for the class records, plus one for class zero */
 127        out_map = kcalloc(++i, size, GFP_ATOMIC);
 128        if (!out_map)
 129                return -ENOMEM;
 130
 131        /* Store the raw class and permission values */
 132        j = 0;
 133        while (map[j].name) {
 134                struct security_class_mapping *p_in = map + (j++);
 135                struct selinux_mapping *p_out = out_map + j;
 136
 137                /* An empty class string skips ahead */
 138                if (!strcmp(p_in->name, "")) {
 139                        p_out->num_perms = 0;
 140                        continue;
 141                }
 142
 143                p_out->value = string_to_security_class(pol, p_in->name);
 144                if (!p_out->value) {
 145                        printk(KERN_INFO
 146                               "SELinux:  Class %s not defined in policy.\n",
 147                               p_in->name);
 148                        if (pol->reject_unknown)
 149                                goto err;
 150                        p_out->num_perms = 0;
 151                        print_unknown_handle = true;
 152                        continue;
 153                }
 154
 155                k = 0;
 156                while (p_in->perms && p_in->perms[k]) {
 157                        /* An empty permission string skips ahead */
 158                        if (!*p_in->perms[k]) {
 159                                k++;
 160                                continue;
 161                        }
 162                        p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 163                                                            p_in->perms[k]);
 164                        if (!p_out->perms[k]) {
 165                                printk(KERN_INFO
 166                                       "SELinux:  Permission %s in class %s not defined in policy.\n",
 167                                       p_in->perms[k], p_in->name);
 168                                if (pol->reject_unknown)
 169                                        goto err;
 170                                print_unknown_handle = true;
 171                        }
 172
 173                        k++;
 174                }
 175                p_out->num_perms = k;
 176        }
 177
 178        if (print_unknown_handle)
 179                printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 180                       pol->allow_unknown ? "allowed" : "denied");
 181
 182        *out_map_p = out_map;
 183        *out_map_size = i;
 184        return 0;
 185err:
 186        kfree(out_map);
 187        return -EINVAL;
 188}
 189
 190/*
 191 * Get real, policy values from mapped values
 192 */
 193
 194static u16 unmap_class(u16 tclass)
 195{
 196        if (tclass < current_mapping_size)
 197                return current_mapping[tclass].value;
 198
 199        return tclass;
 200}
 201
 202/*
 203 * Get kernel value for class from its policy value
 204 */
 205static u16 map_class(u16 pol_value)
 206{
 207        u16 i;
 208
 209        for (i = 1; i < current_mapping_size; i++) {
 210                if (current_mapping[i].value == pol_value)
 211                        return i;
 212        }
 213
 214        return SECCLASS_NULL;
 215}
 216
 217static void map_decision(u16 tclass, struct av_decision *avd,
 218                         int allow_unknown)
 219{
 220        if (tclass < current_mapping_size) {
 221                unsigned i, n = current_mapping[tclass].num_perms;
 222                u32 result;
 223
 224                for (i = 0, result = 0; i < n; i++) {
 225                        if (avd->allowed & current_mapping[tclass].perms[i])
 226                                result |= 1<<i;
 227                        if (allow_unknown && !current_mapping[tclass].perms[i])
 228                                result |= 1<<i;
 229                }
 230                avd->allowed = result;
 231
 232                for (i = 0, result = 0; i < n; i++)
 233                        if (avd->auditallow & current_mapping[tclass].perms[i])
 234                                result |= 1<<i;
 235                avd->auditallow = result;
 236
 237                for (i = 0, result = 0; i < n; i++) {
 238                        if (avd->auditdeny & current_mapping[tclass].perms[i])
 239                                result |= 1<<i;
 240                        if (!allow_unknown && !current_mapping[tclass].perms[i])
 241                                result |= 1<<i;
 242                }
 243                /*
 244                 * In case the kernel has a bug and requests a permission
 245                 * between num_perms and the maximum permission number, we
 246                 * should audit that denial
 247                 */
 248                for (; i < (sizeof(u32)*8); i++)
 249                        result |= 1<<i;
 250                avd->auditdeny = result;
 251        }
 252}
 253
 254int security_mls_enabled(void)
 255{
 256        return policydb.mls_enabled;
 257}
 258
 259/*
 260 * Return the boolean value of a constraint expression
 261 * when it is applied to the specified source and target
 262 * security contexts.
 263 *
 264 * xcontext is a special beast...  It is used by the validatetrans rules
 265 * only.  For these rules, scontext is the context before the transition,
 266 * tcontext is the context after the transition, and xcontext is the context
 267 * of the process performing the transition.  All other callers of
 268 * constraint_expr_eval should pass in NULL for xcontext.
 269 */
 270static int constraint_expr_eval(struct context *scontext,
 271                                struct context *tcontext,
 272                                struct context *xcontext,
 273                                struct constraint_expr *cexpr)
 274{
 275        u32 val1, val2;
 276        struct context *c;
 277        struct role_datum *r1, *r2;
 278        struct mls_level *l1, *l2;
 279        struct constraint_expr *e;
 280        int s[CEXPR_MAXDEPTH];
 281        int sp = -1;
 282
 283        for (e = cexpr; e; e = e->next) {
 284                switch (e->expr_type) {
 285                case CEXPR_NOT:
 286                        BUG_ON(sp < 0);
 287                        s[sp] = !s[sp];
 288                        break;
 289                case CEXPR_AND:
 290                        BUG_ON(sp < 1);
 291                        sp--;
 292                        s[sp] &= s[sp + 1];
 293                        break;
 294                case CEXPR_OR:
 295                        BUG_ON(sp < 1);
 296                        sp--;
 297                        s[sp] |= s[sp + 1];
 298                        break;
 299                case CEXPR_ATTR:
 300                        if (sp == (CEXPR_MAXDEPTH - 1))
 301                                return 0;
 302                        switch (e->attr) {
 303                        case CEXPR_USER:
 304                                val1 = scontext->user;
 305                                val2 = tcontext->user;
 306                                break;
 307                        case CEXPR_TYPE:
 308                                val1 = scontext->type;
 309                                val2 = tcontext->type;
 310                                break;
 311                        case CEXPR_ROLE:
 312                                val1 = scontext->role;
 313                                val2 = tcontext->role;
 314                                r1 = policydb.role_val_to_struct[val1 - 1];
 315                                r2 = policydb.role_val_to_struct[val2 - 1];
 316                                switch (e->op) {
 317                                case CEXPR_DOM:
 318                                        s[++sp] = ebitmap_get_bit(&r1->dominates,
 319                                                                  val2 - 1);
 320                                        continue;
 321                                case CEXPR_DOMBY:
 322                                        s[++sp] = ebitmap_get_bit(&r2->dominates,
 323                                                                  val1 - 1);
 324                                        continue;
 325                                case CEXPR_INCOMP:
 326                                        s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 327                                                                    val2 - 1) &&
 328                                                   !ebitmap_get_bit(&r2->dominates,
 329                                                                    val1 - 1));
 330                                        continue;
 331                                default:
 332                                        break;
 333                                }
 334                                break;
 335                        case CEXPR_L1L2:
 336                                l1 = &(scontext->range.level[0]);
 337                                l2 = &(tcontext->range.level[0]);
 338                                goto mls_ops;
 339                        case CEXPR_L1H2:
 340                                l1 = &(scontext->range.level[0]);
 341                                l2 = &(tcontext->range.level[1]);
 342                                goto mls_ops;
 343                        case CEXPR_H1L2:
 344                                l1 = &(scontext->range.level[1]);
 345                                l2 = &(tcontext->range.level[0]);
 346                                goto mls_ops;
 347                        case CEXPR_H1H2:
 348                                l1 = &(scontext->range.level[1]);
 349                                l2 = &(tcontext->range.level[1]);
 350                                goto mls_ops;
 351                        case CEXPR_L1H1:
 352                                l1 = &(scontext->range.level[0]);
 353                                l2 = &(scontext->range.level[1]);
 354                                goto mls_ops;
 355                        case CEXPR_L2H2:
 356                                l1 = &(tcontext->range.level[0]);
 357                                l2 = &(tcontext->range.level[1]);
 358                                goto mls_ops;
 359mls_ops:
 360                        switch (e->op) {
 361                        case CEXPR_EQ:
 362                                s[++sp] = mls_level_eq(l1, l2);
 363                                continue;
 364                        case CEXPR_NEQ:
 365                                s[++sp] = !mls_level_eq(l1, l2);
 366                                continue;
 367                        case CEXPR_DOM:
 368                                s[++sp] = mls_level_dom(l1, l2);
 369                                continue;
 370                        case CEXPR_DOMBY:
 371                                s[++sp] = mls_level_dom(l2, l1);
 372                                continue;
 373                        case CEXPR_INCOMP:
 374                                s[++sp] = mls_level_incomp(l2, l1);
 375                                continue;
 376                        default:
 377                                BUG();
 378                                return 0;
 379                        }
 380                        break;
 381                        default:
 382                                BUG();
 383                                return 0;
 384                        }
 385
 386                        switch (e->op) {
 387                        case CEXPR_EQ:
 388                                s[++sp] = (val1 == val2);
 389                                break;
 390                        case CEXPR_NEQ:
 391                                s[++sp] = (val1 != val2);
 392                                break;
 393                        default:
 394                                BUG();
 395                                return 0;
 396                        }
 397                        break;
 398                case CEXPR_NAMES:
 399                        if (sp == (CEXPR_MAXDEPTH-1))
 400                                return 0;
 401                        c = scontext;
 402                        if (e->attr & CEXPR_TARGET)
 403                                c = tcontext;
 404                        else if (e->attr & CEXPR_XTARGET) {
 405                                c = xcontext;
 406                                if (!c) {
 407                                        BUG();
 408                                        return 0;
 409                                }
 410                        }
 411                        if (e->attr & CEXPR_USER)
 412                                val1 = c->user;
 413                        else if (e->attr & CEXPR_ROLE)
 414                                val1 = c->role;
 415                        else if (e->attr & CEXPR_TYPE)
 416                                val1 = c->type;
 417                        else {
 418                                BUG();
 419                                return 0;
 420                        }
 421
 422                        switch (e->op) {
 423                        case CEXPR_EQ:
 424                                s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 425                                break;
 426                        case CEXPR_NEQ:
 427                                s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 428                                break;
 429                        default:
 430                                BUG();
 431                                return 0;
 432                        }
 433                        break;
 434                default:
 435                        BUG();
 436                        return 0;
 437                }
 438        }
 439
 440        BUG_ON(sp != 0);
 441        return s[0];
 442}
 443
 444/*
 445 * security_dump_masked_av - dumps masked permissions during
 446 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 447 */
 448static int dump_masked_av_helper(void *k, void *d, void *args)
 449{
 450        struct perm_datum *pdatum = d;
 451        char **permission_names = args;
 452
 453        BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 454
 455        permission_names[pdatum->value - 1] = (char *)k;
 456
 457        return 0;
 458}
 459
 460static void security_dump_masked_av(struct context *scontext,
 461                                    struct context *tcontext,
 462                                    u16 tclass,
 463                                    u32 permissions,
 464                                    const char *reason)
 465{
 466        struct common_datum *common_dat;
 467        struct class_datum *tclass_dat;
 468        struct audit_buffer *ab;
 469        char *tclass_name;
 470        char *scontext_name = NULL;
 471        char *tcontext_name = NULL;
 472        char *permission_names[32];
 473        int index;
 474        u32 length;
 475        bool need_comma = false;
 476
 477        if (!permissions)
 478                return;
 479
 480        tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 481        tclass_dat = policydb.class_val_to_struct[tclass - 1];
 482        common_dat = tclass_dat->comdatum;
 483
 484        /* init permission_names */
 485        if (common_dat &&
 486            hashtab_map(common_dat->permissions.table,
 487                        dump_masked_av_helper, permission_names) < 0)
 488                goto out;
 489
 490        if (hashtab_map(tclass_dat->permissions.table,
 491                        dump_masked_av_helper, permission_names) < 0)
 492                goto out;
 493
 494        /* get scontext/tcontext in text form */
 495        if (context_struct_to_string(scontext,
 496                                     &scontext_name, &length) < 0)
 497                goto out;
 498
 499        if (context_struct_to_string(tcontext,
 500                                     &tcontext_name, &length) < 0)
 501                goto out;
 502
 503        /* audit a message */
 504        ab = audit_log_start(current->audit_context,
 505                             GFP_ATOMIC, AUDIT_SELINUX_ERR);
 506        if (!ab)
 507                goto out;
 508
 509        audit_log_format(ab, "op=security_compute_av reason=%s "
 510                         "scontext=%s tcontext=%s tclass=%s perms=",
 511                         reason, scontext_name, tcontext_name, tclass_name);
 512
 513        for (index = 0; index < 32; index++) {
 514                u32 mask = (1 << index);
 515
 516                if ((mask & permissions) == 0)
 517                        continue;
 518
 519                audit_log_format(ab, "%s%s",
 520                                 need_comma ? "," : "",
 521                                 permission_names[index]
 522                                 ? permission_names[index] : "????");
 523                need_comma = true;
 524        }
 525        audit_log_end(ab);
 526out:
 527        /* release scontext/tcontext */
 528        kfree(tcontext_name);
 529        kfree(scontext_name);
 530
 531        return;
 532}
 533
 534/*
 535 * security_boundary_permission - drops violated permissions
 536 * on boundary constraint.
 537 */
 538static void type_attribute_bounds_av(struct context *scontext,
 539                                     struct context *tcontext,
 540                                     u16 tclass,
 541                                     struct av_decision *avd)
 542{
 543        struct context lo_scontext;
 544        struct context lo_tcontext;
 545        struct av_decision lo_avd;
 546        struct type_datum *source;
 547        struct type_datum *target;
 548        u32 masked = 0;
 549
 550        source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 551                                    scontext->type - 1);
 552        BUG_ON(!source);
 553
 554        target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 555                                    tcontext->type - 1);
 556        BUG_ON(!target);
 557
 558        if (source->bounds) {
 559                memset(&lo_avd, 0, sizeof(lo_avd));
 560
 561                memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 562                lo_scontext.type = source->bounds;
 563
 564                context_struct_compute_av(&lo_scontext,
 565                                          tcontext,
 566                                          tclass,
 567                                          &lo_avd);
 568                if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 569                        return;         /* no masked permission */
 570                masked = ~lo_avd.allowed & avd->allowed;
 571        }
 572
 573        if (target->bounds) {
 574                memset(&lo_avd, 0, sizeof(lo_avd));
 575
 576                memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 577                lo_tcontext.type = target->bounds;
 578
 579                context_struct_compute_av(scontext,
 580                                          &lo_tcontext,
 581                                          tclass,
 582                                          &lo_avd);
 583                if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 584                        return;         /* no masked permission */
 585                masked = ~lo_avd.allowed & avd->allowed;
 586        }
 587
 588        if (source->bounds && target->bounds) {
 589                memset(&lo_avd, 0, sizeof(lo_avd));
 590                /*
 591                 * lo_scontext and lo_tcontext are already
 592                 * set up.
 593                 */
 594
 595                context_struct_compute_av(&lo_scontext,
 596                                          &lo_tcontext,
 597                                          tclass,
 598                                          &lo_avd);
 599                if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 600                        return;         /* no masked permission */
 601                masked = ~lo_avd.allowed & avd->allowed;
 602        }
 603
 604        if (masked) {
 605                /* mask violated permissions */
 606                avd->allowed &= ~masked;
 607
 608                /* audit masked permissions */
 609                security_dump_masked_av(scontext, tcontext,
 610                                        tclass, masked, "bounds");
 611        }
 612}
 613
 614/*
 615 * Compute access vectors based on a context structure pair for
 616 * the permissions in a particular class.
 617 */
 618static void context_struct_compute_av(struct context *scontext,
 619                                      struct context *tcontext,
 620                                      u16 tclass,
 621                                      struct av_decision *avd)
 622{
 623        struct constraint_node *constraint;
 624        struct role_allow *ra;
 625        struct avtab_key avkey;
 626        struct avtab_node *node;
 627        struct class_datum *tclass_datum;
 628        struct ebitmap *sattr, *tattr;
 629        struct ebitmap_node *snode, *tnode;
 630        unsigned int i, j;
 631
 632        avd->allowed = 0;
 633        avd->auditallow = 0;
 634        avd->auditdeny = 0xffffffff;
 635
 636        if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 637                if (printk_ratelimit())
 638                        printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 639                return;
 640        }
 641
 642        tclass_datum = policydb.class_val_to_struct[tclass - 1];
 643
 644        /*
 645         * If a specific type enforcement rule was defined for
 646         * this permission check, then use it.
 647         */
 648        avkey.target_class = tclass;
 649        avkey.specified = AVTAB_AV;
 650        sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 651        BUG_ON(!sattr);
 652        tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 653        BUG_ON(!tattr);
 654        ebitmap_for_each_positive_bit(sattr, snode, i) {
 655                ebitmap_for_each_positive_bit(tattr, tnode, j) {
 656                        avkey.source_type = i + 1;
 657                        avkey.target_type = j + 1;
 658                        for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 659                             node;
 660                             node = avtab_search_node_next(node, avkey.specified)) {
 661                                if (node->key.specified == AVTAB_ALLOWED)
 662                                        avd->allowed |= node->datum.data;
 663                                else if (node->key.specified == AVTAB_AUDITALLOW)
 664                                        avd->auditallow |= node->datum.data;
 665                                else if (node->key.specified == AVTAB_AUDITDENY)
 666                                        avd->auditdeny &= node->datum.data;
 667                        }
 668
 669                        /* Check conditional av table for additional permissions */
 670                        cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
 671
 672                }
 673        }
 674
 675        /*
 676         * Remove any permissions prohibited by a constraint (this includes
 677         * the MLS policy).
 678         */
 679        constraint = tclass_datum->constraints;
 680        while (constraint) {
 681                if ((constraint->permissions & (avd->allowed)) &&
 682                    !constraint_expr_eval(scontext, tcontext, NULL,
 683                                          constraint->expr)) {
 684                        avd->allowed &= ~(constraint->permissions);
 685                }
 686                constraint = constraint->next;
 687        }
 688
 689        /*
 690         * If checking process transition permission and the
 691         * role is changing, then check the (current_role, new_role)
 692         * pair.
 693         */
 694        if (tclass == policydb.process_class &&
 695            (avd->allowed & policydb.process_trans_perms) &&
 696            scontext->role != tcontext->role) {
 697                for (ra = policydb.role_allow; ra; ra = ra->next) {
 698                        if (scontext->role == ra->role &&
 699                            tcontext->role == ra->new_role)
 700                                break;
 701                }
 702                if (!ra)
 703                        avd->allowed &= ~policydb.process_trans_perms;
 704        }
 705
 706        /*
 707         * If the given source and target types have boundary
 708         * constraint, lazy checks have to mask any violated
 709         * permission and notice it to userspace via audit.
 710         */
 711        type_attribute_bounds_av(scontext, tcontext,
 712                                 tclass, avd);
 713}
 714
 715static int security_validtrans_handle_fail(struct context *ocontext,
 716                                           struct context *ncontext,
 717                                           struct context *tcontext,
 718                                           u16 tclass)
 719{
 720        char *o = NULL, *n = NULL, *t = NULL;
 721        u32 olen, nlen, tlen;
 722
 723        if (context_struct_to_string(ocontext, &o, &olen))
 724                goto out;
 725        if (context_struct_to_string(ncontext, &n, &nlen))
 726                goto out;
 727        if (context_struct_to_string(tcontext, &t, &tlen))
 728                goto out;
 729        audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 730                  "security_validate_transition:  denied for"
 731                  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 732                  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 733out:
 734        kfree(o);
 735        kfree(n);
 736        kfree(t);
 737
 738        if (!selinux_enforcing)
 739                return 0;
 740        return -EPERM;
 741}
 742
 743int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 744                                 u16 orig_tclass)
 745{
 746        struct context *ocontext;
 747        struct context *ncontext;
 748        struct context *tcontext;
 749        struct class_datum *tclass_datum;
 750        struct constraint_node *constraint;
 751        u16 tclass;
 752        int rc = 0;
 753
 754        if (!ss_initialized)
 755                return 0;
 756
 757        read_lock(&policy_rwlock);
 758
 759        tclass = unmap_class(orig_tclass);
 760
 761        if (!tclass || tclass > policydb.p_classes.nprim) {
 762                printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
 763                        __func__, tclass);
 764                rc = -EINVAL;
 765                goto out;
 766        }
 767        tclass_datum = policydb.class_val_to_struct[tclass - 1];
 768
 769        ocontext = sidtab_search(&sidtab, oldsid);
 770        if (!ocontext) {
 771                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 772                        __func__, oldsid);
 773                rc = -EINVAL;
 774                goto out;
 775        }
 776
 777        ncontext = sidtab_search(&sidtab, newsid);
 778        if (!ncontext) {
 779                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 780                        __func__, newsid);
 781                rc = -EINVAL;
 782                goto out;
 783        }
 784
 785        tcontext = sidtab_search(&sidtab, tasksid);
 786        if (!tcontext) {
 787                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 788                        __func__, tasksid);
 789                rc = -EINVAL;
 790                goto out;
 791        }
 792
 793        constraint = tclass_datum->validatetrans;
 794        while (constraint) {
 795                if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 796                                          constraint->expr)) {
 797                        rc = security_validtrans_handle_fail(ocontext, ncontext,
 798                                                             tcontext, tclass);
 799                        goto out;
 800                }
 801                constraint = constraint->next;
 802        }
 803
 804out:
 805        read_unlock(&policy_rwlock);
 806        return rc;
 807}
 808
 809/*
 810 * security_bounded_transition - check whether the given
 811 * transition is directed to bounded, or not.
 812 * It returns 0, if @newsid is bounded by @oldsid.
 813 * Otherwise, it returns error code.
 814 *
 815 * @oldsid : current security identifier
 816 * @newsid : destinated security identifier
 817 */
 818int security_bounded_transition(u32 old_sid, u32 new_sid)
 819{
 820        struct context *old_context, *new_context;
 821        struct type_datum *type;
 822        int index;
 823        int rc;
 824
 825        read_lock(&policy_rwlock);
 826
 827        rc = -EINVAL;
 828        old_context = sidtab_search(&sidtab, old_sid);
 829        if (!old_context) {
 830                printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 831                       __func__, old_sid);
 832                goto out;
 833        }
 834
 835        rc = -EINVAL;
 836        new_context = sidtab_search(&sidtab, new_sid);
 837        if (!new_context) {
 838                printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 839                       __func__, new_sid);
 840                goto out;
 841        }
 842
 843        rc = 0;
 844        /* type/domain unchanged */
 845        if (old_context->type == new_context->type)
 846                goto out;
 847
 848        index = new_context->type;
 849        while (true) {
 850                type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 851                                          index - 1);
 852                BUG_ON(!type);
 853
 854                /* not bounded anymore */
 855                rc = -EPERM;
 856                if (!type->bounds)
 857                        break;
 858
 859                /* @newsid is bounded by @oldsid */
 860                rc = 0;
 861                if (type->bounds == old_context->type)
 862                        break;
 863
 864                index = type->bounds;
 865        }
 866
 867        if (rc) {
 868                char *old_name = NULL;
 869                char *new_name = NULL;
 870                u32 length;
 871
 872                if (!context_struct_to_string(old_context,
 873                                              &old_name, &length) &&
 874                    !context_struct_to_string(new_context,
 875                                              &new_name, &length)) {
 876                        audit_log(current->audit_context,
 877                                  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 878                                  "op=security_bounded_transition "
 879                                  "result=denied "
 880                                  "oldcontext=%s newcontext=%s",
 881                                  old_name, new_name);
 882                }
 883                kfree(new_name);
 884                kfree(old_name);
 885        }
 886out:
 887        read_unlock(&policy_rwlock);
 888
 889        return rc;
 890}
 891
 892static void avd_init(struct av_decision *avd)
 893{
 894        avd->allowed = 0;
 895        avd->auditallow = 0;
 896        avd->auditdeny = 0xffffffff;
 897        avd->seqno = latest_granting;
 898        avd->flags = 0;
 899}
 900
 901
 902/**
 903 * security_compute_av - Compute access vector decisions.
 904 * @ssid: source security identifier
 905 * @tsid: target security identifier
 906 * @tclass: target security class
 907 * @avd: access vector decisions
 908 *
 909 * Compute a set of access vector decisions based on the
 910 * SID pair (@ssid, @tsid) for the permissions in @tclass.
 911 */
 912void security_compute_av(u32 ssid,
 913                         u32 tsid,
 914                         u16 orig_tclass,
 915                         struct av_decision *avd)
 916{
 917        u16 tclass;
 918        struct context *scontext = NULL, *tcontext = NULL;
 919
 920        read_lock(&policy_rwlock);
 921        avd_init(avd);
 922        if (!ss_initialized)
 923                goto allow;
 924
 925        scontext = sidtab_search(&sidtab, ssid);
 926        if (!scontext) {
 927                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 928                       __func__, ssid);
 929                goto out;
 930        }
 931
 932        /* permissive domain? */
 933        if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 934                avd->flags |= AVD_FLAGS_PERMISSIVE;
 935
 936        tcontext = sidtab_search(&sidtab, tsid);
 937        if (!tcontext) {
 938                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 939                       __func__, tsid);
 940                goto out;
 941        }
 942
 943        tclass = unmap_class(orig_tclass);
 944        if (unlikely(orig_tclass && !tclass)) {
 945                if (policydb.allow_unknown)
 946                        goto allow;
 947                goto out;
 948        }
 949        context_struct_compute_av(scontext, tcontext, tclass, avd);
 950        map_decision(orig_tclass, avd, policydb.allow_unknown);
 951out:
 952        read_unlock(&policy_rwlock);
 953        return;
 954allow:
 955        avd->allowed = 0xffffffff;
 956        goto out;
 957}
 958
 959void security_compute_av_user(u32 ssid,
 960                              u32 tsid,
 961                              u16 tclass,
 962                              struct av_decision *avd)
 963{
 964        struct context *scontext = NULL, *tcontext = NULL;
 965
 966        read_lock(&policy_rwlock);
 967        avd_init(avd);
 968        if (!ss_initialized)
 969                goto allow;
 970
 971        scontext = sidtab_search(&sidtab, ssid);
 972        if (!scontext) {
 973                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 974                       __func__, ssid);
 975                goto out;
 976        }
 977
 978        /* permissive domain? */
 979        if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 980                avd->flags |= AVD_FLAGS_PERMISSIVE;
 981
 982        tcontext = sidtab_search(&sidtab, tsid);
 983        if (!tcontext) {
 984                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 985                       __func__, tsid);
 986                goto out;
 987        }
 988
 989        if (unlikely(!tclass)) {
 990                if (policydb.allow_unknown)
 991                        goto allow;
 992                goto out;
 993        }
 994
 995        context_struct_compute_av(scontext, tcontext, tclass, avd);
 996 out:
 997        read_unlock(&policy_rwlock);
 998        return;
 999allow:
1000        avd->allowed = 0xffffffff;
1001        goto out;
1002}
1003
1004/*
1005 * Write the security context string representation of
1006 * the context structure `context' into a dynamically
1007 * allocated string of the correct size.  Set `*scontext'
1008 * to point to this string and set `*scontext_len' to
1009 * the length of the string.
1010 */
1011static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1012{
1013        char *scontextp;
1014
1015        if (scontext)
1016                *scontext = NULL;
1017        *scontext_len = 0;
1018
1019        if (context->len) {
1020                *scontext_len = context->len;
1021                if (scontext) {
1022                        *scontext = kstrdup(context->str, GFP_ATOMIC);
1023                        if (!(*scontext))
1024                                return -ENOMEM;
1025                }
1026                return 0;
1027        }
1028
1029        /* Compute the size of the context. */
1030        *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1031        *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1032        *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1033        *scontext_len += mls_compute_context_len(context);
1034
1035        if (!scontext)
1036                return 0;
1037
1038        /* Allocate space for the context; caller must free this space. */
1039        scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1040        if (!scontextp)
1041                return -ENOMEM;
1042        *scontext = scontextp;
1043
1044        /*
1045         * Copy the user name, role name and type name into the context.
1046         */
1047        sprintf(scontextp, "%s:%s:%s",
1048                sym_name(&policydb, SYM_USERS, context->user - 1),
1049                sym_name(&policydb, SYM_ROLES, context->role - 1),
1050                sym_name(&policydb, SYM_TYPES, context->type - 1));
1051        scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1052                     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1053                     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1054
1055        mls_sid_to_context(context, &scontextp);
1056
1057        *scontextp = 0;
1058
1059        return 0;
1060}
1061
1062#include "initial_sid_to_string.h"
1063
1064const char *security_get_initial_sid_context(u32 sid)
1065{
1066        if (unlikely(sid > SECINITSID_NUM))
1067                return NULL;
1068        return initial_sid_to_string[sid];
1069}
1070
1071static int security_sid_to_context_core(u32 sid, char **scontext,
1072                                        u32 *scontext_len, int force)
1073{
1074        struct context *context;
1075        int rc = 0;
1076
1077        if (scontext)
1078                *scontext = NULL;
1079        *scontext_len  = 0;
1080
1081        if (!ss_initialized) {
1082                if (sid <= SECINITSID_NUM) {
1083                        char *scontextp;
1084
1085                        *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1086                        if (!scontext)
1087                                goto out;
1088                        scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1089                        if (!scontextp) {
1090                                rc = -ENOMEM;
1091                                goto out;
1092                        }
1093                        strcpy(scontextp, initial_sid_to_string[sid]);
1094                        *scontext = scontextp;
1095                        goto out;
1096                }
1097                printk(KERN_ERR "SELinux: %s:  called before initial "
1098                       "load_policy on unknown SID %d\n", __func__, sid);
1099                rc = -EINVAL;
1100                goto out;
1101        }
1102        read_lock(&policy_rwlock);
1103        if (force)
1104                context = sidtab_search_force(&sidtab, sid);
1105        else
1106                context = sidtab_search(&sidtab, sid);
1107        if (!context) {
1108                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1109                        __func__, sid);
1110                rc = -EINVAL;
1111                goto out_unlock;
1112        }
1113        rc = context_struct_to_string(context, scontext, scontext_len);
1114out_unlock:
1115        read_unlock(&policy_rwlock);
1116out:
1117        return rc;
1118
1119}
1120
1121/**
1122 * security_sid_to_context - Obtain a context for a given SID.
1123 * @sid: security identifier, SID
1124 * @scontext: security context
1125 * @scontext_len: length in bytes
1126 *
1127 * Write the string representation of the context associated with @sid
1128 * into a dynamically allocated string of the correct size.  Set @scontext
1129 * to point to this string and set @scontext_len to the length of the string.
1130 */
1131int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1132{
1133        return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1134}
1135
1136int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1137{
1138        return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1139}
1140
1141/*
1142 * Caveat:  Mutates scontext.
1143 */
1144static int string_to_context_struct(struct policydb *pol,
1145                                    struct sidtab *sidtabp,
1146                                    char *scontext,
1147                                    u32 scontext_len,
1148                                    struct context *ctx,
1149                                    u32 def_sid)
1150{
1151        struct role_datum *role;
1152        struct type_datum *typdatum;
1153        struct user_datum *usrdatum;
1154        char *scontextp, *p, oldc;
1155        int rc = 0;
1156
1157        context_init(ctx);
1158
1159        /* Parse the security context. */
1160
1161        rc = -EINVAL;
1162        scontextp = (char *) scontext;
1163
1164        /* Extract the user. */
1165        p = scontextp;
1166        while (*p && *p != ':')
1167                p++;
1168
1169        if (*p == 0)
1170                goto out;
1171
1172        *p++ = 0;
1173
1174        usrdatum = hashtab_search(pol->p_users.table, scontextp);
1175        if (!usrdatum)
1176                goto out;
1177
1178        ctx->user = usrdatum->value;
1179
1180        /* Extract role. */
1181        scontextp = p;
1182        while (*p && *p != ':')
1183                p++;
1184
1185        if (*p == 0)
1186                goto out;
1187
1188        *p++ = 0;
1189
1190        role = hashtab_search(pol->p_roles.table, scontextp);
1191        if (!role)
1192                goto out;
1193        ctx->role = role->value;
1194
1195        /* Extract type. */
1196        scontextp = p;
1197        while (*p && *p != ':')
1198                p++;
1199        oldc = *p;
1200        *p++ = 0;
1201
1202        typdatum = hashtab_search(pol->p_types.table, scontextp);
1203        if (!typdatum || typdatum->attribute)
1204                goto out;
1205
1206        ctx->type = typdatum->value;
1207
1208        rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1209        if (rc)
1210                goto out;
1211
1212        rc = -EINVAL;
1213        if ((p - scontext) < scontext_len)
1214                goto out;
1215
1216        /* Check the validity of the new context. */
1217        if (!policydb_context_isvalid(pol, ctx))
1218                goto out;
1219        rc = 0;
1220out:
1221        if (rc)
1222                context_destroy(ctx);
1223        return rc;
1224}
1225
1226static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1227                                        u32 *sid, u32 def_sid, gfp_t gfp_flags,
1228                                        int force)
1229{
1230        char *scontext2, *str = NULL;
1231        struct context context;
1232        int rc = 0;
1233
1234        if (!ss_initialized) {
1235                int i;
1236
1237                for (i = 1; i < SECINITSID_NUM; i++) {
1238                        if (!strcmp(initial_sid_to_string[i], scontext)) {
1239                                *sid = i;
1240                                return 0;
1241                        }
1242                }
1243                *sid = SECINITSID_KERNEL;
1244                return 0;
1245        }
1246        *sid = SECSID_NULL;
1247
1248        /* Copy the string so that we can modify the copy as we parse it. */
1249        scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1250        if (!scontext2)
1251                return -ENOMEM;
1252        memcpy(scontext2, scontext, scontext_len);
1253        scontext2[scontext_len] = 0;
1254
1255        if (force) {
1256                /* Save another copy for storing in uninterpreted form */
1257                rc = -ENOMEM;
1258                str = kstrdup(scontext2, gfp_flags);
1259                if (!str)
1260                        goto out;
1261        }
1262
1263        read_lock(&policy_rwlock);
1264        rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1265                                      scontext_len, &context, def_sid);
1266        if (rc == -EINVAL && force) {
1267                context.str = str;
1268                context.len = scontext_len;
1269                str = NULL;
1270        } else if (rc)
1271                goto out_unlock;
1272        rc = sidtab_context_to_sid(&sidtab, &context, sid);
1273        context_destroy(&context);
1274out_unlock:
1275        read_unlock(&policy_rwlock);
1276out:
1277        kfree(scontext2);
1278        kfree(str);
1279        return rc;
1280}
1281
1282/**
1283 * security_context_to_sid - Obtain a SID for a given security context.
1284 * @scontext: security context
1285 * @scontext_len: length in bytes
1286 * @sid: security identifier, SID
1287 *
1288 * Obtains a SID associated with the security context that
1289 * has the string representation specified by @scontext.
1290 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291 * memory is available, or 0 on success.
1292 */
1293int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1294{
1295        return security_context_to_sid_core(scontext, scontext_len,
1296                                            sid, SECSID_NULL, GFP_KERNEL, 0);
1297}
1298
1299/**
1300 * security_context_to_sid_default - Obtain a SID for a given security context,
1301 * falling back to specified default if needed.
1302 *
1303 * @scontext: security context
1304 * @scontext_len: length in bytes
1305 * @sid: security identifier, SID
1306 * @def_sid: default SID to assign on error
1307 *
1308 * Obtains a SID associated with the security context that
1309 * has the string representation specified by @scontext.
1310 * The default SID is passed to the MLS layer to be used to allow
1311 * kernel labeling of the MLS field if the MLS field is not present
1312 * (for upgrading to MLS without full relabel).
1313 * Implicitly forces adding of the context even if it cannot be mapped yet.
1314 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315 * memory is available, or 0 on success.
1316 */
1317int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1318                                    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1319{
1320        return security_context_to_sid_core(scontext, scontext_len,
1321                                            sid, def_sid, gfp_flags, 1);
1322}
1323
1324int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1325                                  u32 *sid)
1326{
1327        return security_context_to_sid_core(scontext, scontext_len,
1328                                            sid, SECSID_NULL, GFP_KERNEL, 1);
1329}
1330
1331static int compute_sid_handle_invalid_context(
1332        struct context *scontext,
1333        struct context *tcontext,
1334        u16 tclass,
1335        struct context *newcontext)
1336{
1337        char *s = NULL, *t = NULL, *n = NULL;
1338        u32 slen, tlen, nlen;
1339
1340        if (context_struct_to_string(scontext, &s, &slen))
1341                goto out;
1342        if (context_struct_to_string(tcontext, &t, &tlen))
1343                goto out;
1344        if (context_struct_to_string(newcontext, &n, &nlen))
1345                goto out;
1346        audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1347                  "security_compute_sid:  invalid context %s"
1348                  " for scontext=%s"
1349                  " tcontext=%s"
1350                  " tclass=%s",
1351                  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1352out:
1353        kfree(s);
1354        kfree(t);
1355        kfree(n);
1356        if (!selinux_enforcing)
1357                return 0;
1358        return -EACCES;
1359}
1360
1361static void filename_compute_type(struct policydb *p, struct context *newcontext,
1362                                  u32 stype, u32 ttype, u16 tclass,
1363                                  const char *objname)
1364{
1365        struct filename_trans ft;
1366        struct filename_trans_datum *otype;
1367
1368        /*
1369         * Most filename trans rules are going to live in specific directories
1370         * like /dev or /var/run.  This bitmap will quickly skip rule searches
1371         * if the ttype does not contain any rules.
1372         */
1373        if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1374                return;
1375
1376        ft.stype = stype;
1377        ft.ttype = ttype;
1378        ft.tclass = tclass;
1379        ft.name = objname;
1380
1381        otype = hashtab_search(p->filename_trans, &ft);
1382        if (otype)
1383                newcontext->type = otype->otype;
1384}
1385
1386static int security_compute_sid(u32 ssid,
1387                                u32 tsid,
1388                                u16 orig_tclass,
1389                                u32 specified,
1390                                const char *objname,
1391                                u32 *out_sid,
1392                                bool kern)
1393{
1394        struct class_datum *cladatum = NULL;
1395        struct context *scontext = NULL, *tcontext = NULL, newcontext;
1396        struct role_trans *roletr = NULL;
1397        struct avtab_key avkey;
1398        struct avtab_datum *avdatum;
1399        struct avtab_node *node;
1400        u16 tclass;
1401        int rc = 0;
1402        bool sock;
1403
1404        if (!ss_initialized) {
1405                switch (orig_tclass) {
1406                case SECCLASS_PROCESS: /* kernel value */
1407                        *out_sid = ssid;
1408                        break;
1409                default:
1410                        *out_sid = tsid;
1411                        break;
1412                }
1413                goto out;
1414        }
1415
1416        context_init(&newcontext);
1417
1418        read_lock(&policy_rwlock);
1419
1420        if (kern) {
1421                tclass = unmap_class(orig_tclass);
1422                sock = security_is_socket_class(orig_tclass);
1423        } else {
1424                tclass = orig_tclass;
1425                sock = security_is_socket_class(map_class(tclass));
1426        }
1427
1428        scontext = sidtab_search(&sidtab, ssid);
1429        if (!scontext) {
1430                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1431                       __func__, ssid);
1432                rc = -EINVAL;
1433                goto out_unlock;
1434        }
1435        tcontext = sidtab_search(&sidtab, tsid);
1436        if (!tcontext) {
1437                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1438                       __func__, tsid);
1439                rc = -EINVAL;
1440                goto out_unlock;
1441        }
1442
1443        if (tclass && tclass <= policydb.p_classes.nprim)
1444                cladatum = policydb.class_val_to_struct[tclass - 1];
1445
1446        /* Set the user identity. */
1447        switch (specified) {
1448        case AVTAB_TRANSITION:
1449        case AVTAB_CHANGE:
1450                if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1451                        newcontext.user = tcontext->user;
1452                } else {
1453                        /* notice this gets both DEFAULT_SOURCE and unset */
1454                        /* Use the process user identity. */
1455                        newcontext.user = scontext->user;
1456                }
1457                break;
1458        case AVTAB_MEMBER:
1459                /* Use the related object owner. */
1460                newcontext.user = tcontext->user;
1461                break;
1462        }
1463
1464        /* Set the role to default values. */
1465        if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1466                newcontext.role = scontext->role;
1467        } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1468                newcontext.role = tcontext->role;
1469        } else {
1470                if ((tclass == policydb.process_class) || (sock == true))
1471                        newcontext.role = scontext->role;
1472                else
1473                        newcontext.role = OBJECT_R_VAL;
1474        }
1475
1476        /* Set the type to default values. */
1477        if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1478                newcontext.type = scontext->type;
1479        } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1480                newcontext.type = tcontext->type;
1481        } else {
1482                if ((tclass == policydb.process_class) || (sock == true)) {
1483                        /* Use the type of process. */
1484                        newcontext.type = scontext->type;
1485                } else {
1486                        /* Use the type of the related object. */
1487                        newcontext.type = tcontext->type;
1488                }
1489        }
1490
1491        /* Look for a type transition/member/change rule. */
1492        avkey.source_type = scontext->type;
1493        avkey.target_type = tcontext->type;
1494        avkey.target_class = tclass;
1495        avkey.specified = specified;
1496        avdatum = avtab_search(&policydb.te_avtab, &avkey);
1497
1498        /* If no permanent rule, also check for enabled conditional rules */
1499        if (!avdatum) {
1500                node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1501                for (; node; node = avtab_search_node_next(node, specified)) {
1502                        if (node->key.specified & AVTAB_ENABLED) {
1503                                avdatum = &node->datum;
1504                                break;
1505                        }
1506                }
1507        }
1508
1509        if (avdatum) {
1510                /* Use the type from the type transition/member/change rule. */
1511                newcontext.type = avdatum->data;
1512        }
1513
1514        /* if we have a objname this is a file trans check so check those rules */
1515        if (objname)
1516                filename_compute_type(&policydb, &newcontext, scontext->type,
1517                                      tcontext->type, tclass, objname);
1518
1519        /* Check for class-specific changes. */
1520        if (specified & AVTAB_TRANSITION) {
1521                /* Look for a role transition rule. */
1522                for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1523                        if ((roletr->role == scontext->role) &&
1524                            (roletr->type == tcontext->type) &&
1525                            (roletr->tclass == tclass)) {
1526                                /* Use the role transition rule. */
1527                                newcontext.role = roletr->new_role;
1528                                break;
1529                        }
1530                }
1531        }
1532
1533        /* Set the MLS attributes.
1534           This is done last because it may allocate memory. */
1535        rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1536                             &newcontext, sock);
1537        if (rc)
1538                goto out_unlock;
1539
1540        /* Check the validity of the context. */
1541        if (!policydb_context_isvalid(&policydb, &newcontext)) {
1542                rc = compute_sid_handle_invalid_context(scontext,
1543                                                        tcontext,
1544                                                        tclass,
1545                                                        &newcontext);
1546                if (rc)
1547                        goto out_unlock;
1548        }
1549        /* Obtain the sid for the context. */
1550        rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1551out_unlock:
1552        read_unlock(&policy_rwlock);
1553        context_destroy(&newcontext);
1554out:
1555        return rc;
1556}
1557
1558/**
1559 * security_transition_sid - Compute the SID for a new subject/object.
1560 * @ssid: source security identifier
1561 * @tsid: target security identifier
1562 * @tclass: target security class
1563 * @out_sid: security identifier for new subject/object
1564 *
1565 * Compute a SID to use for labeling a new subject or object in the
1566 * class @tclass based on a SID pair (@ssid, @tsid).
1567 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1568 * if insufficient memory is available, or %0 if the new SID was
1569 * computed successfully.
1570 */
1571int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1572                            const struct qstr *qstr, u32 *out_sid)
1573{
1574        return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1575                                    qstr ? qstr->name : NULL, out_sid, true);
1576}
1577
1578int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1579                                 const char *objname, u32 *out_sid)
1580{
1581        return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1582                                    objname, out_sid, false);
1583}
1584
1585/**
1586 * security_member_sid - Compute the SID for member selection.
1587 * @ssid: source security identifier
1588 * @tsid: target security identifier
1589 * @tclass: target security class
1590 * @out_sid: security identifier for selected member
1591 *
1592 * Compute a SID to use when selecting a member of a polyinstantiated
1593 * object of class @tclass based on a SID pair (@ssid, @tsid).
1594 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1595 * if insufficient memory is available, or %0 if the SID was
1596 * computed successfully.
1597 */
1598int security_member_sid(u32 ssid,
1599                        u32 tsid,
1600                        u16 tclass,
1601                        u32 *out_sid)
1602{
1603        return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1604                                    out_sid, false);
1605}
1606
1607/**
1608 * security_change_sid - Compute the SID for object relabeling.
1609 * @ssid: source security identifier
1610 * @tsid: target security identifier
1611 * @tclass: target security class
1612 * @out_sid: security identifier for selected member
1613 *
1614 * Compute a SID to use for relabeling an object of class @tclass
1615 * based on a SID pair (@ssid, @tsid).
1616 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1617 * if insufficient memory is available, or %0 if the SID was
1618 * computed successfully.
1619 */
1620int security_change_sid(u32 ssid,
1621                        u32 tsid,
1622                        u16 tclass,
1623                        u32 *out_sid)
1624{
1625        return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1626                                    out_sid, false);
1627}
1628
1629/* Clone the SID into the new SID table. */
1630static int clone_sid(u32 sid,
1631                     struct context *context,
1632                     void *arg)
1633{
1634        struct sidtab *s = arg;
1635
1636        if (sid > SECINITSID_NUM)
1637                return sidtab_insert(s, sid, context);
1638        else
1639                return 0;
1640}
1641
1642static inline int convert_context_handle_invalid_context(struct context *context)
1643{
1644        char *s;
1645        u32 len;
1646
1647        if (selinux_enforcing)
1648                return -EINVAL;
1649
1650        if (!context_struct_to_string(context, &s, &len)) {
1651                printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1652                kfree(s);
1653        }
1654        return 0;
1655}
1656
1657struct convert_context_args {
1658        struct policydb *oldp;
1659        struct policydb *newp;
1660};
1661
1662/*
1663 * Convert the values in the security context
1664 * structure `c' from the values specified
1665 * in the policy `p->oldp' to the values specified
1666 * in the policy `p->newp'.  Verify that the
1667 * context is valid under the new policy.
1668 */
1669static int convert_context(u32 key,
1670                           struct context *c,
1671                           void *p)
1672{
1673        struct convert_context_args *args;
1674        struct context oldc;
1675        struct ocontext *oc;
1676        struct mls_range *range;
1677        struct role_datum *role;
1678        struct type_datum *typdatum;
1679        struct user_datum *usrdatum;
1680        char *s;
1681        u32 len;
1682        int rc = 0;
1683
1684        if (key <= SECINITSID_NUM)
1685                goto out;
1686
1687        args = p;
1688
1689        if (c->str) {
1690                struct context ctx;
1691
1692                rc = -ENOMEM;
1693                s = kstrdup(c->str, GFP_KERNEL);
1694                if (!s)
1695                        goto out;
1696
1697                rc = string_to_context_struct(args->newp, NULL, s,
1698                                              c->len, &ctx, SECSID_NULL);
1699                kfree(s);
1700                if (!rc) {
1701                        printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1702                               c->str);
1703                        /* Replace string with mapped representation. */
1704                        kfree(c->str);
1705                        memcpy(c, &ctx, sizeof(*c));
1706                        goto out;
1707                } else if (rc == -EINVAL) {
1708                        /* Retain string representation for later mapping. */
1709                        rc = 0;
1710                        goto out;
1711                } else {
1712                        /* Other error condition, e.g. ENOMEM. */
1713                        printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1714                               c->str, -rc);
1715                        goto out;
1716                }
1717        }
1718
1719        rc = context_cpy(&oldc, c);
1720        if (rc)
1721                goto out;
1722
1723        /* Convert the user. */
1724        rc = -EINVAL;
1725        usrdatum = hashtab_search(args->newp->p_users.table,
1726                                  sym_name(args->oldp, SYM_USERS, c->user - 1));
1727        if (!usrdatum)
1728                goto bad;
1729        c->user = usrdatum->value;
1730
1731        /* Convert the role. */
1732        rc = -EINVAL;
1733        role = hashtab_search(args->newp->p_roles.table,
1734                              sym_name(args->oldp, SYM_ROLES, c->role - 1));
1735        if (!role)
1736                goto bad;
1737        c->role = role->value;
1738
1739        /* Convert the type. */
1740        rc = -EINVAL;
1741        typdatum = hashtab_search(args->newp->p_types.table,
1742                                  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1743        if (!typdatum)
1744                goto bad;
1745        c->type = typdatum->value;
1746
1747        /* Convert the MLS fields if dealing with MLS policies */
1748        if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1749                rc = mls_convert_context(args->oldp, args->newp, c);
1750                if (rc)
1751                        goto bad;
1752        } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1753                /*
1754                 * Switching between MLS and non-MLS policy:
1755                 * free any storage used by the MLS fields in the
1756                 * context for all existing entries in the sidtab.
1757                 */
1758                mls_context_destroy(c);
1759        } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1760                /*
1761                 * Switching between non-MLS and MLS policy:
1762                 * ensure that the MLS fields of the context for all
1763                 * existing entries in the sidtab are filled in with a
1764                 * suitable default value, likely taken from one of the
1765                 * initial SIDs.
1766                 */
1767                oc = args->newp->ocontexts[OCON_ISID];
1768                while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1769                        oc = oc->next;
1770                rc = -EINVAL;
1771                if (!oc) {
1772                        printk(KERN_ERR "SELinux:  unable to look up"
1773                                " the initial SIDs list\n");
1774                        goto bad;
1775                }
1776                range = &oc->context[0].range;
1777                rc = mls_range_set(c, range);
1778                if (rc)
1779                        goto bad;
1780        }
1781
1782        /* Check the validity of the new context. */
1783        if (!policydb_context_isvalid(args->newp, c)) {
1784                rc = convert_context_handle_invalid_context(&oldc);
1785                if (rc)
1786                        goto bad;
1787        }
1788
1789        context_destroy(&oldc);
1790
1791        rc = 0;
1792out:
1793        return rc;
1794bad:
1795        /* Map old representation to string and save it. */
1796        rc = context_struct_to_string(&oldc, &s, &len);
1797        if (rc)
1798                return rc;
1799        context_destroy(&oldc);
1800        context_destroy(c);
1801        c->str = s;
1802        c->len = len;
1803        printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1804               c->str);
1805        rc = 0;
1806        goto out;
1807}
1808
1809static void security_load_policycaps(void)
1810{
1811        selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1812                                                  POLICYDB_CAPABILITY_NETPEER);
1813        selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1814                                                  POLICYDB_CAPABILITY_OPENPERM);
1815}
1816
1817static int security_preserve_bools(struct policydb *p);
1818
1819/**
1820 * security_load_policy - Load a security policy configuration.
1821 * @data: binary policy data
1822 * @len: length of data in bytes
1823 *
1824 * Load a new set of security policy configuration data,
1825 * validate it and convert the SID table as necessary.
1826 * This function will flush the access vector cache after
1827 * loading the new policy.
1828 */
1829int security_load_policy(void *data, size_t len)
1830{
1831        struct policydb oldpolicydb, newpolicydb;
1832        struct sidtab oldsidtab, newsidtab;
1833        struct selinux_mapping *oldmap, *map = NULL;
1834        struct convert_context_args args;
1835        u32 seqno;
1836        u16 map_size;
1837        int rc = 0;
1838        struct policy_file file = { data, len }, *fp = &file;
1839
1840        if (!ss_initialized) {
1841                avtab_cache_init();
1842                rc = policydb_read(&policydb, fp);
1843                if (rc) {
1844                        avtab_cache_destroy();
1845                        return rc;
1846                }
1847
1848                policydb.len = len;
1849                rc = selinux_set_mapping(&policydb, secclass_map,
1850                                         &current_mapping,
1851                                         &current_mapping_size);
1852                if (rc) {
1853                        policydb_destroy(&policydb);
1854                        avtab_cache_destroy();
1855                        return rc;
1856                }
1857
1858                rc = policydb_load_isids(&policydb, &sidtab);
1859                if (rc) {
1860                        policydb_destroy(&policydb);
1861                        avtab_cache_destroy();
1862                        return rc;
1863                }
1864
1865                security_load_policycaps();
1866                ss_initialized = 1;
1867                seqno = ++latest_granting;
1868                selinux_complete_init();
1869                avc_ss_reset(seqno);
1870                selnl_notify_policyload(seqno);
1871                selinux_status_update_policyload(seqno);
1872                selinux_netlbl_cache_invalidate();
1873                selinux_xfrm_notify_policyload();
1874                return 0;
1875        }
1876
1877#if 0
1878        sidtab_hash_eval(&sidtab, "sids");
1879#endif
1880
1881        rc = policydb_read(&newpolicydb, fp);
1882        if (rc)
1883                return rc;
1884
1885        newpolicydb.len = len;
1886        /* If switching between different policy types, log MLS status */
1887        if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1888                printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1889        else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1890                printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1891
1892        rc = policydb_load_isids(&newpolicydb, &newsidtab);
1893        if (rc) {
1894                printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1895                policydb_destroy(&newpolicydb);
1896                return rc;
1897        }
1898
1899        rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1900        if (rc)
1901                goto err;
1902
1903        rc = security_preserve_bools(&newpolicydb);
1904        if (rc) {
1905                printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1906                goto err;
1907        }
1908
1909        /* Clone the SID table. */
1910        sidtab_shutdown(&sidtab);
1911
1912        rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1913        if (rc)
1914                goto err;
1915
1916        /*
1917         * Convert the internal representations of contexts
1918         * in the new SID table.
1919         */
1920        args.oldp = &policydb;
1921        args.newp = &newpolicydb;
1922        rc = sidtab_map(&newsidtab, convert_context, &args);
1923        if (rc) {
1924                printk(KERN_ERR "SELinux:  unable to convert the internal"
1925                        " representation of contexts in the new SID"
1926                        " table\n");
1927                goto err;
1928        }
1929
1930        /* Save the old policydb and SID table to free later. */
1931        memcpy(&oldpolicydb, &policydb, sizeof policydb);
1932        sidtab_set(&oldsidtab, &sidtab);
1933
1934        /* Install the new policydb and SID table. */
1935        write_lock_irq(&policy_rwlock);
1936        memcpy(&policydb, &newpolicydb, sizeof policydb);
1937        sidtab_set(&sidtab, &newsidtab);
1938        security_load_policycaps();
1939        oldmap = current_mapping;
1940        current_mapping = map;
1941        current_mapping_size = map_size;
1942        seqno = ++latest_granting;
1943        write_unlock_irq(&policy_rwlock);
1944
1945        /* Free the old policydb and SID table. */
1946        policydb_destroy(&oldpolicydb);
1947        sidtab_destroy(&oldsidtab);
1948        kfree(oldmap);
1949
1950        avc_ss_reset(seqno);
1951        selnl_notify_policyload(seqno);
1952        selinux_status_update_policyload(seqno);
1953        selinux_netlbl_cache_invalidate();
1954        selinux_xfrm_notify_policyload();
1955
1956        return 0;
1957
1958err:
1959        kfree(map);
1960        sidtab_destroy(&newsidtab);
1961        policydb_destroy(&newpolicydb);
1962        return rc;
1963
1964}
1965
1966size_t security_policydb_len(void)
1967{
1968        size_t len;
1969
1970        read_lock(&policy_rwlock);
1971        len = policydb.len;
1972        read_unlock(&policy_rwlock);
1973
1974        return len;
1975}
1976
1977/**
1978 * security_port_sid - Obtain the SID for a port.
1979 * @protocol: protocol number
1980 * @port: port number
1981 * @out_sid: security identifier
1982 */
1983int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1984{
1985        struct ocontext *c;
1986        int rc = 0;
1987
1988        read_lock(&policy_rwlock);
1989
1990        c = policydb.ocontexts[OCON_PORT];
1991        while (c) {
1992                if (c->u.port.protocol == protocol &&
1993                    c->u.port.low_port <= port &&
1994                    c->u.port.high_port >= port)
1995                        break;
1996                c = c->next;
1997        }
1998
1999        if (c) {
2000                if (!c->sid[0]) {
2001                        rc = sidtab_context_to_sid(&sidtab,
2002                                                   &c->context[0],
2003                                                   &c->sid[0]);
2004                        if (rc)
2005                                goto out;
2006                }
2007                *out_sid = c->sid[0];
2008        } else {
2009                *out_sid = SECINITSID_PORT;
2010        }
2011
2012out:
2013        read_unlock(&policy_rwlock);
2014        return rc;
2015}
2016
2017/**
2018 * security_netif_sid - Obtain the SID for a network interface.
2019 * @name: interface name
2020 * @if_sid: interface SID
2021 */
2022int security_netif_sid(char *name, u32 *if_sid)
2023{
2024        int rc = 0;
2025        struct ocontext *c;
2026
2027        read_lock(&policy_rwlock);
2028
2029        c = policydb.ocontexts[OCON_NETIF];
2030        while (c) {
2031                if (strcmp(name, c->u.name) == 0)
2032                        break;
2033                c = c->next;
2034        }
2035
2036        if (c) {
2037                if (!c->sid[0] || !c->sid[1]) {
2038                        rc = sidtab_context_to_sid(&sidtab,
2039                                                  &c->context[0],
2040                                                  &c->sid[0]);
2041                        if (rc)
2042                                goto out;
2043                        rc = sidtab_context_to_sid(&sidtab,
2044                                                   &c->context[1],
2045                                                   &c->sid[1]);
2046                        if (rc)
2047                                goto out;
2048                }
2049                *if_sid = c->sid[0];
2050        } else
2051                *if_sid = SECINITSID_NETIF;
2052
2053out:
2054        read_unlock(&policy_rwlock);
2055        return rc;
2056}
2057
2058static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2059{
2060        int i, fail = 0;
2061
2062        for (i = 0; i < 4; i++)
2063                if (addr[i] != (input[i] & mask[i])) {
2064                        fail = 1;
2065                        break;
2066                }
2067
2068        return !fail;
2069}
2070
2071/**
2072 * security_node_sid - Obtain the SID for a node (host).
2073 * @domain: communication domain aka address family
2074 * @addrp: address
2075 * @addrlen: address length in bytes
2076 * @out_sid: security identifier
2077 */
2078int security_node_sid(u16 domain,
2079                      void *addrp,
2080                      u32 addrlen,
2081                      u32 *out_sid)
2082{
2083        int rc;
2084        struct ocontext *c;
2085
2086        read_lock(&policy_rwlock);
2087
2088        switch (domain) {
2089        case AF_INET: {
2090                u32 addr;
2091
2092                rc = -EINVAL;
2093                if (addrlen != sizeof(u32))
2094                        goto out;
2095
2096                addr = *((u32 *)addrp);
2097
2098                c = policydb.ocontexts[OCON_NODE];
2099                while (c) {
2100                        if (c->u.node.addr == (addr & c->u.node.mask))
2101                                break;
2102                        c = c->next;
2103                }
2104                break;
2105        }
2106
2107        case AF_INET6:
2108                rc = -EINVAL;
2109                if (addrlen != sizeof(u64) * 2)
2110                        goto out;
2111                c = policydb.ocontexts[OCON_NODE6];
2112                while (c) {
2113                        if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2114                                                c->u.node6.mask))
2115                                break;
2116                        c = c->next;
2117                }
2118                break;
2119
2120        default:
2121                rc = 0;
2122                *out_sid = SECINITSID_NODE;
2123                goto out;
2124        }
2125
2126        if (c) {
2127                if (!c->sid[0]) {
2128                        rc = sidtab_context_to_sid(&sidtab,
2129                                                   &c->context[0],
2130                                                   &c->sid[0]);
2131                        if (rc)
2132                                goto out;
2133                }
2134                *out_sid = c->sid[0];
2135        } else {
2136                *out_sid = SECINITSID_NODE;
2137        }
2138
2139        rc = 0;
2140out:
2141        read_unlock(&policy_rwlock);
2142        return rc;
2143}
2144
2145#define SIDS_NEL 25
2146
2147/**
2148 * security_get_user_sids - Obtain reachable SIDs for a user.
2149 * @fromsid: starting SID
2150 * @username: username
2151 * @sids: array of reachable SIDs for user
2152 * @nel: number of elements in @sids
2153 *
2154 * Generate the set of SIDs for legal security contexts
2155 * for a given user that can be reached by @fromsid.
2156 * Set *@sids to point to a dynamically allocated
2157 * array containing the set of SIDs.  Set *@nel to the
2158 * number of elements in the array.
2159 */
2160
2161int security_get_user_sids(u32 fromsid,
2162                           char *username,
2163                           u32 **sids,
2164                           u32 *nel)
2165{
2166        struct context *fromcon, usercon;
2167        u32 *mysids = NULL, *mysids2, sid;
2168        u32 mynel = 0, maxnel = SIDS_NEL;
2169        struct user_datum *user;
2170        struct role_datum *role;
2171        struct ebitmap_node *rnode, *tnode;
2172        int rc = 0, i, j;
2173
2174        *sids = NULL;
2175        *nel = 0;
2176
2177        if (!ss_initialized)
2178                goto out;
2179
2180        read_lock(&policy_rwlock);
2181
2182        context_init(&usercon);
2183
2184        rc = -EINVAL;
2185        fromcon = sidtab_search(&sidtab, fromsid);
2186        if (!fromcon)
2187                goto out_unlock;
2188
2189        rc = -EINVAL;
2190        user = hashtab_search(policydb.p_users.table, username);
2191        if (!user)
2192                goto out_unlock;
2193
2194        usercon.user = user->value;
2195
2196        rc = -ENOMEM;
2197        mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2198        if (!mysids)
2199                goto out_unlock;
2200
2201        ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2202                role = policydb.role_val_to_struct[i];
2203                usercon.role = i + 1;
2204                ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2205                        usercon.type = j + 1;
2206
2207                        if (mls_setup_user_range(fromcon, user, &usercon))
2208                                continue;
2209
2210                        rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2211                        if (rc)
2212                                goto out_unlock;
2213                        if (mynel < maxnel) {
2214                                mysids[mynel++] = sid;
2215                        } else {
2216                                rc = -ENOMEM;
2217                                maxnel += SIDS_NEL;
2218                                mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2219                                if (!mysids2)
2220                                        goto out_unlock;
2221                                memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2222                                kfree(mysids);
2223                                mysids = mysids2;
2224                                mysids[mynel++] = sid;
2225                        }
2226                }
2227        }
2228        rc = 0;
2229out_unlock:
2230        read_unlock(&policy_rwlock);
2231        if (rc || !mynel) {
2232                kfree(mysids);
2233                goto out;
2234        }
2235
2236        rc = -ENOMEM;
2237        mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2238        if (!mysids2) {
2239                kfree(mysids);
2240                goto out;
2241        }
2242        for (i = 0, j = 0; i < mynel; i++) {
2243                struct av_decision dummy_avd;
2244                rc = avc_has_perm_noaudit(fromsid, mysids[i],
2245                                          SECCLASS_PROCESS, /* kernel value */
2246                                          PROCESS__TRANSITION, AVC_STRICT,
2247                                          &dummy_avd);
2248                if (!rc)
2249                        mysids2[j++] = mysids[i];
2250                cond_resched();
2251        }
2252        rc = 0;
2253        kfree(mysids);
2254        *sids = mysids2;
2255        *nel = j;
2256out:
2257        return rc;
2258}
2259
2260/**
2261 * security_genfs_sid - Obtain a SID for a file in a filesystem
2262 * @fstype: filesystem type
2263 * @path: path from root of mount
2264 * @sclass: file security class
2265 * @sid: SID for path
2266 *
2267 * Obtain a SID to use for a file in a filesystem that
2268 * cannot support xattr or use a fixed labeling behavior like
2269 * transition SIDs or task SIDs.
2270 */
2271int security_genfs_sid(const char *fstype,
2272                       char *path,
2273                       u16 orig_sclass,
2274                       u32 *sid)
2275{
2276        int len;
2277        u16 sclass;
2278        struct genfs *genfs;
2279        struct ocontext *c;
2280        int rc, cmp = 0;
2281
2282        while (path[0] == '/' && path[1] == '/')
2283                path++;
2284
2285        read_lock(&policy_rwlock);
2286
2287        sclass = unmap_class(orig_sclass);
2288        *sid = SECINITSID_UNLABELED;
2289
2290        for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2291                cmp = strcmp(fstype, genfs->fstype);
2292                if (cmp <= 0)
2293                        break;
2294        }
2295
2296        rc = -ENOENT;
2297        if (!genfs || cmp)
2298                goto out;
2299
2300        for (c = genfs->head; c; c = c->next) {
2301                len = strlen(c->u.name);
2302                if ((!c->v.sclass || sclass == c->v.sclass) &&
2303                    (strncmp(c->u.name, path, len) == 0))
2304                        break;
2305        }
2306
2307        rc = -ENOENT;
2308        if (!c)
2309                goto out;
2310
2311        if (!c->sid[0]) {
2312                rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2313                if (rc)
2314                        goto out;
2315        }
2316
2317        *sid = c->sid[0];
2318        rc = 0;
2319out:
2320        read_unlock(&policy_rwlock);
2321        return rc;
2322}
2323
2324/**
2325 * security_fs_use - Determine how to handle labeling for a filesystem.
2326 * @fstype: filesystem type
2327 * @behavior: labeling behavior
2328 * @sid: SID for filesystem (superblock)
2329 */
2330int security_fs_use(
2331        const char *fstype,
2332        unsigned int *behavior,
2333        u32 *sid)
2334{
2335        int rc = 0;
2336        struct ocontext *c;
2337
2338        read_lock(&policy_rwlock);
2339
2340        c = policydb.ocontexts[OCON_FSUSE];
2341        while (c) {
2342                if (strcmp(fstype, c->u.name) == 0)
2343                        break;
2344                c = c->next;
2345        }
2346
2347        if (c) {
2348                *behavior = c->v.behavior;
2349                if (!c->sid[0]) {
2350                        rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2351                                                   &c->sid[0]);
2352                        if (rc)
2353                                goto out;
2354                }
2355                *sid = c->sid[0];
2356        } else {
2357                rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2358                if (rc) {
2359                        *behavior = SECURITY_FS_USE_NONE;
2360                        rc = 0;
2361                } else {
2362                        *behavior = SECURITY_FS_USE_GENFS;
2363                }
2364        }
2365
2366out:
2367        read_unlock(&policy_rwlock);
2368        return rc;
2369}
2370
2371int security_get_bools(int *len, char ***names, int **values)
2372{
2373        int i, rc;
2374
2375        read_lock(&policy_rwlock);
2376        *names = NULL;
2377        *values = NULL;
2378
2379        rc = 0;
2380        *len = policydb.p_bools.nprim;
2381        if (!*len)
2382                goto out;
2383
2384        rc = -ENOMEM;
2385        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2386        if (!*names)
2387                goto err;
2388
2389        rc = -ENOMEM;
2390        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2391        if (!*values)
2392                goto err;
2393
2394        for (i = 0; i < *len; i++) {
2395                size_t name_len;
2396
2397                (*values)[i] = policydb.bool_val_to_struct[i]->state;
2398                name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2399
2400                rc = -ENOMEM;
2401                (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2402                if (!(*names)[i])
2403                        goto err;
2404
2405                strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2406                (*names)[i][name_len - 1] = 0;
2407        }
2408        rc = 0;
2409out:
2410        read_unlock(&policy_rwlock);
2411        return rc;
2412err:
2413        if (*names) {
2414                for (i = 0; i < *len; i++)
2415                        kfree((*names)[i]);
2416        }
2417        kfree(*values);
2418        goto out;
2419}
2420
2421
2422int security_set_bools(int len, int *values)
2423{
2424        int i, rc;
2425        int lenp, seqno = 0;
2426        struct cond_node *cur;
2427
2428        write_lock_irq(&policy_rwlock);
2429
2430        rc = -EFAULT;
2431        lenp = policydb.p_bools.nprim;
2432        if (len != lenp)
2433                goto out;
2434
2435        for (i = 0; i < len; i++) {
2436                if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2437                        audit_log(current->audit_context, GFP_ATOMIC,
2438                                AUDIT_MAC_CONFIG_CHANGE,
2439                                "bool=%s val=%d old_val=%d auid=%u ses=%u",
2440                                sym_name(&policydb, SYM_BOOLS, i),
2441                                !!values[i],
2442                                policydb.bool_val_to_struct[i]->state,
2443                                from_kuid(&init_user_ns, audit_get_loginuid(current)),
2444                                audit_get_sessionid(current));
2445                }
2446                if (values[i])
2447                        policydb.bool_val_to_struct[i]->state = 1;
2448                else
2449                        policydb.bool_val_to_struct[i]->state = 0;
2450        }
2451
2452        for (cur = policydb.cond_list; cur; cur = cur->next) {
2453                rc = evaluate_cond_node(&policydb, cur);
2454                if (rc)
2455                        goto out;
2456        }
2457
2458        seqno = ++latest_granting;
2459        rc = 0;
2460out:
2461        write_unlock_irq(&policy_rwlock);
2462        if (!rc) {
2463                avc_ss_reset(seqno);
2464                selnl_notify_policyload(seqno);
2465                selinux_status_update_policyload(seqno);
2466                selinux_xfrm_notify_policyload();
2467        }
2468        return rc;
2469}
2470
2471int security_get_bool_value(int bool)
2472{
2473        int rc;
2474        int len;
2475
2476        read_lock(&policy_rwlock);
2477
2478        rc = -EFAULT;
2479        len = policydb.p_bools.nprim;
2480        if (bool >= len)
2481                goto out;
2482
2483        rc = policydb.bool_val_to_struct[bool]->state;
2484out:
2485        read_unlock(&policy_rwlock);
2486        return rc;
2487}
2488
2489static int security_preserve_bools(struct policydb *p)
2490{
2491        int rc, nbools = 0, *bvalues = NULL, i;
2492        char **bnames = NULL;
2493        struct cond_bool_datum *booldatum;
2494        struct cond_node *cur;
2495
2496        rc = security_get_bools(&nbools, &bnames, &bvalues);
2497        if (rc)
2498                goto out;
2499        for (i = 0; i < nbools; i++) {
2500                booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2501                if (booldatum)
2502                        booldatum->state = bvalues[i];
2503        }
2504        for (cur = p->cond_list; cur; cur = cur->next) {
2505                rc = evaluate_cond_node(p, cur);
2506                if (rc)
2507                        goto out;
2508        }
2509
2510out:
2511        if (bnames) {
2512                for (i = 0; i < nbools; i++)
2513                        kfree(bnames[i]);
2514        }
2515        kfree(bnames);
2516        kfree(bvalues);
2517        return rc;
2518}
2519
2520/*
2521 * security_sid_mls_copy() - computes a new sid based on the given
2522 * sid and the mls portion of mls_sid.
2523 */
2524int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2525{
2526        struct context *context1;
2527        struct context *context2;
2528        struct context newcon;
2529        char *s;
2530        u32 len;
2531        int rc;
2532
2533        rc = 0;
2534        if (!ss_initialized || !policydb.mls_enabled) {
2535                *new_sid = sid;
2536                goto out;
2537        }
2538
2539        context_init(&newcon);
2540
2541        read_lock(&policy_rwlock);
2542
2543        rc = -EINVAL;
2544        context1 = sidtab_search(&sidtab, sid);
2545        if (!context1) {
2546                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2547                        __func__, sid);
2548                goto out_unlock;
2549        }
2550
2551        rc = -EINVAL;
2552        context2 = sidtab_search(&sidtab, mls_sid);
2553        if (!context2) {
2554                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2555                        __func__, mls_sid);
2556                goto out_unlock;
2557        }
2558
2559        newcon.user = context1->user;
2560        newcon.role = context1->role;
2561        newcon.type = context1->type;
2562        rc = mls_context_cpy(&newcon, context2);
2563        if (rc)
2564                goto out_unlock;
2565
2566        /* Check the validity of the new context. */
2567        if (!policydb_context_isvalid(&policydb, &newcon)) {
2568                rc = convert_context_handle_invalid_context(&newcon);
2569                if (rc) {
2570                        if (!context_struct_to_string(&newcon, &s, &len)) {
2571                                audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2572                                          "security_sid_mls_copy: invalid context %s", s);
2573                                kfree(s);
2574                        }
2575                        goto out_unlock;
2576                }
2577        }
2578
2579        rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2580out_unlock:
2581        read_unlock(&policy_rwlock);
2582        context_destroy(&newcon);
2583out:
2584        return rc;
2585}
2586
2587/**
2588 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2589 * @nlbl_sid: NetLabel SID
2590 * @nlbl_type: NetLabel labeling protocol type
2591 * @xfrm_sid: XFRM SID
2592 *
2593 * Description:
2594 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2595 * resolved into a single SID it is returned via @peer_sid and the function
2596 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2597 * returns a negative value.  A table summarizing the behavior is below:
2598 *
2599 *                                 | function return |      @sid
2600 *   ------------------------------+-----------------+-----------------
2601 *   no peer labels                |        0        |    SECSID_NULL
2602 *   single peer label             |        0        |    <peer_label>
2603 *   multiple, consistent labels   |        0        |    <peer_label>
2604 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2605 *
2606 */
2607int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2608                                 u32 xfrm_sid,
2609                                 u32 *peer_sid)
2610{
2611        int rc;
2612        struct context *nlbl_ctx;
2613        struct context *xfrm_ctx;
2614
2615        *peer_sid = SECSID_NULL;
2616
2617        /* handle the common (which also happens to be the set of easy) cases
2618         * right away, these two if statements catch everything involving a
2619         * single or absent peer SID/label */
2620        if (xfrm_sid == SECSID_NULL) {
2621                *peer_sid = nlbl_sid;
2622                return 0;
2623        }
2624        /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2625         * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2626         * is present */
2627        if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2628                *peer_sid = xfrm_sid;
2629                return 0;
2630        }
2631
2632        /* we don't need to check ss_initialized here since the only way both
2633         * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2634         * security server was initialized and ss_initialized was true */
2635        if (!policydb.mls_enabled)
2636                return 0;
2637
2638        read_lock(&policy_rwlock);
2639
2640        rc = -EINVAL;
2641        nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2642        if (!nlbl_ctx) {
2643                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2644                       __func__, nlbl_sid);
2645                goto out;
2646        }
2647        rc = -EINVAL;
2648        xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2649        if (!xfrm_ctx) {
2650                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2651                       __func__, xfrm_sid);
2652                goto out;
2653        }
2654        rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2655        if (rc)
2656                goto out;
2657
2658        /* at present NetLabel SIDs/labels really only carry MLS
2659         * information so if the MLS portion of the NetLabel SID
2660         * matches the MLS portion of the labeled XFRM SID/label
2661         * then pass along the XFRM SID as it is the most
2662         * expressive */
2663        *peer_sid = xfrm_sid;
2664out:
2665        read_unlock(&policy_rwlock);
2666        return rc;
2667}
2668
2669static int get_classes_callback(void *k, void *d, void *args)
2670{
2671        struct class_datum *datum = d;
2672        char *name = k, **classes = args;
2673        int value = datum->value - 1;
2674
2675        classes[value] = kstrdup(name, GFP_ATOMIC);
2676        if (!classes[value])
2677                return -ENOMEM;
2678
2679        return 0;
2680}
2681
2682int security_get_classes(char ***classes, int *nclasses)
2683{
2684        int rc;
2685
2686        read_lock(&policy_rwlock);
2687
2688        rc = -ENOMEM;
2689        *nclasses = policydb.p_classes.nprim;
2690        *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2691        if (!*classes)
2692                goto out;
2693
2694        rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2695                        *classes);
2696        if (rc) {
2697                int i;
2698                for (i = 0; i < *nclasses; i++)
2699                        kfree((*classes)[i]);
2700                kfree(*classes);
2701        }
2702
2703out:
2704        read_unlock(&policy_rwlock);
2705        return rc;
2706}
2707
2708static int get_permissions_callback(void *k, void *d, void *args)
2709{
2710        struct perm_datum *datum = d;
2711        char *name = k, **perms = args;
2712        int value = datum->value - 1;
2713
2714        perms[value] = kstrdup(name, GFP_ATOMIC);
2715        if (!perms[value])
2716                return -ENOMEM;
2717
2718        return 0;
2719}
2720
2721int security_get_permissions(char *class, char ***perms, int *nperms)
2722{
2723        int rc, i;
2724        struct class_datum *match;
2725
2726        read_lock(&policy_rwlock);
2727
2728        rc = -EINVAL;
2729        match = hashtab_search(policydb.p_classes.table, class);
2730        if (!match) {
2731                printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2732                        __func__, class);
2733                goto out;
2734        }
2735
2736        rc = -ENOMEM;
2737        *nperms = match->permissions.nprim;
2738        *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2739        if (!*perms)
2740                goto out;
2741
2742        if (match->comdatum) {
2743                rc = hashtab_map(match->comdatum->permissions.table,
2744                                get_permissions_callback, *perms);
2745                if (rc)
2746                        goto err;
2747        }
2748
2749        rc = hashtab_map(match->permissions.table, get_permissions_callback,
2750                        *perms);
2751        if (rc)
2752                goto err;
2753
2754out:
2755        read_unlock(&policy_rwlock);
2756        return rc;
2757
2758err:
2759        read_unlock(&policy_rwlock);
2760        for (i = 0; i < *nperms; i++)
2761                kfree((*perms)[i]);
2762        kfree(*perms);
2763        return rc;
2764}
2765
2766int security_get_reject_unknown(void)
2767{
2768        return policydb.reject_unknown;
2769}
2770
2771int security_get_allow_unknown(void)
2772{
2773        return policydb.allow_unknown;
2774}
2775
2776/**
2777 * security_policycap_supported - Check for a specific policy capability
2778 * @req_cap: capability
2779 *
2780 * Description:
2781 * This function queries the currently loaded policy to see if it supports the
2782 * capability specified by @req_cap.  Returns true (1) if the capability is
2783 * supported, false (0) if it isn't supported.
2784 *
2785 */
2786int security_policycap_supported(unsigned int req_cap)
2787{
2788        int rc;
2789
2790        read_lock(&policy_rwlock);
2791        rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2792        read_unlock(&policy_rwlock);
2793
2794        return rc;
2795}
2796
2797struct selinux_audit_rule {
2798        u32 au_seqno;
2799        struct context au_ctxt;
2800};
2801
2802void selinux_audit_rule_free(void *vrule)
2803{
2804        struct selinux_audit_rule *rule = vrule;
2805
2806        if (rule) {
2807                context_destroy(&rule->au_ctxt);
2808                kfree(rule);
2809        }
2810}
2811
2812int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2813{
2814        struct selinux_audit_rule *tmprule;
2815        struct role_datum *roledatum;
2816        struct type_datum *typedatum;
2817        struct user_datum *userdatum;
2818        struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2819        int rc = 0;
2820
2821        *rule = NULL;
2822
2823        if (!ss_initialized)
2824                return -EOPNOTSUPP;
2825
2826        switch (field) {
2827        case AUDIT_SUBJ_USER:
2828        case AUDIT_SUBJ_ROLE:
2829        case AUDIT_SUBJ_TYPE:
2830        case AUDIT_OBJ_USER:
2831        case AUDIT_OBJ_ROLE:
2832        case AUDIT_OBJ_TYPE:
2833                /* only 'equals' and 'not equals' fit user, role, and type */
2834                if (op != Audit_equal && op != Audit_not_equal)
2835                        return -EINVAL;
2836                break;
2837        case AUDIT_SUBJ_SEN:
2838        case AUDIT_SUBJ_CLR:
2839        case AUDIT_OBJ_LEV_LOW:
2840        case AUDIT_OBJ_LEV_HIGH:
2841                /* we do not allow a range, indicated by the presence of '-' */
2842                if (strchr(rulestr, '-'))
2843                        return -EINVAL;
2844                break;
2845        default:
2846                /* only the above fields are valid */
2847                return -EINVAL;
2848        }
2849
2850        tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2851        if (!tmprule)
2852                return -ENOMEM;
2853
2854        context_init(&tmprule->au_ctxt);
2855
2856        read_lock(&policy_rwlock);
2857
2858        tmprule->au_seqno = latest_granting;
2859
2860        switch (field) {
2861        case AUDIT_SUBJ_USER:
2862        case AUDIT_OBJ_USER:
2863                rc = -EINVAL;
2864                userdatum = hashtab_search(policydb.p_users.table, rulestr);
2865                if (!userdatum)
2866                        goto out;
2867                tmprule->au_ctxt.user = userdatum->value;
2868                break;
2869        case AUDIT_SUBJ_ROLE:
2870        case AUDIT_OBJ_ROLE:
2871                rc = -EINVAL;
2872                roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2873                if (!roledatum)
2874                        goto out;
2875                tmprule->au_ctxt.role = roledatum->value;
2876                break;
2877        case AUDIT_SUBJ_TYPE:
2878        case AUDIT_OBJ_TYPE:
2879                rc = -EINVAL;
2880                typedatum = hashtab_search(policydb.p_types.table, rulestr);
2881                if (!typedatum)
2882                        goto out;
2883                tmprule->au_ctxt.type = typedatum->value;
2884                break;
2885        case AUDIT_SUBJ_SEN:
2886        case AUDIT_SUBJ_CLR:
2887        case AUDIT_OBJ_LEV_LOW:
2888        case AUDIT_OBJ_LEV_HIGH:
2889                rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2890                if (rc)
2891                        goto out;
2892                break;
2893        }
2894        rc = 0;
2895out:
2896        read_unlock(&policy_rwlock);
2897
2898        if (rc) {
2899                selinux_audit_rule_free(tmprule);
2900                tmprule = NULL;
2901        }
2902
2903        *rule = tmprule;
2904
2905        return rc;
2906}
2907
2908/* Check to see if the rule contains any selinux fields */
2909int selinux_audit_rule_known(struct audit_krule *rule)
2910{
2911        int i;
2912
2913        for (i = 0; i < rule->field_count; i++) {
2914                struct audit_field *f = &rule->fields[i];
2915                switch (f->type) {
2916                case AUDIT_SUBJ_USER:
2917                case AUDIT_SUBJ_ROLE:
2918                case AUDIT_SUBJ_TYPE:
2919                case AUDIT_SUBJ_SEN:
2920                case AUDIT_SUBJ_CLR:
2921                case AUDIT_OBJ_USER:
2922                case AUDIT_OBJ_ROLE:
2923                case AUDIT_OBJ_TYPE:
2924                case AUDIT_OBJ_LEV_LOW:
2925                case AUDIT_OBJ_LEV_HIGH:
2926                        return 1;
2927                }
2928        }
2929
2930        return 0;
2931}
2932
2933int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2934                             struct audit_context *actx)
2935{
2936        struct context *ctxt;
2937        struct mls_level *level;
2938        struct selinux_audit_rule *rule = vrule;
2939        int match = 0;
2940
2941        if (!rule) {
2942                audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2943                          "selinux_audit_rule_match: missing rule\n");
2944                return -ENOENT;
2945        }
2946
2947        read_lock(&policy_rwlock);
2948
2949        if (rule->au_seqno < latest_granting) {
2950                audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2951                          "selinux_audit_rule_match: stale rule\n");
2952                match = -ESTALE;
2953                goto out;
2954        }
2955
2956        ctxt = sidtab_search(&sidtab, sid);
2957        if (!ctxt) {
2958                audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2959                          "selinux_audit_rule_match: unrecognized SID %d\n",
2960                          sid);
2961                match = -ENOENT;
2962                goto out;
2963        }
2964
2965        /* a field/op pair that is not caught here will simply fall through
2966           without a match */
2967        switch (field) {
2968        case AUDIT_SUBJ_USER:
2969        case AUDIT_OBJ_USER:
2970                switch (op) {
2971                case Audit_equal:
2972                        match = (ctxt->user == rule->au_ctxt.user);
2973                        break;
2974                case Audit_not_equal:
2975                        match = (ctxt->user != rule->au_ctxt.user);
2976                        break;
2977                }
2978                break;
2979        case AUDIT_SUBJ_ROLE:
2980        case AUDIT_OBJ_ROLE:
2981                switch (op) {
2982                case Audit_equal:
2983                        match = (ctxt->role == rule->au_ctxt.role);
2984                        break;
2985                case Audit_not_equal:
2986                        match = (ctxt->role != rule->au_ctxt.role);
2987                        break;
2988                }
2989                break;
2990        case AUDIT_SUBJ_TYPE:
2991        case AUDIT_OBJ_TYPE:
2992                switch (op) {
2993                case Audit_equal:
2994                        match = (ctxt->type == rule->au_ctxt.type);
2995                        break;
2996                case Audit_not_equal:
2997                        match = (ctxt->type != rule->au_ctxt.type);
2998                        break;
2999                }
3000                break;
3001        case AUDIT_SUBJ_SEN:
3002        case AUDIT_SUBJ_CLR:
3003        case AUDIT_OBJ_LEV_LOW:
3004        case AUDIT_OBJ_LEV_HIGH:
3005                level = ((field == AUDIT_SUBJ_SEN ||
3006                          field == AUDIT_OBJ_LEV_LOW) ?
3007                         &ctxt->range.level[0] : &ctxt->range.level[1]);
3008                switch (op) {
3009                case Audit_equal:
3010                        match = mls_level_eq(&rule->au_ctxt.range.level[0],
3011                                             level);
3012                        break;
3013                case Audit_not_equal:
3014                        match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3015                                              level);
3016                        break;
3017                case Audit_lt:
3018                        match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3019                                               level) &&
3020                                 !mls_level_eq(&rule->au_ctxt.range.level[0],
3021                                               level));
3022                        break;
3023                case Audit_le:
3024                        match = mls_level_dom(&rule->au_ctxt.range.level[0],
3025                                              level);
3026                        break;
3027                case Audit_gt:
3028                        match = (mls_level_dom(level,
3029                                              &rule->au_ctxt.range.level[0]) &&
3030                                 !mls_level_eq(level,
3031                                               &rule->au_ctxt.range.level[0]));
3032                        break;
3033                case Audit_ge:
3034                        match = mls_level_dom(level,
3035                                              &rule->au_ctxt.range.level[0]);
3036                        break;
3037                }
3038        }
3039
3040out:
3041        read_unlock(&policy_rwlock);
3042        return match;
3043}
3044
3045static int (*aurule_callback)(void) = audit_update_lsm_rules;
3046
3047static int aurule_avc_callback(u32 event)
3048{
3049        int err = 0;
3050
3051        if (event == AVC_CALLBACK_RESET && aurule_callback)
3052                err = aurule_callback();
3053        return err;
3054}
3055
3056static int __init aurule_init(void)
3057{
3058        int err;
3059
3060        err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3061        if (err)
3062                panic("avc_add_callback() failed, error %d\n", err);
3063
3064        return err;
3065}
3066__initcall(aurule_init);
3067
3068#ifdef CONFIG_NETLABEL
3069/**
3070 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3071 * @secattr: the NetLabel packet security attributes
3072 * @sid: the SELinux SID
3073 *
3074 * Description:
3075 * Attempt to cache the context in @ctx, which was derived from the packet in
3076 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3077 * already been initialized.
3078 *
3079 */
3080static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3081                                      u32 sid)
3082{
3083        u32 *sid_cache;
3084
3085        sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3086        if (sid_cache == NULL)
3087                return;
3088        secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3089        if (secattr->cache == NULL) {
3090                kfree(sid_cache);
3091                return;
3092        }
3093
3094        *sid_cache = sid;
3095        secattr->cache->free = kfree;
3096        secattr->cache->data = sid_cache;
3097        secattr->flags |= NETLBL_SECATTR_CACHE;
3098}
3099
3100/**
3101 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3102 * @secattr: the NetLabel packet security attributes
3103 * @sid: the SELinux SID
3104 *
3105 * Description:
3106 * Convert the given NetLabel security attributes in @secattr into a
3107 * SELinux SID.  If the @secattr field does not contain a full SELinux
3108 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3109 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3110 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3111 * conversion for future lookups.  Returns zero on success, negative values on
3112 * failure.
3113 *
3114 */
3115int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3116                                   u32 *sid)
3117{
3118        int rc;
3119        struct context *ctx;
3120        struct context ctx_new;
3121
3122        if (!ss_initialized) {
3123                *sid = SECSID_NULL;
3124                return 0;
3125        }
3126
3127        read_lock(&policy_rwlock);
3128
3129        if (secattr->flags & NETLBL_SECATTR_CACHE)
3130                *sid = *(u32 *)secattr->cache->data;
3131        else if (secattr->flags & NETLBL_SECATTR_SECID)
3132                *sid = secattr->attr.secid;
3133        else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3134                rc = -EIDRM;
3135                ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3136                if (ctx == NULL)
3137                        goto out;
3138
3139                context_init(&ctx_new);
3140                ctx_new.user = ctx->user;
3141                ctx_new.role = ctx->role;
3142                ctx_new.type = ctx->type;
3143                mls_import_netlbl_lvl(&ctx_new, secattr);
3144                if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3145                        rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3146                                                   secattr->attr.mls.cat);
3147                        if (rc)
3148                                goto out;
3149                        memcpy(&ctx_new.range.level[1].cat,
3150                               &ctx_new.range.level[0].cat,
3151                               sizeof(ctx_new.range.level[0].cat));
3152                }
3153                rc = -EIDRM;
3154                if (!mls_context_isvalid(&policydb, &ctx_new))
3155                        goto out_free;
3156
3157                rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3158                if (rc)
3159                        goto out_free;
3160
3161                security_netlbl_cache_add(secattr, *sid);
3162
3163                ebitmap_destroy(&ctx_new.range.level[0].cat);
3164        } else
3165                *sid = SECSID_NULL;
3166
3167        read_unlock(&policy_rwlock);
3168        return 0;
3169out_free:
3170        ebitmap_destroy(&ctx_new.range.level[0].cat);
3171out:
3172        read_unlock(&policy_rwlock);
3173        return rc;
3174}
3175
3176/**
3177 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3178 * @sid: the SELinux SID
3179 * @secattr: the NetLabel packet security attributes
3180 *
3181 * Description:
3182 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3183 * Returns zero on success, negative values on failure.
3184 *
3185 */
3186int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3187{
3188        int rc;
3189        struct context *ctx;
3190
3191        if (!ss_initialized)
3192                return 0;
3193
3194        read_lock(&policy_rwlock);
3195
3196        rc = -ENOENT;
3197        ctx = sidtab_search(&sidtab, sid);
3198        if (ctx == NULL)
3199                goto out;
3200
3201        rc = -ENOMEM;
3202        secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3203                                  GFP_ATOMIC);
3204        if (secattr->domain == NULL)
3205                goto out;
3206
3207        secattr->attr.secid = sid;
3208        secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3209        mls_export_netlbl_lvl(ctx, secattr);
3210        rc = mls_export_netlbl_cat(ctx, secattr);
3211out:
3212        read_unlock(&policy_rwlock);
3213        return rc;
3214}
3215#endif /* CONFIG_NETLABEL */
3216
3217/**
3218 * security_read_policy - read the policy.
3219 * @data: binary policy data
3220 * @len: length of data in bytes
3221 *
3222 */
3223int security_read_policy(void **data, size_t *len)
3224{
3225        int rc;
3226        struct policy_file fp;
3227
3228        if (!ss_initialized)
3229                return -EINVAL;
3230
3231        *len = security_policydb_len();
3232
3233        *data = vmalloc_user(*len);
3234        if (!*data)
3235                return -ENOMEM;
3236
3237        fp.data = *data;
3238        fp.len = *len;
3239
3240        read_lock(&policy_rwlock);
3241        rc = policydb_write(&policydb, &fp);
3242        read_unlock(&policy_rwlock);
3243
3244        if (rc)
3245                return rc;
3246
3247        *len = (unsigned long)fp.data - (unsigned long)*data;
3248        return 0;
3249
3250}
3251