linux/arch/s390/include/asm/pgtable.h
<<
>>
Prefs
   1/*
   2 *  S390 version
   3 *    Copyright IBM Corp. 1999, 2000
   4 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   5 *               Ulrich Weigand (weigand@de.ibm.com)
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 *
   8 *  Derived from "include/asm-i386/pgtable.h"
   9 */
  10
  11#ifndef _ASM_S390_PGTABLE_H
  12#define _ASM_S390_PGTABLE_H
  13
  14/*
  15 * The Linux memory management assumes a three-level page table setup. For
  16 * s390 31 bit we "fold" the mid level into the top-level page table, so
  17 * that we physically have the same two-level page table as the s390 mmu
  18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
  19 * the hardware provides (region first and region second tables are not
  20 * used).
  21 *
  22 * The "pgd_xxx()" functions are trivial for a folded two-level
  23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
  24 * into the pgd entry)
  25 *
  26 * This file contains the functions and defines necessary to modify and use
  27 * the S390 page table tree.
  28 */
  29#ifndef __ASSEMBLY__
  30#include <linux/sched.h>
  31#include <linux/mm_types.h>
  32#include <linux/page-flags.h>
  33#include <linux/radix-tree.h>
  34#include <asm/bug.h>
  35#include <asm/page.h>
  36
  37extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
  38extern void paging_init(void);
  39extern void vmem_map_init(void);
  40
  41/*
  42 * The S390 doesn't have any external MMU info: the kernel page
  43 * tables contain all the necessary information.
  44 */
  45#define update_mmu_cache(vma, address, ptep)     do { } while (0)
  46#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  47
  48/*
  49 * ZERO_PAGE is a global shared page that is always zero; used
  50 * for zero-mapped memory areas etc..
  51 */
  52
  53extern unsigned long empty_zero_page;
  54extern unsigned long zero_page_mask;
  55
  56#define ZERO_PAGE(vaddr) \
  57        (virt_to_page((void *)(empty_zero_page + \
  58         (((unsigned long)(vaddr)) &zero_page_mask))))
  59#define __HAVE_COLOR_ZERO_PAGE
  60
  61/* TODO: s390 cannot support io_remap_pfn_range... */
  62#endif /* !__ASSEMBLY__ */
  63
  64/*
  65 * PMD_SHIFT determines the size of the area a second-level page
  66 * table can map
  67 * PGDIR_SHIFT determines what a third-level page table entry can map
  68 */
  69#ifndef CONFIG_64BIT
  70# define PMD_SHIFT      20
  71# define PUD_SHIFT      20
  72# define PGDIR_SHIFT    20
  73#else /* CONFIG_64BIT */
  74# define PMD_SHIFT      20
  75# define PUD_SHIFT      31
  76# define PGDIR_SHIFT    42
  77#endif /* CONFIG_64BIT */
  78
  79#define PMD_SIZE        (1UL << PMD_SHIFT)
  80#define PMD_MASK        (~(PMD_SIZE-1))
  81#define PUD_SIZE        (1UL << PUD_SHIFT)
  82#define PUD_MASK        (~(PUD_SIZE-1))
  83#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  84#define PGDIR_MASK      (~(PGDIR_SIZE-1))
  85
  86/*
  87 * entries per page directory level: the S390 is two-level, so
  88 * we don't really have any PMD directory physically.
  89 * for S390 segment-table entries are combined to one PGD
  90 * that leads to 1024 pte per pgd
  91 */
  92#define PTRS_PER_PTE    256
  93#ifndef CONFIG_64BIT
  94#define __PAGETABLE_PUD_FOLDED
  95#define PTRS_PER_PMD    1
  96#define __PAGETABLE_PMD_FOLDED
  97#define PTRS_PER_PUD    1
  98#else /* CONFIG_64BIT */
  99#define PTRS_PER_PMD    2048
 100#define PTRS_PER_PUD    2048
 101#endif /* CONFIG_64BIT */
 102#define PTRS_PER_PGD    2048
 103
 104#define FIRST_USER_ADDRESS  0UL
 105
 106#define pte_ERROR(e) \
 107        printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
 108#define pmd_ERROR(e) \
 109        printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
 110#define pud_ERROR(e) \
 111        printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
 112#define pgd_ERROR(e) \
 113        printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
 114
 115#ifndef __ASSEMBLY__
 116/*
 117 * The vmalloc and module area will always be on the topmost area of the kernel
 118 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
 119 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
 120 * modules will reside. That makes sure that inter module branches always
 121 * happen without trampolines and in addition the placement within a 2GB frame
 122 * is branch prediction unit friendly.
 123 */
 124extern unsigned long VMALLOC_START;
 125extern unsigned long VMALLOC_END;
 126extern struct page *vmemmap;
 127
 128#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
 129
 130#ifdef CONFIG_64BIT
 131extern unsigned long MODULES_VADDR;
 132extern unsigned long MODULES_END;
 133#define MODULES_VADDR   MODULES_VADDR
 134#define MODULES_END     MODULES_END
 135#define MODULES_LEN     (1UL << 31)
 136#endif
 137
 138static inline int is_module_addr(void *addr)
 139{
 140#ifdef CONFIG_64BIT
 141        BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
 142        if (addr < (void *)MODULES_VADDR)
 143                return 0;
 144        if (addr > (void *)MODULES_END)
 145                return 0;
 146#endif
 147        return 1;
 148}
 149
 150/*
 151 * A 31 bit pagetable entry of S390 has following format:
 152 *  |   PFRA          |    |  OS  |
 153 * 0                   0IP0
 154 * 00000000001111111111222222222233
 155 * 01234567890123456789012345678901
 156 *
 157 * I Page-Invalid Bit:    Page is not available for address-translation
 158 * P Page-Protection Bit: Store access not possible for page
 159 *
 160 * A 31 bit segmenttable entry of S390 has following format:
 161 *  |   P-table origin      |  |PTL
 162 * 0                         IC
 163 * 00000000001111111111222222222233
 164 * 01234567890123456789012345678901
 165 *
 166 * I Segment-Invalid Bit:    Segment is not available for address-translation
 167 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 168 * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
 169 *
 170 * The 31 bit segmenttable origin of S390 has following format:
 171 *
 172 *  |S-table origin   |     | STL |
 173 * X                   **GPS
 174 * 00000000001111111111222222222233
 175 * 01234567890123456789012345678901
 176 *
 177 * X Space-Switch event:
 178 * G Segment-Invalid Bit:     *
 179 * P Private-Space Bit:       Segment is not private (PoP 3-30)
 180 * S Storage-Alteration:
 181 * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
 182 *
 183 * A 64 bit pagetable entry of S390 has following format:
 184 * |                     PFRA                         |0IPC|  OS  |
 185 * 0000000000111111111122222222223333333333444444444455555555556666
 186 * 0123456789012345678901234567890123456789012345678901234567890123
 187 *
 188 * I Page-Invalid Bit:    Page is not available for address-translation
 189 * P Page-Protection Bit: Store access not possible for page
 190 * C Change-bit override: HW is not required to set change bit
 191 *
 192 * A 64 bit segmenttable entry of S390 has following format:
 193 * |        P-table origin                              |      TT
 194 * 0000000000111111111122222222223333333333444444444455555555556666
 195 * 0123456789012345678901234567890123456789012345678901234567890123
 196 *
 197 * I Segment-Invalid Bit:    Segment is not available for address-translation
 198 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 199 * P Page-Protection Bit: Store access not possible for page
 200 * TT Type 00
 201 *
 202 * A 64 bit region table entry of S390 has following format:
 203 * |        S-table origin                             |   TF  TTTL
 204 * 0000000000111111111122222222223333333333444444444455555555556666
 205 * 0123456789012345678901234567890123456789012345678901234567890123
 206 *
 207 * I Segment-Invalid Bit:    Segment is not available for address-translation
 208 * TT Type 01
 209 * TF
 210 * TL Table length
 211 *
 212 * The 64 bit regiontable origin of S390 has following format:
 213 * |      region table origon                          |       DTTL
 214 * 0000000000111111111122222222223333333333444444444455555555556666
 215 * 0123456789012345678901234567890123456789012345678901234567890123
 216 *
 217 * X Space-Switch event:
 218 * G Segment-Invalid Bit:  
 219 * P Private-Space Bit:    
 220 * S Storage-Alteration:
 221 * R Real space
 222 * TL Table-Length:
 223 *
 224 * A storage key has the following format:
 225 * | ACC |F|R|C|0|
 226 *  0   3 4 5 6 7
 227 * ACC: access key
 228 * F  : fetch protection bit
 229 * R  : referenced bit
 230 * C  : changed bit
 231 */
 232
 233/* Hardware bits in the page table entry */
 234#define _PAGE_PROTECT   0x200           /* HW read-only bit  */
 235#define _PAGE_INVALID   0x400           /* HW invalid bit    */
 236#define _PAGE_LARGE     0x800           /* Bit to mark a large pte */
 237
 238/* Software bits in the page table entry */
 239#define _PAGE_PRESENT   0x001           /* SW pte present bit */
 240#define _PAGE_TYPE      0x002           /* SW pte type bit */
 241#define _PAGE_YOUNG     0x004           /* SW pte young bit */
 242#define _PAGE_DIRTY     0x008           /* SW pte dirty bit */
 243#define _PAGE_READ      0x010           /* SW pte read bit */
 244#define _PAGE_WRITE     0x020           /* SW pte write bit */
 245#define _PAGE_SPECIAL   0x040           /* SW associated with special page */
 246#define _PAGE_UNUSED    0x080           /* SW bit for pgste usage state */
 247#define __HAVE_ARCH_PTE_SPECIAL
 248
 249/* Set of bits not changed in pte_modify */
 250#define _PAGE_CHG_MASK          (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
 251                                 _PAGE_YOUNG)
 252
 253/*
 254 * handle_pte_fault uses pte_present and pte_none to find out the pte type
 255 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
 256 * distinguish present from not-present ptes. It is changed only with the page
 257 * table lock held.
 258 *
 259 * The following table gives the different possible bit combinations for
 260 * the pte hardware and software bits in the last 12 bits of a pte:
 261 *
 262 *                              842100000000
 263 *                              000084210000
 264 *                              000000008421
 265 *                              .IR...wrdytp
 266 * empty                        .10...000000
 267 * swap                         .10...xxxx10
 268 * file                         .11...xxxxx0
 269 * prot-none, clean, old        .11...000001
 270 * prot-none, clean, young      .11...000101
 271 * prot-none, dirty, old        .10...001001
 272 * prot-none, dirty, young      .10...001101
 273 * read-only, clean, old        .11...010001
 274 * read-only, clean, young      .01...010101
 275 * read-only, dirty, old        .11...011001
 276 * read-only, dirty, young      .01...011101
 277 * read-write, clean, old       .11...110001
 278 * read-write, clean, young     .01...110101
 279 * read-write, dirty, old       .10...111001
 280 * read-write, dirty, young     .00...111101
 281 *
 282 * pte_present is true for the bit pattern .xx...xxxxx1, (pte & 0x001) == 0x001
 283 * pte_none    is true for the bit pattern .10...xxxx00, (pte & 0x603) == 0x400
 284 * pte_swap    is true for the bit pattern .10...xxxx10, (pte & 0x603) == 0x402
 285 */
 286
 287#ifndef CONFIG_64BIT
 288
 289/* Bits in the segment table address-space-control-element */
 290#define _ASCE_SPACE_SWITCH      0x80000000UL    /* space switch event       */
 291#define _ASCE_ORIGIN_MASK       0x7ffff000UL    /* segment table origin     */
 292#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 293#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 294#define _ASCE_TABLE_LENGTH      0x7f    /* 128 x 64 entries = 8k            */
 295
 296/* Bits in the segment table entry */
 297#define _SEGMENT_ENTRY_BITS     0x7fffffffUL    /* Valid segment table bits */
 298#define _SEGMENT_ENTRY_ORIGIN   0x7fffffc0UL    /* page table origin        */
 299#define _SEGMENT_ENTRY_PROTECT  0x200   /* page protection bit              */
 300#define _SEGMENT_ENTRY_INVALID  0x20    /* invalid segment table entry      */
 301#define _SEGMENT_ENTRY_COMMON   0x10    /* common segment bit               */
 302#define _SEGMENT_ENTRY_PTL      0x0f    /* page table length                */
 303
 304#define _SEGMENT_ENTRY_DIRTY    0       /* No sw dirty bit for 31-bit */
 305#define _SEGMENT_ENTRY_YOUNG    0       /* No sw young bit for 31-bit */
 306#define _SEGMENT_ENTRY_READ     0       /* No sw read bit for 31-bit */
 307#define _SEGMENT_ENTRY_WRITE    0       /* No sw write bit for 31-bit */
 308#define _SEGMENT_ENTRY_LARGE    0       /* No large pages for 31-bit */
 309#define _SEGMENT_ENTRY_BITS_LARGE 0
 310#define _SEGMENT_ENTRY_ORIGIN_LARGE 0
 311
 312#define _SEGMENT_ENTRY          (_SEGMENT_ENTRY_PTL)
 313#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INVALID)
 314
 315/*
 316 * Segment table entry encoding (I = invalid, R = read-only bit):
 317 *              ..R...I.....
 318 * prot-none    ..1...1.....
 319 * read-only    ..1...0.....
 320 * read-write   ..0...0.....
 321 * empty        ..0...1.....
 322 */
 323
 324/* Page status table bits for virtualization */
 325#define PGSTE_ACC_BITS  0xf0000000UL
 326#define PGSTE_FP_BIT    0x08000000UL
 327#define PGSTE_PCL_BIT   0x00800000UL
 328#define PGSTE_HR_BIT    0x00400000UL
 329#define PGSTE_HC_BIT    0x00200000UL
 330#define PGSTE_GR_BIT    0x00040000UL
 331#define PGSTE_GC_BIT    0x00020000UL
 332#define PGSTE_UC_BIT    0x00008000UL    /* user dirty (migration) */
 333#define PGSTE_IN_BIT    0x00004000UL    /* IPTE notify bit */
 334
 335#else /* CONFIG_64BIT */
 336
 337/* Bits in the segment/region table address-space-control-element */
 338#define _ASCE_ORIGIN            ~0xfffUL/* segment table origin             */
 339#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 340#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 341#define _ASCE_SPACE_SWITCH      0x40    /* space switch event               */
 342#define _ASCE_REAL_SPACE        0x20    /* real space control               */
 343#define _ASCE_TYPE_MASK         0x0c    /* asce table type mask             */
 344#define _ASCE_TYPE_REGION1      0x0c    /* region first table type          */
 345#define _ASCE_TYPE_REGION2      0x08    /* region second table type         */
 346#define _ASCE_TYPE_REGION3      0x04    /* region third table type          */
 347#define _ASCE_TYPE_SEGMENT      0x00    /* segment table type               */
 348#define _ASCE_TABLE_LENGTH      0x03    /* region table length              */
 349
 350/* Bits in the region table entry */
 351#define _REGION_ENTRY_ORIGIN    ~0xfffUL/* region/segment table origin      */
 352#define _REGION_ENTRY_PROTECT   0x200   /* region protection bit            */
 353#define _REGION_ENTRY_INVALID   0x20    /* invalid region table entry       */
 354#define _REGION_ENTRY_TYPE_MASK 0x0c    /* region/segment table type mask   */
 355#define _REGION_ENTRY_TYPE_R1   0x0c    /* region first table type          */
 356#define _REGION_ENTRY_TYPE_R2   0x08    /* region second table type         */
 357#define _REGION_ENTRY_TYPE_R3   0x04    /* region third table type          */
 358#define _REGION_ENTRY_LENGTH    0x03    /* region third length              */
 359
 360#define _REGION1_ENTRY          (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 361#define _REGION1_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
 362#define _REGION2_ENTRY          (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 363#define _REGION2_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
 364#define _REGION3_ENTRY          (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 365#define _REGION3_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
 366
 367#define _REGION3_ENTRY_LARGE    0x400   /* RTTE-format control, large page  */
 368#define _REGION3_ENTRY_RO       0x200   /* page protection bit              */
 369
 370/* Bits in the segment table entry */
 371#define _SEGMENT_ENTRY_BITS     0xfffffffffffffe33UL
 372#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
 373#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address        */
 374#define _SEGMENT_ENTRY_ORIGIN   ~0x7ffUL/* segment table origin             */
 375#define _SEGMENT_ENTRY_PROTECT  0x200   /* page protection bit              */
 376#define _SEGMENT_ENTRY_INVALID  0x20    /* invalid segment table entry      */
 377
 378#define _SEGMENT_ENTRY          (0)
 379#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INVALID)
 380
 381#define _SEGMENT_ENTRY_DIRTY    0x2000  /* SW segment dirty bit */
 382#define _SEGMENT_ENTRY_YOUNG    0x1000  /* SW segment young bit */
 383#define _SEGMENT_ENTRY_SPLIT    0x0800  /* THP splitting bit */
 384#define _SEGMENT_ENTRY_LARGE    0x0400  /* STE-format control, large page */
 385#define _SEGMENT_ENTRY_READ     0x0002  /* SW segment read bit */
 386#define _SEGMENT_ENTRY_WRITE    0x0001  /* SW segment write bit */
 387
 388/*
 389 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
 390 *                              dy..R...I...wr
 391 * prot-none, clean, old        00..1...1...00
 392 * prot-none, clean, young      01..1...1...00
 393 * prot-none, dirty, old        10..1...1...00
 394 * prot-none, dirty, young      11..1...1...00
 395 * read-only, clean, old        00..1...1...01
 396 * read-only, clean, young      01..1...0...01
 397 * read-only, dirty, old        10..1...1...01
 398 * read-only, dirty, young      11..1...0...01
 399 * read-write, clean, old       00..1...1...11
 400 * read-write, clean, young     01..1...0...11
 401 * read-write, dirty, old       10..0...1...11
 402 * read-write, dirty, young     11..0...0...11
 403 * The segment table origin is used to distinguish empty (origin==0) from
 404 * read-write, old segment table entries (origin!=0)
 405 */
 406
 407#define _SEGMENT_ENTRY_SPLIT_BIT 11     /* THP splitting bit number */
 408
 409/* Page status table bits for virtualization */
 410#define PGSTE_ACC_BITS  0xf000000000000000UL
 411#define PGSTE_FP_BIT    0x0800000000000000UL
 412#define PGSTE_PCL_BIT   0x0080000000000000UL
 413#define PGSTE_HR_BIT    0x0040000000000000UL
 414#define PGSTE_HC_BIT    0x0020000000000000UL
 415#define PGSTE_GR_BIT    0x0004000000000000UL
 416#define PGSTE_GC_BIT    0x0002000000000000UL
 417#define PGSTE_UC_BIT    0x0000800000000000UL    /* user dirty (migration) */
 418#define PGSTE_IN_BIT    0x0000400000000000UL    /* IPTE notify bit */
 419
 420#endif /* CONFIG_64BIT */
 421
 422/* Guest Page State used for virtualization */
 423#define _PGSTE_GPS_ZERO         0x0000000080000000UL
 424#define _PGSTE_GPS_USAGE_MASK   0x0000000003000000UL
 425#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
 426#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
 427
 428/*
 429 * A user page table pointer has the space-switch-event bit, the
 430 * private-space-control bit and the storage-alteration-event-control
 431 * bit set. A kernel page table pointer doesn't need them.
 432 */
 433#define _ASCE_USER_BITS         (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 434                                 _ASCE_ALT_EVENT)
 435
 436/*
 437 * Page protection definitions.
 438 */
 439#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
 440#define PAGE_READ       __pgprot(_PAGE_PRESENT | _PAGE_READ | \
 441                                 _PAGE_INVALID | _PAGE_PROTECT)
 442#define PAGE_WRITE      __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 443                                 _PAGE_INVALID | _PAGE_PROTECT)
 444
 445#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 446                                 _PAGE_YOUNG | _PAGE_DIRTY)
 447#define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 448                                 _PAGE_YOUNG | _PAGE_DIRTY)
 449#define PAGE_KERNEL_RO  __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
 450                                 _PAGE_PROTECT)
 451
 452/*
 453 * On s390 the page table entry has an invalid bit and a read-only bit.
 454 * Read permission implies execute permission and write permission
 455 * implies read permission.
 456 */
 457         /*xwr*/
 458#define __P000  PAGE_NONE
 459#define __P001  PAGE_READ
 460#define __P010  PAGE_READ
 461#define __P011  PAGE_READ
 462#define __P100  PAGE_READ
 463#define __P101  PAGE_READ
 464#define __P110  PAGE_READ
 465#define __P111  PAGE_READ
 466
 467#define __S000  PAGE_NONE
 468#define __S001  PAGE_READ
 469#define __S010  PAGE_WRITE
 470#define __S011  PAGE_WRITE
 471#define __S100  PAGE_READ
 472#define __S101  PAGE_READ
 473#define __S110  PAGE_WRITE
 474#define __S111  PAGE_WRITE
 475
 476/*
 477 * Segment entry (large page) protection definitions.
 478 */
 479#define SEGMENT_NONE    __pgprot(_SEGMENT_ENTRY_INVALID | \
 480                                 _SEGMENT_ENTRY_PROTECT)
 481#define SEGMENT_READ    __pgprot(_SEGMENT_ENTRY_PROTECT | \
 482                                 _SEGMENT_ENTRY_READ)
 483#define SEGMENT_WRITE   __pgprot(_SEGMENT_ENTRY_READ | \
 484                                 _SEGMENT_ENTRY_WRITE)
 485
 486static inline int mm_has_pgste(struct mm_struct *mm)
 487{
 488#ifdef CONFIG_PGSTE
 489        if (unlikely(mm->context.has_pgste))
 490                return 1;
 491#endif
 492        return 0;
 493}
 494
 495/*
 496 * In the case that a guest uses storage keys
 497 * faults should no longer be backed by zero pages
 498 */
 499#define mm_forbids_zeropage mm_use_skey
 500static inline int mm_use_skey(struct mm_struct *mm)
 501{
 502#ifdef CONFIG_PGSTE
 503        if (mm->context.use_skey)
 504                return 1;
 505#endif
 506        return 0;
 507}
 508
 509/*
 510 * pgd/pmd/pte query functions
 511 */
 512#ifndef CONFIG_64BIT
 513
 514static inline int pgd_present(pgd_t pgd) { return 1; }
 515static inline int pgd_none(pgd_t pgd)    { return 0; }
 516static inline int pgd_bad(pgd_t pgd)     { return 0; }
 517
 518static inline int pud_present(pud_t pud) { return 1; }
 519static inline int pud_none(pud_t pud)    { return 0; }
 520static inline int pud_large(pud_t pud)   { return 0; }
 521static inline int pud_bad(pud_t pud)     { return 0; }
 522
 523#else /* CONFIG_64BIT */
 524
 525static inline int pgd_present(pgd_t pgd)
 526{
 527        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 528                return 1;
 529        return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 530}
 531
 532static inline int pgd_none(pgd_t pgd)
 533{
 534        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 535                return 0;
 536        return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
 537}
 538
 539static inline int pgd_bad(pgd_t pgd)
 540{
 541        /*
 542         * With dynamic page table levels the pgd can be a region table
 543         * entry or a segment table entry. Check for the bit that are
 544         * invalid for either table entry.
 545         */
 546        unsigned long mask =
 547                ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
 548                ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 549        return (pgd_val(pgd) & mask) != 0;
 550}
 551
 552static inline int pud_present(pud_t pud)
 553{
 554        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 555                return 1;
 556        return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 557}
 558
 559static inline int pud_none(pud_t pud)
 560{
 561        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 562                return 0;
 563        return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
 564}
 565
 566static inline int pud_large(pud_t pud)
 567{
 568        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
 569                return 0;
 570        return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
 571}
 572
 573static inline int pud_bad(pud_t pud)
 574{
 575        /*
 576         * With dynamic page table levels the pud can be a region table
 577         * entry or a segment table entry. Check for the bit that are
 578         * invalid for either table entry.
 579         */
 580        unsigned long mask =
 581                ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
 582                ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 583        return (pud_val(pud) & mask) != 0;
 584}
 585
 586#endif /* CONFIG_64BIT */
 587
 588static inline int pmd_present(pmd_t pmd)
 589{
 590        return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
 591}
 592
 593static inline int pmd_none(pmd_t pmd)
 594{
 595        return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
 596}
 597
 598static inline int pmd_large(pmd_t pmd)
 599{
 600        return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
 601}
 602
 603static inline int pmd_pfn(pmd_t pmd)
 604{
 605        unsigned long origin_mask;
 606
 607        origin_mask = _SEGMENT_ENTRY_ORIGIN;
 608        if (pmd_large(pmd))
 609                origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
 610        return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
 611}
 612
 613static inline int pmd_bad(pmd_t pmd)
 614{
 615        if (pmd_large(pmd))
 616                return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
 617        return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
 618}
 619
 620#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
 621extern void pmdp_splitting_flush(struct vm_area_struct *vma,
 622                                 unsigned long addr, pmd_t *pmdp);
 623
 624#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 625extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 626                                 unsigned long address, pmd_t *pmdp,
 627                                 pmd_t entry, int dirty);
 628
 629#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 630extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 631                                  unsigned long address, pmd_t *pmdp);
 632
 633#define __HAVE_ARCH_PMD_WRITE
 634static inline int pmd_write(pmd_t pmd)
 635{
 636        return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
 637}
 638
 639static inline int pmd_dirty(pmd_t pmd)
 640{
 641        int dirty = 1;
 642        if (pmd_large(pmd))
 643                dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
 644        return dirty;
 645}
 646
 647static inline int pmd_young(pmd_t pmd)
 648{
 649        int young = 1;
 650        if (pmd_large(pmd))
 651                young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
 652        return young;
 653}
 654
 655static inline int pte_present(pte_t pte)
 656{
 657        /* Bit pattern: (pte & 0x001) == 0x001 */
 658        return (pte_val(pte) & _PAGE_PRESENT) != 0;
 659}
 660
 661static inline int pte_none(pte_t pte)
 662{
 663        /* Bit pattern: pte == 0x400 */
 664        return pte_val(pte) == _PAGE_INVALID;
 665}
 666
 667static inline int pte_swap(pte_t pte)
 668{
 669        /* Bit pattern: (pte & 0x603) == 0x402 */
 670        return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT |
 671                                _PAGE_TYPE | _PAGE_PRESENT))
 672                == (_PAGE_INVALID | _PAGE_TYPE);
 673}
 674
 675static inline int pte_special(pte_t pte)
 676{
 677        return (pte_val(pte) & _PAGE_SPECIAL);
 678}
 679
 680#define __HAVE_ARCH_PTE_SAME
 681static inline int pte_same(pte_t a, pte_t b)
 682{
 683        return pte_val(a) == pte_val(b);
 684}
 685
 686static inline pgste_t pgste_get_lock(pte_t *ptep)
 687{
 688        unsigned long new = 0;
 689#ifdef CONFIG_PGSTE
 690        unsigned long old;
 691
 692        preempt_disable();
 693        asm(
 694                "       lg      %0,%2\n"
 695                "0:     lgr     %1,%0\n"
 696                "       nihh    %0,0xff7f\n"    /* clear PCL bit in old */
 697                "       oihh    %1,0x0080\n"    /* set PCL bit in new */
 698                "       csg     %0,%1,%2\n"
 699                "       jl      0b\n"
 700                : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
 701                : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
 702#endif
 703        return __pgste(new);
 704}
 705
 706static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
 707{
 708#ifdef CONFIG_PGSTE
 709        asm(
 710                "       nihh    %1,0xff7f\n"    /* clear PCL bit */
 711                "       stg     %1,%0\n"
 712                : "=Q" (ptep[PTRS_PER_PTE])
 713                : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
 714                : "cc", "memory");
 715        preempt_enable();
 716#endif
 717}
 718
 719static inline pgste_t pgste_get(pte_t *ptep)
 720{
 721        unsigned long pgste = 0;
 722#ifdef CONFIG_PGSTE
 723        pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
 724#endif
 725        return __pgste(pgste);
 726}
 727
 728static inline void pgste_set(pte_t *ptep, pgste_t pgste)
 729{
 730#ifdef CONFIG_PGSTE
 731        *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
 732#endif
 733}
 734
 735static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
 736                                       struct mm_struct *mm)
 737{
 738#ifdef CONFIG_PGSTE
 739        unsigned long address, bits, skey;
 740
 741        if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
 742                return pgste;
 743        address = pte_val(*ptep) & PAGE_MASK;
 744        skey = (unsigned long) page_get_storage_key(address);
 745        bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
 746        /* Transfer page changed & referenced bit to guest bits in pgste */
 747        pgste_val(pgste) |= bits << 48;         /* GR bit & GC bit */
 748        /* Copy page access key and fetch protection bit to pgste */
 749        pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
 750        pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
 751#endif
 752        return pgste;
 753
 754}
 755
 756static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
 757                                 struct mm_struct *mm)
 758{
 759#ifdef CONFIG_PGSTE
 760        unsigned long address;
 761        unsigned long nkey;
 762
 763        if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
 764                return;
 765        VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
 766        address = pte_val(entry) & PAGE_MASK;
 767        /*
 768         * Set page access key and fetch protection bit from pgste.
 769         * The guest C/R information is still in the PGSTE, set real
 770         * key C/R to 0.
 771         */
 772        nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
 773        nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
 774        page_set_storage_key(address, nkey, 0);
 775#endif
 776}
 777
 778static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
 779{
 780        if ((pte_val(entry) & _PAGE_PRESENT) &&
 781            (pte_val(entry) & _PAGE_WRITE) &&
 782            !(pte_val(entry) & _PAGE_INVALID)) {
 783                if (!MACHINE_HAS_ESOP) {
 784                        /*
 785                         * Without enhanced suppression-on-protection force
 786                         * the dirty bit on for all writable ptes.
 787                         */
 788                        pte_val(entry) |= _PAGE_DIRTY;
 789                        pte_val(entry) &= ~_PAGE_PROTECT;
 790                }
 791                if (!(pte_val(entry) & _PAGE_PROTECT))
 792                        /* This pte allows write access, set user-dirty */
 793                        pgste_val(pgste) |= PGSTE_UC_BIT;
 794        }
 795        *ptep = entry;
 796        return pgste;
 797}
 798
 799/**
 800 * struct gmap_struct - guest address space
 801 * @crst_list: list of all crst tables used in the guest address space
 802 * @mm: pointer to the parent mm_struct
 803 * @guest_to_host: radix tree with guest to host address translation
 804 * @host_to_guest: radix tree with pointer to segment table entries
 805 * @guest_table_lock: spinlock to protect all entries in the guest page table
 806 * @table: pointer to the page directory
 807 * @asce: address space control element for gmap page table
 808 * @pfault_enabled: defines if pfaults are applicable for the guest
 809 */
 810struct gmap {
 811        struct list_head list;
 812        struct list_head crst_list;
 813        struct mm_struct *mm;
 814        struct radix_tree_root guest_to_host;
 815        struct radix_tree_root host_to_guest;
 816        spinlock_t guest_table_lock;
 817        unsigned long *table;
 818        unsigned long asce;
 819        unsigned long asce_end;
 820        void *private;
 821        bool pfault_enabled;
 822};
 823
 824/**
 825 * struct gmap_notifier - notify function block for page invalidation
 826 * @notifier_call: address of callback function
 827 */
 828struct gmap_notifier {
 829        struct list_head list;
 830        void (*notifier_call)(struct gmap *gmap, unsigned long gaddr);
 831};
 832
 833struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit);
 834void gmap_free(struct gmap *gmap);
 835void gmap_enable(struct gmap *gmap);
 836void gmap_disable(struct gmap *gmap);
 837int gmap_map_segment(struct gmap *gmap, unsigned long from,
 838                     unsigned long to, unsigned long len);
 839int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
 840unsigned long __gmap_translate(struct gmap *, unsigned long gaddr);
 841unsigned long gmap_translate(struct gmap *, unsigned long gaddr);
 842int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr);
 843int gmap_fault(struct gmap *, unsigned long gaddr, unsigned int fault_flags);
 844void gmap_discard(struct gmap *, unsigned long from, unsigned long to);
 845void __gmap_zap(struct gmap *, unsigned long gaddr);
 846bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
 847
 848
 849void gmap_register_ipte_notifier(struct gmap_notifier *);
 850void gmap_unregister_ipte_notifier(struct gmap_notifier *);
 851int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
 852void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
 853
 854static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
 855                                        unsigned long addr,
 856                                        pte_t *ptep, pgste_t pgste)
 857{
 858#ifdef CONFIG_PGSTE
 859        if (pgste_val(pgste) & PGSTE_IN_BIT) {
 860                pgste_val(pgste) &= ~PGSTE_IN_BIT;
 861                gmap_do_ipte_notify(mm, addr, ptep);
 862        }
 863#endif
 864        return pgste;
 865}
 866
 867/*
 868 * Certain architectures need to do special things when PTEs
 869 * within a page table are directly modified.  Thus, the following
 870 * hook is made available.
 871 */
 872static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 873                              pte_t *ptep, pte_t entry)
 874{
 875        pgste_t pgste;
 876
 877        if (mm_has_pgste(mm)) {
 878                pgste = pgste_get_lock(ptep);
 879                pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
 880                pgste_set_key(ptep, pgste, entry, mm);
 881                pgste = pgste_set_pte(ptep, pgste, entry);
 882                pgste_set_unlock(ptep, pgste);
 883        } else {
 884                *ptep = entry;
 885        }
 886}
 887
 888/*
 889 * query functions pte_write/pte_dirty/pte_young only work if
 890 * pte_present() is true. Undefined behaviour if not..
 891 */
 892static inline int pte_write(pte_t pte)
 893{
 894        return (pte_val(pte) & _PAGE_WRITE) != 0;
 895}
 896
 897static inline int pte_dirty(pte_t pte)
 898{
 899        return (pte_val(pte) & _PAGE_DIRTY) != 0;
 900}
 901
 902static inline int pte_young(pte_t pte)
 903{
 904        return (pte_val(pte) & _PAGE_YOUNG) != 0;
 905}
 906
 907#define __HAVE_ARCH_PTE_UNUSED
 908static inline int pte_unused(pte_t pte)
 909{
 910        return pte_val(pte) & _PAGE_UNUSED;
 911}
 912
 913/*
 914 * pgd/pmd/pte modification functions
 915 */
 916
 917static inline void pgd_clear(pgd_t *pgd)
 918{
 919#ifdef CONFIG_64BIT
 920        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 921                pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
 922#endif
 923}
 924
 925static inline void pud_clear(pud_t *pud)
 926{
 927#ifdef CONFIG_64BIT
 928        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 929                pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 930#endif
 931}
 932
 933static inline void pmd_clear(pmd_t *pmdp)
 934{
 935        pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
 936}
 937
 938static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 939{
 940        pte_val(*ptep) = _PAGE_INVALID;
 941}
 942
 943/*
 944 * The following pte modification functions only work if
 945 * pte_present() is true. Undefined behaviour if not..
 946 */
 947static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 948{
 949        pte_val(pte) &= _PAGE_CHG_MASK;
 950        pte_val(pte) |= pgprot_val(newprot);
 951        /*
 952         * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
 953         * invalid bit set, clear it again for readable, young pages
 954         */
 955        if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
 956                pte_val(pte) &= ~_PAGE_INVALID;
 957        /*
 958         * newprot for PAGE_READ and PAGE_WRITE has the page protection
 959         * bit set, clear it again for writable, dirty pages
 960         */
 961        if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
 962                pte_val(pte) &= ~_PAGE_PROTECT;
 963        return pte;
 964}
 965
 966static inline pte_t pte_wrprotect(pte_t pte)
 967{
 968        pte_val(pte) &= ~_PAGE_WRITE;
 969        pte_val(pte) |= _PAGE_PROTECT;
 970        return pte;
 971}
 972
 973static inline pte_t pte_mkwrite(pte_t pte)
 974{
 975        pte_val(pte) |= _PAGE_WRITE;
 976        if (pte_val(pte) & _PAGE_DIRTY)
 977                pte_val(pte) &= ~_PAGE_PROTECT;
 978        return pte;
 979}
 980
 981static inline pte_t pte_mkclean(pte_t pte)
 982{
 983        pte_val(pte) &= ~_PAGE_DIRTY;
 984        pte_val(pte) |= _PAGE_PROTECT;
 985        return pte;
 986}
 987
 988static inline pte_t pte_mkdirty(pte_t pte)
 989{
 990        pte_val(pte) |= _PAGE_DIRTY;
 991        if (pte_val(pte) & _PAGE_WRITE)
 992                pte_val(pte) &= ~_PAGE_PROTECT;
 993        return pte;
 994}
 995
 996static inline pte_t pte_mkold(pte_t pte)
 997{
 998        pte_val(pte) &= ~_PAGE_YOUNG;
 999        pte_val(pte) |= _PAGE_INVALID;
1000        return pte;
1001}
1002
1003static inline pte_t pte_mkyoung(pte_t pte)
1004{
1005        pte_val(pte) |= _PAGE_YOUNG;
1006        if (pte_val(pte) & _PAGE_READ)
1007                pte_val(pte) &= ~_PAGE_INVALID;
1008        return pte;
1009}
1010
1011static inline pte_t pte_mkspecial(pte_t pte)
1012{
1013        pte_val(pte) |= _PAGE_SPECIAL;
1014        return pte;
1015}
1016
1017#ifdef CONFIG_HUGETLB_PAGE
1018static inline pte_t pte_mkhuge(pte_t pte)
1019{
1020        pte_val(pte) |= _PAGE_LARGE;
1021        return pte;
1022}
1023#endif
1024
1025static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1026{
1027        unsigned long pto = (unsigned long) ptep;
1028
1029#ifndef CONFIG_64BIT
1030        /* pto in ESA mode must point to the start of the segment table */
1031        pto &= 0x7ffffc00;
1032#endif
1033        /* Invalidation + global TLB flush for the pte */
1034        asm volatile(
1035                "       ipte    %2,%3"
1036                : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
1037}
1038
1039static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
1040{
1041        unsigned long pto = (unsigned long) ptep;
1042
1043#ifndef CONFIG_64BIT
1044        /* pto in ESA mode must point to the start of the segment table */
1045        pto &= 0x7ffffc00;
1046#endif
1047        /* Invalidation + local TLB flush for the pte */
1048        asm volatile(
1049                "       .insn rrf,0xb2210000,%2,%3,0,1"
1050                : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
1051}
1052
1053static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
1054{
1055        unsigned long pto = (unsigned long) ptep;
1056
1057#ifndef CONFIG_64BIT
1058        /* pto in ESA mode must point to the start of the segment table */
1059        pto &= 0x7ffffc00;
1060#endif
1061        /* Invalidate a range of ptes + global TLB flush of the ptes */
1062        do {
1063                asm volatile(
1064                        "       .insn rrf,0xb2210000,%2,%0,%1,0"
1065                        : "+a" (address), "+a" (nr) : "a" (pto) : "memory");
1066        } while (nr != 255);
1067}
1068
1069static inline void ptep_flush_direct(struct mm_struct *mm,
1070                                     unsigned long address, pte_t *ptep)
1071{
1072        int active, count;
1073
1074        if (pte_val(*ptep) & _PAGE_INVALID)
1075                return;
1076        active = (mm == current->active_mm) ? 1 : 0;
1077        count = atomic_add_return(0x10000, &mm->context.attach_count);
1078        if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1079            cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1080                __ptep_ipte_local(address, ptep);
1081        else
1082                __ptep_ipte(address, ptep);
1083        atomic_sub(0x10000, &mm->context.attach_count);
1084}
1085
1086static inline void ptep_flush_lazy(struct mm_struct *mm,
1087                                   unsigned long address, pte_t *ptep)
1088{
1089        int active, count;
1090
1091        if (pte_val(*ptep) & _PAGE_INVALID)
1092                return;
1093        active = (mm == current->active_mm) ? 1 : 0;
1094        count = atomic_add_return(0x10000, &mm->context.attach_count);
1095        if ((count & 0xffff) <= active) {
1096                pte_val(*ptep) |= _PAGE_INVALID;
1097                mm->context.flush_mm = 1;
1098        } else
1099                __ptep_ipte(address, ptep);
1100        atomic_sub(0x10000, &mm->context.attach_count);
1101}
1102
1103/*
1104 * Get (and clear) the user dirty bit for a pte.
1105 */
1106static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1107                                                 unsigned long addr,
1108                                                 pte_t *ptep)
1109{
1110        pgste_t pgste;
1111        pte_t pte;
1112        int dirty;
1113
1114        if (!mm_has_pgste(mm))
1115                return 0;
1116        pgste = pgste_get_lock(ptep);
1117        dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
1118        pgste_val(pgste) &= ~PGSTE_UC_BIT;
1119        pte = *ptep;
1120        if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
1121                pgste = pgste_ipte_notify(mm, addr, ptep, pgste);
1122                __ptep_ipte(addr, ptep);
1123                if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
1124                        pte_val(pte) |= _PAGE_PROTECT;
1125                else
1126                        pte_val(pte) |= _PAGE_INVALID;
1127                *ptep = pte;
1128        }
1129        pgste_set_unlock(ptep, pgste);
1130        return dirty;
1131}
1132
1133#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1134static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1135                                            unsigned long addr, pte_t *ptep)
1136{
1137        pgste_t pgste;
1138        pte_t pte, oldpte;
1139        int young;
1140
1141        if (mm_has_pgste(vma->vm_mm)) {
1142                pgste = pgste_get_lock(ptep);
1143                pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste);
1144        }
1145
1146        oldpte = pte = *ptep;
1147        ptep_flush_direct(vma->vm_mm, addr, ptep);
1148        young = pte_young(pte);
1149        pte = pte_mkold(pte);
1150
1151        if (mm_has_pgste(vma->vm_mm)) {
1152                pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm);
1153                pgste = pgste_set_pte(ptep, pgste, pte);
1154                pgste_set_unlock(ptep, pgste);
1155        } else
1156                *ptep = pte;
1157
1158        return young;
1159}
1160
1161#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1162static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1163                                         unsigned long address, pte_t *ptep)
1164{
1165        return ptep_test_and_clear_young(vma, address, ptep);
1166}
1167
1168/*
1169 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1170 * both clear the TLB for the unmapped pte. The reason is that
1171 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1172 * to modify an active pte. The sequence is
1173 *   1) ptep_get_and_clear
1174 *   2) set_pte_at
1175 *   3) flush_tlb_range
1176 * On s390 the tlb needs to get flushed with the modification of the pte
1177 * if the pte is active. The only way how this can be implemented is to
1178 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1179 * is a nop.
1180 */
1181#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1182static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1183                                       unsigned long address, pte_t *ptep)
1184{
1185        pgste_t pgste;
1186        pte_t pte;
1187
1188        if (mm_has_pgste(mm)) {
1189                pgste = pgste_get_lock(ptep);
1190                pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1191        }
1192
1193        pte = *ptep;
1194        ptep_flush_lazy(mm, address, ptep);
1195        pte_val(*ptep) = _PAGE_INVALID;
1196
1197        if (mm_has_pgste(mm)) {
1198                pgste = pgste_update_all(&pte, pgste, mm);
1199                pgste_set_unlock(ptep, pgste);
1200        }
1201        return pte;
1202}
1203
1204#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1205static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1206                                           unsigned long address,
1207                                           pte_t *ptep)
1208{
1209        pgste_t pgste;
1210        pte_t pte;
1211
1212        if (mm_has_pgste(mm)) {
1213                pgste = pgste_get_lock(ptep);
1214                pgste_ipte_notify(mm, address, ptep, pgste);
1215        }
1216
1217        pte = *ptep;
1218        ptep_flush_lazy(mm, address, ptep);
1219
1220        if (mm_has_pgste(mm)) {
1221                pgste = pgste_update_all(&pte, pgste, mm);
1222                pgste_set(ptep, pgste);
1223        }
1224        return pte;
1225}
1226
1227static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1228                                           unsigned long address,
1229                                           pte_t *ptep, pte_t pte)
1230{
1231        pgste_t pgste;
1232
1233        if (mm_has_pgste(mm)) {
1234                pgste = pgste_get(ptep);
1235                pgste_set_key(ptep, pgste, pte, mm);
1236                pgste = pgste_set_pte(ptep, pgste, pte);
1237                pgste_set_unlock(ptep, pgste);
1238        } else
1239                *ptep = pte;
1240}
1241
1242#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1243static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1244                                     unsigned long address, pte_t *ptep)
1245{
1246        pgste_t pgste;
1247        pte_t pte;
1248
1249        if (mm_has_pgste(vma->vm_mm)) {
1250                pgste = pgste_get_lock(ptep);
1251                pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1252        }
1253
1254        pte = *ptep;
1255        ptep_flush_direct(vma->vm_mm, address, ptep);
1256        pte_val(*ptep) = _PAGE_INVALID;
1257
1258        if (mm_has_pgste(vma->vm_mm)) {
1259                if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1260                    _PGSTE_GPS_USAGE_UNUSED)
1261                        pte_val(pte) |= _PAGE_UNUSED;
1262                pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
1263                pgste_set_unlock(ptep, pgste);
1264        }
1265        return pte;
1266}
1267
1268/*
1269 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1270 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1271 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1272 * cannot be accessed while the batched unmap is running. In this case
1273 * full==1 and a simple pte_clear is enough. See tlb.h.
1274 */
1275#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1276static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1277                                            unsigned long address,
1278                                            pte_t *ptep, int full)
1279{
1280        pgste_t pgste;
1281        pte_t pte;
1282
1283        if (!full && mm_has_pgste(mm)) {
1284                pgste = pgste_get_lock(ptep);
1285                pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1286        }
1287
1288        pte = *ptep;
1289        if (!full)
1290                ptep_flush_lazy(mm, address, ptep);
1291        pte_val(*ptep) = _PAGE_INVALID;
1292
1293        if (!full && mm_has_pgste(mm)) {
1294                pgste = pgste_update_all(&pte, pgste, mm);
1295                pgste_set_unlock(ptep, pgste);
1296        }
1297        return pte;
1298}
1299
1300#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1301static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1302                                       unsigned long address, pte_t *ptep)
1303{
1304        pgste_t pgste;
1305        pte_t pte = *ptep;
1306
1307        if (pte_write(pte)) {
1308                if (mm_has_pgste(mm)) {
1309                        pgste = pgste_get_lock(ptep);
1310                        pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1311                }
1312
1313                ptep_flush_lazy(mm, address, ptep);
1314                pte = pte_wrprotect(pte);
1315
1316                if (mm_has_pgste(mm)) {
1317                        pgste = pgste_set_pte(ptep, pgste, pte);
1318                        pgste_set_unlock(ptep, pgste);
1319                } else
1320                        *ptep = pte;
1321        }
1322        return pte;
1323}
1324
1325#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1326static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1327                                        unsigned long address, pte_t *ptep,
1328                                        pte_t entry, int dirty)
1329{
1330        pgste_t pgste;
1331
1332        if (pte_same(*ptep, entry))
1333                return 0;
1334        if (mm_has_pgste(vma->vm_mm)) {
1335                pgste = pgste_get_lock(ptep);
1336                pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1337        }
1338
1339        ptep_flush_direct(vma->vm_mm, address, ptep);
1340
1341        if (mm_has_pgste(vma->vm_mm)) {
1342                pgste_set_key(ptep, pgste, entry, vma->vm_mm);
1343                pgste = pgste_set_pte(ptep, pgste, entry);
1344                pgste_set_unlock(ptep, pgste);
1345        } else
1346                *ptep = entry;
1347        return 1;
1348}
1349
1350/*
1351 * Conversion functions: convert a page and protection to a page entry,
1352 * and a page entry and page directory to the page they refer to.
1353 */
1354static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1355{
1356        pte_t __pte;
1357        pte_val(__pte) = physpage + pgprot_val(pgprot);
1358        return pte_mkyoung(__pte);
1359}
1360
1361static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1362{
1363        unsigned long physpage = page_to_phys(page);
1364        pte_t __pte = mk_pte_phys(physpage, pgprot);
1365
1366        if (pte_write(__pte) && PageDirty(page))
1367                __pte = pte_mkdirty(__pte);
1368        return __pte;
1369}
1370
1371#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1372#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1373#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1374#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1375
1376#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1377#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1378
1379#ifndef CONFIG_64BIT
1380
1381#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1382#define pud_deref(pmd) ({ BUG(); 0UL; })
1383#define pgd_deref(pmd) ({ BUG(); 0UL; })
1384
1385#define pud_offset(pgd, address) ((pud_t *) pgd)
1386#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1387
1388#else /* CONFIG_64BIT */
1389
1390#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1391#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1392#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1393
1394static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1395{
1396        pud_t *pud = (pud_t *) pgd;
1397        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1398                pud = (pud_t *) pgd_deref(*pgd);
1399        return pud  + pud_index(address);
1400}
1401
1402static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1403{
1404        pmd_t *pmd = (pmd_t *) pud;
1405        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1406                pmd = (pmd_t *) pud_deref(*pud);
1407        return pmd + pmd_index(address);
1408}
1409
1410#endif /* CONFIG_64BIT */
1411
1412#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1413#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1414#define pte_page(x) pfn_to_page(pte_pfn(x))
1415
1416#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1417
1418/* Find an entry in the lowest level page table.. */
1419#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1420#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1421#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1422#define pte_unmap(pte) do { } while (0)
1423
1424#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1425static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1426{
1427        /*
1428         * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1429         * Convert to segment table entry format.
1430         */
1431        if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1432                return pgprot_val(SEGMENT_NONE);
1433        if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1434                return pgprot_val(SEGMENT_READ);
1435        return pgprot_val(SEGMENT_WRITE);
1436}
1437
1438static inline pmd_t pmd_wrprotect(pmd_t pmd)
1439{
1440        pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1441        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1442        return pmd;
1443}
1444
1445static inline pmd_t pmd_mkwrite(pmd_t pmd)
1446{
1447        pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1448        if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1449                return pmd;
1450        pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1451        return pmd;
1452}
1453
1454static inline pmd_t pmd_mkclean(pmd_t pmd)
1455{
1456        if (pmd_large(pmd)) {
1457                pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1458                pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1459        }
1460        return pmd;
1461}
1462
1463static inline pmd_t pmd_mkdirty(pmd_t pmd)
1464{
1465        if (pmd_large(pmd)) {
1466                pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY;
1467                if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1468                        pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1469        }
1470        return pmd;
1471}
1472
1473static inline pmd_t pmd_mkyoung(pmd_t pmd)
1474{
1475        if (pmd_large(pmd)) {
1476                pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1477                if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1478                        pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1479        }
1480        return pmd;
1481}
1482
1483static inline pmd_t pmd_mkold(pmd_t pmd)
1484{
1485        if (pmd_large(pmd)) {
1486                pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1487                pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1488        }
1489        return pmd;
1490}
1491
1492static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1493{
1494        if (pmd_large(pmd)) {
1495                pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1496                        _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1497                        _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SPLIT;
1498                pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1499                if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1500                        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1501                if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1502                        pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1503                return pmd;
1504        }
1505        pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1506        pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1507        return pmd;
1508}
1509
1510static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1511{
1512        pmd_t __pmd;
1513        pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1514        return __pmd;
1515}
1516
1517#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1518
1519static inline void __pmdp_csp(pmd_t *pmdp)
1520{
1521        register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1522        register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1523                                               _SEGMENT_ENTRY_INVALID;
1524        register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1525
1526        asm volatile(
1527                "       csp %1,%3"
1528                : "=m" (*pmdp)
1529                : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1530}
1531
1532static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1533{
1534        unsigned long sto;
1535
1536        sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1537        asm volatile(
1538                "       .insn   rrf,0xb98e0000,%2,%3,0,0"
1539                : "=m" (*pmdp)
1540                : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1541                : "cc" );
1542}
1543
1544static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1545{
1546        unsigned long sto;
1547
1548        sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1549        asm volatile(
1550                "       .insn   rrf,0xb98e0000,%2,%3,0,1"
1551                : "=m" (*pmdp)
1552                : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1553                : "cc" );
1554}
1555
1556static inline void pmdp_flush_direct(struct mm_struct *mm,
1557                                     unsigned long address, pmd_t *pmdp)
1558{
1559        int active, count;
1560
1561        if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1562                return;
1563        if (!MACHINE_HAS_IDTE) {
1564                __pmdp_csp(pmdp);
1565                return;
1566        }
1567        active = (mm == current->active_mm) ? 1 : 0;
1568        count = atomic_add_return(0x10000, &mm->context.attach_count);
1569        if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1570            cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1571                __pmdp_idte_local(address, pmdp);
1572        else
1573                __pmdp_idte(address, pmdp);
1574        atomic_sub(0x10000, &mm->context.attach_count);
1575}
1576
1577static inline void pmdp_flush_lazy(struct mm_struct *mm,
1578                                   unsigned long address, pmd_t *pmdp)
1579{
1580        int active, count;
1581
1582        if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1583                return;
1584        active = (mm == current->active_mm) ? 1 : 0;
1585        count = atomic_add_return(0x10000, &mm->context.attach_count);
1586        if ((count & 0xffff) <= active) {
1587                pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1588                mm->context.flush_mm = 1;
1589        } else if (MACHINE_HAS_IDTE)
1590                __pmdp_idte(address, pmdp);
1591        else
1592                __pmdp_csp(pmdp);
1593        atomic_sub(0x10000, &mm->context.attach_count);
1594}
1595
1596#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1597
1598#define __HAVE_ARCH_PGTABLE_DEPOSIT
1599extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1600                                       pgtable_t pgtable);
1601
1602#define __HAVE_ARCH_PGTABLE_WITHDRAW
1603extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1604
1605static inline int pmd_trans_splitting(pmd_t pmd)
1606{
1607        return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) &&
1608                (pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT);
1609}
1610
1611static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1612                              pmd_t *pmdp, pmd_t entry)
1613{
1614        *pmdp = entry;
1615}
1616
1617static inline pmd_t pmd_mkhuge(pmd_t pmd)
1618{
1619        pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1620        pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1621        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1622        return pmd;
1623}
1624
1625#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1626static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1627                                            unsigned long address, pmd_t *pmdp)
1628{
1629        pmd_t pmd;
1630
1631        pmd = *pmdp;
1632        pmdp_flush_direct(vma->vm_mm, address, pmdp);
1633        *pmdp = pmd_mkold(pmd);
1634        return pmd_young(pmd);
1635}
1636
1637#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1638static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1639                                       unsigned long address, pmd_t *pmdp)
1640{
1641        pmd_t pmd = *pmdp;
1642
1643        pmdp_flush_direct(mm, address, pmdp);
1644        pmd_clear(pmdp);
1645        return pmd;
1646}
1647
1648#define __HAVE_ARCH_PMDP_GET_AND_CLEAR_FULL
1649static inline pmd_t pmdp_get_and_clear_full(struct mm_struct *mm,
1650                                            unsigned long address,
1651                                            pmd_t *pmdp, int full)
1652{
1653        pmd_t pmd = *pmdp;
1654
1655        if (!full)
1656                pmdp_flush_lazy(mm, address, pmdp);
1657        pmd_clear(pmdp);
1658        return pmd;
1659}
1660
1661#define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1662static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1663                                     unsigned long address, pmd_t *pmdp)
1664{
1665        return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1666}
1667
1668#define __HAVE_ARCH_PMDP_INVALIDATE
1669static inline void pmdp_invalidate(struct vm_area_struct *vma,
1670                                   unsigned long address, pmd_t *pmdp)
1671{
1672        pmdp_flush_direct(vma->vm_mm, address, pmdp);
1673}
1674
1675#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1676static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1677                                      unsigned long address, pmd_t *pmdp)
1678{
1679        pmd_t pmd = *pmdp;
1680
1681        if (pmd_write(pmd)) {
1682                pmdp_flush_direct(mm, address, pmdp);
1683                set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1684        }
1685}
1686
1687#define pfn_pmd(pfn, pgprot)    mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1688#define mk_pmd(page, pgprot)    pfn_pmd(page_to_pfn(page), (pgprot))
1689
1690static inline int pmd_trans_huge(pmd_t pmd)
1691{
1692        return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1693}
1694
1695static inline int has_transparent_hugepage(void)
1696{
1697        return MACHINE_HAS_HPAGE ? 1 : 0;
1698}
1699#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1700
1701/*
1702 * 31 bit swap entry format:
1703 * A page-table entry has some bits we have to treat in a special way.
1704 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1705 * exception will occur instead of a page translation exception. The
1706 * specifiation exception has the bad habit not to store necessary
1707 * information in the lowcore.
1708 * Bits 21, 22, 30 and 31 are used to indicate the page type.
1709 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1710 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1711 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1712 * plus 24 for the offset.
1713 * 0|     offset        |0110|o|type |00|
1714 * 0 0000000001111111111 2222 2 22222 33
1715 * 0 1234567890123456789 0123 4 56789 01
1716 *
1717 * 64 bit swap entry format:
1718 * A page-table entry has some bits we have to treat in a special way.
1719 * Bits 52 and bit 55 have to be zero, otherwise an specification
1720 * exception will occur instead of a page translation exception. The
1721 * specifiation exception has the bad habit not to store necessary
1722 * information in the lowcore.
1723 * Bits 53, 54, 62 and 63 are used to indicate the page type.
1724 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1725 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1726 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1727 * plus 56 for the offset.
1728 * |                      offset                        |0110|o|type |00|
1729 *  0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1730 *  0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1731 */
1732#ifndef CONFIG_64BIT
1733#define __SWP_OFFSET_MASK (~0UL >> 12)
1734#else
1735#define __SWP_OFFSET_MASK (~0UL >> 11)
1736#endif
1737static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1738{
1739        pte_t pte;
1740        offset &= __SWP_OFFSET_MASK;
1741        pte_val(pte) = _PAGE_INVALID | _PAGE_TYPE | ((type & 0x1f) << 2) |
1742                ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1743        return pte;
1744}
1745
1746#define __swp_type(entry)       (((entry).val >> 2) & 0x1f)
1747#define __swp_offset(entry)     (((entry).val >> 11) | (((entry).val >> 7) & 1))
1748#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1749
1750#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1751#define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
1752
1753#endif /* !__ASSEMBLY__ */
1754
1755#define kern_addr_valid(addr)   (1)
1756
1757extern int vmem_add_mapping(unsigned long start, unsigned long size);
1758extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1759extern int s390_enable_sie(void);
1760extern int s390_enable_skey(void);
1761extern void s390_reset_cmma(struct mm_struct *mm);
1762
1763/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1764#define HAVE_ARCH_UNMAPPED_AREA
1765#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1766
1767/*
1768 * No page table caches to initialise
1769 */
1770static inline void pgtable_cache_init(void) { }
1771static inline void check_pgt_cache(void) { }
1772
1773#include <asm-generic/pgtable.h>
1774
1775#endif /* _S390_PAGE_H */
1776