linux/arch/powerpc/kernel/signal_32.c
<<
>>
Prefs
   1/*
   2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
   3 *
   4 *  PowerPC version
   5 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   6 * Copyright (C) 2001 IBM
   7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
   9 *
  10 *  Derived from "arch/i386/kernel/signal.c"
  11 *    Copyright (C) 1991, 1992 Linus Torvalds
  12 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
  13 *
  14 *  This program is free software; you can redistribute it and/or
  15 *  modify it under the terms of the GNU General Public License
  16 *  as published by the Free Software Foundation; either version
  17 *  2 of the License, or (at your option) any later version.
  18 */
  19
  20#include <linux/sched.h>
  21#include <linux/mm.h>
  22#include <linux/smp.h>
  23#include <linux/kernel.h>
  24#include <linux/signal.h>
  25#include <linux/errno.h>
  26#include <linux/elf.h>
  27#include <linux/ptrace.h>
  28#include <linux/ratelimit.h>
  29#ifdef CONFIG_PPC64
  30#include <linux/syscalls.h>
  31#include <linux/compat.h>
  32#else
  33#include <linux/wait.h>
  34#include <linux/unistd.h>
  35#include <linux/stddef.h>
  36#include <linux/tty.h>
  37#include <linux/binfmts.h>
  38#endif
  39
  40#include <asm/uaccess.h>
  41#include <asm/cacheflush.h>
  42#include <asm/syscalls.h>
  43#include <asm/sigcontext.h>
  44#include <asm/vdso.h>
  45#include <asm/switch_to.h>
  46#include <asm/tm.h>
  47#ifdef CONFIG_PPC64
  48#include "ppc32.h"
  49#include <asm/unistd.h>
  50#else
  51#include <asm/ucontext.h>
  52#include <asm/pgtable.h>
  53#endif
  54
  55#include "signal.h"
  56
  57
  58#ifdef CONFIG_PPC64
  59#define sys_rt_sigreturn        compat_sys_rt_sigreturn
  60#define sys_swapcontext compat_sys_swapcontext
  61#define sys_sigreturn   compat_sys_sigreturn
  62
  63#define old_sigaction   old_sigaction32
  64#define sigcontext      sigcontext32
  65#define mcontext        mcontext32
  66#define ucontext        ucontext32
  67
  68#define __save_altstack __compat_save_altstack
  69
  70/*
  71 * Userspace code may pass a ucontext which doesn't include VSX added
  72 * at the end.  We need to check for this case.
  73 */
  74#define UCONTEXTSIZEWITHOUTVSX \
  75                (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
  76
  77/*
  78 * Returning 0 means we return to userspace via
  79 * ret_from_except and thus restore all user
  80 * registers from *regs.  This is what we need
  81 * to do when a signal has been delivered.
  82 */
  83
  84#define GP_REGS_SIZE    min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
  85#undef __SIGNAL_FRAMESIZE
  86#define __SIGNAL_FRAMESIZE      __SIGNAL_FRAMESIZE32
  87#undef ELF_NVRREG
  88#define ELF_NVRREG      ELF_NVRREG32
  89
  90/*
  91 * Functions for flipping sigsets (thanks to brain dead generic
  92 * implementation that makes things simple for little endian only)
  93 */
  94static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
  95{
  96        compat_sigset_t cset;
  97
  98        switch (_NSIG_WORDS) {
  99        case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
 100                cset.sig[7] = set->sig[3] >> 32;
 101        case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
 102                cset.sig[5] = set->sig[2] >> 32;
 103        case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
 104                cset.sig[3] = set->sig[1] >> 32;
 105        case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
 106                cset.sig[1] = set->sig[0] >> 32;
 107        }
 108        return copy_to_user(uset, &cset, sizeof(*uset));
 109}
 110
 111static inline int get_sigset_t(sigset_t *set,
 112                               const compat_sigset_t __user *uset)
 113{
 114        compat_sigset_t s32;
 115
 116        if (copy_from_user(&s32, uset, sizeof(*uset)))
 117                return -EFAULT;
 118
 119        /*
 120         * Swap the 2 words of the 64-bit sigset_t (they are stored
 121         * in the "wrong" endian in 32-bit user storage).
 122         */
 123        switch (_NSIG_WORDS) {
 124        case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
 125        case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
 126        case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
 127        case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
 128        }
 129        return 0;
 130}
 131
 132#define to_user_ptr(p)          ptr_to_compat(p)
 133#define from_user_ptr(p)        compat_ptr(p)
 134
 135static inline int save_general_regs(struct pt_regs *regs,
 136                struct mcontext __user *frame)
 137{
 138        elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 139        int i;
 140
 141        WARN_ON(!FULL_REGS(regs));
 142
 143        for (i = 0; i <= PT_RESULT; i ++) {
 144                if (i == 14 && !FULL_REGS(regs))
 145                        i = 32;
 146                if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
 147                        return -EFAULT;
 148        }
 149        return 0;
 150}
 151
 152static inline int restore_general_regs(struct pt_regs *regs,
 153                struct mcontext __user *sr)
 154{
 155        elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 156        int i;
 157
 158        for (i = 0; i <= PT_RESULT; i++) {
 159                if ((i == PT_MSR) || (i == PT_SOFTE))
 160                        continue;
 161                if (__get_user(gregs[i], &sr->mc_gregs[i]))
 162                        return -EFAULT;
 163        }
 164        return 0;
 165}
 166
 167#else /* CONFIG_PPC64 */
 168
 169#define GP_REGS_SIZE    min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
 170
 171static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
 172{
 173        return copy_to_user(uset, set, sizeof(*uset));
 174}
 175
 176static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
 177{
 178        return copy_from_user(set, uset, sizeof(*uset));
 179}
 180
 181#define to_user_ptr(p)          ((unsigned long)(p))
 182#define from_user_ptr(p)        ((void __user *)(p))
 183
 184static inline int save_general_regs(struct pt_regs *regs,
 185                struct mcontext __user *frame)
 186{
 187        WARN_ON(!FULL_REGS(regs));
 188        return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
 189}
 190
 191static inline int restore_general_regs(struct pt_regs *regs,
 192                struct mcontext __user *sr)
 193{
 194        /* copy up to but not including MSR */
 195        if (__copy_from_user(regs, &sr->mc_gregs,
 196                                PT_MSR * sizeof(elf_greg_t)))
 197                return -EFAULT;
 198        /* copy from orig_r3 (the word after the MSR) up to the end */
 199        if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
 200                                GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
 201                return -EFAULT;
 202        return 0;
 203}
 204#endif
 205
 206/*
 207 * When we have signals to deliver, we set up on the
 208 * user stack, going down from the original stack pointer:
 209 *      an ABI gap of 56 words
 210 *      an mcontext struct
 211 *      a sigcontext struct
 212 *      a gap of __SIGNAL_FRAMESIZE bytes
 213 *
 214 * Each of these things must be a multiple of 16 bytes in size. The following
 215 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
 216 *
 217 */
 218struct sigframe {
 219        struct sigcontext sctx;         /* the sigcontext */
 220        struct mcontext mctx;           /* all the register values */
 221#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 222        struct sigcontext sctx_transact;
 223        struct mcontext mctx_transact;
 224#endif
 225        /*
 226         * Programs using the rs6000/xcoff abi can save up to 19 gp
 227         * regs and 18 fp regs below sp before decrementing it.
 228         */
 229        int                     abigap[56];
 230};
 231
 232/* We use the mc_pad field for the signal return trampoline. */
 233#define tramp   mc_pad
 234
 235/*
 236 *  When we have rt signals to deliver, we set up on the
 237 *  user stack, going down from the original stack pointer:
 238 *      one rt_sigframe struct (siginfo + ucontext + ABI gap)
 239 *      a gap of __SIGNAL_FRAMESIZE+16 bytes
 240 *  (the +16 is to get the siginfo and ucontext in the same
 241 *  positions as in older kernels).
 242 *
 243 *  Each of these things must be a multiple of 16 bytes in size.
 244 *
 245 */
 246struct rt_sigframe {
 247#ifdef CONFIG_PPC64
 248        compat_siginfo_t info;
 249#else
 250        struct siginfo info;
 251#endif
 252        struct ucontext uc;
 253#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 254        struct ucontext uc_transact;
 255#endif
 256        /*
 257         * Programs using the rs6000/xcoff abi can save up to 19 gp
 258         * regs and 18 fp regs below sp before decrementing it.
 259         */
 260        int                     abigap[56];
 261};
 262
 263#ifdef CONFIG_VSX
 264unsigned long copy_fpr_to_user(void __user *to,
 265                               struct task_struct *task)
 266{
 267        u64 buf[ELF_NFPREG];
 268        int i;
 269
 270        /* save FPR copy to local buffer then write to the thread_struct */
 271        for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 272                buf[i] = task->thread.TS_FPR(i);
 273        buf[i] = task->thread.fp_state.fpscr;
 274        return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
 275}
 276
 277unsigned long copy_fpr_from_user(struct task_struct *task,
 278                                 void __user *from)
 279{
 280        u64 buf[ELF_NFPREG];
 281        int i;
 282
 283        if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
 284                return 1;
 285        for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 286                task->thread.TS_FPR(i) = buf[i];
 287        task->thread.fp_state.fpscr = buf[i];
 288
 289        return 0;
 290}
 291
 292unsigned long copy_vsx_to_user(void __user *to,
 293                               struct task_struct *task)
 294{
 295        u64 buf[ELF_NVSRHALFREG];
 296        int i;
 297
 298        /* save FPR copy to local buffer then write to the thread_struct */
 299        for (i = 0; i < ELF_NVSRHALFREG; i++)
 300                buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
 301        return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
 302}
 303
 304unsigned long copy_vsx_from_user(struct task_struct *task,
 305                                 void __user *from)
 306{
 307        u64 buf[ELF_NVSRHALFREG];
 308        int i;
 309
 310        if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
 311                return 1;
 312        for (i = 0; i < ELF_NVSRHALFREG ; i++)
 313                task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 314        return 0;
 315}
 316
 317#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 318unsigned long copy_transact_fpr_to_user(void __user *to,
 319                                  struct task_struct *task)
 320{
 321        u64 buf[ELF_NFPREG];
 322        int i;
 323
 324        /* save FPR copy to local buffer then write to the thread_struct */
 325        for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 326                buf[i] = task->thread.TS_TRANS_FPR(i);
 327        buf[i] = task->thread.transact_fp.fpscr;
 328        return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
 329}
 330
 331unsigned long copy_transact_fpr_from_user(struct task_struct *task,
 332                                          void __user *from)
 333{
 334        u64 buf[ELF_NFPREG];
 335        int i;
 336
 337        if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
 338                return 1;
 339        for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 340                task->thread.TS_TRANS_FPR(i) = buf[i];
 341        task->thread.transact_fp.fpscr = buf[i];
 342
 343        return 0;
 344}
 345
 346unsigned long copy_transact_vsx_to_user(void __user *to,
 347                                  struct task_struct *task)
 348{
 349        u64 buf[ELF_NVSRHALFREG];
 350        int i;
 351
 352        /* save FPR copy to local buffer then write to the thread_struct */
 353        for (i = 0; i < ELF_NVSRHALFREG; i++)
 354                buf[i] = task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET];
 355        return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
 356}
 357
 358unsigned long copy_transact_vsx_from_user(struct task_struct *task,
 359                                          void __user *from)
 360{
 361        u64 buf[ELF_NVSRHALFREG];
 362        int i;
 363
 364        if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
 365                return 1;
 366        for (i = 0; i < ELF_NVSRHALFREG ; i++)
 367                task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 368        return 0;
 369}
 370#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 371#else
 372inline unsigned long copy_fpr_to_user(void __user *to,
 373                                      struct task_struct *task)
 374{
 375        return __copy_to_user(to, task->thread.fp_state.fpr,
 376                              ELF_NFPREG * sizeof(double));
 377}
 378
 379inline unsigned long copy_fpr_from_user(struct task_struct *task,
 380                                        void __user *from)
 381{
 382        return __copy_from_user(task->thread.fp_state.fpr, from,
 383                              ELF_NFPREG * sizeof(double));
 384}
 385
 386#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 387inline unsigned long copy_transact_fpr_to_user(void __user *to,
 388                                         struct task_struct *task)
 389{
 390        return __copy_to_user(to, task->thread.transact_fp.fpr,
 391                              ELF_NFPREG * sizeof(double));
 392}
 393
 394inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
 395                                                 void __user *from)
 396{
 397        return __copy_from_user(task->thread.transact_fp.fpr, from,
 398                                ELF_NFPREG * sizeof(double));
 399}
 400#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 401#endif
 402
 403/*
 404 * Save the current user registers on the user stack.
 405 * We only save the altivec/spe registers if the process has used
 406 * altivec/spe instructions at some point.
 407 */
 408static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
 409                          struct mcontext __user *tm_frame, int sigret,
 410                          int ctx_has_vsx_region)
 411{
 412        unsigned long msr = regs->msr;
 413
 414        /* Make sure floating point registers are stored in regs */
 415        flush_fp_to_thread(current);
 416
 417        /* save general registers */
 418        if (save_general_regs(regs, frame))
 419                return 1;
 420
 421#ifdef CONFIG_ALTIVEC
 422        /* save altivec registers */
 423        if (current->thread.used_vr) {
 424                flush_altivec_to_thread(current);
 425                if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 426                                   ELF_NVRREG * sizeof(vector128)))
 427                        return 1;
 428                /* set MSR_VEC in the saved MSR value to indicate that
 429                   frame->mc_vregs contains valid data */
 430                msr |= MSR_VEC;
 431        }
 432        /* else assert((regs->msr & MSR_VEC) == 0) */
 433
 434        /* We always copy to/from vrsave, it's 0 if we don't have or don't
 435         * use altivec. Since VSCR only contains 32 bits saved in the least
 436         * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 437         * most significant bits of that same vector. --BenH
 438         * Note that the current VRSAVE value is in the SPR at this point.
 439         */
 440        if (cpu_has_feature(CPU_FTR_ALTIVEC))
 441                current->thread.vrsave = mfspr(SPRN_VRSAVE);
 442        if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
 443                return 1;
 444#endif /* CONFIG_ALTIVEC */
 445        if (copy_fpr_to_user(&frame->mc_fregs, current))
 446                return 1;
 447
 448        /*
 449         * Clear the MSR VSX bit to indicate there is no valid state attached
 450         * to this context, except in the specific case below where we set it.
 451         */
 452        msr &= ~MSR_VSX;
 453#ifdef CONFIG_VSX
 454        /*
 455         * Copy VSR 0-31 upper half from thread_struct to local
 456         * buffer, then write that to userspace.  Also set MSR_VSX in
 457         * the saved MSR value to indicate that frame->mc_vregs
 458         * contains valid data
 459         */
 460        if (current->thread.used_vsr && ctx_has_vsx_region) {
 461                __giveup_vsx(current);
 462                if (copy_vsx_to_user(&frame->mc_vsregs, current))
 463                        return 1;
 464                msr |= MSR_VSX;
 465        }
 466#endif /* CONFIG_VSX */
 467#ifdef CONFIG_SPE
 468        /* save spe registers */
 469        if (current->thread.used_spe) {
 470                flush_spe_to_thread(current);
 471                if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 472                                   ELF_NEVRREG * sizeof(u32)))
 473                        return 1;
 474                /* set MSR_SPE in the saved MSR value to indicate that
 475                   frame->mc_vregs contains valid data */
 476                msr |= MSR_SPE;
 477        }
 478        /* else assert((regs->msr & MSR_SPE) == 0) */
 479
 480        /* We always copy to/from spefscr */
 481        if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 482                return 1;
 483#endif /* CONFIG_SPE */
 484
 485        if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 486                return 1;
 487        /* We need to write 0 the MSR top 32 bits in the tm frame so that we
 488         * can check it on the restore to see if TM is active
 489         */
 490        if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
 491                return 1;
 492
 493        if (sigret) {
 494                /* Set up the sigreturn trampoline: li r0,sigret; sc */
 495                if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
 496                    || __put_user(0x44000002UL, &frame->tramp[1]))
 497                        return 1;
 498                flush_icache_range((unsigned long) &frame->tramp[0],
 499                                   (unsigned long) &frame->tramp[2]);
 500        }
 501
 502        return 0;
 503}
 504
 505#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 506/*
 507 * Save the current user registers on the user stack.
 508 * We only save the altivec/spe registers if the process has used
 509 * altivec/spe instructions at some point.
 510 * We also save the transactional registers to a second ucontext in the
 511 * frame.
 512 *
 513 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
 514 */
 515static int save_tm_user_regs(struct pt_regs *regs,
 516                             struct mcontext __user *frame,
 517                             struct mcontext __user *tm_frame, int sigret)
 518{
 519        unsigned long msr = regs->msr;
 520
 521        /* Remove TM bits from thread's MSR.  The MSR in the sigcontext
 522         * just indicates to userland that we were doing a transaction, but we
 523         * don't want to return in transactional state.  This also ensures
 524         * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
 525         */
 526        regs->msr &= ~MSR_TS_MASK;
 527
 528        /* Make sure floating point registers are stored in regs */
 529        flush_fp_to_thread(current);
 530
 531        /* Save both sets of general registers */
 532        if (save_general_regs(&current->thread.ckpt_regs, frame)
 533            || save_general_regs(regs, tm_frame))
 534                return 1;
 535
 536        /* Stash the top half of the 64bit MSR into the 32bit MSR word
 537         * of the transactional mcontext.  This way we have a backward-compatible
 538         * MSR in the 'normal' (checkpointed) mcontext and additionally one can
 539         * also look at what type of transaction (T or S) was active at the
 540         * time of the signal.
 541         */
 542        if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
 543                return 1;
 544
 545#ifdef CONFIG_ALTIVEC
 546        /* save altivec registers */
 547        if (current->thread.used_vr) {
 548                flush_altivec_to_thread(current);
 549                if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 550                                   ELF_NVRREG * sizeof(vector128)))
 551                        return 1;
 552                if (msr & MSR_VEC) {
 553                        if (__copy_to_user(&tm_frame->mc_vregs,
 554                                           &current->thread.transact_vr,
 555                                           ELF_NVRREG * sizeof(vector128)))
 556                                return 1;
 557                } else {
 558                        if (__copy_to_user(&tm_frame->mc_vregs,
 559                                           &current->thread.vr_state,
 560                                           ELF_NVRREG * sizeof(vector128)))
 561                                return 1;
 562                }
 563
 564                /* set MSR_VEC in the saved MSR value to indicate that
 565                 * frame->mc_vregs contains valid data
 566                 */
 567                msr |= MSR_VEC;
 568        }
 569
 570        /* We always copy to/from vrsave, it's 0 if we don't have or don't
 571         * use altivec. Since VSCR only contains 32 bits saved in the least
 572         * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 573         * most significant bits of that same vector. --BenH
 574         */
 575        if (cpu_has_feature(CPU_FTR_ALTIVEC))
 576                current->thread.vrsave = mfspr(SPRN_VRSAVE);
 577        if (__put_user(current->thread.vrsave,
 578                       (u32 __user *)&frame->mc_vregs[32]))
 579                return 1;
 580        if (msr & MSR_VEC) {
 581                if (__put_user(current->thread.transact_vrsave,
 582                               (u32 __user *)&tm_frame->mc_vregs[32]))
 583                        return 1;
 584        } else {
 585                if (__put_user(current->thread.vrsave,
 586                               (u32 __user *)&tm_frame->mc_vregs[32]))
 587                        return 1;
 588        }
 589#endif /* CONFIG_ALTIVEC */
 590
 591        if (copy_fpr_to_user(&frame->mc_fregs, current))
 592                return 1;
 593        if (msr & MSR_FP) {
 594                if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
 595                        return 1;
 596        } else {
 597                if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
 598                        return 1;
 599        }
 600
 601#ifdef CONFIG_VSX
 602        /*
 603         * Copy VSR 0-31 upper half from thread_struct to local
 604         * buffer, then write that to userspace.  Also set MSR_VSX in
 605         * the saved MSR value to indicate that frame->mc_vregs
 606         * contains valid data
 607         */
 608        if (current->thread.used_vsr) {
 609                __giveup_vsx(current);
 610                if (copy_vsx_to_user(&frame->mc_vsregs, current))
 611                        return 1;
 612                if (msr & MSR_VSX) {
 613                        if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
 614                                                      current))
 615                                return 1;
 616                } else {
 617                        if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
 618                                return 1;
 619                }
 620
 621                msr |= MSR_VSX;
 622        }
 623#endif /* CONFIG_VSX */
 624#ifdef CONFIG_SPE
 625        /* SPE regs are not checkpointed with TM, so this section is
 626         * simply the same as in save_user_regs().
 627         */
 628        if (current->thread.used_spe) {
 629                flush_spe_to_thread(current);
 630                if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 631                                   ELF_NEVRREG * sizeof(u32)))
 632                        return 1;
 633                /* set MSR_SPE in the saved MSR value to indicate that
 634                 * frame->mc_vregs contains valid data */
 635                msr |= MSR_SPE;
 636        }
 637
 638        /* We always copy to/from spefscr */
 639        if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 640                return 1;
 641#endif /* CONFIG_SPE */
 642
 643        if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 644                return 1;
 645        if (sigret) {
 646                /* Set up the sigreturn trampoline: li r0,sigret; sc */
 647                if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
 648                    || __put_user(0x44000002UL, &frame->tramp[1]))
 649                        return 1;
 650                flush_icache_range((unsigned long) &frame->tramp[0],
 651                                   (unsigned long) &frame->tramp[2]);
 652        }
 653
 654        return 0;
 655}
 656#endif
 657
 658/*
 659 * Restore the current user register values from the user stack,
 660 * (except for MSR).
 661 */
 662static long restore_user_regs(struct pt_regs *regs,
 663                              struct mcontext __user *sr, int sig)
 664{
 665        long err;
 666        unsigned int save_r2 = 0;
 667        unsigned long msr;
 668#ifdef CONFIG_VSX
 669        int i;
 670#endif
 671
 672        /*
 673         * restore general registers but not including MSR or SOFTE. Also
 674         * take care of keeping r2 (TLS) intact if not a signal
 675         */
 676        if (!sig)
 677                save_r2 = (unsigned int)regs->gpr[2];
 678        err = restore_general_regs(regs, sr);
 679        regs->trap = 0;
 680        err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 681        if (!sig)
 682                regs->gpr[2] = (unsigned long) save_r2;
 683        if (err)
 684                return 1;
 685
 686        /* if doing signal return, restore the previous little-endian mode */
 687        if (sig)
 688                regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 689
 690        /*
 691         * Do this before updating the thread state in
 692         * current->thread.fpr/vr/evr.  That way, if we get preempted
 693         * and another task grabs the FPU/Altivec/SPE, it won't be
 694         * tempted to save the current CPU state into the thread_struct
 695         * and corrupt what we are writing there.
 696         */
 697        discard_lazy_cpu_state();
 698
 699#ifdef CONFIG_ALTIVEC
 700        /*
 701         * Force the process to reload the altivec registers from
 702         * current->thread when it next does altivec instructions
 703         */
 704        regs->msr &= ~MSR_VEC;
 705        if (msr & MSR_VEC) {
 706                /* restore altivec registers from the stack */
 707                if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 708                                     sizeof(sr->mc_vregs)))
 709                        return 1;
 710        } else if (current->thread.used_vr)
 711                memset(&current->thread.vr_state, 0,
 712                       ELF_NVRREG * sizeof(vector128));
 713
 714        /* Always get VRSAVE back */
 715        if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
 716                return 1;
 717        if (cpu_has_feature(CPU_FTR_ALTIVEC))
 718                mtspr(SPRN_VRSAVE, current->thread.vrsave);
 719#endif /* CONFIG_ALTIVEC */
 720        if (copy_fpr_from_user(current, &sr->mc_fregs))
 721                return 1;
 722
 723#ifdef CONFIG_VSX
 724        /*
 725         * Force the process to reload the VSX registers from
 726         * current->thread when it next does VSX instruction.
 727         */
 728        regs->msr &= ~MSR_VSX;
 729        if (msr & MSR_VSX) {
 730                /*
 731                 * Restore altivec registers from the stack to a local
 732                 * buffer, then write this out to the thread_struct
 733                 */
 734                if (copy_vsx_from_user(current, &sr->mc_vsregs))
 735                        return 1;
 736        } else if (current->thread.used_vsr)
 737                for (i = 0; i < 32 ; i++)
 738                        current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 739#endif /* CONFIG_VSX */
 740        /*
 741         * force the process to reload the FP registers from
 742         * current->thread when it next does FP instructions
 743         */
 744        regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 745
 746#ifdef CONFIG_SPE
 747        /* force the process to reload the spe registers from
 748           current->thread when it next does spe instructions */
 749        regs->msr &= ~MSR_SPE;
 750        if (msr & MSR_SPE) {
 751                /* restore spe registers from the stack */
 752                if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 753                                     ELF_NEVRREG * sizeof(u32)))
 754                        return 1;
 755        } else if (current->thread.used_spe)
 756                memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 757
 758        /* Always get SPEFSCR back */
 759        if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
 760                return 1;
 761#endif /* CONFIG_SPE */
 762
 763        return 0;
 764}
 765
 766#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 767/*
 768 * Restore the current user register values from the user stack, except for
 769 * MSR, and recheckpoint the original checkpointed register state for processes
 770 * in transactions.
 771 */
 772static long restore_tm_user_regs(struct pt_regs *regs,
 773                                 struct mcontext __user *sr,
 774                                 struct mcontext __user *tm_sr)
 775{
 776        long err;
 777        unsigned long msr, msr_hi;
 778#ifdef CONFIG_VSX
 779        int i;
 780#endif
 781
 782        /*
 783         * restore general registers but not including MSR or SOFTE. Also
 784         * take care of keeping r2 (TLS) intact if not a signal.
 785         * See comment in signal_64.c:restore_tm_sigcontexts();
 786         * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
 787         * were set by the signal delivery.
 788         */
 789        err = restore_general_regs(regs, tm_sr);
 790        err |= restore_general_regs(&current->thread.ckpt_regs, sr);
 791
 792        err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
 793
 794        err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 795        if (err)
 796                return 1;
 797
 798        /* Restore the previous little-endian mode */
 799        regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 800
 801        /*
 802         * Do this before updating the thread state in
 803         * current->thread.fpr/vr/evr.  That way, if we get preempted
 804         * and another task grabs the FPU/Altivec/SPE, it won't be
 805         * tempted to save the current CPU state into the thread_struct
 806         * and corrupt what we are writing there.
 807         */
 808        discard_lazy_cpu_state();
 809
 810#ifdef CONFIG_ALTIVEC
 811        regs->msr &= ~MSR_VEC;
 812        if (msr & MSR_VEC) {
 813                /* restore altivec registers from the stack */
 814                if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 815                                     sizeof(sr->mc_vregs)) ||
 816                    __copy_from_user(&current->thread.transact_vr,
 817                                     &tm_sr->mc_vregs,
 818                                     sizeof(sr->mc_vregs)))
 819                        return 1;
 820        } else if (current->thread.used_vr) {
 821                memset(&current->thread.vr_state, 0,
 822                       ELF_NVRREG * sizeof(vector128));
 823                memset(&current->thread.transact_vr, 0,
 824                       ELF_NVRREG * sizeof(vector128));
 825        }
 826
 827        /* Always get VRSAVE back */
 828        if (__get_user(current->thread.vrsave,
 829                       (u32 __user *)&sr->mc_vregs[32]) ||
 830            __get_user(current->thread.transact_vrsave,
 831                       (u32 __user *)&tm_sr->mc_vregs[32]))
 832                return 1;
 833        if (cpu_has_feature(CPU_FTR_ALTIVEC))
 834                mtspr(SPRN_VRSAVE, current->thread.vrsave);
 835#endif /* CONFIG_ALTIVEC */
 836
 837        regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 838
 839        if (copy_fpr_from_user(current, &sr->mc_fregs) ||
 840            copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
 841                return 1;
 842
 843#ifdef CONFIG_VSX
 844        regs->msr &= ~MSR_VSX;
 845        if (msr & MSR_VSX) {
 846                /*
 847                 * Restore altivec registers from the stack to a local
 848                 * buffer, then write this out to the thread_struct
 849                 */
 850                if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
 851                    copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
 852                        return 1;
 853        } else if (current->thread.used_vsr)
 854                for (i = 0; i < 32 ; i++) {
 855                        current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 856                        current->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = 0;
 857                }
 858#endif /* CONFIG_VSX */
 859
 860#ifdef CONFIG_SPE
 861        /* SPE regs are not checkpointed with TM, so this section is
 862         * simply the same as in restore_user_regs().
 863         */
 864        regs->msr &= ~MSR_SPE;
 865        if (msr & MSR_SPE) {
 866                if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 867                                     ELF_NEVRREG * sizeof(u32)))
 868                        return 1;
 869        } else if (current->thread.used_spe)
 870                memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 871
 872        /* Always get SPEFSCR back */
 873        if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
 874                       + ELF_NEVRREG))
 875                return 1;
 876#endif /* CONFIG_SPE */
 877
 878        /* Now, recheckpoint.  This loads up all of the checkpointed (older)
 879         * registers, including FP and V[S]Rs.  After recheckpointing, the
 880         * transactional versions should be loaded.
 881         */
 882        tm_enable();
 883        /* Make sure the transaction is marked as failed */
 884        current->thread.tm_texasr |= TEXASR_FS;
 885        /* This loads the checkpointed FP/VEC state, if used */
 886        tm_recheckpoint(&current->thread, msr);
 887        /* Get the top half of the MSR */
 888        if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
 889                return 1;
 890        /* Pull in MSR TM from user context */
 891        regs->msr = (regs->msr & ~MSR_TS_MASK) | ((msr_hi<<32) & MSR_TS_MASK);
 892
 893        /* This loads the speculative FP/VEC state, if used */
 894        if (msr & MSR_FP) {
 895                do_load_up_transact_fpu(&current->thread);
 896                regs->msr |= (MSR_FP | current->thread.fpexc_mode);
 897        }
 898#ifdef CONFIG_ALTIVEC
 899        if (msr & MSR_VEC) {
 900                do_load_up_transact_altivec(&current->thread);
 901                regs->msr |= MSR_VEC;
 902        }
 903#endif
 904
 905        return 0;
 906}
 907#endif
 908
 909#ifdef CONFIG_PPC64
 910int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s)
 911{
 912        int err;
 913
 914        if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
 915                return -EFAULT;
 916
 917        /* If you change siginfo_t structure, please be sure
 918         * this code is fixed accordingly.
 919         * It should never copy any pad contained in the structure
 920         * to avoid security leaks, but must copy the generic
 921         * 3 ints plus the relevant union member.
 922         * This routine must convert siginfo from 64bit to 32bit as well
 923         * at the same time.
 924         */
 925        err = __put_user(s->si_signo, &d->si_signo);
 926        err |= __put_user(s->si_errno, &d->si_errno);
 927        err |= __put_user((short)s->si_code, &d->si_code);
 928        if (s->si_code < 0)
 929                err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
 930                                      SI_PAD_SIZE32);
 931        else switch(s->si_code >> 16) {
 932        case __SI_CHLD >> 16:
 933                err |= __put_user(s->si_pid, &d->si_pid);
 934                err |= __put_user(s->si_uid, &d->si_uid);
 935                err |= __put_user(s->si_utime, &d->si_utime);
 936                err |= __put_user(s->si_stime, &d->si_stime);
 937                err |= __put_user(s->si_status, &d->si_status);
 938                break;
 939        case __SI_FAULT >> 16:
 940                err |= __put_user((unsigned int)(unsigned long)s->si_addr,
 941                                  &d->si_addr);
 942                break;
 943        case __SI_POLL >> 16:
 944                err |= __put_user(s->si_band, &d->si_band);
 945                err |= __put_user(s->si_fd, &d->si_fd);
 946                break;
 947        case __SI_TIMER >> 16:
 948                err |= __put_user(s->si_tid, &d->si_tid);
 949                err |= __put_user(s->si_overrun, &d->si_overrun);
 950                err |= __put_user(s->si_int, &d->si_int);
 951                break;
 952        case __SI_RT >> 16: /* This is not generated by the kernel as of now.  */
 953        case __SI_MESGQ >> 16:
 954                err |= __put_user(s->si_int, &d->si_int);
 955                /* fallthrough */
 956        case __SI_KILL >> 16:
 957        default:
 958                err |= __put_user(s->si_pid, &d->si_pid);
 959                err |= __put_user(s->si_uid, &d->si_uid);
 960                break;
 961        }
 962        return err;
 963}
 964
 965#define copy_siginfo_to_user    copy_siginfo_to_user32
 966
 967int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
 968{
 969        memset(to, 0, sizeof *to);
 970
 971        if (copy_from_user(to, from, 3*sizeof(int)) ||
 972            copy_from_user(to->_sifields._pad,
 973                           from->_sifields._pad, SI_PAD_SIZE32))
 974                return -EFAULT;
 975
 976        return 0;
 977}
 978#endif /* CONFIG_PPC64 */
 979
 980/*
 981 * Set up a signal frame for a "real-time" signal handler
 982 * (one which gets siginfo).
 983 */
 984int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
 985                       struct pt_regs *regs)
 986{
 987        struct rt_sigframe __user *rt_sf;
 988        struct mcontext __user *frame;
 989        struct mcontext __user *tm_frame = NULL;
 990        void __user *addr;
 991        unsigned long newsp = 0;
 992        int sigret;
 993        unsigned long tramp;
 994
 995        /* Set up Signal Frame */
 996        /* Put a Real Time Context onto stack */
 997        rt_sf = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
 998        addr = rt_sf;
 999        if (unlikely(rt_sf == NULL))
1000                goto badframe;
1001
1002        /* Put the siginfo & fill in most of the ucontext */
1003        if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
1004            || __put_user(0, &rt_sf->uc.uc_flags)
1005            || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
1006            || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
1007                    &rt_sf->uc.uc_regs)
1008            || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
1009                goto badframe;
1010
1011        /* Save user registers on the stack */
1012        frame = &rt_sf->uc.uc_mcontext;
1013        addr = frame;
1014        if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
1015                sigret = 0;
1016                tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
1017        } else {
1018                sigret = __NR_rt_sigreturn;
1019                tramp = (unsigned long) frame->tramp;
1020        }
1021
1022#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1023        tm_frame = &rt_sf->uc_transact.uc_mcontext;
1024        if (MSR_TM_ACTIVE(regs->msr)) {
1025                if (__put_user((unsigned long)&rt_sf->uc_transact,
1026                               &rt_sf->uc.uc_link) ||
1027                    __put_user((unsigned long)tm_frame,
1028                               &rt_sf->uc_transact.uc_regs))
1029                        goto badframe;
1030                if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1031                        goto badframe;
1032        }
1033        else
1034#endif
1035        {
1036                if (__put_user(0, &rt_sf->uc.uc_link))
1037                        goto badframe;
1038                if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1039                        goto badframe;
1040        }
1041        regs->link = tramp;
1042
1043        current->thread.fp_state.fpscr = 0;     /* turn off all fp exceptions */
1044
1045        /* create a stack frame for the caller of the handler */
1046        newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1047        addr = (void __user *)regs->gpr[1];
1048        if (put_user(regs->gpr[1], (u32 __user *)newsp))
1049                goto badframe;
1050
1051        /* Fill registers for signal handler */
1052        regs->gpr[1] = newsp;
1053        regs->gpr[3] = ksig->sig;
1054        regs->gpr[4] = (unsigned long) &rt_sf->info;
1055        regs->gpr[5] = (unsigned long) &rt_sf->uc;
1056        regs->gpr[6] = (unsigned long) rt_sf;
1057        regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
1058        /* enter the signal handler in native-endian mode */
1059        regs->msr &= ~MSR_LE;
1060        regs->msr |= (MSR_KERNEL & MSR_LE);
1061        return 0;
1062
1063badframe:
1064        if (show_unhandled_signals)
1065                printk_ratelimited(KERN_INFO
1066                                   "%s[%d]: bad frame in handle_rt_signal32: "
1067                                   "%p nip %08lx lr %08lx\n",
1068                                   current->comm, current->pid,
1069                                   addr, regs->nip, regs->link);
1070
1071        return 1;
1072}
1073
1074static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1075{
1076        sigset_t set;
1077        struct mcontext __user *mcp;
1078
1079        if (get_sigset_t(&set, &ucp->uc_sigmask))
1080                return -EFAULT;
1081#ifdef CONFIG_PPC64
1082        {
1083                u32 cmcp;
1084
1085                if (__get_user(cmcp, &ucp->uc_regs))
1086                        return -EFAULT;
1087                mcp = (struct mcontext __user *)(u64)cmcp;
1088                /* no need to check access_ok(mcp), since mcp < 4GB */
1089        }
1090#else
1091        if (__get_user(mcp, &ucp->uc_regs))
1092                return -EFAULT;
1093        if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1094                return -EFAULT;
1095#endif
1096        set_current_blocked(&set);
1097        if (restore_user_regs(regs, mcp, sig))
1098                return -EFAULT;
1099
1100        return 0;
1101}
1102
1103#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1104static int do_setcontext_tm(struct ucontext __user *ucp,
1105                            struct ucontext __user *tm_ucp,
1106                            struct pt_regs *regs)
1107{
1108        sigset_t set;
1109        struct mcontext __user *mcp;
1110        struct mcontext __user *tm_mcp;
1111        u32 cmcp;
1112        u32 tm_cmcp;
1113
1114        if (get_sigset_t(&set, &ucp->uc_sigmask))
1115                return -EFAULT;
1116
1117        if (__get_user(cmcp, &ucp->uc_regs) ||
1118            __get_user(tm_cmcp, &tm_ucp->uc_regs))
1119                return -EFAULT;
1120        mcp = (struct mcontext __user *)(u64)cmcp;
1121        tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1122        /* no need to check access_ok(mcp), since mcp < 4GB */
1123
1124        set_current_blocked(&set);
1125        if (restore_tm_user_regs(regs, mcp, tm_mcp))
1126                return -EFAULT;
1127
1128        return 0;
1129}
1130#endif
1131
1132long sys_swapcontext(struct ucontext __user *old_ctx,
1133                     struct ucontext __user *new_ctx,
1134                     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1135{
1136        unsigned char tmp;
1137        int ctx_has_vsx_region = 0;
1138
1139#ifdef CONFIG_PPC64
1140        unsigned long new_msr = 0;
1141
1142        if (new_ctx) {
1143                struct mcontext __user *mcp;
1144                u32 cmcp;
1145
1146                /*
1147                 * Get pointer to the real mcontext.  No need for
1148                 * access_ok since we are dealing with compat
1149                 * pointers.
1150                 */
1151                if (__get_user(cmcp, &new_ctx->uc_regs))
1152                        return -EFAULT;
1153                mcp = (struct mcontext __user *)(u64)cmcp;
1154                if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1155                        return -EFAULT;
1156        }
1157        /*
1158         * Check that the context is not smaller than the original
1159         * size (with VMX but without VSX)
1160         */
1161        if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1162                return -EINVAL;
1163        /*
1164         * If the new context state sets the MSR VSX bits but
1165         * it doesn't provide VSX state.
1166         */
1167        if ((ctx_size < sizeof(struct ucontext)) &&
1168            (new_msr & MSR_VSX))
1169                return -EINVAL;
1170        /* Does the context have enough room to store VSX data? */
1171        if (ctx_size >= sizeof(struct ucontext))
1172                ctx_has_vsx_region = 1;
1173#else
1174        /* Context size is for future use. Right now, we only make sure
1175         * we are passed something we understand
1176         */
1177        if (ctx_size < sizeof(struct ucontext))
1178                return -EINVAL;
1179#endif
1180        if (old_ctx != NULL) {
1181                struct mcontext __user *mctx;
1182
1183                /*
1184                 * old_ctx might not be 16-byte aligned, in which
1185                 * case old_ctx->uc_mcontext won't be either.
1186                 * Because we have the old_ctx->uc_pad2 field
1187                 * before old_ctx->uc_mcontext, we need to round down
1188                 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1189                 */
1190                mctx = (struct mcontext __user *)
1191                        ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1192                if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1193                    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1194                    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1195                    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1196                        return -EFAULT;
1197        }
1198        if (new_ctx == NULL)
1199                return 0;
1200        if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1201            || __get_user(tmp, (u8 __user *) new_ctx)
1202            || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1203                return -EFAULT;
1204
1205        /*
1206         * If we get a fault copying the context into the kernel's
1207         * image of the user's registers, we can't just return -EFAULT
1208         * because the user's registers will be corrupted.  For instance
1209         * the NIP value may have been updated but not some of the
1210         * other registers.  Given that we have done the access_ok
1211         * and successfully read the first and last bytes of the region
1212         * above, this should only happen in an out-of-memory situation
1213         * or if another thread unmaps the region containing the context.
1214         * We kill the task with a SIGSEGV in this situation.
1215         */
1216        if (do_setcontext(new_ctx, regs, 0))
1217                do_exit(SIGSEGV);
1218
1219        set_thread_flag(TIF_RESTOREALL);
1220        return 0;
1221}
1222
1223long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1224                     struct pt_regs *regs)
1225{
1226        struct rt_sigframe __user *rt_sf;
1227#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1228        struct ucontext __user *uc_transact;
1229        unsigned long msr_hi;
1230        unsigned long tmp;
1231        int tm_restore = 0;
1232#endif
1233        /* Always make any pending restarted system calls return -EINTR */
1234        current->restart_block.fn = do_no_restart_syscall;
1235
1236        rt_sf = (struct rt_sigframe __user *)
1237                (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1238        if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1239                goto bad;
1240#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1241        if (__get_user(tmp, &rt_sf->uc.uc_link))
1242                goto bad;
1243        uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1244        if (uc_transact) {
1245                u32 cmcp;
1246                struct mcontext __user *mcp;
1247
1248                if (__get_user(cmcp, &uc_transact->uc_regs))
1249                        return -EFAULT;
1250                mcp = (struct mcontext __user *)(u64)cmcp;
1251                /* The top 32 bits of the MSR are stashed in the transactional
1252                 * ucontext. */
1253                if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1254                        goto bad;
1255
1256                if (MSR_TM_ACTIVE(msr_hi<<32)) {
1257                        /* We only recheckpoint on return if we're
1258                         * transaction.
1259                         */
1260                        tm_restore = 1;
1261                        if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1262                                goto bad;
1263                }
1264        }
1265        if (!tm_restore)
1266                /* Fall through, for non-TM restore */
1267#endif
1268        if (do_setcontext(&rt_sf->uc, regs, 1))
1269                goto bad;
1270
1271        /*
1272         * It's not clear whether or why it is desirable to save the
1273         * sigaltstack setting on signal delivery and restore it on
1274         * signal return.  But other architectures do this and we have
1275         * always done it up until now so it is probably better not to
1276         * change it.  -- paulus
1277         */
1278#ifdef CONFIG_PPC64
1279        if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1280                goto bad;
1281#else
1282        if (restore_altstack(&rt_sf->uc.uc_stack))
1283                goto bad;
1284#endif
1285        set_thread_flag(TIF_RESTOREALL);
1286        return 0;
1287
1288 bad:
1289        if (show_unhandled_signals)
1290                printk_ratelimited(KERN_INFO
1291                                   "%s[%d]: bad frame in sys_rt_sigreturn: "
1292                                   "%p nip %08lx lr %08lx\n",
1293                                   current->comm, current->pid,
1294                                   rt_sf, regs->nip, regs->link);
1295
1296        force_sig(SIGSEGV, current);
1297        return 0;
1298}
1299
1300#ifdef CONFIG_PPC32
1301int sys_debug_setcontext(struct ucontext __user *ctx,
1302                         int ndbg, struct sig_dbg_op __user *dbg,
1303                         int r6, int r7, int r8,
1304                         struct pt_regs *regs)
1305{
1306        struct sig_dbg_op op;
1307        int i;
1308        unsigned char tmp;
1309        unsigned long new_msr = regs->msr;
1310#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1311        unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1312#endif
1313
1314        for (i=0; i<ndbg; i++) {
1315                if (copy_from_user(&op, dbg + i, sizeof(op)))
1316                        return -EFAULT;
1317                switch (op.dbg_type) {
1318                case SIG_DBG_SINGLE_STEPPING:
1319#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1320                        if (op.dbg_value) {
1321                                new_msr |= MSR_DE;
1322                                new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1323                        } else {
1324                                new_dbcr0 &= ~DBCR0_IC;
1325                                if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1326                                                current->thread.debug.dbcr1)) {
1327                                        new_msr &= ~MSR_DE;
1328                                        new_dbcr0 &= ~DBCR0_IDM;
1329                                }
1330                        }
1331#else
1332                        if (op.dbg_value)
1333                                new_msr |= MSR_SE;
1334                        else
1335                                new_msr &= ~MSR_SE;
1336#endif
1337                        break;
1338                case SIG_DBG_BRANCH_TRACING:
1339#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1340                        return -EINVAL;
1341#else
1342                        if (op.dbg_value)
1343                                new_msr |= MSR_BE;
1344                        else
1345                                new_msr &= ~MSR_BE;
1346#endif
1347                        break;
1348
1349                default:
1350                        return -EINVAL;
1351                }
1352        }
1353
1354        /* We wait until here to actually install the values in the
1355           registers so if we fail in the above loop, it will not
1356           affect the contents of these registers.  After this point,
1357           failure is a problem, anyway, and it's very unlikely unless
1358           the user is really doing something wrong. */
1359        regs->msr = new_msr;
1360#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1361        current->thread.debug.dbcr0 = new_dbcr0;
1362#endif
1363
1364        if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1365            || __get_user(tmp, (u8 __user *) ctx)
1366            || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1367                return -EFAULT;
1368
1369        /*
1370         * If we get a fault copying the context into the kernel's
1371         * image of the user's registers, we can't just return -EFAULT
1372         * because the user's registers will be corrupted.  For instance
1373         * the NIP value may have been updated but not some of the
1374         * other registers.  Given that we have done the access_ok
1375         * and successfully read the first and last bytes of the region
1376         * above, this should only happen in an out-of-memory situation
1377         * or if another thread unmaps the region containing the context.
1378         * We kill the task with a SIGSEGV in this situation.
1379         */
1380        if (do_setcontext(ctx, regs, 1)) {
1381                if (show_unhandled_signals)
1382                        printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1383                                           "sys_debug_setcontext: %p nip %08lx "
1384                                           "lr %08lx\n",
1385                                           current->comm, current->pid,
1386                                           ctx, regs->nip, regs->link);
1387
1388                force_sig(SIGSEGV, current);
1389                goto out;
1390        }
1391
1392        /*
1393         * It's not clear whether or why it is desirable to save the
1394         * sigaltstack setting on signal delivery and restore it on
1395         * signal return.  But other architectures do this and we have
1396         * always done it up until now so it is probably better not to
1397         * change it.  -- paulus
1398         */
1399        restore_altstack(&ctx->uc_stack);
1400
1401        set_thread_flag(TIF_RESTOREALL);
1402 out:
1403        return 0;
1404}
1405#endif
1406
1407/*
1408 * OK, we're invoking a handler
1409 */
1410int handle_signal32(struct ksignal *ksig, sigset_t *oldset, struct pt_regs *regs)
1411{
1412        struct sigcontext __user *sc;
1413        struct sigframe __user *frame;
1414        struct mcontext __user *tm_mctx = NULL;
1415        unsigned long newsp = 0;
1416        int sigret;
1417        unsigned long tramp;
1418
1419        /* Set up Signal Frame */
1420        frame = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*frame), 1);
1421        if (unlikely(frame == NULL))
1422                goto badframe;
1423        sc = (struct sigcontext __user *) &frame->sctx;
1424
1425#if _NSIG != 64
1426#error "Please adjust handle_signal()"
1427#endif
1428        if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1429            || __put_user(oldset->sig[0], &sc->oldmask)
1430#ifdef CONFIG_PPC64
1431            || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1432#else
1433            || __put_user(oldset->sig[1], &sc->_unused[3])
1434#endif
1435            || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1436            || __put_user(ksig->sig, &sc->signal))
1437                goto badframe;
1438
1439        if (vdso32_sigtramp && current->mm->context.vdso_base) {
1440                sigret = 0;
1441                tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1442        } else {
1443                sigret = __NR_sigreturn;
1444                tramp = (unsigned long) frame->mctx.tramp;
1445        }
1446
1447#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1448        tm_mctx = &frame->mctx_transact;
1449        if (MSR_TM_ACTIVE(regs->msr)) {
1450                if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1451                                      sigret))
1452                        goto badframe;
1453        }
1454        else
1455#endif
1456        {
1457                if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1458                        goto badframe;
1459        }
1460
1461        regs->link = tramp;
1462
1463        current->thread.fp_state.fpscr = 0;     /* turn off all fp exceptions */
1464
1465        /* create a stack frame for the caller of the handler */
1466        newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1467        if (put_user(regs->gpr[1], (u32 __user *)newsp))
1468                goto badframe;
1469
1470        regs->gpr[1] = newsp;
1471        regs->gpr[3] = ksig->sig;
1472        regs->gpr[4] = (unsigned long) sc;
1473        regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1474        /* enter the signal handler in big-endian mode */
1475        regs->msr &= ~MSR_LE;
1476        return 0;
1477
1478badframe:
1479        if (show_unhandled_signals)
1480                printk_ratelimited(KERN_INFO
1481                                   "%s[%d]: bad frame in handle_signal32: "
1482                                   "%p nip %08lx lr %08lx\n",
1483                                   current->comm, current->pid,
1484                                   frame, regs->nip, regs->link);
1485
1486        return 1;
1487}
1488
1489/*
1490 * Do a signal return; undo the signal stack.
1491 */
1492long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1493                       struct pt_regs *regs)
1494{
1495        struct sigframe __user *sf;
1496        struct sigcontext __user *sc;
1497        struct sigcontext sigctx;
1498        struct mcontext __user *sr;
1499        void __user *addr;
1500        sigset_t set;
1501#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1502        struct mcontext __user *mcp, *tm_mcp;
1503        unsigned long msr_hi;
1504#endif
1505
1506        /* Always make any pending restarted system calls return -EINTR */
1507        current->restart_block.fn = do_no_restart_syscall;
1508
1509        sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1510        sc = &sf->sctx;
1511        addr = sc;
1512        if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1513                goto badframe;
1514
1515#ifdef CONFIG_PPC64
1516        /*
1517         * Note that PPC32 puts the upper 32 bits of the sigmask in the
1518         * unused part of the signal stackframe
1519         */
1520        set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1521#else
1522        set.sig[0] = sigctx.oldmask;
1523        set.sig[1] = sigctx._unused[3];
1524#endif
1525        set_current_blocked(&set);
1526
1527#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1528        mcp = (struct mcontext __user *)&sf->mctx;
1529        tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1530        if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1531                goto badframe;
1532        if (MSR_TM_ACTIVE(msr_hi<<32)) {
1533                if (!cpu_has_feature(CPU_FTR_TM))
1534                        goto badframe;
1535                if (restore_tm_user_regs(regs, mcp, tm_mcp))
1536                        goto badframe;
1537        } else
1538#endif
1539        {
1540                sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1541                addr = sr;
1542                if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1543                    || restore_user_regs(regs, sr, 1))
1544                        goto badframe;
1545        }
1546
1547        set_thread_flag(TIF_RESTOREALL);
1548        return 0;
1549
1550badframe:
1551        if (show_unhandled_signals)
1552                printk_ratelimited(KERN_INFO
1553                                   "%s[%d]: bad frame in sys_sigreturn: "
1554                                   "%p nip %08lx lr %08lx\n",
1555                                   current->comm, current->pid,
1556                                   addr, regs->nip, regs->link);
1557
1558        force_sig(SIGSEGV, current);
1559        return 0;
1560}
1561