linux/arch/powerpc/kernel/traps.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
   3 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
   4 *
   5 *  This program is free software; you can redistribute it and/or
   6 *  modify it under the terms of the GNU General Public License
   7 *  as published by the Free Software Foundation; either version
   8 *  2 of the License, or (at your option) any later version.
   9 *
  10 *  Modified by Cort Dougan (cort@cs.nmt.edu)
  11 *  and Paul Mackerras (paulus@samba.org)
  12 */
  13
  14/*
  15 * This file handles the architecture-dependent parts of hardware exceptions
  16 */
  17
  18#include <linux/errno.h>
  19#include <linux/sched.h>
  20#include <linux/kernel.h>
  21#include <linux/mm.h>
  22#include <linux/stddef.h>
  23#include <linux/unistd.h>
  24#include <linux/ptrace.h>
  25#include <linux/user.h>
  26#include <linux/interrupt.h>
  27#include <linux/init.h>
  28#include <linux/module.h>
  29#include <linux/prctl.h>
  30#include <linux/delay.h>
  31#include <linux/kprobes.h>
  32#include <linux/kexec.h>
  33#include <linux/backlight.h>
  34#include <linux/bug.h>
  35#include <linux/kdebug.h>
  36#include <linux/debugfs.h>
  37#include <linux/ratelimit.h>
  38#include <linux/context_tracking.h>
  39
  40#include <asm/emulated_ops.h>
  41#include <asm/pgtable.h>
  42#include <asm/uaccess.h>
  43#include <asm/io.h>
  44#include <asm/machdep.h>
  45#include <asm/rtas.h>
  46#include <asm/pmc.h>
  47#include <asm/reg.h>
  48#ifdef CONFIG_PMAC_BACKLIGHT
  49#include <asm/backlight.h>
  50#endif
  51#ifdef CONFIG_PPC64
  52#include <asm/firmware.h>
  53#include <asm/processor.h>
  54#include <asm/tm.h>
  55#endif
  56#include <asm/kexec.h>
  57#include <asm/ppc-opcode.h>
  58#include <asm/rio.h>
  59#include <asm/fadump.h>
  60#include <asm/switch_to.h>
  61#include <asm/tm.h>
  62#include <asm/debug.h>
  63#include <sysdev/fsl_pci.h>
  64
  65#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
  66int (*__debugger)(struct pt_regs *regs) __read_mostly;
  67int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
  68int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
  69int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
  70int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
  71int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
  72int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
  73
  74EXPORT_SYMBOL(__debugger);
  75EXPORT_SYMBOL(__debugger_ipi);
  76EXPORT_SYMBOL(__debugger_bpt);
  77EXPORT_SYMBOL(__debugger_sstep);
  78EXPORT_SYMBOL(__debugger_iabr_match);
  79EXPORT_SYMBOL(__debugger_break_match);
  80EXPORT_SYMBOL(__debugger_fault_handler);
  81#endif
  82
  83/* Transactional Memory trap debug */
  84#ifdef TM_DEBUG_SW
  85#define TM_DEBUG(x...) printk(KERN_INFO x)
  86#else
  87#define TM_DEBUG(x...) do { } while(0)
  88#endif
  89
  90/*
  91 * Trap & Exception support
  92 */
  93
  94#ifdef CONFIG_PMAC_BACKLIGHT
  95static void pmac_backlight_unblank(void)
  96{
  97        mutex_lock(&pmac_backlight_mutex);
  98        if (pmac_backlight) {
  99                struct backlight_properties *props;
 100
 101                props = &pmac_backlight->props;
 102                props->brightness = props->max_brightness;
 103                props->power = FB_BLANK_UNBLANK;
 104                backlight_update_status(pmac_backlight);
 105        }
 106        mutex_unlock(&pmac_backlight_mutex);
 107}
 108#else
 109static inline void pmac_backlight_unblank(void) { }
 110#endif
 111
 112static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 113static int die_owner = -1;
 114static unsigned int die_nest_count;
 115static int die_counter;
 116
 117static unsigned __kprobes long oops_begin(struct pt_regs *regs)
 118{
 119        int cpu;
 120        unsigned long flags;
 121
 122        if (debugger(regs))
 123                return 1;
 124
 125        oops_enter();
 126
 127        /* racy, but better than risking deadlock. */
 128        raw_local_irq_save(flags);
 129        cpu = smp_processor_id();
 130        if (!arch_spin_trylock(&die_lock)) {
 131                if (cpu == die_owner)
 132                        /* nested oops. should stop eventually */;
 133                else
 134                        arch_spin_lock(&die_lock);
 135        }
 136        die_nest_count++;
 137        die_owner = cpu;
 138        console_verbose();
 139        bust_spinlocks(1);
 140        if (machine_is(powermac))
 141                pmac_backlight_unblank();
 142        return flags;
 143}
 144
 145static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
 146                               int signr)
 147{
 148        bust_spinlocks(0);
 149        die_owner = -1;
 150        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 151        die_nest_count--;
 152        oops_exit();
 153        printk("\n");
 154        if (!die_nest_count)
 155                /* Nest count reaches zero, release the lock. */
 156                arch_spin_unlock(&die_lock);
 157        raw_local_irq_restore(flags);
 158
 159        crash_fadump(regs, "die oops");
 160
 161        /*
 162         * A system reset (0x100) is a request to dump, so we always send
 163         * it through the crashdump code.
 164         */
 165        if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
 166                crash_kexec(regs);
 167
 168                /*
 169                 * We aren't the primary crash CPU. We need to send it
 170                 * to a holding pattern to avoid it ending up in the panic
 171                 * code.
 172                 */
 173                crash_kexec_secondary(regs);
 174        }
 175
 176        if (!signr)
 177                return;
 178
 179        /*
 180         * While our oops output is serialised by a spinlock, output
 181         * from panic() called below can race and corrupt it. If we
 182         * know we are going to panic, delay for 1 second so we have a
 183         * chance to get clean backtraces from all CPUs that are oopsing.
 184         */
 185        if (in_interrupt() || panic_on_oops || !current->pid ||
 186            is_global_init(current)) {
 187                mdelay(MSEC_PER_SEC);
 188        }
 189
 190        if (in_interrupt())
 191                panic("Fatal exception in interrupt");
 192        if (panic_on_oops)
 193                panic("Fatal exception");
 194        do_exit(signr);
 195}
 196
 197static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
 198{
 199        printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
 200#ifdef CONFIG_PREEMPT
 201        printk("PREEMPT ");
 202#endif
 203#ifdef CONFIG_SMP
 204        printk("SMP NR_CPUS=%d ", NR_CPUS);
 205#endif
 206#ifdef CONFIG_DEBUG_PAGEALLOC
 207        printk("DEBUG_PAGEALLOC ");
 208#endif
 209#ifdef CONFIG_NUMA
 210        printk("NUMA ");
 211#endif
 212        printk("%s\n", ppc_md.name ? ppc_md.name : "");
 213
 214        if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
 215                return 1;
 216
 217        print_modules();
 218        show_regs(regs);
 219
 220        return 0;
 221}
 222
 223void die(const char *str, struct pt_regs *regs, long err)
 224{
 225        unsigned long flags = oops_begin(regs);
 226
 227        if (__die(str, regs, err))
 228                err = 0;
 229        oops_end(flags, regs, err);
 230}
 231
 232void user_single_step_siginfo(struct task_struct *tsk,
 233                                struct pt_regs *regs, siginfo_t *info)
 234{
 235        memset(info, 0, sizeof(*info));
 236        info->si_signo = SIGTRAP;
 237        info->si_code = TRAP_TRACE;
 238        info->si_addr = (void __user *)regs->nip;
 239}
 240
 241void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
 242{
 243        siginfo_t info;
 244        const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 245                        "at %08lx nip %08lx lr %08lx code %x\n";
 246        const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 247                        "at %016lx nip %016lx lr %016lx code %x\n";
 248
 249        if (!user_mode(regs)) {
 250                die("Exception in kernel mode", regs, signr);
 251                return;
 252        }
 253
 254        if (show_unhandled_signals && unhandled_signal(current, signr)) {
 255                printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
 256                                   current->comm, current->pid, signr,
 257                                   addr, regs->nip, regs->link, code);
 258        }
 259
 260        if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
 261                local_irq_enable();
 262
 263        current->thread.trap_nr = code;
 264        memset(&info, 0, sizeof(info));
 265        info.si_signo = signr;
 266        info.si_code = code;
 267        info.si_addr = (void __user *) addr;
 268        force_sig_info(signr, &info, current);
 269}
 270
 271#ifdef CONFIG_PPC64
 272void system_reset_exception(struct pt_regs *regs)
 273{
 274        /* See if any machine dependent calls */
 275        if (ppc_md.system_reset_exception) {
 276                if (ppc_md.system_reset_exception(regs))
 277                        return;
 278        }
 279
 280        die("System Reset", regs, SIGABRT);
 281
 282        /* Must die if the interrupt is not recoverable */
 283        if (!(regs->msr & MSR_RI))
 284                panic("Unrecoverable System Reset");
 285
 286        /* What should we do here? We could issue a shutdown or hard reset. */
 287}
 288
 289/*
 290 * This function is called in real mode. Strictly no printk's please.
 291 *
 292 * regs->nip and regs->msr contains srr0 and ssr1.
 293 */
 294long machine_check_early(struct pt_regs *regs)
 295{
 296        long handled = 0;
 297
 298        __this_cpu_inc(irq_stat.mce_exceptions);
 299
 300        if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
 301                handled = cur_cpu_spec->machine_check_early(regs);
 302        return handled;
 303}
 304
 305long hmi_exception_realmode(struct pt_regs *regs)
 306{
 307        __this_cpu_inc(irq_stat.hmi_exceptions);
 308
 309        if (ppc_md.hmi_exception_early)
 310                ppc_md.hmi_exception_early(regs);
 311
 312        return 0;
 313}
 314
 315#endif
 316
 317/*
 318 * I/O accesses can cause machine checks on powermacs.
 319 * Check if the NIP corresponds to the address of a sync
 320 * instruction for which there is an entry in the exception
 321 * table.
 322 * Note that the 601 only takes a machine check on TEA
 323 * (transfer error ack) signal assertion, and does not
 324 * set any of the top 16 bits of SRR1.
 325 *  -- paulus.
 326 */
 327static inline int check_io_access(struct pt_regs *regs)
 328{
 329#ifdef CONFIG_PPC32
 330        unsigned long msr = regs->msr;
 331        const struct exception_table_entry *entry;
 332        unsigned int *nip = (unsigned int *)regs->nip;
 333
 334        if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
 335            && (entry = search_exception_tables(regs->nip)) != NULL) {
 336                /*
 337                 * Check that it's a sync instruction, or somewhere
 338                 * in the twi; isync; nop sequence that inb/inw/inl uses.
 339                 * As the address is in the exception table
 340                 * we should be able to read the instr there.
 341                 * For the debug message, we look at the preceding
 342                 * load or store.
 343                 */
 344                if (*nip == 0x60000000)         /* nop */
 345                        nip -= 2;
 346                else if (*nip == 0x4c00012c)    /* isync */
 347                        --nip;
 348                if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
 349                        /* sync or twi */
 350                        unsigned int rb;
 351
 352                        --nip;
 353                        rb = (*nip >> 11) & 0x1f;
 354                        printk(KERN_DEBUG "%s bad port %lx at %p\n",
 355                               (*nip & 0x100)? "OUT to": "IN from",
 356                               regs->gpr[rb] - _IO_BASE, nip);
 357                        regs->msr |= MSR_RI;
 358                        regs->nip = entry->fixup;
 359                        return 1;
 360                }
 361        }
 362#endif /* CONFIG_PPC32 */
 363        return 0;
 364}
 365
 366#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 367/* On 4xx, the reason for the machine check or program exception
 368   is in the ESR. */
 369#define get_reason(regs)        ((regs)->dsisr)
 370#ifndef CONFIG_FSL_BOOKE
 371#define get_mc_reason(regs)     ((regs)->dsisr)
 372#else
 373#define get_mc_reason(regs)     (mfspr(SPRN_MCSR))
 374#endif
 375#define REASON_FP               ESR_FP
 376#define REASON_ILLEGAL          (ESR_PIL | ESR_PUO)
 377#define REASON_PRIVILEGED       ESR_PPR
 378#define REASON_TRAP             ESR_PTR
 379
 380/* single-step stuff */
 381#define single_stepping(regs)   (current->thread.debug.dbcr0 & DBCR0_IC)
 382#define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
 383
 384#else
 385/* On non-4xx, the reason for the machine check or program
 386   exception is in the MSR. */
 387#define get_reason(regs)        ((regs)->msr)
 388#define get_mc_reason(regs)     ((regs)->msr)
 389#define REASON_TM               0x200000
 390#define REASON_FP               0x100000
 391#define REASON_ILLEGAL          0x80000
 392#define REASON_PRIVILEGED       0x40000
 393#define REASON_TRAP             0x20000
 394
 395#define single_stepping(regs)   ((regs)->msr & MSR_SE)
 396#define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
 397#endif
 398
 399#if defined(CONFIG_4xx)
 400int machine_check_4xx(struct pt_regs *regs)
 401{
 402        unsigned long reason = get_mc_reason(regs);
 403
 404        if (reason & ESR_IMCP) {
 405                printk("Instruction");
 406                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 407        } else
 408                printk("Data");
 409        printk(" machine check in kernel mode.\n");
 410
 411        return 0;
 412}
 413
 414int machine_check_440A(struct pt_regs *regs)
 415{
 416        unsigned long reason = get_mc_reason(regs);
 417
 418        printk("Machine check in kernel mode.\n");
 419        if (reason & ESR_IMCP){
 420                printk("Instruction Synchronous Machine Check exception\n");
 421                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 422        }
 423        else {
 424                u32 mcsr = mfspr(SPRN_MCSR);
 425                if (mcsr & MCSR_IB)
 426                        printk("Instruction Read PLB Error\n");
 427                if (mcsr & MCSR_DRB)
 428                        printk("Data Read PLB Error\n");
 429                if (mcsr & MCSR_DWB)
 430                        printk("Data Write PLB Error\n");
 431                if (mcsr & MCSR_TLBP)
 432                        printk("TLB Parity Error\n");
 433                if (mcsr & MCSR_ICP){
 434                        flush_instruction_cache();
 435                        printk("I-Cache Parity Error\n");
 436                }
 437                if (mcsr & MCSR_DCSP)
 438                        printk("D-Cache Search Parity Error\n");
 439                if (mcsr & MCSR_DCFP)
 440                        printk("D-Cache Flush Parity Error\n");
 441                if (mcsr & MCSR_IMPE)
 442                        printk("Machine Check exception is imprecise\n");
 443
 444                /* Clear MCSR */
 445                mtspr(SPRN_MCSR, mcsr);
 446        }
 447        return 0;
 448}
 449
 450int machine_check_47x(struct pt_regs *regs)
 451{
 452        unsigned long reason = get_mc_reason(regs);
 453        u32 mcsr;
 454
 455        printk(KERN_ERR "Machine check in kernel mode.\n");
 456        if (reason & ESR_IMCP) {
 457                printk(KERN_ERR
 458                       "Instruction Synchronous Machine Check exception\n");
 459                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 460                return 0;
 461        }
 462        mcsr = mfspr(SPRN_MCSR);
 463        if (mcsr & MCSR_IB)
 464                printk(KERN_ERR "Instruction Read PLB Error\n");
 465        if (mcsr & MCSR_DRB)
 466                printk(KERN_ERR "Data Read PLB Error\n");
 467        if (mcsr & MCSR_DWB)
 468                printk(KERN_ERR "Data Write PLB Error\n");
 469        if (mcsr & MCSR_TLBP)
 470                printk(KERN_ERR "TLB Parity Error\n");
 471        if (mcsr & MCSR_ICP) {
 472                flush_instruction_cache();
 473                printk(KERN_ERR "I-Cache Parity Error\n");
 474        }
 475        if (mcsr & MCSR_DCSP)
 476                printk(KERN_ERR "D-Cache Search Parity Error\n");
 477        if (mcsr & PPC47x_MCSR_GPR)
 478                printk(KERN_ERR "GPR Parity Error\n");
 479        if (mcsr & PPC47x_MCSR_FPR)
 480                printk(KERN_ERR "FPR Parity Error\n");
 481        if (mcsr & PPC47x_MCSR_IPR)
 482                printk(KERN_ERR "Machine Check exception is imprecise\n");
 483
 484        /* Clear MCSR */
 485        mtspr(SPRN_MCSR, mcsr);
 486
 487        return 0;
 488}
 489#elif defined(CONFIG_E500)
 490int machine_check_e500mc(struct pt_regs *regs)
 491{
 492        unsigned long mcsr = mfspr(SPRN_MCSR);
 493        unsigned long reason = mcsr;
 494        int recoverable = 1;
 495
 496        if (reason & MCSR_LD) {
 497                recoverable = fsl_rio_mcheck_exception(regs);
 498                if (recoverable == 1)
 499                        goto silent_out;
 500        }
 501
 502        printk("Machine check in kernel mode.\n");
 503        printk("Caused by (from MCSR=%lx): ", reason);
 504
 505        if (reason & MCSR_MCP)
 506                printk("Machine Check Signal\n");
 507
 508        if (reason & MCSR_ICPERR) {
 509                printk("Instruction Cache Parity Error\n");
 510
 511                /*
 512                 * This is recoverable by invalidating the i-cache.
 513                 */
 514                mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
 515                while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
 516                        ;
 517
 518                /*
 519                 * This will generally be accompanied by an instruction
 520                 * fetch error report -- only treat MCSR_IF as fatal
 521                 * if it wasn't due to an L1 parity error.
 522                 */
 523                reason &= ~MCSR_IF;
 524        }
 525
 526        if (reason & MCSR_DCPERR_MC) {
 527                printk("Data Cache Parity Error\n");
 528
 529                /*
 530                 * In write shadow mode we auto-recover from the error, but it
 531                 * may still get logged and cause a machine check.  We should
 532                 * only treat the non-write shadow case as non-recoverable.
 533                 */
 534                if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
 535                        recoverable = 0;
 536        }
 537
 538        if (reason & MCSR_L2MMU_MHIT) {
 539                printk("Hit on multiple TLB entries\n");
 540                recoverable = 0;
 541        }
 542
 543        if (reason & MCSR_NMI)
 544                printk("Non-maskable interrupt\n");
 545
 546        if (reason & MCSR_IF) {
 547                printk("Instruction Fetch Error Report\n");
 548                recoverable = 0;
 549        }
 550
 551        if (reason & MCSR_LD) {
 552                printk("Load Error Report\n");
 553                recoverable = 0;
 554        }
 555
 556        if (reason & MCSR_ST) {
 557                printk("Store Error Report\n");
 558                recoverable = 0;
 559        }
 560
 561        if (reason & MCSR_LDG) {
 562                printk("Guarded Load Error Report\n");
 563                recoverable = 0;
 564        }
 565
 566        if (reason & MCSR_TLBSYNC)
 567                printk("Simultaneous tlbsync operations\n");
 568
 569        if (reason & MCSR_BSL2_ERR) {
 570                printk("Level 2 Cache Error\n");
 571                recoverable = 0;
 572        }
 573
 574        if (reason & MCSR_MAV) {
 575                u64 addr;
 576
 577                addr = mfspr(SPRN_MCAR);
 578                addr |= (u64)mfspr(SPRN_MCARU) << 32;
 579
 580                printk("Machine Check %s Address: %#llx\n",
 581                       reason & MCSR_MEA ? "Effective" : "Physical", addr);
 582        }
 583
 584silent_out:
 585        mtspr(SPRN_MCSR, mcsr);
 586        return mfspr(SPRN_MCSR) == 0 && recoverable;
 587}
 588
 589int machine_check_e500(struct pt_regs *regs)
 590{
 591        unsigned long reason = get_mc_reason(regs);
 592
 593        if (reason & MCSR_BUS_RBERR) {
 594                if (fsl_rio_mcheck_exception(regs))
 595                        return 1;
 596                if (fsl_pci_mcheck_exception(regs))
 597                        return 1;
 598        }
 599
 600        printk("Machine check in kernel mode.\n");
 601        printk("Caused by (from MCSR=%lx): ", reason);
 602
 603        if (reason & MCSR_MCP)
 604                printk("Machine Check Signal\n");
 605        if (reason & MCSR_ICPERR)
 606                printk("Instruction Cache Parity Error\n");
 607        if (reason & MCSR_DCP_PERR)
 608                printk("Data Cache Push Parity Error\n");
 609        if (reason & MCSR_DCPERR)
 610                printk("Data Cache Parity Error\n");
 611        if (reason & MCSR_BUS_IAERR)
 612                printk("Bus - Instruction Address Error\n");
 613        if (reason & MCSR_BUS_RAERR)
 614                printk("Bus - Read Address Error\n");
 615        if (reason & MCSR_BUS_WAERR)
 616                printk("Bus - Write Address Error\n");
 617        if (reason & MCSR_BUS_IBERR)
 618                printk("Bus - Instruction Data Error\n");
 619        if (reason & MCSR_BUS_RBERR)
 620                printk("Bus - Read Data Bus Error\n");
 621        if (reason & MCSR_BUS_WBERR)
 622                printk("Bus - Write Data Bus Error\n");
 623        if (reason & MCSR_BUS_IPERR)
 624                printk("Bus - Instruction Parity Error\n");
 625        if (reason & MCSR_BUS_RPERR)
 626                printk("Bus - Read Parity Error\n");
 627
 628        return 0;
 629}
 630
 631int machine_check_generic(struct pt_regs *regs)
 632{
 633        return 0;
 634}
 635#elif defined(CONFIG_E200)
 636int machine_check_e200(struct pt_regs *regs)
 637{
 638        unsigned long reason = get_mc_reason(regs);
 639
 640        printk("Machine check in kernel mode.\n");
 641        printk("Caused by (from MCSR=%lx): ", reason);
 642
 643        if (reason & MCSR_MCP)
 644                printk("Machine Check Signal\n");
 645        if (reason & MCSR_CP_PERR)
 646                printk("Cache Push Parity Error\n");
 647        if (reason & MCSR_CPERR)
 648                printk("Cache Parity Error\n");
 649        if (reason & MCSR_EXCP_ERR)
 650                printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
 651        if (reason & MCSR_BUS_IRERR)
 652                printk("Bus - Read Bus Error on instruction fetch\n");
 653        if (reason & MCSR_BUS_DRERR)
 654                printk("Bus - Read Bus Error on data load\n");
 655        if (reason & MCSR_BUS_WRERR)
 656                printk("Bus - Write Bus Error on buffered store or cache line push\n");
 657
 658        return 0;
 659}
 660#else
 661int machine_check_generic(struct pt_regs *regs)
 662{
 663        unsigned long reason = get_mc_reason(regs);
 664
 665        printk("Machine check in kernel mode.\n");
 666        printk("Caused by (from SRR1=%lx): ", reason);
 667        switch (reason & 0x601F0000) {
 668        case 0x80000:
 669                printk("Machine check signal\n");
 670                break;
 671        case 0:         /* for 601 */
 672        case 0x40000:
 673        case 0x140000:  /* 7450 MSS error and TEA */
 674                printk("Transfer error ack signal\n");
 675                break;
 676        case 0x20000:
 677                printk("Data parity error signal\n");
 678                break;
 679        case 0x10000:
 680                printk("Address parity error signal\n");
 681                break;
 682        case 0x20000000:
 683                printk("L1 Data Cache error\n");
 684                break;
 685        case 0x40000000:
 686                printk("L1 Instruction Cache error\n");
 687                break;
 688        case 0x00100000:
 689                printk("L2 data cache parity error\n");
 690                break;
 691        default:
 692                printk("Unknown values in msr\n");
 693        }
 694        return 0;
 695}
 696#endif /* everything else */
 697
 698void machine_check_exception(struct pt_regs *regs)
 699{
 700        enum ctx_state prev_state = exception_enter();
 701        int recover = 0;
 702
 703        __this_cpu_inc(irq_stat.mce_exceptions);
 704
 705        /* See if any machine dependent calls. In theory, we would want
 706         * to call the CPU first, and call the ppc_md. one if the CPU
 707         * one returns a positive number. However there is existing code
 708         * that assumes the board gets a first chance, so let's keep it
 709         * that way for now and fix things later. --BenH.
 710         */
 711        if (ppc_md.machine_check_exception)
 712                recover = ppc_md.machine_check_exception(regs);
 713        else if (cur_cpu_spec->machine_check)
 714                recover = cur_cpu_spec->machine_check(regs);
 715
 716        if (recover > 0)
 717                goto bail;
 718
 719#if defined(CONFIG_8xx) && defined(CONFIG_PCI)
 720        /* the qspan pci read routines can cause machine checks -- Cort
 721         *
 722         * yuck !!! that totally needs to go away ! There are better ways
 723         * to deal with that than having a wart in the mcheck handler.
 724         * -- BenH
 725         */
 726        bad_page_fault(regs, regs->dar, SIGBUS);
 727        goto bail;
 728#endif
 729
 730        if (debugger_fault_handler(regs))
 731                goto bail;
 732
 733        if (check_io_access(regs))
 734                goto bail;
 735
 736        die("Machine check", regs, SIGBUS);
 737
 738        /* Must die if the interrupt is not recoverable */
 739        if (!(regs->msr & MSR_RI))
 740                panic("Unrecoverable Machine check");
 741
 742bail:
 743        exception_exit(prev_state);
 744}
 745
 746void SMIException(struct pt_regs *regs)
 747{
 748        die("System Management Interrupt", regs, SIGABRT);
 749}
 750
 751void handle_hmi_exception(struct pt_regs *regs)
 752{
 753        struct pt_regs *old_regs;
 754
 755        old_regs = set_irq_regs(regs);
 756        irq_enter();
 757
 758        if (ppc_md.handle_hmi_exception)
 759                ppc_md.handle_hmi_exception(regs);
 760
 761        irq_exit();
 762        set_irq_regs(old_regs);
 763}
 764
 765void unknown_exception(struct pt_regs *regs)
 766{
 767        enum ctx_state prev_state = exception_enter();
 768
 769        printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
 770               regs->nip, regs->msr, regs->trap);
 771
 772        _exception(SIGTRAP, regs, 0, 0);
 773
 774        exception_exit(prev_state);
 775}
 776
 777void instruction_breakpoint_exception(struct pt_regs *regs)
 778{
 779        enum ctx_state prev_state = exception_enter();
 780
 781        if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
 782                                        5, SIGTRAP) == NOTIFY_STOP)
 783                goto bail;
 784        if (debugger_iabr_match(regs))
 785                goto bail;
 786        _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
 787
 788bail:
 789        exception_exit(prev_state);
 790}
 791
 792void RunModeException(struct pt_regs *regs)
 793{
 794        _exception(SIGTRAP, regs, 0, 0);
 795}
 796
 797void __kprobes single_step_exception(struct pt_regs *regs)
 798{
 799        enum ctx_state prev_state = exception_enter();
 800
 801        clear_single_step(regs);
 802
 803        if (notify_die(DIE_SSTEP, "single_step", regs, 5,
 804                                        5, SIGTRAP) == NOTIFY_STOP)
 805                goto bail;
 806        if (debugger_sstep(regs))
 807                goto bail;
 808
 809        _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
 810
 811bail:
 812        exception_exit(prev_state);
 813}
 814
 815/*
 816 * After we have successfully emulated an instruction, we have to
 817 * check if the instruction was being single-stepped, and if so,
 818 * pretend we got a single-step exception.  This was pointed out
 819 * by Kumar Gala.  -- paulus
 820 */
 821static void emulate_single_step(struct pt_regs *regs)
 822{
 823        if (single_stepping(regs))
 824                single_step_exception(regs);
 825}
 826
 827static inline int __parse_fpscr(unsigned long fpscr)
 828{
 829        int ret = 0;
 830
 831        /* Invalid operation */
 832        if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
 833                ret = FPE_FLTINV;
 834
 835        /* Overflow */
 836        else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
 837                ret = FPE_FLTOVF;
 838
 839        /* Underflow */
 840        else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
 841                ret = FPE_FLTUND;
 842
 843        /* Divide by zero */
 844        else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
 845                ret = FPE_FLTDIV;
 846
 847        /* Inexact result */
 848        else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
 849                ret = FPE_FLTRES;
 850
 851        return ret;
 852}
 853
 854static void parse_fpe(struct pt_regs *regs)
 855{
 856        int code = 0;
 857
 858        flush_fp_to_thread(current);
 859
 860        code = __parse_fpscr(current->thread.fp_state.fpscr);
 861
 862        _exception(SIGFPE, regs, code, regs->nip);
 863}
 864
 865/*
 866 * Illegal instruction emulation support.  Originally written to
 867 * provide the PVR to user applications using the mfspr rd, PVR.
 868 * Return non-zero if we can't emulate, or -EFAULT if the associated
 869 * memory access caused an access fault.  Return zero on success.
 870 *
 871 * There are a couple of ways to do this, either "decode" the instruction
 872 * or directly match lots of bits.  In this case, matching lots of
 873 * bits is faster and easier.
 874 *
 875 */
 876static int emulate_string_inst(struct pt_regs *regs, u32 instword)
 877{
 878        u8 rT = (instword >> 21) & 0x1f;
 879        u8 rA = (instword >> 16) & 0x1f;
 880        u8 NB_RB = (instword >> 11) & 0x1f;
 881        u32 num_bytes;
 882        unsigned long EA;
 883        int pos = 0;
 884
 885        /* Early out if we are an invalid form of lswx */
 886        if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
 887                if ((rT == rA) || (rT == NB_RB))
 888                        return -EINVAL;
 889
 890        EA = (rA == 0) ? 0 : regs->gpr[rA];
 891
 892        switch (instword & PPC_INST_STRING_MASK) {
 893                case PPC_INST_LSWX:
 894                case PPC_INST_STSWX:
 895                        EA += NB_RB;
 896                        num_bytes = regs->xer & 0x7f;
 897                        break;
 898                case PPC_INST_LSWI:
 899                case PPC_INST_STSWI:
 900                        num_bytes = (NB_RB == 0) ? 32 : NB_RB;
 901                        break;
 902                default:
 903                        return -EINVAL;
 904        }
 905
 906        while (num_bytes != 0)
 907        {
 908                u8 val;
 909                u32 shift = 8 * (3 - (pos & 0x3));
 910
 911                /* if process is 32-bit, clear upper 32 bits of EA */
 912                if ((regs->msr & MSR_64BIT) == 0)
 913                        EA &= 0xFFFFFFFF;
 914
 915                switch ((instword & PPC_INST_STRING_MASK)) {
 916                        case PPC_INST_LSWX:
 917                        case PPC_INST_LSWI:
 918                                if (get_user(val, (u8 __user *)EA))
 919                                        return -EFAULT;
 920                                /* first time updating this reg,
 921                                 * zero it out */
 922                                if (pos == 0)
 923                                        regs->gpr[rT] = 0;
 924                                regs->gpr[rT] |= val << shift;
 925                                break;
 926                        case PPC_INST_STSWI:
 927                        case PPC_INST_STSWX:
 928                                val = regs->gpr[rT] >> shift;
 929                                if (put_user(val, (u8 __user *)EA))
 930                                        return -EFAULT;
 931                                break;
 932                }
 933                /* move EA to next address */
 934                EA += 1;
 935                num_bytes--;
 936
 937                /* manage our position within the register */
 938                if (++pos == 4) {
 939                        pos = 0;
 940                        if (++rT == 32)
 941                                rT = 0;
 942                }
 943        }
 944
 945        return 0;
 946}
 947
 948static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
 949{
 950        u32 ra,rs;
 951        unsigned long tmp;
 952
 953        ra = (instword >> 16) & 0x1f;
 954        rs = (instword >> 21) & 0x1f;
 955
 956        tmp = regs->gpr[rs];
 957        tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
 958        tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
 959        tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
 960        regs->gpr[ra] = tmp;
 961
 962        return 0;
 963}
 964
 965static int emulate_isel(struct pt_regs *regs, u32 instword)
 966{
 967        u8 rT = (instword >> 21) & 0x1f;
 968        u8 rA = (instword >> 16) & 0x1f;
 969        u8 rB = (instword >> 11) & 0x1f;
 970        u8 BC = (instword >> 6) & 0x1f;
 971        u8 bit;
 972        unsigned long tmp;
 973
 974        tmp = (rA == 0) ? 0 : regs->gpr[rA];
 975        bit = (regs->ccr >> (31 - BC)) & 0x1;
 976
 977        regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
 978
 979        return 0;
 980}
 981
 982#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 983static inline bool tm_abort_check(struct pt_regs *regs, int cause)
 984{
 985        /* If we're emulating a load/store in an active transaction, we cannot
 986         * emulate it as the kernel operates in transaction suspended context.
 987         * We need to abort the transaction.  This creates a persistent TM
 988         * abort so tell the user what caused it with a new code.
 989         */
 990        if (MSR_TM_TRANSACTIONAL(regs->msr)) {
 991                tm_enable();
 992                tm_abort(cause);
 993                return true;
 994        }
 995        return false;
 996}
 997#else
 998static inline bool tm_abort_check(struct pt_regs *regs, int reason)
 999{
1000        return false;
1001}
1002#endif
1003
1004static int emulate_instruction(struct pt_regs *regs)
1005{
1006        u32 instword;
1007        u32 rd;
1008
1009        if (!user_mode(regs))
1010                return -EINVAL;
1011        CHECK_FULL_REGS(regs);
1012
1013        if (get_user(instword, (u32 __user *)(regs->nip)))
1014                return -EFAULT;
1015
1016        /* Emulate the mfspr rD, PVR. */
1017        if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1018                PPC_WARN_EMULATED(mfpvr, regs);
1019                rd = (instword >> 21) & 0x1f;
1020                regs->gpr[rd] = mfspr(SPRN_PVR);
1021                return 0;
1022        }
1023
1024        /* Emulating the dcba insn is just a no-op.  */
1025        if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1026                PPC_WARN_EMULATED(dcba, regs);
1027                return 0;
1028        }
1029
1030        /* Emulate the mcrxr insn.  */
1031        if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1032                int shift = (instword >> 21) & 0x1c;
1033                unsigned long msk = 0xf0000000UL >> shift;
1034
1035                PPC_WARN_EMULATED(mcrxr, regs);
1036                regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1037                regs->xer &= ~0xf0000000UL;
1038                return 0;
1039        }
1040
1041        /* Emulate load/store string insn. */
1042        if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1043                if (tm_abort_check(regs,
1044                                   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1045                        return -EINVAL;
1046                PPC_WARN_EMULATED(string, regs);
1047                return emulate_string_inst(regs, instword);
1048        }
1049
1050        /* Emulate the popcntb (Population Count Bytes) instruction. */
1051        if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1052                PPC_WARN_EMULATED(popcntb, regs);
1053                return emulate_popcntb_inst(regs, instword);
1054        }
1055
1056        /* Emulate isel (Integer Select) instruction */
1057        if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1058                PPC_WARN_EMULATED(isel, regs);
1059                return emulate_isel(regs, instword);
1060        }
1061
1062        /* Emulate sync instruction variants */
1063        if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1064                PPC_WARN_EMULATED(sync, regs);
1065                asm volatile("sync");
1066                return 0;
1067        }
1068
1069#ifdef CONFIG_PPC64
1070        /* Emulate the mfspr rD, DSCR. */
1071        if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1072                PPC_INST_MFSPR_DSCR_USER) ||
1073             ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1074                PPC_INST_MFSPR_DSCR)) &&
1075                        cpu_has_feature(CPU_FTR_DSCR)) {
1076                PPC_WARN_EMULATED(mfdscr, regs);
1077                rd = (instword >> 21) & 0x1f;
1078                regs->gpr[rd] = mfspr(SPRN_DSCR);
1079                return 0;
1080        }
1081        /* Emulate the mtspr DSCR, rD. */
1082        if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1083                PPC_INST_MTSPR_DSCR_USER) ||
1084             ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1085                PPC_INST_MTSPR_DSCR)) &&
1086                        cpu_has_feature(CPU_FTR_DSCR)) {
1087                PPC_WARN_EMULATED(mtdscr, regs);
1088                rd = (instword >> 21) & 0x1f;
1089                current->thread.dscr = regs->gpr[rd];
1090                current->thread.dscr_inherit = 1;
1091                mtspr(SPRN_DSCR, current->thread.dscr);
1092                return 0;
1093        }
1094#endif
1095
1096        return -EINVAL;
1097}
1098
1099int is_valid_bugaddr(unsigned long addr)
1100{
1101        return is_kernel_addr(addr);
1102}
1103
1104#ifdef CONFIG_MATH_EMULATION
1105static int emulate_math(struct pt_regs *regs)
1106{
1107        int ret;
1108        extern int do_mathemu(struct pt_regs *regs);
1109
1110        ret = do_mathemu(regs);
1111        if (ret >= 0)
1112                PPC_WARN_EMULATED(math, regs);
1113
1114        switch (ret) {
1115        case 0:
1116                emulate_single_step(regs);
1117                return 0;
1118        case 1: {
1119                        int code = 0;
1120                        code = __parse_fpscr(current->thread.fp_state.fpscr);
1121                        _exception(SIGFPE, regs, code, regs->nip);
1122                        return 0;
1123                }
1124        case -EFAULT:
1125                _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1126                return 0;
1127        }
1128
1129        return -1;
1130}
1131#else
1132static inline int emulate_math(struct pt_regs *regs) { return -1; }
1133#endif
1134
1135void __kprobes program_check_exception(struct pt_regs *regs)
1136{
1137        enum ctx_state prev_state = exception_enter();
1138        unsigned int reason = get_reason(regs);
1139
1140        /* We can now get here via a FP Unavailable exception if the core
1141         * has no FPU, in that case the reason flags will be 0 */
1142
1143        if (reason & REASON_FP) {
1144                /* IEEE FP exception */
1145                parse_fpe(regs);
1146                goto bail;
1147        }
1148        if (reason & REASON_TRAP) {
1149                /* Debugger is first in line to stop recursive faults in
1150                 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1151                if (debugger_bpt(regs))
1152                        goto bail;
1153
1154                /* trap exception */
1155                if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1156                                == NOTIFY_STOP)
1157                        goto bail;
1158
1159                if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1160                    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1161                        regs->nip += 4;
1162                        goto bail;
1163                }
1164                _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1165                goto bail;
1166        }
1167#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1168        if (reason & REASON_TM) {
1169                /* This is a TM "Bad Thing Exception" program check.
1170                 * This occurs when:
1171                 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1172                 *    transition in TM states.
1173                 * -  A trechkpt is attempted when transactional.
1174                 * -  A treclaim is attempted when non transactional.
1175                 * -  A tend is illegally attempted.
1176                 * -  writing a TM SPR when transactional.
1177                 */
1178                if (!user_mode(regs) &&
1179                    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1180                        regs->nip += 4;
1181                        goto bail;
1182                }
1183                /* If usermode caused this, it's done something illegal and
1184                 * gets a SIGILL slap on the wrist.  We call it an illegal
1185                 * operand to distinguish from the instruction just being bad
1186                 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1187                 * illegal /placement/ of a valid instruction.
1188                 */
1189                if (user_mode(regs)) {
1190                        _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1191                        goto bail;
1192                } else {
1193                        printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1194                               "at %lx (msr 0x%x)\n", regs->nip, reason);
1195                        die("Unrecoverable exception", regs, SIGABRT);
1196                }
1197        }
1198#endif
1199
1200        /*
1201         * If we took the program check in the kernel skip down to sending a
1202         * SIGILL. The subsequent cases all relate to emulating instructions
1203         * which we should only do for userspace. We also do not want to enable
1204         * interrupts for kernel faults because that might lead to further
1205         * faults, and loose the context of the original exception.
1206         */
1207        if (!user_mode(regs))
1208                goto sigill;
1209
1210        /* We restore the interrupt state now */
1211        if (!arch_irq_disabled_regs(regs))
1212                local_irq_enable();
1213
1214        /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1215         * but there seems to be a hardware bug on the 405GP (RevD)
1216         * that means ESR is sometimes set incorrectly - either to
1217         * ESR_DST (!?) or 0.  In the process of chasing this with the
1218         * hardware people - not sure if it can happen on any illegal
1219         * instruction or only on FP instructions, whether there is a
1220         * pattern to occurrences etc. -dgibson 31/Mar/2003
1221         */
1222        if (!emulate_math(regs))
1223                goto bail;
1224
1225        /* Try to emulate it if we should. */
1226        if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1227                switch (emulate_instruction(regs)) {
1228                case 0:
1229                        regs->nip += 4;
1230                        emulate_single_step(regs);
1231                        goto bail;
1232                case -EFAULT:
1233                        _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1234                        goto bail;
1235                }
1236        }
1237
1238sigill:
1239        if (reason & REASON_PRIVILEGED)
1240                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1241        else
1242                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1243
1244bail:
1245        exception_exit(prev_state);
1246}
1247
1248/*
1249 * This occurs when running in hypervisor mode on POWER6 or later
1250 * and an illegal instruction is encountered.
1251 */
1252void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1253{
1254        regs->msr |= REASON_ILLEGAL;
1255        program_check_exception(regs);
1256}
1257
1258void alignment_exception(struct pt_regs *regs)
1259{
1260        enum ctx_state prev_state = exception_enter();
1261        int sig, code, fixed = 0;
1262
1263        /* We restore the interrupt state now */
1264        if (!arch_irq_disabled_regs(regs))
1265                local_irq_enable();
1266
1267        if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1268                goto bail;
1269
1270        /* we don't implement logging of alignment exceptions */
1271        if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1272                fixed = fix_alignment(regs);
1273
1274        if (fixed == 1) {
1275                regs->nip += 4; /* skip over emulated instruction */
1276                emulate_single_step(regs);
1277                goto bail;
1278        }
1279
1280        /* Operand address was bad */
1281        if (fixed == -EFAULT) {
1282                sig = SIGSEGV;
1283                code = SEGV_ACCERR;
1284        } else {
1285                sig = SIGBUS;
1286                code = BUS_ADRALN;
1287        }
1288        if (user_mode(regs))
1289                _exception(sig, regs, code, regs->dar);
1290        else
1291                bad_page_fault(regs, regs->dar, sig);
1292
1293bail:
1294        exception_exit(prev_state);
1295}
1296
1297void StackOverflow(struct pt_regs *regs)
1298{
1299        printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1300               current, regs->gpr[1]);
1301        debugger(regs);
1302        show_regs(regs);
1303        panic("kernel stack overflow");
1304}
1305
1306void nonrecoverable_exception(struct pt_regs *regs)
1307{
1308        printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1309               regs->nip, regs->msr);
1310        debugger(regs);
1311        die("nonrecoverable exception", regs, SIGKILL);
1312}
1313
1314void trace_syscall(struct pt_regs *regs)
1315{
1316        printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1317               current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1318               regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1319}
1320
1321void kernel_fp_unavailable_exception(struct pt_regs *regs)
1322{
1323        enum ctx_state prev_state = exception_enter();
1324
1325        printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1326                          "%lx at %lx\n", regs->trap, regs->nip);
1327        die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1328
1329        exception_exit(prev_state);
1330}
1331
1332void altivec_unavailable_exception(struct pt_regs *regs)
1333{
1334        enum ctx_state prev_state = exception_enter();
1335
1336        if (user_mode(regs)) {
1337                /* A user program has executed an altivec instruction,
1338                   but this kernel doesn't support altivec. */
1339                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1340                goto bail;
1341        }
1342
1343        printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1344                        "%lx at %lx\n", regs->trap, regs->nip);
1345        die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1346
1347bail:
1348        exception_exit(prev_state);
1349}
1350
1351void vsx_unavailable_exception(struct pt_regs *regs)
1352{
1353        if (user_mode(regs)) {
1354                /* A user program has executed an vsx instruction,
1355                   but this kernel doesn't support vsx. */
1356                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1357                return;
1358        }
1359
1360        printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1361                        "%lx at %lx\n", regs->trap, regs->nip);
1362        die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1363}
1364
1365#ifdef CONFIG_PPC64
1366void facility_unavailable_exception(struct pt_regs *regs)
1367{
1368        static char *facility_strings[] = {
1369                [FSCR_FP_LG] = "FPU",
1370                [FSCR_VECVSX_LG] = "VMX/VSX",
1371                [FSCR_DSCR_LG] = "DSCR",
1372                [FSCR_PM_LG] = "PMU SPRs",
1373                [FSCR_BHRB_LG] = "BHRB",
1374                [FSCR_TM_LG] = "TM",
1375                [FSCR_EBB_LG] = "EBB",
1376                [FSCR_TAR_LG] = "TAR",
1377        };
1378        char *facility = "unknown";
1379        u64 value;
1380        u8 status;
1381        bool hv;
1382
1383        hv = (regs->trap == 0xf80);
1384        if (hv)
1385                value = mfspr(SPRN_HFSCR);
1386        else
1387                value = mfspr(SPRN_FSCR);
1388
1389        status = value >> 56;
1390        if (status == FSCR_DSCR_LG) {
1391                /* User is acessing the DSCR.  Set the inherit bit and allow
1392                 * the user to set it directly in future by setting via the
1393                 * FSCR DSCR bit.  We always leave HFSCR DSCR set.
1394                 */
1395                current->thread.dscr_inherit = 1;
1396                mtspr(SPRN_FSCR, value | FSCR_DSCR);
1397                return;
1398        }
1399
1400        if ((status < ARRAY_SIZE(facility_strings)) &&
1401            facility_strings[status])
1402                facility = facility_strings[status];
1403
1404        /* We restore the interrupt state now */
1405        if (!arch_irq_disabled_regs(regs))
1406                local_irq_enable();
1407
1408        pr_err_ratelimited(
1409                "%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1410                hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1411
1412        if (user_mode(regs)) {
1413                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1414                return;
1415        }
1416
1417        die("Unexpected facility unavailable exception", regs, SIGABRT);
1418}
1419#endif
1420
1421#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1422
1423void fp_unavailable_tm(struct pt_regs *regs)
1424{
1425        /* Note:  This does not handle any kind of FP laziness. */
1426
1427        TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1428                 regs->nip, regs->msr);
1429
1430        /* We can only have got here if the task started using FP after
1431         * beginning the transaction.  So, the transactional regs are just a
1432         * copy of the checkpointed ones.  But, we still need to recheckpoint
1433         * as we're enabling FP for the process; it will return, abort the
1434         * transaction, and probably retry but now with FP enabled.  So the
1435         * checkpointed FP registers need to be loaded.
1436         */
1437        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1438        /* Reclaim didn't save out any FPRs to transact_fprs. */
1439
1440        /* Enable FP for the task: */
1441        regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1442
1443        /* This loads and recheckpoints the FP registers from
1444         * thread.fpr[].  They will remain in registers after the
1445         * checkpoint so we don't need to reload them after.
1446         * If VMX is in use, the VRs now hold checkpointed values,
1447         * so we don't want to load the VRs from the thread_struct.
1448         */
1449        tm_recheckpoint(&current->thread, MSR_FP);
1450
1451        /* If VMX is in use, get the transactional values back */
1452        if (regs->msr & MSR_VEC) {
1453                do_load_up_transact_altivec(&current->thread);
1454                /* At this point all the VSX state is loaded, so enable it */
1455                regs->msr |= MSR_VSX;
1456        }
1457}
1458
1459void altivec_unavailable_tm(struct pt_regs *regs)
1460{
1461        /* See the comments in fp_unavailable_tm().  This function operates
1462         * the same way.
1463         */
1464
1465        TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1466                 "MSR=%lx\n",
1467                 regs->nip, regs->msr);
1468        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1469        regs->msr |= MSR_VEC;
1470        tm_recheckpoint(&current->thread, MSR_VEC);
1471        current->thread.used_vr = 1;
1472
1473        if (regs->msr & MSR_FP) {
1474                do_load_up_transact_fpu(&current->thread);
1475                regs->msr |= MSR_VSX;
1476        }
1477}
1478
1479void vsx_unavailable_tm(struct pt_regs *regs)
1480{
1481        unsigned long orig_msr = regs->msr;
1482
1483        /* See the comments in fp_unavailable_tm().  This works similarly,
1484         * though we're loading both FP and VEC registers in here.
1485         *
1486         * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1487         * regs.  Either way, set MSR_VSX.
1488         */
1489
1490        TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1491                 "MSR=%lx\n",
1492                 regs->nip, regs->msr);
1493
1494        current->thread.used_vsr = 1;
1495
1496        /* If FP and VMX are already loaded, we have all the state we need */
1497        if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1498                regs->msr |= MSR_VSX;
1499                return;
1500        }
1501
1502        /* This reclaims FP and/or VR regs if they're already enabled */
1503        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1504
1505        regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1506                MSR_VSX;
1507
1508        /* This loads & recheckpoints FP and VRs; but we have
1509         * to be sure not to overwrite previously-valid state.
1510         */
1511        tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1512
1513        if (orig_msr & MSR_FP)
1514                do_load_up_transact_fpu(&current->thread);
1515        if (orig_msr & MSR_VEC)
1516                do_load_up_transact_altivec(&current->thread);
1517}
1518#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1519
1520void performance_monitor_exception(struct pt_regs *regs)
1521{
1522        __this_cpu_inc(irq_stat.pmu_irqs);
1523
1524        perf_irq(regs);
1525}
1526
1527#ifdef CONFIG_8xx
1528void SoftwareEmulation(struct pt_regs *regs)
1529{
1530        CHECK_FULL_REGS(regs);
1531
1532        if (!user_mode(regs)) {
1533                debugger(regs);
1534                die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1535                        regs, SIGFPE);
1536        }
1537
1538        if (!emulate_math(regs))
1539                return;
1540
1541        _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1542}
1543#endif /* CONFIG_8xx */
1544
1545#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1546static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1547{
1548        int changed = 0;
1549        /*
1550         * Determine the cause of the debug event, clear the
1551         * event flags and send a trap to the handler. Torez
1552         */
1553        if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1554                dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1555#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1556                current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1557#endif
1558                do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1559                             5);
1560                changed |= 0x01;
1561        }  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1562                dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1563                do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1564                             6);
1565                changed |= 0x01;
1566        }  else if (debug_status & DBSR_IAC1) {
1567                current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1568                dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1569                do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1570                             1);
1571                changed |= 0x01;
1572        }  else if (debug_status & DBSR_IAC2) {
1573                current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1574                do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1575                             2);
1576                changed |= 0x01;
1577        }  else if (debug_status & DBSR_IAC3) {
1578                current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1579                dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1580                do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1581                             3);
1582                changed |= 0x01;
1583        }  else if (debug_status & DBSR_IAC4) {
1584                current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1585                do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1586                             4);
1587                changed |= 0x01;
1588        }
1589        /*
1590         * At the point this routine was called, the MSR(DE) was turned off.
1591         * Check all other debug flags and see if that bit needs to be turned
1592         * back on or not.
1593         */
1594        if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1595                               current->thread.debug.dbcr1))
1596                regs->msr |= MSR_DE;
1597        else
1598                /* Make sure the IDM flag is off */
1599                current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1600
1601        if (changed & 0x01)
1602                mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1603}
1604
1605void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1606{
1607        current->thread.debug.dbsr = debug_status;
1608
1609        /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1610         * on server, it stops on the target of the branch. In order to simulate
1611         * the server behaviour, we thus restart right away with a single step
1612         * instead of stopping here when hitting a BT
1613         */
1614        if (debug_status & DBSR_BT) {
1615                regs->msr &= ~MSR_DE;
1616
1617                /* Disable BT */
1618                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1619                /* Clear the BT event */
1620                mtspr(SPRN_DBSR, DBSR_BT);
1621
1622                /* Do the single step trick only when coming from userspace */
1623                if (user_mode(regs)) {
1624                        current->thread.debug.dbcr0 &= ~DBCR0_BT;
1625                        current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1626                        regs->msr |= MSR_DE;
1627                        return;
1628                }
1629
1630                if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1631                               5, SIGTRAP) == NOTIFY_STOP) {
1632                        return;
1633                }
1634                if (debugger_sstep(regs))
1635                        return;
1636        } else if (debug_status & DBSR_IC) {    /* Instruction complete */
1637                regs->msr &= ~MSR_DE;
1638
1639                /* Disable instruction completion */
1640                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1641                /* Clear the instruction completion event */
1642                mtspr(SPRN_DBSR, DBSR_IC);
1643
1644                if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1645                               5, SIGTRAP) == NOTIFY_STOP) {
1646                        return;
1647                }
1648
1649                if (debugger_sstep(regs))
1650                        return;
1651
1652                if (user_mode(regs)) {
1653                        current->thread.debug.dbcr0 &= ~DBCR0_IC;
1654                        if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1655                                               current->thread.debug.dbcr1))
1656                                regs->msr |= MSR_DE;
1657                        else
1658                                /* Make sure the IDM bit is off */
1659                                current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1660                }
1661
1662                _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1663        } else
1664                handle_debug(regs, debug_status);
1665}
1666#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1667
1668#if !defined(CONFIG_TAU_INT)
1669void TAUException(struct pt_regs *regs)
1670{
1671        printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1672               regs->nip, regs->msr, regs->trap, print_tainted());
1673}
1674#endif /* CONFIG_INT_TAU */
1675
1676#ifdef CONFIG_ALTIVEC
1677void altivec_assist_exception(struct pt_regs *regs)
1678{
1679        int err;
1680
1681        if (!user_mode(regs)) {
1682                printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1683                       " at %lx\n", regs->nip);
1684                die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1685        }
1686
1687        flush_altivec_to_thread(current);
1688
1689        PPC_WARN_EMULATED(altivec, regs);
1690        err = emulate_altivec(regs);
1691        if (err == 0) {
1692                regs->nip += 4;         /* skip emulated instruction */
1693                emulate_single_step(regs);
1694                return;
1695        }
1696
1697        if (err == -EFAULT) {
1698                /* got an error reading the instruction */
1699                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1700        } else {
1701                /* didn't recognize the instruction */
1702                /* XXX quick hack for now: set the non-Java bit in the VSCR */
1703                printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1704                                   "in %s at %lx\n", current->comm, regs->nip);
1705                current->thread.vr_state.vscr.u[3] |= 0x10000;
1706        }
1707}
1708#endif /* CONFIG_ALTIVEC */
1709
1710#ifdef CONFIG_FSL_BOOKE
1711void CacheLockingException(struct pt_regs *regs, unsigned long address,
1712                           unsigned long error_code)
1713{
1714        /* We treat cache locking instructions from the user
1715         * as priv ops, in the future we could try to do
1716         * something smarter
1717         */
1718        if (error_code & (ESR_DLK|ESR_ILK))
1719                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1720        return;
1721}
1722#endif /* CONFIG_FSL_BOOKE */
1723
1724#ifdef CONFIG_SPE
1725void SPEFloatingPointException(struct pt_regs *regs)
1726{
1727        extern int do_spe_mathemu(struct pt_regs *regs);
1728        unsigned long spefscr;
1729        int fpexc_mode;
1730        int code = 0;
1731        int err;
1732
1733        flush_spe_to_thread(current);
1734
1735        spefscr = current->thread.spefscr;
1736        fpexc_mode = current->thread.fpexc_mode;
1737
1738        if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1739                code = FPE_FLTOVF;
1740        }
1741        else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1742                code = FPE_FLTUND;
1743        }
1744        else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1745                code = FPE_FLTDIV;
1746        else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1747                code = FPE_FLTINV;
1748        }
1749        else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1750                code = FPE_FLTRES;
1751
1752        err = do_spe_mathemu(regs);
1753        if (err == 0) {
1754                regs->nip += 4;         /* skip emulated instruction */
1755                emulate_single_step(regs);
1756                return;
1757        }
1758
1759        if (err == -EFAULT) {
1760                /* got an error reading the instruction */
1761                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1762        } else if (err == -EINVAL) {
1763                /* didn't recognize the instruction */
1764                printk(KERN_ERR "unrecognized spe instruction "
1765                       "in %s at %lx\n", current->comm, regs->nip);
1766        } else {
1767                _exception(SIGFPE, regs, code, regs->nip);
1768        }
1769
1770        return;
1771}
1772
1773void SPEFloatingPointRoundException(struct pt_regs *regs)
1774{
1775        extern int speround_handler(struct pt_regs *regs);
1776        int err;
1777
1778        preempt_disable();
1779        if (regs->msr & MSR_SPE)
1780                giveup_spe(current);
1781        preempt_enable();
1782
1783        regs->nip -= 4;
1784        err = speround_handler(regs);
1785        if (err == 0) {
1786                regs->nip += 4;         /* skip emulated instruction */
1787                emulate_single_step(regs);
1788                return;
1789        }
1790
1791        if (err == -EFAULT) {
1792                /* got an error reading the instruction */
1793                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1794        } else if (err == -EINVAL) {
1795                /* didn't recognize the instruction */
1796                printk(KERN_ERR "unrecognized spe instruction "
1797                       "in %s at %lx\n", current->comm, regs->nip);
1798        } else {
1799                _exception(SIGFPE, regs, 0, regs->nip);
1800                return;
1801        }
1802}
1803#endif
1804
1805/*
1806 * We enter here if we get an unrecoverable exception, that is, one
1807 * that happened at a point where the RI (recoverable interrupt) bit
1808 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1809 * we therefore lost state by taking this exception.
1810 */
1811void unrecoverable_exception(struct pt_regs *regs)
1812{
1813        printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1814               regs->trap, regs->nip);
1815        die("Unrecoverable exception", regs, SIGABRT);
1816}
1817
1818#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1819/*
1820 * Default handler for a Watchdog exception,
1821 * spins until a reboot occurs
1822 */
1823void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1824{
1825        /* Generic WatchdogHandler, implement your own */
1826        mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1827        return;
1828}
1829
1830void WatchdogException(struct pt_regs *regs)
1831{
1832        printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1833        WatchdogHandler(regs);
1834}
1835#endif
1836
1837/*
1838 * We enter here if we discover during exception entry that we are
1839 * running in supervisor mode with a userspace value in the stack pointer.
1840 */
1841void kernel_bad_stack(struct pt_regs *regs)
1842{
1843        printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1844               regs->gpr[1], regs->nip);
1845        die("Bad kernel stack pointer", regs, SIGABRT);
1846}
1847
1848void __init trap_init(void)
1849{
1850}
1851
1852
1853#ifdef CONFIG_PPC_EMULATED_STATS
1854
1855#define WARN_EMULATED_SETUP(type)       .type = { .name = #type }
1856
1857struct ppc_emulated ppc_emulated = {
1858#ifdef CONFIG_ALTIVEC
1859        WARN_EMULATED_SETUP(altivec),
1860#endif
1861        WARN_EMULATED_SETUP(dcba),
1862        WARN_EMULATED_SETUP(dcbz),
1863        WARN_EMULATED_SETUP(fp_pair),
1864        WARN_EMULATED_SETUP(isel),
1865        WARN_EMULATED_SETUP(mcrxr),
1866        WARN_EMULATED_SETUP(mfpvr),
1867        WARN_EMULATED_SETUP(multiple),
1868        WARN_EMULATED_SETUP(popcntb),
1869        WARN_EMULATED_SETUP(spe),
1870        WARN_EMULATED_SETUP(string),
1871        WARN_EMULATED_SETUP(sync),
1872        WARN_EMULATED_SETUP(unaligned),
1873#ifdef CONFIG_MATH_EMULATION
1874        WARN_EMULATED_SETUP(math),
1875#endif
1876#ifdef CONFIG_VSX
1877        WARN_EMULATED_SETUP(vsx),
1878#endif
1879#ifdef CONFIG_PPC64
1880        WARN_EMULATED_SETUP(mfdscr),
1881        WARN_EMULATED_SETUP(mtdscr),
1882        WARN_EMULATED_SETUP(lq_stq),
1883#endif
1884};
1885
1886u32 ppc_warn_emulated;
1887
1888void ppc_warn_emulated_print(const char *type)
1889{
1890        pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1891                            type);
1892}
1893
1894static int __init ppc_warn_emulated_init(void)
1895{
1896        struct dentry *dir, *d;
1897        unsigned int i;
1898        struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1899
1900        if (!powerpc_debugfs_root)
1901                return -ENODEV;
1902
1903        dir = debugfs_create_dir("emulated_instructions",
1904                                 powerpc_debugfs_root);
1905        if (!dir)
1906                return -ENOMEM;
1907
1908        d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1909                               &ppc_warn_emulated);
1910        if (!d)
1911                goto fail;
1912
1913        for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1914                d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1915                                       (u32 *)&entries[i].val.counter);
1916                if (!d)
1917                        goto fail;
1918        }
1919
1920        return 0;
1921
1922fail:
1923        debugfs_remove_recursive(dir);
1924        return -ENOMEM;
1925}
1926
1927device_initcall(ppc_warn_emulated_init);
1928
1929#endif /* CONFIG_PPC_EMULATED_STATS */
1930