linux/arch/powerpc/mm/hugetlbpage.c
<<
>>
Prefs
   1/*
   2 * PPC Huge TLB Page Support for Kernel.
   3 *
   4 * Copyright (C) 2003 David Gibson, IBM Corporation.
   5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
   6 *
   7 * Based on the IA-32 version:
   8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
   9 */
  10
  11#include <linux/mm.h>
  12#include <linux/io.h>
  13#include <linux/slab.h>
  14#include <linux/hugetlb.h>
  15#include <linux/export.h>
  16#include <linux/of_fdt.h>
  17#include <linux/memblock.h>
  18#include <linux/bootmem.h>
  19#include <linux/moduleparam.h>
  20#include <asm/pgtable.h>
  21#include <asm/pgalloc.h>
  22#include <asm/tlb.h>
  23#include <asm/setup.h>
  24#include <asm/hugetlb.h>
  25
  26#ifdef CONFIG_HUGETLB_PAGE
  27
  28#define PAGE_SHIFT_64K  16
  29#define PAGE_SHIFT_16M  24
  30#define PAGE_SHIFT_16G  34
  31
  32unsigned int HPAGE_SHIFT;
  33
  34/*
  35 * Tracks gpages after the device tree is scanned and before the
  36 * huge_boot_pages list is ready.  On non-Freescale implementations, this is
  37 * just used to track 16G pages and so is a single array.  FSL-based
  38 * implementations may have more than one gpage size, so we need multiple
  39 * arrays
  40 */
  41#ifdef CONFIG_PPC_FSL_BOOK3E
  42#define MAX_NUMBER_GPAGES       128
  43struct psize_gpages {
  44        u64 gpage_list[MAX_NUMBER_GPAGES];
  45        unsigned int nr_gpages;
  46};
  47static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
  48#else
  49#define MAX_NUMBER_GPAGES       1024
  50static u64 gpage_freearray[MAX_NUMBER_GPAGES];
  51static unsigned nr_gpages;
  52#endif
  53
  54#define hugepd_none(hpd)        ((hpd).pd == 0)
  55
  56#ifdef CONFIG_PPC_BOOK3S_64
  57/*
  58 * At this point we do the placement change only for BOOK3S 64. This would
  59 * possibly work on other subarchs.
  60 */
  61
  62/*
  63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
  64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
  65 *
  66 * Defined in such a way that we can optimize away code block at build time
  67 * if CONFIG_HUGETLB_PAGE=n.
  68 */
  69int pmd_huge(pmd_t pmd)
  70{
  71        /*
  72         * leaf pte for huge page, bottom two bits != 00
  73         */
  74        return ((pmd_val(pmd) & 0x3) != 0x0);
  75}
  76
  77int pud_huge(pud_t pud)
  78{
  79        /*
  80         * leaf pte for huge page, bottom two bits != 00
  81         */
  82        return ((pud_val(pud) & 0x3) != 0x0);
  83}
  84
  85int pgd_huge(pgd_t pgd)
  86{
  87        /*
  88         * leaf pte for huge page, bottom two bits != 00
  89         */
  90        return ((pgd_val(pgd) & 0x3) != 0x0);
  91}
  92#else
  93int pmd_huge(pmd_t pmd)
  94{
  95        return 0;
  96}
  97
  98int pud_huge(pud_t pud)
  99{
 100        return 0;
 101}
 102
 103int pgd_huge(pgd_t pgd)
 104{
 105        return 0;
 106}
 107#endif
 108
 109pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
 110{
 111        /* Only called for hugetlbfs pages, hence can ignore THP */
 112        return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
 113}
 114
 115static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
 116                           unsigned long address, unsigned pdshift, unsigned pshift)
 117{
 118        struct kmem_cache *cachep;
 119        pte_t *new;
 120
 121#ifdef CONFIG_PPC_FSL_BOOK3E
 122        int i;
 123        int num_hugepd = 1 << (pshift - pdshift);
 124        cachep = hugepte_cache;
 125#else
 126        cachep = PGT_CACHE(pdshift - pshift);
 127#endif
 128
 129        new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
 130
 131        BUG_ON(pshift > HUGEPD_SHIFT_MASK);
 132        BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
 133
 134        if (! new)
 135                return -ENOMEM;
 136
 137        spin_lock(&mm->page_table_lock);
 138#ifdef CONFIG_PPC_FSL_BOOK3E
 139        /*
 140         * We have multiple higher-level entries that point to the same
 141         * actual pte location.  Fill in each as we go and backtrack on error.
 142         * We need all of these so the DTLB pgtable walk code can find the
 143         * right higher-level entry without knowing if it's a hugepage or not.
 144         */
 145        for (i = 0; i < num_hugepd; i++, hpdp++) {
 146                if (unlikely(!hugepd_none(*hpdp)))
 147                        break;
 148                else
 149                        /* We use the old format for PPC_FSL_BOOK3E */
 150                        hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
 151        }
 152        /* If we bailed from the for loop early, an error occurred, clean up */
 153        if (i < num_hugepd) {
 154                for (i = i - 1 ; i >= 0; i--, hpdp--)
 155                        hpdp->pd = 0;
 156                kmem_cache_free(cachep, new);
 157        }
 158#else
 159        if (!hugepd_none(*hpdp))
 160                kmem_cache_free(cachep, new);
 161        else {
 162#ifdef CONFIG_PPC_BOOK3S_64
 163                hpdp->pd = (unsigned long)new |
 164                            (shift_to_mmu_psize(pshift) << 2);
 165#else
 166                hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
 167#endif
 168        }
 169#endif
 170        spin_unlock(&mm->page_table_lock);
 171        return 0;
 172}
 173
 174/*
 175 * These macros define how to determine which level of the page table holds
 176 * the hpdp.
 177 */
 178#ifdef CONFIG_PPC_FSL_BOOK3E
 179#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
 180#define HUGEPD_PUD_SHIFT PUD_SHIFT
 181#else
 182#define HUGEPD_PGD_SHIFT PUD_SHIFT
 183#define HUGEPD_PUD_SHIFT PMD_SHIFT
 184#endif
 185
 186#ifdef CONFIG_PPC_BOOK3S_64
 187/*
 188 * At this point we do the placement change only for BOOK3S 64. This would
 189 * possibly work on other subarchs.
 190 */
 191pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 192{
 193        pgd_t *pg;
 194        pud_t *pu;
 195        pmd_t *pm;
 196        hugepd_t *hpdp = NULL;
 197        unsigned pshift = __ffs(sz);
 198        unsigned pdshift = PGDIR_SHIFT;
 199
 200        addr &= ~(sz-1);
 201        pg = pgd_offset(mm, addr);
 202
 203        if (pshift == PGDIR_SHIFT)
 204                /* 16GB huge page */
 205                return (pte_t *) pg;
 206        else if (pshift > PUD_SHIFT)
 207                /*
 208                 * We need to use hugepd table
 209                 */
 210                hpdp = (hugepd_t *)pg;
 211        else {
 212                pdshift = PUD_SHIFT;
 213                pu = pud_alloc(mm, pg, addr);
 214                if (pshift == PUD_SHIFT)
 215                        return (pte_t *)pu;
 216                else if (pshift > PMD_SHIFT)
 217                        hpdp = (hugepd_t *)pu;
 218                else {
 219                        pdshift = PMD_SHIFT;
 220                        pm = pmd_alloc(mm, pu, addr);
 221                        if (pshift == PMD_SHIFT)
 222                                /* 16MB hugepage */
 223                                return (pte_t *)pm;
 224                        else
 225                                hpdp = (hugepd_t *)pm;
 226                }
 227        }
 228        if (!hpdp)
 229                return NULL;
 230
 231        BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 232
 233        if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
 234                return NULL;
 235
 236        return hugepte_offset(*hpdp, addr, pdshift);
 237}
 238
 239#else
 240
 241pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 242{
 243        pgd_t *pg;
 244        pud_t *pu;
 245        pmd_t *pm;
 246        hugepd_t *hpdp = NULL;
 247        unsigned pshift = __ffs(sz);
 248        unsigned pdshift = PGDIR_SHIFT;
 249
 250        addr &= ~(sz-1);
 251
 252        pg = pgd_offset(mm, addr);
 253
 254        if (pshift >= HUGEPD_PGD_SHIFT) {
 255                hpdp = (hugepd_t *)pg;
 256        } else {
 257                pdshift = PUD_SHIFT;
 258                pu = pud_alloc(mm, pg, addr);
 259                if (pshift >= HUGEPD_PUD_SHIFT) {
 260                        hpdp = (hugepd_t *)pu;
 261                } else {
 262                        pdshift = PMD_SHIFT;
 263                        pm = pmd_alloc(mm, pu, addr);
 264                        hpdp = (hugepd_t *)pm;
 265                }
 266        }
 267
 268        if (!hpdp)
 269                return NULL;
 270
 271        BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 272
 273        if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
 274                return NULL;
 275
 276        return hugepte_offset(*hpdp, addr, pdshift);
 277}
 278#endif
 279
 280#ifdef CONFIG_PPC_FSL_BOOK3E
 281/* Build list of addresses of gigantic pages.  This function is used in early
 282 * boot before the buddy allocator is setup.
 283 */
 284void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 285{
 286        unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
 287        int i;
 288
 289        if (addr == 0)
 290                return;
 291
 292        gpage_freearray[idx].nr_gpages = number_of_pages;
 293
 294        for (i = 0; i < number_of_pages; i++) {
 295                gpage_freearray[idx].gpage_list[i] = addr;
 296                addr += page_size;
 297        }
 298}
 299
 300/*
 301 * Moves the gigantic page addresses from the temporary list to the
 302 * huge_boot_pages list.
 303 */
 304int alloc_bootmem_huge_page(struct hstate *hstate)
 305{
 306        struct huge_bootmem_page *m;
 307        int idx = shift_to_mmu_psize(huge_page_shift(hstate));
 308        int nr_gpages = gpage_freearray[idx].nr_gpages;
 309
 310        if (nr_gpages == 0)
 311                return 0;
 312
 313#ifdef CONFIG_HIGHMEM
 314        /*
 315         * If gpages can be in highmem we can't use the trick of storing the
 316         * data structure in the page; allocate space for this
 317         */
 318        m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
 319        m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
 320#else
 321        m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
 322#endif
 323
 324        list_add(&m->list, &huge_boot_pages);
 325        gpage_freearray[idx].nr_gpages = nr_gpages;
 326        gpage_freearray[idx].gpage_list[nr_gpages] = 0;
 327        m->hstate = hstate;
 328
 329        return 1;
 330}
 331/*
 332 * Scan the command line hugepagesz= options for gigantic pages; store those in
 333 * a list that we use to allocate the memory once all options are parsed.
 334 */
 335
 336unsigned long gpage_npages[MMU_PAGE_COUNT];
 337
 338static int __init do_gpage_early_setup(char *param, char *val,
 339                                       const char *unused)
 340{
 341        static phys_addr_t size;
 342        unsigned long npages;
 343
 344        /*
 345         * The hugepagesz and hugepages cmdline options are interleaved.  We
 346         * use the size variable to keep track of whether or not this was done
 347         * properly and skip over instances where it is incorrect.  Other
 348         * command-line parsing code will issue warnings, so we don't need to.
 349         *
 350         */
 351        if ((strcmp(param, "default_hugepagesz") == 0) ||
 352            (strcmp(param, "hugepagesz") == 0)) {
 353                size = memparse(val, NULL);
 354        } else if (strcmp(param, "hugepages") == 0) {
 355                if (size != 0) {
 356                        if (sscanf(val, "%lu", &npages) <= 0)
 357                                npages = 0;
 358                        if (npages > MAX_NUMBER_GPAGES) {
 359                                pr_warn("MMU: %lu pages requested for page "
 360                                        "size %llu KB, limiting to "
 361                                        __stringify(MAX_NUMBER_GPAGES) "\n",
 362                                        npages, size / 1024);
 363                                npages = MAX_NUMBER_GPAGES;
 364                        }
 365                        gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
 366                        size = 0;
 367                }
 368        }
 369        return 0;
 370}
 371
 372
 373/*
 374 * This function allocates physical space for pages that are larger than the
 375 * buddy allocator can handle.  We want to allocate these in highmem because
 376 * the amount of lowmem is limited.  This means that this function MUST be
 377 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
 378 * allocate to grab highmem.
 379 */
 380void __init reserve_hugetlb_gpages(void)
 381{
 382        static __initdata char cmdline[COMMAND_LINE_SIZE];
 383        phys_addr_t size, base;
 384        int i;
 385
 386        strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
 387        parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
 388                        &do_gpage_early_setup);
 389
 390        /*
 391         * Walk gpage list in reverse, allocating larger page sizes first.
 392         * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
 393         * When we reach the point in the list where pages are no longer
 394         * considered gpages, we're done.
 395         */
 396        for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
 397                if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
 398                        continue;
 399                else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
 400                        break;
 401
 402                size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
 403                base = memblock_alloc_base(size * gpage_npages[i], size,
 404                                           MEMBLOCK_ALLOC_ANYWHERE);
 405                add_gpage(base, size, gpage_npages[i]);
 406        }
 407}
 408
 409#else /* !PPC_FSL_BOOK3E */
 410
 411/* Build list of addresses of gigantic pages.  This function is used in early
 412 * boot before the buddy allocator is setup.
 413 */
 414void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 415{
 416        if (!addr)
 417                return;
 418        while (number_of_pages > 0) {
 419                gpage_freearray[nr_gpages] = addr;
 420                nr_gpages++;
 421                number_of_pages--;
 422                addr += page_size;
 423        }
 424}
 425
 426/* Moves the gigantic page addresses from the temporary list to the
 427 * huge_boot_pages list.
 428 */
 429int alloc_bootmem_huge_page(struct hstate *hstate)
 430{
 431        struct huge_bootmem_page *m;
 432        if (nr_gpages == 0)
 433                return 0;
 434        m = phys_to_virt(gpage_freearray[--nr_gpages]);
 435        gpage_freearray[nr_gpages] = 0;
 436        list_add(&m->list, &huge_boot_pages);
 437        m->hstate = hstate;
 438        return 1;
 439}
 440#endif
 441
 442int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 443{
 444        return 0;
 445}
 446
 447#ifdef CONFIG_PPC_FSL_BOOK3E
 448#define HUGEPD_FREELIST_SIZE \
 449        ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
 450
 451struct hugepd_freelist {
 452        struct rcu_head rcu;
 453        unsigned int index;
 454        void *ptes[0];
 455};
 456
 457static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
 458
 459static void hugepd_free_rcu_callback(struct rcu_head *head)
 460{
 461        struct hugepd_freelist *batch =
 462                container_of(head, struct hugepd_freelist, rcu);
 463        unsigned int i;
 464
 465        for (i = 0; i < batch->index; i++)
 466                kmem_cache_free(hugepte_cache, batch->ptes[i]);
 467
 468        free_page((unsigned long)batch);
 469}
 470
 471static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
 472{
 473        struct hugepd_freelist **batchp;
 474
 475        batchp = this_cpu_ptr(&hugepd_freelist_cur);
 476
 477        if (atomic_read(&tlb->mm->mm_users) < 2 ||
 478            cpumask_equal(mm_cpumask(tlb->mm),
 479                          cpumask_of(smp_processor_id()))) {
 480                kmem_cache_free(hugepte_cache, hugepte);
 481        put_cpu_var(hugepd_freelist_cur);
 482                return;
 483        }
 484
 485        if (*batchp == NULL) {
 486                *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
 487                (*batchp)->index = 0;
 488        }
 489
 490        (*batchp)->ptes[(*batchp)->index++] = hugepte;
 491        if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
 492                call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
 493                *batchp = NULL;
 494        }
 495        put_cpu_var(hugepd_freelist_cur);
 496}
 497#endif
 498
 499static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
 500                              unsigned long start, unsigned long end,
 501                              unsigned long floor, unsigned long ceiling)
 502{
 503        pte_t *hugepte = hugepd_page(*hpdp);
 504        int i;
 505
 506        unsigned long pdmask = ~((1UL << pdshift) - 1);
 507        unsigned int num_hugepd = 1;
 508
 509#ifdef CONFIG_PPC_FSL_BOOK3E
 510        /* Note: On fsl the hpdp may be the first of several */
 511        num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
 512#else
 513        unsigned int shift = hugepd_shift(*hpdp);
 514#endif
 515
 516        start &= pdmask;
 517        if (start < floor)
 518                return;
 519        if (ceiling) {
 520                ceiling &= pdmask;
 521                if (! ceiling)
 522                        return;
 523        }
 524        if (end - 1 > ceiling - 1)
 525                return;
 526
 527        for (i = 0; i < num_hugepd; i++, hpdp++)
 528                hpdp->pd = 0;
 529
 530#ifdef CONFIG_PPC_FSL_BOOK3E
 531        hugepd_free(tlb, hugepte);
 532#else
 533        pgtable_free_tlb(tlb, hugepte, pdshift - shift);
 534#endif
 535}
 536
 537static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 538                                   unsigned long addr, unsigned long end,
 539                                   unsigned long floor, unsigned long ceiling)
 540{
 541        pmd_t *pmd;
 542        unsigned long next;
 543        unsigned long start;
 544
 545        start = addr;
 546        do {
 547                pmd = pmd_offset(pud, addr);
 548                next = pmd_addr_end(addr, end);
 549                if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
 550                        /*
 551                         * if it is not hugepd pointer, we should already find
 552                         * it cleared.
 553                         */
 554                        WARN_ON(!pmd_none_or_clear_bad(pmd));
 555                        continue;
 556                }
 557#ifdef CONFIG_PPC_FSL_BOOK3E
 558                /*
 559                 * Increment next by the size of the huge mapping since
 560                 * there may be more than one entry at this level for a
 561                 * single hugepage, but all of them point to
 562                 * the same kmem cache that holds the hugepte.
 563                 */
 564                next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
 565#endif
 566                free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
 567                                  addr, next, floor, ceiling);
 568        } while (addr = next, addr != end);
 569
 570        start &= PUD_MASK;
 571        if (start < floor)
 572                return;
 573        if (ceiling) {
 574                ceiling &= PUD_MASK;
 575                if (!ceiling)
 576                        return;
 577        }
 578        if (end - 1 > ceiling - 1)
 579                return;
 580
 581        pmd = pmd_offset(pud, start);
 582        pud_clear(pud);
 583        pmd_free_tlb(tlb, pmd, start);
 584}
 585
 586static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 587                                   unsigned long addr, unsigned long end,
 588                                   unsigned long floor, unsigned long ceiling)
 589{
 590        pud_t *pud;
 591        unsigned long next;
 592        unsigned long start;
 593
 594        start = addr;
 595        do {
 596                pud = pud_offset(pgd, addr);
 597                next = pud_addr_end(addr, end);
 598                if (!is_hugepd(__hugepd(pud_val(*pud)))) {
 599                        if (pud_none_or_clear_bad(pud))
 600                                continue;
 601                        hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
 602                                               ceiling);
 603                } else {
 604#ifdef CONFIG_PPC_FSL_BOOK3E
 605                        /*
 606                         * Increment next by the size of the huge mapping since
 607                         * there may be more than one entry at this level for a
 608                         * single hugepage, but all of them point to
 609                         * the same kmem cache that holds the hugepte.
 610                         */
 611                        next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
 612#endif
 613                        free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
 614                                          addr, next, floor, ceiling);
 615                }
 616        } while (addr = next, addr != end);
 617
 618        start &= PGDIR_MASK;
 619        if (start < floor)
 620                return;
 621        if (ceiling) {
 622                ceiling &= PGDIR_MASK;
 623                if (!ceiling)
 624                        return;
 625        }
 626        if (end - 1 > ceiling - 1)
 627                return;
 628
 629        pud = pud_offset(pgd, start);
 630        pgd_clear(pgd);
 631        pud_free_tlb(tlb, pud, start);
 632}
 633
 634/*
 635 * This function frees user-level page tables of a process.
 636 */
 637void hugetlb_free_pgd_range(struct mmu_gather *tlb,
 638                            unsigned long addr, unsigned long end,
 639                            unsigned long floor, unsigned long ceiling)
 640{
 641        pgd_t *pgd;
 642        unsigned long next;
 643
 644        /*
 645         * Because there are a number of different possible pagetable
 646         * layouts for hugepage ranges, we limit knowledge of how
 647         * things should be laid out to the allocation path
 648         * (huge_pte_alloc(), above).  Everything else works out the
 649         * structure as it goes from information in the hugepd
 650         * pointers.  That means that we can't here use the
 651         * optimization used in the normal page free_pgd_range(), of
 652         * checking whether we're actually covering a large enough
 653         * range to have to do anything at the top level of the walk
 654         * instead of at the bottom.
 655         *
 656         * To make sense of this, you should probably go read the big
 657         * block comment at the top of the normal free_pgd_range(),
 658         * too.
 659         */
 660
 661        do {
 662                next = pgd_addr_end(addr, end);
 663                pgd = pgd_offset(tlb->mm, addr);
 664                if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
 665                        if (pgd_none_or_clear_bad(pgd))
 666                                continue;
 667                        hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 668                } else {
 669#ifdef CONFIG_PPC_FSL_BOOK3E
 670                        /*
 671                         * Increment next by the size of the huge mapping since
 672                         * there may be more than one entry at the pgd level
 673                         * for a single hugepage, but all of them point to the
 674                         * same kmem cache that holds the hugepte.
 675                         */
 676                        next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
 677#endif
 678                        free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
 679                                          addr, next, floor, ceiling);
 680                }
 681        } while (addr = next, addr != end);
 682}
 683
 684struct page *
 685follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
 686{
 687        pte_t *ptep;
 688        struct page *page;
 689        unsigned shift;
 690        unsigned long mask;
 691        /*
 692         * Transparent hugepages are handled by generic code. We can skip them
 693         * here.
 694         */
 695        ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
 696
 697        /* Verify it is a huge page else bail. */
 698        if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep))
 699                return ERR_PTR(-EINVAL);
 700
 701        mask = (1UL << shift) - 1;
 702        page = pte_page(*ptep);
 703        if (page)
 704                page += (address & mask) / PAGE_SIZE;
 705
 706        return page;
 707}
 708
 709struct page *
 710follow_huge_pmd(struct mm_struct *mm, unsigned long address,
 711                pmd_t *pmd, int write)
 712{
 713        BUG();
 714        return NULL;
 715}
 716
 717struct page *
 718follow_huge_pud(struct mm_struct *mm, unsigned long address,
 719                pud_t *pud, int write)
 720{
 721        BUG();
 722        return NULL;
 723}
 724
 725static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
 726                                      unsigned long sz)
 727{
 728        unsigned long __boundary = (addr + sz) & ~(sz-1);
 729        return (__boundary - 1 < end - 1) ? __boundary : end;
 730}
 731
 732int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
 733                unsigned long end, int write, struct page **pages, int *nr)
 734{
 735        pte_t *ptep;
 736        unsigned long sz = 1UL << hugepd_shift(hugepd);
 737        unsigned long next;
 738
 739        ptep = hugepte_offset(hugepd, addr, pdshift);
 740        do {
 741                next = hugepte_addr_end(addr, end, sz);
 742                if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
 743                        return 0;
 744        } while (ptep++, addr = next, addr != end);
 745
 746        return 1;
 747}
 748
 749#ifdef CONFIG_PPC_MM_SLICES
 750unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 751                                        unsigned long len, unsigned long pgoff,
 752                                        unsigned long flags)
 753{
 754        struct hstate *hstate = hstate_file(file);
 755        int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
 756
 757        return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
 758}
 759#endif
 760
 761unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 762{
 763#ifdef CONFIG_PPC_MM_SLICES
 764        unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
 765
 766        return 1UL << mmu_psize_to_shift(psize);
 767#else
 768        if (!is_vm_hugetlb_page(vma))
 769                return PAGE_SIZE;
 770
 771        return huge_page_size(hstate_vma(vma));
 772#endif
 773}
 774
 775static inline bool is_power_of_4(unsigned long x)
 776{
 777        if (is_power_of_2(x))
 778                return (__ilog2(x) % 2) ? false : true;
 779        return false;
 780}
 781
 782static int __init add_huge_page_size(unsigned long long size)
 783{
 784        int shift = __ffs(size);
 785        int mmu_psize;
 786
 787        /* Check that it is a page size supported by the hardware and
 788         * that it fits within pagetable and slice limits. */
 789#ifdef CONFIG_PPC_FSL_BOOK3E
 790        if ((size < PAGE_SIZE) || !is_power_of_4(size))
 791                return -EINVAL;
 792#else
 793        if (!is_power_of_2(size)
 794            || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
 795                return -EINVAL;
 796#endif
 797
 798        if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
 799                return -EINVAL;
 800
 801#ifdef CONFIG_SPU_FS_64K_LS
 802        /* Disable support for 64K huge pages when 64K SPU local store
 803         * support is enabled as the current implementation conflicts.
 804         */
 805        if (shift == PAGE_SHIFT_64K)
 806                return -EINVAL;
 807#endif /* CONFIG_SPU_FS_64K_LS */
 808
 809        BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
 810
 811        /* Return if huge page size has already been setup */
 812        if (size_to_hstate(size))
 813                return 0;
 814
 815        hugetlb_add_hstate(shift - PAGE_SHIFT);
 816
 817        return 0;
 818}
 819
 820static int __init hugepage_setup_sz(char *str)
 821{
 822        unsigned long long size;
 823
 824        size = memparse(str, &str);
 825
 826        if (add_huge_page_size(size) != 0)
 827                printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
 828
 829        return 1;
 830}
 831__setup("hugepagesz=", hugepage_setup_sz);
 832
 833#ifdef CONFIG_PPC_FSL_BOOK3E
 834struct kmem_cache *hugepte_cache;
 835static int __init hugetlbpage_init(void)
 836{
 837        int psize;
 838
 839        for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 840                unsigned shift;
 841
 842                if (!mmu_psize_defs[psize].shift)
 843                        continue;
 844
 845                shift = mmu_psize_to_shift(psize);
 846
 847                /* Don't treat normal page sizes as huge... */
 848                if (shift != PAGE_SHIFT)
 849                        if (add_huge_page_size(1ULL << shift) < 0)
 850                                continue;
 851        }
 852
 853        /*
 854         * Create a kmem cache for hugeptes.  The bottom bits in the pte have
 855         * size information encoded in them, so align them to allow this
 856         */
 857        hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
 858                                           HUGEPD_SHIFT_MASK + 1, 0, NULL);
 859        if (hugepte_cache == NULL)
 860                panic("%s: Unable to create kmem cache for hugeptes\n",
 861                      __func__);
 862
 863        /* Default hpage size = 4M */
 864        if (mmu_psize_defs[MMU_PAGE_4M].shift)
 865                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
 866        else
 867                panic("%s: Unable to set default huge page size\n", __func__);
 868
 869
 870        return 0;
 871}
 872#else
 873static int __init hugetlbpage_init(void)
 874{
 875        int psize;
 876
 877        if (!mmu_has_feature(MMU_FTR_16M_PAGE))
 878                return -ENODEV;
 879
 880        for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 881                unsigned shift;
 882                unsigned pdshift;
 883
 884                if (!mmu_psize_defs[psize].shift)
 885                        continue;
 886
 887                shift = mmu_psize_to_shift(psize);
 888
 889                if (add_huge_page_size(1ULL << shift) < 0)
 890                        continue;
 891
 892                if (shift < PMD_SHIFT)
 893                        pdshift = PMD_SHIFT;
 894                else if (shift < PUD_SHIFT)
 895                        pdshift = PUD_SHIFT;
 896                else
 897                        pdshift = PGDIR_SHIFT;
 898                /*
 899                 * if we have pdshift and shift value same, we don't
 900                 * use pgt cache for hugepd.
 901                 */
 902                if (pdshift != shift) {
 903                        pgtable_cache_add(pdshift - shift, NULL);
 904                        if (!PGT_CACHE(pdshift - shift))
 905                                panic("hugetlbpage_init(): could not create "
 906                                      "pgtable cache for %d bit pagesize\n", shift);
 907                }
 908        }
 909
 910        /* Set default large page size. Currently, we pick 16M or 1M
 911         * depending on what is available
 912         */
 913        if (mmu_psize_defs[MMU_PAGE_16M].shift)
 914                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
 915        else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 916                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
 917
 918        return 0;
 919}
 920#endif
 921module_init(hugetlbpage_init);
 922
 923void flush_dcache_icache_hugepage(struct page *page)
 924{
 925        int i;
 926        void *start;
 927
 928        BUG_ON(!PageCompound(page));
 929
 930        for (i = 0; i < (1UL << compound_order(page)); i++) {
 931                if (!PageHighMem(page)) {
 932                        __flush_dcache_icache(page_address(page+i));
 933                } else {
 934                        start = kmap_atomic(page+i);
 935                        __flush_dcache_icache(start);
 936                        kunmap_atomic(start);
 937                }
 938        }
 939}
 940
 941#endif /* CONFIG_HUGETLB_PAGE */
 942
 943/*
 944 * We have 4 cases for pgds and pmds:
 945 * (1) invalid (all zeroes)
 946 * (2) pointer to next table, as normal; bottom 6 bits == 0
 947 * (3) leaf pte for huge page, bottom two bits != 00
 948 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
 949 *
 950 * So long as we atomically load page table pointers we are safe against teardown,
 951 * we can follow the address down to the the page and take a ref on it.
 952 */
 953
 954pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
 955{
 956        pgd_t pgd, *pgdp;
 957        pud_t pud, *pudp;
 958        pmd_t pmd, *pmdp;
 959        pte_t *ret_pte;
 960        hugepd_t *hpdp = NULL;
 961        unsigned pdshift = PGDIR_SHIFT;
 962
 963        if (shift)
 964                *shift = 0;
 965
 966        pgdp = pgdir + pgd_index(ea);
 967        pgd  = ACCESS_ONCE(*pgdp);
 968        /*
 969         * Always operate on the local stack value. This make sure the
 970         * value don't get updated by a parallel THP split/collapse,
 971         * page fault or a page unmap. The return pte_t * is still not
 972         * stable. So should be checked there for above conditions.
 973         */
 974        if (pgd_none(pgd))
 975                return NULL;
 976        else if (pgd_huge(pgd)) {
 977                ret_pte = (pte_t *) pgdp;
 978                goto out;
 979        } else if (is_hugepd(__hugepd(pgd_val(pgd))))
 980                hpdp = (hugepd_t *)&pgd;
 981        else {
 982                /*
 983                 * Even if we end up with an unmap, the pgtable will not
 984                 * be freed, because we do an rcu free and here we are
 985                 * irq disabled
 986                 */
 987                pdshift = PUD_SHIFT;
 988                pudp = pud_offset(&pgd, ea);
 989                pud  = READ_ONCE(*pudp);
 990
 991                if (pud_none(pud))
 992                        return NULL;
 993                else if (pud_huge(pud)) {
 994                        ret_pte = (pte_t *) pudp;
 995                        goto out;
 996                } else if (is_hugepd(__hugepd(pud_val(pud))))
 997                        hpdp = (hugepd_t *)&pud;
 998                else {
 999                        pdshift = PMD_SHIFT;
1000                        pmdp = pmd_offset(&pud, ea);
1001                        pmd  = READ_ONCE(*pmdp);
1002                        /*
1003                         * A hugepage collapse is captured by pmd_none, because
1004                         * it mark the pmd none and do a hpte invalidate.
1005                         *
1006                         * A hugepage split is captured by pmd_trans_splitting
1007                         * because we mark the pmd trans splitting and do a
1008                         * hpte invalidate
1009                         *
1010                         */
1011                        if (pmd_none(pmd) || pmd_trans_splitting(pmd))
1012                                return NULL;
1013
1014                        if (pmd_huge(pmd) || pmd_large(pmd)) {
1015                                ret_pte = (pte_t *) pmdp;
1016                                goto out;
1017                        } else if (is_hugepd(__hugepd(pmd_val(pmd))))
1018                                hpdp = (hugepd_t *)&pmd;
1019                        else
1020                                return pte_offset_kernel(&pmd, ea);
1021                }
1022        }
1023        if (!hpdp)
1024                return NULL;
1025
1026        ret_pte = hugepte_offset(*hpdp, ea, pdshift);
1027        pdshift = hugepd_shift(*hpdp);
1028out:
1029        if (shift)
1030                *shift = pdshift;
1031        return ret_pte;
1032}
1033EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
1034
1035int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1036                unsigned long end, int write, struct page **pages, int *nr)
1037{
1038        unsigned long mask;
1039        unsigned long pte_end;
1040        struct page *head, *page, *tail;
1041        pte_t pte;
1042        int refs;
1043
1044        pte_end = (addr + sz) & ~(sz-1);
1045        if (pte_end < end)
1046                end = pte_end;
1047
1048        pte = ACCESS_ONCE(*ptep);
1049        mask = _PAGE_PRESENT | _PAGE_USER;
1050        if (write)
1051                mask |= _PAGE_RW;
1052
1053        if ((pte_val(pte) & mask) != mask)
1054                return 0;
1055
1056        /* hugepages are never "special" */
1057        VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1058
1059        refs = 0;
1060        head = pte_page(pte);
1061
1062        page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1063        tail = page;
1064        do {
1065                VM_BUG_ON(compound_head(page) != head);
1066                pages[*nr] = page;
1067                (*nr)++;
1068                page++;
1069                refs++;
1070        } while (addr += PAGE_SIZE, addr != end);
1071
1072        if (!page_cache_add_speculative(head, refs)) {
1073                *nr -= refs;
1074                return 0;
1075        }
1076
1077        if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1078                /* Could be optimized better */
1079                *nr -= refs;
1080                while (refs--)
1081                        put_page(head);
1082                return 0;
1083        }
1084
1085        /*
1086         * Any tail page need their mapcount reference taken before we
1087         * return.
1088         */
1089        while (refs--) {
1090                if (PageTail(tail))
1091                        get_huge_page_tail(tail);
1092                tail++;
1093        }
1094
1095        return 1;
1096}
1097