linux/arch/powerpc/kernel/process.c
<<
>>
Prefs
   1/*
   2 *  Derived from "arch/i386/kernel/process.c"
   3 *    Copyright (C) 1995  Linus Torvalds
   4 *
   5 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
   6 *  Paul Mackerras (paulus@cs.anu.edu.au)
   7 *
   8 *  PowerPC version
   9 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  10 *
  11 *  This program is free software; you can redistribute it and/or
  12 *  modify it under the terms of the GNU General Public License
  13 *  as published by the Free Software Foundation; either version
  14 *  2 of the License, or (at your option) any later version.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/smp.h>
  22#include <linux/stddef.h>
  23#include <linux/unistd.h>
  24#include <linux/ptrace.h>
  25#include <linux/slab.h>
  26#include <linux/user.h>
  27#include <linux/elf.h>
  28#include <linux/prctl.h>
  29#include <linux/init_task.h>
  30#include <linux/export.h>
  31#include <linux/kallsyms.h>
  32#include <linux/mqueue.h>
  33#include <linux/hardirq.h>
  34#include <linux/utsname.h>
  35#include <linux/ftrace.h>
  36#include <linux/kernel_stat.h>
  37#include <linux/personality.h>
  38#include <linux/random.h>
  39#include <linux/hw_breakpoint.h>
  40#include <linux/uaccess.h>
  41
  42#include <asm/pgtable.h>
  43#include <asm/io.h>
  44#include <asm/processor.h>
  45#include <asm/mmu.h>
  46#include <asm/prom.h>
  47#include <asm/machdep.h>
  48#include <asm/time.h>
  49#include <asm/runlatch.h>
  50#include <asm/syscalls.h>
  51#include <asm/switch_to.h>
  52#include <asm/tm.h>
  53#include <asm/debug.h>
  54#ifdef CONFIG_PPC64
  55#include <asm/firmware.h>
  56#endif
  57#include <asm/code-patching.h>
  58#include <linux/kprobes.h>
  59#include <linux/kdebug.h>
  60
  61/* Transactional Memory debug */
  62#ifdef TM_DEBUG_SW
  63#define TM_DEBUG(x...) printk(KERN_INFO x)
  64#else
  65#define TM_DEBUG(x...) do { } while(0)
  66#endif
  67
  68extern unsigned long _get_SP(void);
  69
  70#ifndef CONFIG_SMP
  71struct task_struct *last_task_used_math = NULL;
  72struct task_struct *last_task_used_altivec = NULL;
  73struct task_struct *last_task_used_vsx = NULL;
  74struct task_struct *last_task_used_spe = NULL;
  75#endif
  76
  77#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  78void giveup_fpu_maybe_transactional(struct task_struct *tsk)
  79{
  80        /*
  81         * If we are saving the current thread's registers, and the
  82         * thread is in a transactional state, set the TIF_RESTORE_TM
  83         * bit so that we know to restore the registers before
  84         * returning to userspace.
  85         */
  86        if (tsk == current && tsk->thread.regs &&
  87            MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
  88            !test_thread_flag(TIF_RESTORE_TM)) {
  89                tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
  90                set_thread_flag(TIF_RESTORE_TM);
  91        }
  92
  93        giveup_fpu(tsk);
  94}
  95
  96void giveup_altivec_maybe_transactional(struct task_struct *tsk)
  97{
  98        /*
  99         * If we are saving the current thread's registers, and the
 100         * thread is in a transactional state, set the TIF_RESTORE_TM
 101         * bit so that we know to restore the registers before
 102         * returning to userspace.
 103         */
 104        if (tsk == current && tsk->thread.regs &&
 105            MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
 106            !test_thread_flag(TIF_RESTORE_TM)) {
 107                tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
 108                set_thread_flag(TIF_RESTORE_TM);
 109        }
 110
 111        giveup_altivec(tsk);
 112}
 113
 114#else
 115#define giveup_fpu_maybe_transactional(tsk)     giveup_fpu(tsk)
 116#define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
 117#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 118
 119#ifdef CONFIG_PPC_FPU
 120/*
 121 * Make sure the floating-point register state in the
 122 * the thread_struct is up to date for task tsk.
 123 */
 124void flush_fp_to_thread(struct task_struct *tsk)
 125{
 126        if (tsk->thread.regs) {
 127                /*
 128                 * We need to disable preemption here because if we didn't,
 129                 * another process could get scheduled after the regs->msr
 130                 * test but before we have finished saving the FP registers
 131                 * to the thread_struct.  That process could take over the
 132                 * FPU, and then when we get scheduled again we would store
 133                 * bogus values for the remaining FP registers.
 134                 */
 135                preempt_disable();
 136                if (tsk->thread.regs->msr & MSR_FP) {
 137#ifdef CONFIG_SMP
 138                        /*
 139                         * This should only ever be called for current or
 140                         * for a stopped child process.  Since we save away
 141                         * the FP register state on context switch on SMP,
 142                         * there is something wrong if a stopped child appears
 143                         * to still have its FP state in the CPU registers.
 144                         */
 145                        BUG_ON(tsk != current);
 146#endif
 147                        giveup_fpu_maybe_transactional(tsk);
 148                }
 149                preempt_enable();
 150        }
 151}
 152EXPORT_SYMBOL_GPL(flush_fp_to_thread);
 153#endif /* CONFIG_PPC_FPU */
 154
 155void enable_kernel_fp(void)
 156{
 157        WARN_ON(preemptible());
 158
 159#ifdef CONFIG_SMP
 160        if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
 161                giveup_fpu_maybe_transactional(current);
 162        else
 163                giveup_fpu(NULL);       /* just enables FP for kernel */
 164#else
 165        giveup_fpu_maybe_transactional(last_task_used_math);
 166#endif /* CONFIG_SMP */
 167}
 168EXPORT_SYMBOL(enable_kernel_fp);
 169
 170#ifdef CONFIG_ALTIVEC
 171void enable_kernel_altivec(void)
 172{
 173        WARN_ON(preemptible());
 174
 175#ifdef CONFIG_SMP
 176        if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
 177                giveup_altivec_maybe_transactional(current);
 178        else
 179                giveup_altivec_notask();
 180#else
 181        giveup_altivec_maybe_transactional(last_task_used_altivec);
 182#endif /* CONFIG_SMP */
 183}
 184EXPORT_SYMBOL(enable_kernel_altivec);
 185
 186/*
 187 * Make sure the VMX/Altivec register state in the
 188 * the thread_struct is up to date for task tsk.
 189 */
 190void flush_altivec_to_thread(struct task_struct *tsk)
 191{
 192        if (tsk->thread.regs) {
 193                preempt_disable();
 194                if (tsk->thread.regs->msr & MSR_VEC) {
 195#ifdef CONFIG_SMP
 196                        BUG_ON(tsk != current);
 197#endif
 198                        giveup_altivec_maybe_transactional(tsk);
 199                }
 200                preempt_enable();
 201        }
 202}
 203EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
 204#endif /* CONFIG_ALTIVEC */
 205
 206#ifdef CONFIG_VSX
 207#if 0
 208/* not currently used, but some crazy RAID module might want to later */
 209void enable_kernel_vsx(void)
 210{
 211        WARN_ON(preemptible());
 212
 213#ifdef CONFIG_SMP
 214        if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
 215                giveup_vsx(current);
 216        else
 217                giveup_vsx(NULL);       /* just enable vsx for kernel - force */
 218#else
 219        giveup_vsx(last_task_used_vsx);
 220#endif /* CONFIG_SMP */
 221}
 222EXPORT_SYMBOL(enable_kernel_vsx);
 223#endif
 224
 225void giveup_vsx(struct task_struct *tsk)
 226{
 227        giveup_fpu_maybe_transactional(tsk);
 228        giveup_altivec_maybe_transactional(tsk);
 229        __giveup_vsx(tsk);
 230}
 231EXPORT_SYMBOL(giveup_vsx);
 232
 233void flush_vsx_to_thread(struct task_struct *tsk)
 234{
 235        if (tsk->thread.regs) {
 236                preempt_disable();
 237                if (tsk->thread.regs->msr & MSR_VSX) {
 238#ifdef CONFIG_SMP
 239                        BUG_ON(tsk != current);
 240#endif
 241                        giveup_vsx(tsk);
 242                }
 243                preempt_enable();
 244        }
 245}
 246EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
 247#endif /* CONFIG_VSX */
 248
 249#ifdef CONFIG_SPE
 250
 251void enable_kernel_spe(void)
 252{
 253        WARN_ON(preemptible());
 254
 255#ifdef CONFIG_SMP
 256        if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
 257                giveup_spe(current);
 258        else
 259                giveup_spe(NULL);       /* just enable SPE for kernel - force */
 260#else
 261        giveup_spe(last_task_used_spe);
 262#endif /* __SMP __ */
 263}
 264EXPORT_SYMBOL(enable_kernel_spe);
 265
 266void flush_spe_to_thread(struct task_struct *tsk)
 267{
 268        if (tsk->thread.regs) {
 269                preempt_disable();
 270                if (tsk->thread.regs->msr & MSR_SPE) {
 271#ifdef CONFIG_SMP
 272                        BUG_ON(tsk != current);
 273#endif
 274                        tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 275                        giveup_spe(tsk);
 276                }
 277                preempt_enable();
 278        }
 279}
 280#endif /* CONFIG_SPE */
 281
 282#ifndef CONFIG_SMP
 283/*
 284 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
 285 * and the current task has some state, discard it.
 286 */
 287void discard_lazy_cpu_state(void)
 288{
 289        preempt_disable();
 290        if (last_task_used_math == current)
 291                last_task_used_math = NULL;
 292#ifdef CONFIG_ALTIVEC
 293        if (last_task_used_altivec == current)
 294                last_task_used_altivec = NULL;
 295#endif /* CONFIG_ALTIVEC */
 296#ifdef CONFIG_VSX
 297        if (last_task_used_vsx == current)
 298                last_task_used_vsx = NULL;
 299#endif /* CONFIG_VSX */
 300#ifdef CONFIG_SPE
 301        if (last_task_used_spe == current)
 302                last_task_used_spe = NULL;
 303#endif
 304        preempt_enable();
 305}
 306#endif /* CONFIG_SMP */
 307
 308#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 309void do_send_trap(struct pt_regs *regs, unsigned long address,
 310                  unsigned long error_code, int signal_code, int breakpt)
 311{
 312        siginfo_t info;
 313
 314        current->thread.trap_nr = signal_code;
 315        if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 316                        11, SIGSEGV) == NOTIFY_STOP)
 317                return;
 318
 319        /* Deliver the signal to userspace */
 320        info.si_signo = SIGTRAP;
 321        info.si_errno = breakpt;        /* breakpoint or watchpoint id */
 322        info.si_code = signal_code;
 323        info.si_addr = (void __user *)address;
 324        force_sig_info(SIGTRAP, &info, current);
 325}
 326#else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
 327void do_break (struct pt_regs *regs, unsigned long address,
 328                    unsigned long error_code)
 329{
 330        siginfo_t info;
 331
 332        current->thread.trap_nr = TRAP_HWBKPT;
 333        if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 334                        11, SIGSEGV) == NOTIFY_STOP)
 335                return;
 336
 337        if (debugger_break_match(regs))
 338                return;
 339
 340        /* Clear the breakpoint */
 341        hw_breakpoint_disable();
 342
 343        /* Deliver the signal to userspace */
 344        info.si_signo = SIGTRAP;
 345        info.si_errno = 0;
 346        info.si_code = TRAP_HWBKPT;
 347        info.si_addr = (void __user *)address;
 348        force_sig_info(SIGTRAP, &info, current);
 349}
 350#endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
 351
 352static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
 353
 354#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 355/*
 356 * Set the debug registers back to their default "safe" values.
 357 */
 358static void set_debug_reg_defaults(struct thread_struct *thread)
 359{
 360        thread->debug.iac1 = thread->debug.iac2 = 0;
 361#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 362        thread->debug.iac3 = thread->debug.iac4 = 0;
 363#endif
 364        thread->debug.dac1 = thread->debug.dac2 = 0;
 365#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 366        thread->debug.dvc1 = thread->debug.dvc2 = 0;
 367#endif
 368        thread->debug.dbcr0 = 0;
 369#ifdef CONFIG_BOOKE
 370        /*
 371         * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
 372         */
 373        thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
 374                        DBCR1_IAC3US | DBCR1_IAC4US;
 375        /*
 376         * Force Data Address Compare User/Supervisor bits to be User-only
 377         * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
 378         */
 379        thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
 380#else
 381        thread->debug.dbcr1 = 0;
 382#endif
 383}
 384
 385static void prime_debug_regs(struct debug_reg *debug)
 386{
 387        /*
 388         * We could have inherited MSR_DE from userspace, since
 389         * it doesn't get cleared on exception entry.  Make sure
 390         * MSR_DE is clear before we enable any debug events.
 391         */
 392        mtmsr(mfmsr() & ~MSR_DE);
 393
 394        mtspr(SPRN_IAC1, debug->iac1);
 395        mtspr(SPRN_IAC2, debug->iac2);
 396#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 397        mtspr(SPRN_IAC3, debug->iac3);
 398        mtspr(SPRN_IAC4, debug->iac4);
 399#endif
 400        mtspr(SPRN_DAC1, debug->dac1);
 401        mtspr(SPRN_DAC2, debug->dac2);
 402#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 403        mtspr(SPRN_DVC1, debug->dvc1);
 404        mtspr(SPRN_DVC2, debug->dvc2);
 405#endif
 406        mtspr(SPRN_DBCR0, debug->dbcr0);
 407        mtspr(SPRN_DBCR1, debug->dbcr1);
 408#ifdef CONFIG_BOOKE
 409        mtspr(SPRN_DBCR2, debug->dbcr2);
 410#endif
 411}
 412/*
 413 * Unless neither the old or new thread are making use of the
 414 * debug registers, set the debug registers from the values
 415 * stored in the new thread.
 416 */
 417void switch_booke_debug_regs(struct debug_reg *new_debug)
 418{
 419        if ((current->thread.debug.dbcr0 & DBCR0_IDM)
 420                || (new_debug->dbcr0 & DBCR0_IDM))
 421                        prime_debug_regs(new_debug);
 422}
 423EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
 424#else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
 425#ifndef CONFIG_HAVE_HW_BREAKPOINT
 426static void set_debug_reg_defaults(struct thread_struct *thread)
 427{
 428        thread->hw_brk.address = 0;
 429        thread->hw_brk.type = 0;
 430        set_breakpoint(&thread->hw_brk);
 431}
 432#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
 433#endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
 434
 435#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 436static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 437{
 438        mtspr(SPRN_DAC1, dabr);
 439#ifdef CONFIG_PPC_47x
 440        isync();
 441#endif
 442        return 0;
 443}
 444#elif defined(CONFIG_PPC_BOOK3S)
 445static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 446{
 447        mtspr(SPRN_DABR, dabr);
 448        if (cpu_has_feature(CPU_FTR_DABRX))
 449                mtspr(SPRN_DABRX, dabrx);
 450        return 0;
 451}
 452#else
 453static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 454{
 455        return -EINVAL;
 456}
 457#endif
 458
 459static inline int set_dabr(struct arch_hw_breakpoint *brk)
 460{
 461        unsigned long dabr, dabrx;
 462
 463        dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
 464        dabrx = ((brk->type >> 3) & 0x7);
 465
 466        if (ppc_md.set_dabr)
 467                return ppc_md.set_dabr(dabr, dabrx);
 468
 469        return __set_dabr(dabr, dabrx);
 470}
 471
 472static inline int set_dawr(struct arch_hw_breakpoint *brk)
 473{
 474        unsigned long dawr, dawrx, mrd;
 475
 476        dawr = brk->address;
 477
 478        dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
 479                                   << (63 - 58); //* read/write bits */
 480        dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
 481                                   << (63 - 59); //* translate */
 482        dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
 483                                   >> 3; //* PRIM bits */
 484        /* dawr length is stored in field MDR bits 48:53.  Matches range in
 485           doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
 486           0b111111=64DW.
 487           brk->len is in bytes.
 488           This aligns up to double word size, shifts and does the bias.
 489        */
 490        mrd = ((brk->len + 7) >> 3) - 1;
 491        dawrx |= (mrd & 0x3f) << (63 - 53);
 492
 493        if (ppc_md.set_dawr)
 494                return ppc_md.set_dawr(dawr, dawrx);
 495        mtspr(SPRN_DAWR, dawr);
 496        mtspr(SPRN_DAWRX, dawrx);
 497        return 0;
 498}
 499
 500void __set_breakpoint(struct arch_hw_breakpoint *brk)
 501{
 502        memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
 503
 504        if (cpu_has_feature(CPU_FTR_DAWR))
 505                set_dawr(brk);
 506        else
 507                set_dabr(brk);
 508}
 509
 510void set_breakpoint(struct arch_hw_breakpoint *brk)
 511{
 512        preempt_disable();
 513        __set_breakpoint(brk);
 514        preempt_enable();
 515}
 516
 517#ifdef CONFIG_PPC64
 518DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
 519#endif
 520
 521static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
 522                              struct arch_hw_breakpoint *b)
 523{
 524        if (a->address != b->address)
 525                return false;
 526        if (a->type != b->type)
 527                return false;
 528        if (a->len != b->len)
 529                return false;
 530        return true;
 531}
 532
 533#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 534static void tm_reclaim_thread(struct thread_struct *thr,
 535                              struct thread_info *ti, uint8_t cause)
 536{
 537        unsigned long msr_diff = 0;
 538
 539        /*
 540         * If FP/VSX registers have been already saved to the
 541         * thread_struct, move them to the transact_fp array.
 542         * We clear the TIF_RESTORE_TM bit since after the reclaim
 543         * the thread will no longer be transactional.
 544         */
 545        if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
 546                msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
 547                if (msr_diff & MSR_FP)
 548                        memcpy(&thr->transact_fp, &thr->fp_state,
 549                               sizeof(struct thread_fp_state));
 550                if (msr_diff & MSR_VEC)
 551                        memcpy(&thr->transact_vr, &thr->vr_state,
 552                               sizeof(struct thread_vr_state));
 553                clear_ti_thread_flag(ti, TIF_RESTORE_TM);
 554                msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
 555        }
 556
 557        tm_reclaim(thr, thr->regs->msr, cause);
 558
 559        /* Having done the reclaim, we now have the checkpointed
 560         * FP/VSX values in the registers.  These might be valid
 561         * even if we have previously called enable_kernel_fp() or
 562         * flush_fp_to_thread(), so update thr->regs->msr to
 563         * indicate their current validity.
 564         */
 565        thr->regs->msr |= msr_diff;
 566}
 567
 568void tm_reclaim_current(uint8_t cause)
 569{
 570        tm_enable();
 571        tm_reclaim_thread(&current->thread, current_thread_info(), cause);
 572}
 573
 574static inline void tm_reclaim_task(struct task_struct *tsk)
 575{
 576        /* We have to work out if we're switching from/to a task that's in the
 577         * middle of a transaction.
 578         *
 579         * In switching we need to maintain a 2nd register state as
 580         * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
 581         * checkpointed (tbegin) state in ckpt_regs and saves the transactional
 582         * (current) FPRs into oldtask->thread.transact_fpr[].
 583         *
 584         * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
 585         */
 586        struct thread_struct *thr = &tsk->thread;
 587
 588        if (!thr->regs)
 589                return;
 590
 591        if (!MSR_TM_ACTIVE(thr->regs->msr))
 592                goto out_and_saveregs;
 593
 594        /* Stash the original thread MSR, as giveup_fpu et al will
 595         * modify it.  We hold onto it to see whether the task used
 596         * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
 597         * tm_orig_msr is already set.
 598         */
 599        if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
 600                thr->tm_orig_msr = thr->regs->msr;
 601
 602        TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
 603                 "ccr=%lx, msr=%lx, trap=%lx)\n",
 604                 tsk->pid, thr->regs->nip,
 605                 thr->regs->ccr, thr->regs->msr,
 606                 thr->regs->trap);
 607
 608        tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
 609
 610        TM_DEBUG("--- tm_reclaim on pid %d complete\n",
 611                 tsk->pid);
 612
 613out_and_saveregs:
 614        /* Always save the regs here, even if a transaction's not active.
 615         * This context-switches a thread's TM info SPRs.  We do it here to
 616         * be consistent with the restore path (in recheckpoint) which
 617         * cannot happen later in _switch().
 618         */
 619        tm_save_sprs(thr);
 620}
 621
 622extern void __tm_recheckpoint(struct thread_struct *thread,
 623                              unsigned long orig_msr);
 624
 625void tm_recheckpoint(struct thread_struct *thread,
 626                     unsigned long orig_msr)
 627{
 628        unsigned long flags;
 629
 630        /* We really can't be interrupted here as the TEXASR registers can't
 631         * change and later in the trecheckpoint code, we have a userspace R1.
 632         * So let's hard disable over this region.
 633         */
 634        local_irq_save(flags);
 635        hard_irq_disable();
 636
 637        /* The TM SPRs are restored here, so that TEXASR.FS can be set
 638         * before the trecheckpoint and no explosion occurs.
 639         */
 640        tm_restore_sprs(thread);
 641
 642        __tm_recheckpoint(thread, orig_msr);
 643
 644        local_irq_restore(flags);
 645}
 646
 647static inline void tm_recheckpoint_new_task(struct task_struct *new)
 648{
 649        unsigned long msr;
 650
 651        if (!cpu_has_feature(CPU_FTR_TM))
 652                return;
 653
 654        /* Recheckpoint the registers of the thread we're about to switch to.
 655         *
 656         * If the task was using FP, we non-lazily reload both the original and
 657         * the speculative FP register states.  This is because the kernel
 658         * doesn't see if/when a TM rollback occurs, so if we take an FP
 659         * unavoidable later, we are unable to determine which set of FP regs
 660         * need to be restored.
 661         */
 662        if (!new->thread.regs)
 663                return;
 664
 665        if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
 666                tm_restore_sprs(&new->thread);
 667                return;
 668        }
 669        msr = new->thread.tm_orig_msr;
 670        /* Recheckpoint to restore original checkpointed register state. */
 671        TM_DEBUG("*** tm_recheckpoint of pid %d "
 672                 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
 673                 new->pid, new->thread.regs->msr, msr);
 674
 675        /* This loads the checkpointed FP/VEC state, if used */
 676        tm_recheckpoint(&new->thread, msr);
 677
 678        /* This loads the speculative FP/VEC state, if used */
 679        if (msr & MSR_FP) {
 680                do_load_up_transact_fpu(&new->thread);
 681                new->thread.regs->msr |=
 682                        (MSR_FP | new->thread.fpexc_mode);
 683        }
 684#ifdef CONFIG_ALTIVEC
 685        if (msr & MSR_VEC) {
 686                do_load_up_transact_altivec(&new->thread);
 687                new->thread.regs->msr |= MSR_VEC;
 688        }
 689#endif
 690        /* We may as well turn on VSX too since all the state is restored now */
 691        if (msr & MSR_VSX)
 692                new->thread.regs->msr |= MSR_VSX;
 693
 694        TM_DEBUG("*** tm_recheckpoint of pid %d complete "
 695                 "(kernel msr 0x%lx)\n",
 696                 new->pid, mfmsr());
 697}
 698
 699static inline void __switch_to_tm(struct task_struct *prev)
 700{
 701        if (cpu_has_feature(CPU_FTR_TM)) {
 702                tm_enable();
 703                tm_reclaim_task(prev);
 704        }
 705}
 706
 707/*
 708 * This is called if we are on the way out to userspace and the
 709 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 710 * FP and/or vector state and does so if necessary.
 711 * If userspace is inside a transaction (whether active or
 712 * suspended) and FP/VMX/VSX instructions have ever been enabled
 713 * inside that transaction, then we have to keep them enabled
 714 * and keep the FP/VMX/VSX state loaded while ever the transaction
 715 * continues.  The reason is that if we didn't, and subsequently
 716 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 717 * we don't know whether it's the same transaction, and thus we
 718 * don't know which of the checkpointed state and the transactional
 719 * state to use.
 720 */
 721void restore_tm_state(struct pt_regs *regs)
 722{
 723        unsigned long msr_diff;
 724
 725        clear_thread_flag(TIF_RESTORE_TM);
 726        if (!MSR_TM_ACTIVE(regs->msr))
 727                return;
 728
 729        msr_diff = current->thread.tm_orig_msr & ~regs->msr;
 730        msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
 731        if (msr_diff & MSR_FP) {
 732                fp_enable();
 733                load_fp_state(&current->thread.fp_state);
 734                regs->msr |= current->thread.fpexc_mode;
 735        }
 736        if (msr_diff & MSR_VEC) {
 737                vec_enable();
 738                load_vr_state(&current->thread.vr_state);
 739        }
 740        regs->msr |= msr_diff;
 741}
 742
 743#else
 744#define tm_recheckpoint_new_task(new)
 745#define __switch_to_tm(prev)
 746#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 747
 748struct task_struct *__switch_to(struct task_struct *prev,
 749        struct task_struct *new)
 750{
 751        struct thread_struct *new_thread, *old_thread;
 752        struct task_struct *last;
 753#ifdef CONFIG_PPC_BOOK3S_64
 754        struct ppc64_tlb_batch *batch;
 755#endif
 756
 757        WARN_ON(!irqs_disabled());
 758
 759        /* Back up the TAR and DSCR across context switches.
 760         * Note that the TAR is not available for use in the kernel.  (To
 761         * provide this, the TAR should be backed up/restored on exception
 762         * entry/exit instead, and be in pt_regs.  FIXME, this should be in
 763         * pt_regs anyway (for debug).)
 764         * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
 765         * these will change them.
 766         */
 767        save_early_sprs(&prev->thread);
 768
 769        __switch_to_tm(prev);
 770
 771#ifdef CONFIG_SMP
 772        /* avoid complexity of lazy save/restore of fpu
 773         * by just saving it every time we switch out if
 774         * this task used the fpu during the last quantum.
 775         *
 776         * If it tries to use the fpu again, it'll trap and
 777         * reload its fp regs.  So we don't have to do a restore
 778         * every switch, just a save.
 779         *  -- Cort
 780         */
 781        if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
 782                giveup_fpu(prev);
 783#ifdef CONFIG_ALTIVEC
 784        /*
 785         * If the previous thread used altivec in the last quantum
 786         * (thus changing altivec regs) then save them.
 787         * We used to check the VRSAVE register but not all apps
 788         * set it, so we don't rely on it now (and in fact we need
 789         * to save & restore VSCR even if VRSAVE == 0).  -- paulus
 790         *
 791         * On SMP we always save/restore altivec regs just to avoid the
 792         * complexity of changing processors.
 793         *  -- Cort
 794         */
 795        if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
 796                giveup_altivec(prev);
 797#endif /* CONFIG_ALTIVEC */
 798#ifdef CONFIG_VSX
 799        if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
 800                /* VMX and FPU registers are already save here */
 801                __giveup_vsx(prev);
 802#endif /* CONFIG_VSX */
 803#ifdef CONFIG_SPE
 804        /*
 805         * If the previous thread used spe in the last quantum
 806         * (thus changing spe regs) then save them.
 807         *
 808         * On SMP we always save/restore spe regs just to avoid the
 809         * complexity of changing processors.
 810         */
 811        if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
 812                giveup_spe(prev);
 813#endif /* CONFIG_SPE */
 814
 815#else  /* CONFIG_SMP */
 816#ifdef CONFIG_ALTIVEC
 817        /* Avoid the trap.  On smp this this never happens since
 818         * we don't set last_task_used_altivec -- Cort
 819         */
 820        if (new->thread.regs && last_task_used_altivec == new)
 821                new->thread.regs->msr |= MSR_VEC;
 822#endif /* CONFIG_ALTIVEC */
 823#ifdef CONFIG_VSX
 824        if (new->thread.regs && last_task_used_vsx == new)
 825                new->thread.regs->msr |= MSR_VSX;
 826#endif /* CONFIG_VSX */
 827#ifdef CONFIG_SPE
 828        /* Avoid the trap.  On smp this this never happens since
 829         * we don't set last_task_used_spe
 830         */
 831        if (new->thread.regs && last_task_used_spe == new)
 832                new->thread.regs->msr |= MSR_SPE;
 833#endif /* CONFIG_SPE */
 834
 835#endif /* CONFIG_SMP */
 836
 837#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 838        switch_booke_debug_regs(&new->thread.debug);
 839#else
 840/*
 841 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 842 * schedule DABR
 843 */
 844#ifndef CONFIG_HAVE_HW_BREAKPOINT
 845        if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
 846                __set_breakpoint(&new->thread.hw_brk);
 847#endif /* CONFIG_HAVE_HW_BREAKPOINT */
 848#endif
 849
 850
 851        new_thread = &new->thread;
 852        old_thread = &current->thread;
 853
 854#ifdef CONFIG_PPC64
 855        /*
 856         * Collect processor utilization data per process
 857         */
 858        if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 859                struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
 860                long unsigned start_tb, current_tb;
 861                start_tb = old_thread->start_tb;
 862                cu->current_tb = current_tb = mfspr(SPRN_PURR);
 863                old_thread->accum_tb += (current_tb - start_tb);
 864                new_thread->start_tb = current_tb;
 865        }
 866#endif /* CONFIG_PPC64 */
 867
 868#ifdef CONFIG_PPC_BOOK3S_64
 869        batch = this_cpu_ptr(&ppc64_tlb_batch);
 870        if (batch->active) {
 871                current_thread_info()->local_flags |= _TLF_LAZY_MMU;
 872                if (batch->index)
 873                        __flush_tlb_pending(batch);
 874                batch->active = 0;
 875        }
 876#endif /* CONFIG_PPC_BOOK3S_64 */
 877
 878        /*
 879         * We can't take a PMU exception inside _switch() since there is a
 880         * window where the kernel stack SLB and the kernel stack are out
 881         * of sync. Hard disable here.
 882         */
 883        hard_irq_disable();
 884
 885        tm_recheckpoint_new_task(new);
 886
 887        last = _switch(old_thread, new_thread);
 888
 889#ifdef CONFIG_PPC_BOOK3S_64
 890        if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
 891                current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
 892                batch = this_cpu_ptr(&ppc64_tlb_batch);
 893                batch->active = 1;
 894        }
 895#endif /* CONFIG_PPC_BOOK3S_64 */
 896
 897        return last;
 898}
 899
 900static int instructions_to_print = 16;
 901
 902static void show_instructions(struct pt_regs *regs)
 903{
 904        int i;
 905        unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
 906                        sizeof(int));
 907
 908        printk("Instruction dump:");
 909
 910        for (i = 0; i < instructions_to_print; i++) {
 911                int instr;
 912
 913                if (!(i % 8))
 914                        printk("\n");
 915
 916#if !defined(CONFIG_BOOKE)
 917                /* If executing with the IMMU off, adjust pc rather
 918                 * than print XXXXXXXX.
 919                 */
 920                if (!(regs->msr & MSR_IR))
 921                        pc = (unsigned long)phys_to_virt(pc);
 922#endif
 923
 924                if (!__kernel_text_address(pc) ||
 925                     probe_kernel_address((unsigned int __user *)pc, instr)) {
 926                        printk(KERN_CONT "XXXXXXXX ");
 927                } else {
 928                        if (regs->nip == pc)
 929                                printk(KERN_CONT "<%08x> ", instr);
 930                        else
 931                                printk(KERN_CONT "%08x ", instr);
 932                }
 933
 934                pc += sizeof(int);
 935        }
 936
 937        printk("\n");
 938}
 939
 940static struct regbit {
 941        unsigned long bit;
 942        const char *name;
 943} msr_bits[] = {
 944#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
 945        {MSR_SF,        "SF"},
 946        {MSR_HV,        "HV"},
 947#endif
 948        {MSR_VEC,       "VEC"},
 949        {MSR_VSX,       "VSX"},
 950#ifdef CONFIG_BOOKE
 951        {MSR_CE,        "CE"},
 952#endif
 953        {MSR_EE,        "EE"},
 954        {MSR_PR,        "PR"},
 955        {MSR_FP,        "FP"},
 956        {MSR_ME,        "ME"},
 957#ifdef CONFIG_BOOKE
 958        {MSR_DE,        "DE"},
 959#else
 960        {MSR_SE,        "SE"},
 961        {MSR_BE,        "BE"},
 962#endif
 963        {MSR_IR,        "IR"},
 964        {MSR_DR,        "DR"},
 965        {MSR_PMM,       "PMM"},
 966#ifndef CONFIG_BOOKE
 967        {MSR_RI,        "RI"},
 968        {MSR_LE,        "LE"},
 969#endif
 970        {0,             NULL}
 971};
 972
 973static void printbits(unsigned long val, struct regbit *bits)
 974{
 975        const char *sep = "";
 976
 977        printk("<");
 978        for (; bits->bit; ++bits)
 979                if (val & bits->bit) {
 980                        printk("%s%s", sep, bits->name);
 981                        sep = ",";
 982                }
 983        printk(">");
 984}
 985
 986#ifdef CONFIG_PPC64
 987#define REG             "%016lx"
 988#define REGS_PER_LINE   4
 989#define LAST_VOLATILE   13
 990#else
 991#define REG             "%08lx"
 992#define REGS_PER_LINE   8
 993#define LAST_VOLATILE   12
 994#endif
 995
 996void show_regs(struct pt_regs * regs)
 997{
 998        int i, trap;
 999
1000        show_regs_print_info(KERN_DEFAULT);
1001
1002        printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1003               regs->nip, regs->link, regs->ctr);
1004        printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1005               regs, regs->trap, print_tainted(), init_utsname()->release);
1006        printk("MSR: "REG" ", regs->msr);
1007        printbits(regs->msr, msr_bits);
1008        printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1009        trap = TRAP(regs);
1010        if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1011                printk("CFAR: "REG" ", regs->orig_gpr3);
1012        if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1013#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1014                printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1015#else
1016                printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1017#endif
1018#ifdef CONFIG_PPC64
1019        printk("SOFTE: %ld ", regs->softe);
1020#endif
1021#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1022        if (MSR_TM_ACTIVE(regs->msr))
1023                printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1024#endif
1025
1026        for (i = 0;  i < 32;  i++) {
1027                if ((i % REGS_PER_LINE) == 0)
1028                        printk("\nGPR%02d: ", i);
1029                printk(REG " ", regs->gpr[i]);
1030                if (i == LAST_VOLATILE && !FULL_REGS(regs))
1031                        break;
1032        }
1033        printk("\n");
1034#ifdef CONFIG_KALLSYMS
1035        /*
1036         * Lookup NIP late so we have the best change of getting the
1037         * above info out without failing
1038         */
1039        printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1040        printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1041#endif
1042        show_stack(current, (unsigned long *) regs->gpr[1]);
1043        if (!user_mode(regs))
1044                show_instructions(regs);
1045}
1046
1047void exit_thread(void)
1048{
1049        discard_lazy_cpu_state();
1050}
1051
1052void flush_thread(void)
1053{
1054        discard_lazy_cpu_state();
1055
1056#ifdef CONFIG_HAVE_HW_BREAKPOINT
1057        flush_ptrace_hw_breakpoint(current);
1058#else /* CONFIG_HAVE_HW_BREAKPOINT */
1059        set_debug_reg_defaults(&current->thread);
1060#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1061}
1062
1063void
1064release_thread(struct task_struct *t)
1065{
1066}
1067
1068/*
1069 * this gets called so that we can store coprocessor state into memory and
1070 * copy the current task into the new thread.
1071 */
1072int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1073{
1074        flush_fp_to_thread(src);
1075        flush_altivec_to_thread(src);
1076        flush_vsx_to_thread(src);
1077        flush_spe_to_thread(src);
1078        /*
1079         * Flush TM state out so we can copy it.  __switch_to_tm() does this
1080         * flush but it removes the checkpointed state from the current CPU and
1081         * transitions the CPU out of TM mode.  Hence we need to call
1082         * tm_recheckpoint_new_task() (on the same task) to restore the
1083         * checkpointed state back and the TM mode.
1084         */
1085        __switch_to_tm(src);
1086        tm_recheckpoint_new_task(src);
1087
1088        *dst = *src;
1089
1090        clear_task_ebb(dst);
1091
1092        return 0;
1093}
1094
1095static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1096{
1097#ifdef CONFIG_PPC_STD_MMU_64
1098        unsigned long sp_vsid;
1099        unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1100
1101        if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1102                sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1103                        << SLB_VSID_SHIFT_1T;
1104        else
1105                sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1106                        << SLB_VSID_SHIFT;
1107        sp_vsid |= SLB_VSID_KERNEL | llp;
1108        p->thread.ksp_vsid = sp_vsid;
1109#endif
1110}
1111
1112/*
1113 * Copy a thread..
1114 */
1115extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
1116
1117int copy_thread(unsigned long clone_flags, unsigned long usp,
1118                unsigned long arg, struct task_struct *p)
1119{
1120        struct pt_regs *childregs, *kregs;
1121        extern void ret_from_fork(void);
1122        extern void ret_from_kernel_thread(void);
1123        void (*f)(void);
1124        unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1125
1126        /* Copy registers */
1127        sp -= sizeof(struct pt_regs);
1128        childregs = (struct pt_regs *) sp;
1129        if (unlikely(p->flags & PF_KTHREAD)) {
1130                struct thread_info *ti = (void *)task_stack_page(p);
1131                memset(childregs, 0, sizeof(struct pt_regs));
1132                childregs->gpr[1] = sp + sizeof(struct pt_regs);
1133                /* function */
1134                if (usp)
1135                        childregs->gpr[14] = ppc_function_entry((void *)usp);
1136#ifdef CONFIG_PPC64
1137                clear_tsk_thread_flag(p, TIF_32BIT);
1138                childregs->softe = 1;
1139#endif
1140                childregs->gpr[15] = arg;
1141                p->thread.regs = NULL;  /* no user register state */
1142                ti->flags |= _TIF_RESTOREALL;
1143                f = ret_from_kernel_thread;
1144        } else {
1145                struct pt_regs *regs = current_pt_regs();
1146                CHECK_FULL_REGS(regs);
1147                *childregs = *regs;
1148                if (usp)
1149                        childregs->gpr[1] = usp;
1150                p->thread.regs = childregs;
1151                childregs->gpr[3] = 0;  /* Result from fork() */
1152                if (clone_flags & CLONE_SETTLS) {
1153#ifdef CONFIG_PPC64
1154                        if (!is_32bit_task())
1155                                childregs->gpr[13] = childregs->gpr[6];
1156                        else
1157#endif
1158                                childregs->gpr[2] = childregs->gpr[6];
1159                }
1160
1161                f = ret_from_fork;
1162        }
1163        sp -= STACK_FRAME_OVERHEAD;
1164
1165        /*
1166         * The way this works is that at some point in the future
1167         * some task will call _switch to switch to the new task.
1168         * That will pop off the stack frame created below and start
1169         * the new task running at ret_from_fork.  The new task will
1170         * do some house keeping and then return from the fork or clone
1171         * system call, using the stack frame created above.
1172         */
1173        ((unsigned long *)sp)[0] = 0;
1174        sp -= sizeof(struct pt_regs);
1175        kregs = (struct pt_regs *) sp;
1176        sp -= STACK_FRAME_OVERHEAD;
1177        p->thread.ksp = sp;
1178#ifdef CONFIG_PPC32
1179        p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1180                                _ALIGN_UP(sizeof(struct thread_info), 16);
1181#endif
1182#ifdef CONFIG_HAVE_HW_BREAKPOINT
1183        p->thread.ptrace_bps[0] = NULL;
1184#endif
1185
1186        p->thread.fp_save_area = NULL;
1187#ifdef CONFIG_ALTIVEC
1188        p->thread.vr_save_area = NULL;
1189#endif
1190
1191        setup_ksp_vsid(p, sp);
1192
1193#ifdef CONFIG_PPC64 
1194        if (cpu_has_feature(CPU_FTR_DSCR)) {
1195                p->thread.dscr_inherit = current->thread.dscr_inherit;
1196                p->thread.dscr = current->thread.dscr;
1197        }
1198        if (cpu_has_feature(CPU_FTR_HAS_PPR))
1199                p->thread.ppr = INIT_PPR;
1200#endif
1201        kregs->nip = ppc_function_entry(f);
1202        return 0;
1203}
1204
1205/*
1206 * Set up a thread for executing a new program
1207 */
1208void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1209{
1210#ifdef CONFIG_PPC64
1211        unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1212#endif
1213
1214        /*
1215         * If we exec out of a kernel thread then thread.regs will not be
1216         * set.  Do it now.
1217         */
1218        if (!current->thread.regs) {
1219                struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1220                current->thread.regs = regs - 1;
1221        }
1222
1223        memset(regs->gpr, 0, sizeof(regs->gpr));
1224        regs->ctr = 0;
1225        regs->link = 0;
1226        regs->xer = 0;
1227        regs->ccr = 0;
1228        regs->gpr[1] = sp;
1229
1230        /*
1231         * We have just cleared all the nonvolatile GPRs, so make
1232         * FULL_REGS(regs) return true.  This is necessary to allow
1233         * ptrace to examine the thread immediately after exec.
1234         */
1235        regs->trap &= ~1UL;
1236
1237#ifdef CONFIG_PPC32
1238        regs->mq = 0;
1239        regs->nip = start;
1240        regs->msr = MSR_USER;
1241#else
1242        if (!is_32bit_task()) {
1243                unsigned long entry;
1244
1245                if (is_elf2_task()) {
1246                        /* Look ma, no function descriptors! */
1247                        entry = start;
1248
1249                        /*
1250                         * Ulrich says:
1251                         *   The latest iteration of the ABI requires that when
1252                         *   calling a function (at its global entry point),
1253                         *   the caller must ensure r12 holds the entry point
1254                         *   address (so that the function can quickly
1255                         *   establish addressability).
1256                         */
1257                        regs->gpr[12] = start;
1258                        /* Make sure that's restored on entry to userspace. */
1259                        set_thread_flag(TIF_RESTOREALL);
1260                } else {
1261                        unsigned long toc;
1262
1263                        /* start is a relocated pointer to the function
1264                         * descriptor for the elf _start routine.  The first
1265                         * entry in the function descriptor is the entry
1266                         * address of _start and the second entry is the TOC
1267                         * value we need to use.
1268                         */
1269                        __get_user(entry, (unsigned long __user *)start);
1270                        __get_user(toc, (unsigned long __user *)start+1);
1271
1272                        /* Check whether the e_entry function descriptor entries
1273                         * need to be relocated before we can use them.
1274                         */
1275                        if (load_addr != 0) {
1276                                entry += load_addr;
1277                                toc   += load_addr;
1278                        }
1279                        regs->gpr[2] = toc;
1280                }
1281                regs->nip = entry;
1282                regs->msr = MSR_USER64;
1283        } else {
1284                regs->nip = start;
1285                regs->gpr[2] = 0;
1286                regs->msr = MSR_USER32;
1287        }
1288#endif
1289        discard_lazy_cpu_state();
1290#ifdef CONFIG_VSX
1291        current->thread.used_vsr = 0;
1292#endif
1293        memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1294        current->thread.fp_save_area = NULL;
1295#ifdef CONFIG_ALTIVEC
1296        memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1297        current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1298        current->thread.vr_save_area = NULL;
1299        current->thread.vrsave = 0;
1300        current->thread.used_vr = 0;
1301#endif /* CONFIG_ALTIVEC */
1302#ifdef CONFIG_SPE
1303        memset(current->thread.evr, 0, sizeof(current->thread.evr));
1304        current->thread.acc = 0;
1305        current->thread.spefscr = 0;
1306        current->thread.used_spe = 0;
1307#endif /* CONFIG_SPE */
1308#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1309        if (cpu_has_feature(CPU_FTR_TM))
1310                regs->msr |= MSR_TM;
1311        current->thread.tm_tfhar = 0;
1312        current->thread.tm_texasr = 0;
1313        current->thread.tm_tfiar = 0;
1314#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1315}
1316EXPORT_SYMBOL(start_thread);
1317
1318#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1319                | PR_FP_EXC_RES | PR_FP_EXC_INV)
1320
1321int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1322{
1323        struct pt_regs *regs = tsk->thread.regs;
1324
1325        /* This is a bit hairy.  If we are an SPE enabled  processor
1326         * (have embedded fp) we store the IEEE exception enable flags in
1327         * fpexc_mode.  fpexc_mode is also used for setting FP exception
1328         * mode (asyn, precise, disabled) for 'Classic' FP. */
1329        if (val & PR_FP_EXC_SW_ENABLE) {
1330#ifdef CONFIG_SPE
1331                if (cpu_has_feature(CPU_FTR_SPE)) {
1332                        /*
1333                         * When the sticky exception bits are set
1334                         * directly by userspace, it must call prctl
1335                         * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1336                         * in the existing prctl settings) or
1337                         * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1338                         * the bits being set).  <fenv.h> functions
1339                         * saving and restoring the whole
1340                         * floating-point environment need to do so
1341                         * anyway to restore the prctl settings from
1342                         * the saved environment.
1343                         */
1344                        tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1345                        tsk->thread.fpexc_mode = val &
1346                                (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1347                        return 0;
1348                } else {
1349                        return -EINVAL;
1350                }
1351#else
1352                return -EINVAL;
1353#endif
1354        }
1355
1356        /* on a CONFIG_SPE this does not hurt us.  The bits that
1357         * __pack_fe01 use do not overlap with bits used for
1358         * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1359         * on CONFIG_SPE implementations are reserved so writing to
1360         * them does not change anything */
1361        if (val > PR_FP_EXC_PRECISE)
1362                return -EINVAL;
1363        tsk->thread.fpexc_mode = __pack_fe01(val);
1364        if (regs != NULL && (regs->msr & MSR_FP) != 0)
1365                regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1366                        | tsk->thread.fpexc_mode;
1367        return 0;
1368}
1369
1370int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1371{
1372        unsigned int val;
1373
1374        if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1375#ifdef CONFIG_SPE
1376                if (cpu_has_feature(CPU_FTR_SPE)) {
1377                        /*
1378                         * When the sticky exception bits are set
1379                         * directly by userspace, it must call prctl
1380                         * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1381                         * in the existing prctl settings) or
1382                         * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1383                         * the bits being set).  <fenv.h> functions
1384                         * saving and restoring the whole
1385                         * floating-point environment need to do so
1386                         * anyway to restore the prctl settings from
1387                         * the saved environment.
1388                         */
1389                        tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1390                        val = tsk->thread.fpexc_mode;
1391                } else
1392                        return -EINVAL;
1393#else
1394                return -EINVAL;
1395#endif
1396        else
1397                val = __unpack_fe01(tsk->thread.fpexc_mode);
1398        return put_user(val, (unsigned int __user *) adr);
1399}
1400
1401int set_endian(struct task_struct *tsk, unsigned int val)
1402{
1403        struct pt_regs *regs = tsk->thread.regs;
1404
1405        if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1406            (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1407                return -EINVAL;
1408
1409        if (regs == NULL)
1410                return -EINVAL;
1411
1412        if (val == PR_ENDIAN_BIG)
1413                regs->msr &= ~MSR_LE;
1414        else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1415                regs->msr |= MSR_LE;
1416        else
1417                return -EINVAL;
1418
1419        return 0;
1420}
1421
1422int get_endian(struct task_struct *tsk, unsigned long adr)
1423{
1424        struct pt_regs *regs = tsk->thread.regs;
1425        unsigned int val;
1426
1427        if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1428            !cpu_has_feature(CPU_FTR_REAL_LE))
1429                return -EINVAL;
1430
1431        if (regs == NULL)
1432                return -EINVAL;
1433
1434        if (regs->msr & MSR_LE) {
1435                if (cpu_has_feature(CPU_FTR_REAL_LE))
1436                        val = PR_ENDIAN_LITTLE;
1437                else
1438                        val = PR_ENDIAN_PPC_LITTLE;
1439        } else
1440                val = PR_ENDIAN_BIG;
1441
1442        return put_user(val, (unsigned int __user *)adr);
1443}
1444
1445int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1446{
1447        tsk->thread.align_ctl = val;
1448        return 0;
1449}
1450
1451int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1452{
1453        return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1454}
1455
1456static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1457                                  unsigned long nbytes)
1458{
1459        unsigned long stack_page;
1460        unsigned long cpu = task_cpu(p);
1461
1462        /*
1463         * Avoid crashing if the stack has overflowed and corrupted
1464         * task_cpu(p), which is in the thread_info struct.
1465         */
1466        if (cpu < NR_CPUS && cpu_possible(cpu)) {
1467                stack_page = (unsigned long) hardirq_ctx[cpu];
1468                if (sp >= stack_page + sizeof(struct thread_struct)
1469                    && sp <= stack_page + THREAD_SIZE - nbytes)
1470                        return 1;
1471
1472                stack_page = (unsigned long) softirq_ctx[cpu];
1473                if (sp >= stack_page + sizeof(struct thread_struct)
1474                    && sp <= stack_page + THREAD_SIZE - nbytes)
1475                        return 1;
1476        }
1477        return 0;
1478}
1479
1480int validate_sp(unsigned long sp, struct task_struct *p,
1481                       unsigned long nbytes)
1482{
1483        unsigned long stack_page = (unsigned long)task_stack_page(p);
1484
1485        if (sp >= stack_page + sizeof(struct thread_struct)
1486            && sp <= stack_page + THREAD_SIZE - nbytes)
1487                return 1;
1488
1489        return valid_irq_stack(sp, p, nbytes);
1490}
1491
1492EXPORT_SYMBOL(validate_sp);
1493
1494unsigned long get_wchan(struct task_struct *p)
1495{
1496        unsigned long ip, sp;
1497        int count = 0;
1498
1499        if (!p || p == current || p->state == TASK_RUNNING)
1500                return 0;
1501
1502        sp = p->thread.ksp;
1503        if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1504                return 0;
1505
1506        do {
1507                sp = *(unsigned long *)sp;
1508                if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1509                        return 0;
1510                if (count > 0) {
1511                        ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1512                        if (!in_sched_functions(ip))
1513                                return ip;
1514                }
1515        } while (count++ < 16);
1516        return 0;
1517}
1518
1519static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1520
1521void show_stack(struct task_struct *tsk, unsigned long *stack)
1522{
1523        unsigned long sp, ip, lr, newsp;
1524        int count = 0;
1525        int firstframe = 1;
1526#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1527        int curr_frame = current->curr_ret_stack;
1528        extern void return_to_handler(void);
1529        unsigned long rth = (unsigned long)return_to_handler;
1530#endif
1531
1532        sp = (unsigned long) stack;
1533        if (tsk == NULL)
1534                tsk = current;
1535        if (sp == 0) {
1536                if (tsk == current)
1537                        sp = current_stack_pointer();
1538                else
1539                        sp = tsk->thread.ksp;
1540        }
1541
1542        lr = 0;
1543        printk("Call Trace:\n");
1544        do {
1545                if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1546                        return;
1547
1548                stack = (unsigned long *) sp;
1549                newsp = stack[0];
1550                ip = stack[STACK_FRAME_LR_SAVE];
1551                if (!firstframe || ip != lr) {
1552                        printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1553#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1554                        if ((ip == rth) && curr_frame >= 0) {
1555                                printk(" (%pS)",
1556                                       (void *)current->ret_stack[curr_frame].ret);
1557                                curr_frame--;
1558                        }
1559#endif
1560                        if (firstframe)
1561                                printk(" (unreliable)");
1562                        printk("\n");
1563                }
1564                firstframe = 0;
1565
1566                /*
1567                 * See if this is an exception frame.
1568                 * We look for the "regshere" marker in the current frame.
1569                 */
1570                if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1571                    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1572                        struct pt_regs *regs = (struct pt_regs *)
1573                                (sp + STACK_FRAME_OVERHEAD);
1574                        lr = regs->link;
1575                        printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1576                               regs->trap, (void *)regs->nip, (void *)lr);
1577                        firstframe = 1;
1578                }
1579
1580                sp = newsp;
1581        } while (count++ < kstack_depth_to_print);
1582}
1583
1584#ifdef CONFIG_PPC64
1585/* Called with hard IRQs off */
1586void notrace __ppc64_runlatch_on(void)
1587{
1588        struct thread_info *ti = current_thread_info();
1589        unsigned long ctrl;
1590
1591        ctrl = mfspr(SPRN_CTRLF);
1592        ctrl |= CTRL_RUNLATCH;
1593        mtspr(SPRN_CTRLT, ctrl);
1594
1595        ti->local_flags |= _TLF_RUNLATCH;
1596}
1597
1598/* Called with hard IRQs off */
1599void notrace __ppc64_runlatch_off(void)
1600{
1601        struct thread_info *ti = current_thread_info();
1602        unsigned long ctrl;
1603
1604        ti->local_flags &= ~_TLF_RUNLATCH;
1605
1606        ctrl = mfspr(SPRN_CTRLF);
1607        ctrl &= ~CTRL_RUNLATCH;
1608        mtspr(SPRN_CTRLT, ctrl);
1609}
1610#endif /* CONFIG_PPC64 */
1611
1612unsigned long arch_align_stack(unsigned long sp)
1613{
1614        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1615                sp -= get_random_int() & ~PAGE_MASK;
1616        return sp & ~0xf;
1617}
1618
1619static inline unsigned long brk_rnd(void)
1620{
1621        unsigned long rnd = 0;
1622
1623        /* 8MB for 32bit, 1GB for 64bit */
1624        if (is_32bit_task())
1625                rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1626        else
1627                rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1628
1629        return rnd << PAGE_SHIFT;
1630}
1631
1632unsigned long arch_randomize_brk(struct mm_struct *mm)
1633{
1634        unsigned long base = mm->brk;
1635        unsigned long ret;
1636
1637#ifdef CONFIG_PPC_STD_MMU_64
1638        /*
1639         * If we are using 1TB segments and we are allowed to randomise
1640         * the heap, we can put it above 1TB so it is backed by a 1TB
1641         * segment. Otherwise the heap will be in the bottom 1TB
1642         * which always uses 256MB segments and this may result in a
1643         * performance penalty.
1644         */
1645        if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1646                base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1647#endif
1648
1649        ret = PAGE_ALIGN(base + brk_rnd());
1650
1651        if (ret < mm->brk)
1652                return mm->brk;
1653
1654        return ret;
1655}
1656
1657