linux/arch/sparc/mm/init_64.c
<<
>>
Prefs
   1/*
   2 *  arch/sparc64/mm/init.c
   3 *
   4 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   5 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   6 */
   7 
   8#include <linux/module.h>
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/string.h>
  12#include <linux/init.h>
  13#include <linux/bootmem.h>
  14#include <linux/mm.h>
  15#include <linux/hugetlb.h>
  16#include <linux/initrd.h>
  17#include <linux/swap.h>
  18#include <linux/pagemap.h>
  19#include <linux/poison.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/kprobes.h>
  23#include <linux/cache.h>
  24#include <linux/sort.h>
  25#include <linux/ioport.h>
  26#include <linux/percpu.h>
  27#include <linux/memblock.h>
  28#include <linux/mmzone.h>
  29#include <linux/gfp.h>
  30
  31#include <asm/head.h>
  32#include <asm/page.h>
  33#include <asm/pgalloc.h>
  34#include <asm/pgtable.h>
  35#include <asm/oplib.h>
  36#include <asm/iommu.h>
  37#include <asm/io.h>
  38#include <asm/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/tlbflush.h>
  41#include <asm/dma.h>
  42#include <asm/starfire.h>
  43#include <asm/tlb.h>
  44#include <asm/spitfire.h>
  45#include <asm/sections.h>
  46#include <asm/tsb.h>
  47#include <asm/hypervisor.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/cpudata.h>
  51#include <asm/setup.h>
  52#include <asm/irq.h>
  53
  54#include "init_64.h"
  55
  56unsigned long kern_linear_pte_xor[4] __read_mostly;
  57
  58/* A bitmap, two bits for every 256MB of physical memory.  These two
  59 * bits determine what page size we use for kernel linear
  60 * translations.  They form an index into kern_linear_pte_xor[].  The
  61 * value in the indexed slot is XOR'd with the TLB miss virtual
  62 * address to form the resulting TTE.  The mapping is:
  63 *
  64 *      0       ==>     4MB
  65 *      1       ==>     256MB
  66 *      2       ==>     2GB
  67 *      3       ==>     16GB
  68 *
  69 * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
  70 * support 2GB pages, and hopefully future cpus will support the 16GB
  71 * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
  72 * if these larger page sizes are not supported by the cpu.
  73 *
  74 * It would be nice to determine this from the machine description
  75 * 'cpu' properties, but we need to have this table setup before the
  76 * MDESC is initialized.
  77 */
  78
  79#ifndef CONFIG_DEBUG_PAGEALLOC
  80/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
  81 * Space is allocated for this right after the trap table in
  82 * arch/sparc64/kernel/head.S
  83 */
  84extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  85#endif
  86extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  87
  88static unsigned long cpu_pgsz_mask;
  89
  90#define MAX_BANKS       1024
  91
  92static struct linux_prom64_registers pavail[MAX_BANKS];
  93static int pavail_ents;
  94
  95static int cmp_p64(const void *a, const void *b)
  96{
  97        const struct linux_prom64_registers *x = a, *y = b;
  98
  99        if (x->phys_addr > y->phys_addr)
 100                return 1;
 101        if (x->phys_addr < y->phys_addr)
 102                return -1;
 103        return 0;
 104}
 105
 106static void __init read_obp_memory(const char *property,
 107                                   struct linux_prom64_registers *regs,
 108                                   int *num_ents)
 109{
 110        phandle node = prom_finddevice("/memory");
 111        int prop_size = prom_getproplen(node, property);
 112        int ents, ret, i;
 113
 114        ents = prop_size / sizeof(struct linux_prom64_registers);
 115        if (ents > MAX_BANKS) {
 116                prom_printf("The machine has more %s property entries than "
 117                            "this kernel can support (%d).\n",
 118                            property, MAX_BANKS);
 119                prom_halt();
 120        }
 121
 122        ret = prom_getproperty(node, property, (char *) regs, prop_size);
 123        if (ret == -1) {
 124                prom_printf("Couldn't get %s property from /memory.\n",
 125                                property);
 126                prom_halt();
 127        }
 128
 129        /* Sanitize what we got from the firmware, by page aligning
 130         * everything.
 131         */
 132        for (i = 0; i < ents; i++) {
 133                unsigned long base, size;
 134
 135                base = regs[i].phys_addr;
 136                size = regs[i].reg_size;
 137
 138                size &= PAGE_MASK;
 139                if (base & ~PAGE_MASK) {
 140                        unsigned long new_base = PAGE_ALIGN(base);
 141
 142                        size -= new_base - base;
 143                        if ((long) size < 0L)
 144                                size = 0UL;
 145                        base = new_base;
 146                }
 147                if (size == 0UL) {
 148                        /* If it is empty, simply get rid of it.
 149                         * This simplifies the logic of the other
 150                         * functions that process these arrays.
 151                         */
 152                        memmove(&regs[i], &regs[i + 1],
 153                                (ents - i - 1) * sizeof(regs[0]));
 154                        i--;
 155                        ents--;
 156                        continue;
 157                }
 158                regs[i].phys_addr = base;
 159                regs[i].reg_size = size;
 160        }
 161
 162        *num_ents = ents;
 163
 164        sort(regs, ents, sizeof(struct linux_prom64_registers),
 165             cmp_p64, NULL);
 166}
 167
 168/* Kernel physical address base and size in bytes.  */
 169unsigned long kern_base __read_mostly;
 170unsigned long kern_size __read_mostly;
 171
 172/* Initial ramdisk setup */
 173extern unsigned long sparc_ramdisk_image64;
 174extern unsigned int sparc_ramdisk_image;
 175extern unsigned int sparc_ramdisk_size;
 176
 177struct page *mem_map_zero __read_mostly;
 178EXPORT_SYMBOL(mem_map_zero);
 179
 180unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 181
 182unsigned long sparc64_kern_pri_context __read_mostly;
 183unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 184unsigned long sparc64_kern_sec_context __read_mostly;
 185
 186int num_kernel_image_mappings;
 187
 188#ifdef CONFIG_DEBUG_DCFLUSH
 189atomic_t dcpage_flushes = ATOMIC_INIT(0);
 190#ifdef CONFIG_SMP
 191atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 192#endif
 193#endif
 194
 195inline void flush_dcache_page_impl(struct page *page)
 196{
 197        BUG_ON(tlb_type == hypervisor);
 198#ifdef CONFIG_DEBUG_DCFLUSH
 199        atomic_inc(&dcpage_flushes);
 200#endif
 201
 202#ifdef DCACHE_ALIASING_POSSIBLE
 203        __flush_dcache_page(page_address(page),
 204                            ((tlb_type == spitfire) &&
 205                             page_mapping(page) != NULL));
 206#else
 207        if (page_mapping(page) != NULL &&
 208            tlb_type == spitfire)
 209                __flush_icache_page(__pa(page_address(page)));
 210#endif
 211}
 212
 213#define PG_dcache_dirty         PG_arch_1
 214#define PG_dcache_cpu_shift     32UL
 215#define PG_dcache_cpu_mask      \
 216        ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 217
 218#define dcache_dirty_cpu(page) \
 219        (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 220
 221static inline void set_dcache_dirty(struct page *page, int this_cpu)
 222{
 223        unsigned long mask = this_cpu;
 224        unsigned long non_cpu_bits;
 225
 226        non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 227        mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 228
 229        __asm__ __volatile__("1:\n\t"
 230                             "ldx       [%2], %%g7\n\t"
 231                             "and       %%g7, %1, %%g1\n\t"
 232                             "or        %%g1, %0, %%g1\n\t"
 233                             "casx      [%2], %%g7, %%g1\n\t"
 234                             "cmp       %%g7, %%g1\n\t"
 235                             "bne,pn    %%xcc, 1b\n\t"
 236                             " nop"
 237                             : /* no outputs */
 238                             : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 239                             : "g1", "g7");
 240}
 241
 242static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 243{
 244        unsigned long mask = (1UL << PG_dcache_dirty);
 245
 246        __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 247                             "1:\n\t"
 248                             "ldx       [%2], %%g7\n\t"
 249                             "srlx      %%g7, %4, %%g1\n\t"
 250                             "and       %%g1, %3, %%g1\n\t"
 251                             "cmp       %%g1, %0\n\t"
 252                             "bne,pn    %%icc, 2f\n\t"
 253                             " andn     %%g7, %1, %%g1\n\t"
 254                             "casx      [%2], %%g7, %%g1\n\t"
 255                             "cmp       %%g7, %%g1\n\t"
 256                             "bne,pn    %%xcc, 1b\n\t"
 257                             " nop\n"
 258                             "2:"
 259                             : /* no outputs */
 260                             : "r" (cpu), "r" (mask), "r" (&page->flags),
 261                               "i" (PG_dcache_cpu_mask),
 262                               "i" (PG_dcache_cpu_shift)
 263                             : "g1", "g7");
 264}
 265
 266static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 267{
 268        unsigned long tsb_addr = (unsigned long) ent;
 269
 270        if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 271                tsb_addr = __pa(tsb_addr);
 272
 273        __tsb_insert(tsb_addr, tag, pte);
 274}
 275
 276unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 277
 278static void flush_dcache(unsigned long pfn)
 279{
 280        struct page *page;
 281
 282        page = pfn_to_page(pfn);
 283        if (page) {
 284                unsigned long pg_flags;
 285
 286                pg_flags = page->flags;
 287                if (pg_flags & (1UL << PG_dcache_dirty)) {
 288                        int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 289                                   PG_dcache_cpu_mask);
 290                        int this_cpu = get_cpu();
 291
 292                        /* This is just to optimize away some function calls
 293                         * in the SMP case.
 294                         */
 295                        if (cpu == this_cpu)
 296                                flush_dcache_page_impl(page);
 297                        else
 298                                smp_flush_dcache_page_impl(page, cpu);
 299
 300                        clear_dcache_dirty_cpu(page, cpu);
 301
 302                        put_cpu();
 303                }
 304        }
 305}
 306
 307/* mm->context.lock must be held */
 308static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
 309                                    unsigned long tsb_hash_shift, unsigned long address,
 310                                    unsigned long tte)
 311{
 312        struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
 313        unsigned long tag;
 314
 315        if (unlikely(!tsb))
 316                return;
 317
 318        tsb += ((address >> tsb_hash_shift) &
 319                (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 320        tag = (address >> 22UL);
 321        tsb_insert(tsb, tag, tte);
 322}
 323
 324#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 325static inline bool is_hugetlb_pte(pte_t pte)
 326{
 327        if ((tlb_type == hypervisor &&
 328             (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
 329            (tlb_type != hypervisor &&
 330             (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
 331                return true;
 332        return false;
 333}
 334#endif
 335
 336void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 337{
 338        struct mm_struct *mm;
 339        unsigned long flags;
 340        pte_t pte = *ptep;
 341
 342        if (tlb_type != hypervisor) {
 343                unsigned long pfn = pte_pfn(pte);
 344
 345                if (pfn_valid(pfn))
 346                        flush_dcache(pfn);
 347        }
 348
 349        mm = vma->vm_mm;
 350
 351        /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
 352        if (!pte_accessible(mm, pte))
 353                return;
 354
 355        spin_lock_irqsave(&mm->context.lock, flags);
 356
 357#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 358        if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
 359                __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
 360                                        address, pte_val(pte));
 361        else
 362#endif
 363                __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
 364                                        address, pte_val(pte));
 365
 366        spin_unlock_irqrestore(&mm->context.lock, flags);
 367}
 368
 369void flush_dcache_page(struct page *page)
 370{
 371        struct address_space *mapping;
 372        int this_cpu;
 373
 374        if (tlb_type == hypervisor)
 375                return;
 376
 377        /* Do not bother with the expensive D-cache flush if it
 378         * is merely the zero page.  The 'bigcore' testcase in GDB
 379         * causes this case to run millions of times.
 380         */
 381        if (page == ZERO_PAGE(0))
 382                return;
 383
 384        this_cpu = get_cpu();
 385
 386        mapping = page_mapping(page);
 387        if (mapping && !mapping_mapped(mapping)) {
 388                int dirty = test_bit(PG_dcache_dirty, &page->flags);
 389                if (dirty) {
 390                        int dirty_cpu = dcache_dirty_cpu(page);
 391
 392                        if (dirty_cpu == this_cpu)
 393                                goto out;
 394                        smp_flush_dcache_page_impl(page, dirty_cpu);
 395                }
 396                set_dcache_dirty(page, this_cpu);
 397        } else {
 398                /* We could delay the flush for the !page_mapping
 399                 * case too.  But that case is for exec env/arg
 400                 * pages and those are %99 certainly going to get
 401                 * faulted into the tlb (and thus flushed) anyways.
 402                 */
 403                flush_dcache_page_impl(page);
 404        }
 405
 406out:
 407        put_cpu();
 408}
 409EXPORT_SYMBOL(flush_dcache_page);
 410
 411void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 412{
 413        /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 414        if (tlb_type == spitfire) {
 415                unsigned long kaddr;
 416
 417                /* This code only runs on Spitfire cpus so this is
 418                 * why we can assume _PAGE_PADDR_4U.
 419                 */
 420                for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 421                        unsigned long paddr, mask = _PAGE_PADDR_4U;
 422
 423                        if (kaddr >= PAGE_OFFSET)
 424                                paddr = kaddr & mask;
 425                        else {
 426                                pgd_t *pgdp = pgd_offset_k(kaddr);
 427                                pud_t *pudp = pud_offset(pgdp, kaddr);
 428                                pmd_t *pmdp = pmd_offset(pudp, kaddr);
 429                                pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
 430
 431                                paddr = pte_val(*ptep) & mask;
 432                        }
 433                        __flush_icache_page(paddr);
 434                }
 435        }
 436}
 437EXPORT_SYMBOL(flush_icache_range);
 438
 439void mmu_info(struct seq_file *m)
 440{
 441        static const char *pgsz_strings[] = {
 442                "8K", "64K", "512K", "4MB", "32MB",
 443                "256MB", "2GB", "16GB",
 444        };
 445        int i, printed;
 446
 447        if (tlb_type == cheetah)
 448                seq_printf(m, "MMU Type\t: Cheetah\n");
 449        else if (tlb_type == cheetah_plus)
 450                seq_printf(m, "MMU Type\t: Cheetah+\n");
 451        else if (tlb_type == spitfire)
 452                seq_printf(m, "MMU Type\t: Spitfire\n");
 453        else if (tlb_type == hypervisor)
 454                seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 455        else
 456                seq_printf(m, "MMU Type\t: ???\n");
 457
 458        seq_printf(m, "MMU PGSZs\t: ");
 459        printed = 0;
 460        for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
 461                if (cpu_pgsz_mask & (1UL << i)) {
 462                        seq_printf(m, "%s%s",
 463                                   printed ? "," : "", pgsz_strings[i]);
 464                        printed++;
 465                }
 466        }
 467        seq_putc(m, '\n');
 468
 469#ifdef CONFIG_DEBUG_DCFLUSH
 470        seq_printf(m, "DCPageFlushes\t: %d\n",
 471                   atomic_read(&dcpage_flushes));
 472#ifdef CONFIG_SMP
 473        seq_printf(m, "DCPageFlushesXC\t: %d\n",
 474                   atomic_read(&dcpage_flushes_xcall));
 475#endif /* CONFIG_SMP */
 476#endif /* CONFIG_DEBUG_DCFLUSH */
 477}
 478
 479struct linux_prom_translation prom_trans[512] __read_mostly;
 480unsigned int prom_trans_ents __read_mostly;
 481
 482unsigned long kern_locked_tte_data;
 483
 484/* The obp translations are saved based on 8k pagesize, since obp can
 485 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 486 * HI_OBP_ADDRESS range are handled in ktlb.S.
 487 */
 488static inline int in_obp_range(unsigned long vaddr)
 489{
 490        return (vaddr >= LOW_OBP_ADDRESS &&
 491                vaddr < HI_OBP_ADDRESS);
 492}
 493
 494static int cmp_ptrans(const void *a, const void *b)
 495{
 496        const struct linux_prom_translation *x = a, *y = b;
 497
 498        if (x->virt > y->virt)
 499                return 1;
 500        if (x->virt < y->virt)
 501                return -1;
 502        return 0;
 503}
 504
 505/* Read OBP translations property into 'prom_trans[]'.  */
 506static void __init read_obp_translations(void)
 507{
 508        int n, node, ents, first, last, i;
 509
 510        node = prom_finddevice("/virtual-memory");
 511        n = prom_getproplen(node, "translations");
 512        if (unlikely(n == 0 || n == -1)) {
 513                prom_printf("prom_mappings: Couldn't get size.\n");
 514                prom_halt();
 515        }
 516        if (unlikely(n > sizeof(prom_trans))) {
 517                prom_printf("prom_mappings: Size %d is too big.\n", n);
 518                prom_halt();
 519        }
 520
 521        if ((n = prom_getproperty(node, "translations",
 522                                  (char *)&prom_trans[0],
 523                                  sizeof(prom_trans))) == -1) {
 524                prom_printf("prom_mappings: Couldn't get property.\n");
 525                prom_halt();
 526        }
 527
 528        n = n / sizeof(struct linux_prom_translation);
 529
 530        ents = n;
 531
 532        sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 533             cmp_ptrans, NULL);
 534
 535        /* Now kick out all the non-OBP entries.  */
 536        for (i = 0; i < ents; i++) {
 537                if (in_obp_range(prom_trans[i].virt))
 538                        break;
 539        }
 540        first = i;
 541        for (; i < ents; i++) {
 542                if (!in_obp_range(prom_trans[i].virt))
 543                        break;
 544        }
 545        last = i;
 546
 547        for (i = 0; i < (last - first); i++) {
 548                struct linux_prom_translation *src = &prom_trans[i + first];
 549                struct linux_prom_translation *dest = &prom_trans[i];
 550
 551                *dest = *src;
 552        }
 553        for (; i < ents; i++) {
 554                struct linux_prom_translation *dest = &prom_trans[i];
 555                dest->virt = dest->size = dest->data = 0x0UL;
 556        }
 557
 558        prom_trans_ents = last - first;
 559
 560        if (tlb_type == spitfire) {
 561                /* Clear diag TTE bits. */
 562                for (i = 0; i < prom_trans_ents; i++)
 563                        prom_trans[i].data &= ~0x0003fe0000000000UL;
 564        }
 565
 566        /* Force execute bit on.  */
 567        for (i = 0; i < prom_trans_ents; i++)
 568                prom_trans[i].data |= (tlb_type == hypervisor ?
 569                                       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 570}
 571
 572static void __init hypervisor_tlb_lock(unsigned long vaddr,
 573                                       unsigned long pte,
 574                                       unsigned long mmu)
 575{
 576        unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 577
 578        if (ret != 0) {
 579                prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
 580                            "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 581                prom_halt();
 582        }
 583}
 584
 585static unsigned long kern_large_tte(unsigned long paddr);
 586
 587static void __init remap_kernel(void)
 588{
 589        unsigned long phys_page, tte_vaddr, tte_data;
 590        int i, tlb_ent = sparc64_highest_locked_tlbent();
 591
 592        tte_vaddr = (unsigned long) KERNBASE;
 593        phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
 594        tte_data = kern_large_tte(phys_page);
 595
 596        kern_locked_tte_data = tte_data;
 597
 598        /* Now lock us into the TLBs via Hypervisor or OBP. */
 599        if (tlb_type == hypervisor) {
 600                for (i = 0; i < num_kernel_image_mappings; i++) {
 601                        hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 602                        hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 603                        tte_vaddr += 0x400000;
 604                        tte_data += 0x400000;
 605                }
 606        } else {
 607                for (i = 0; i < num_kernel_image_mappings; i++) {
 608                        prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 609                        prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 610                        tte_vaddr += 0x400000;
 611                        tte_data += 0x400000;
 612                }
 613                sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 614        }
 615        if (tlb_type == cheetah_plus) {
 616                sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 617                                            CTX_CHEETAH_PLUS_NUC);
 618                sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 619                sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 620        }
 621}
 622
 623
 624static void __init inherit_prom_mappings(void)
 625{
 626        /* Now fixup OBP's idea about where we really are mapped. */
 627        printk("Remapping the kernel... ");
 628        remap_kernel();
 629        printk("done.\n");
 630}
 631
 632void prom_world(int enter)
 633{
 634        if (!enter)
 635                set_fs(get_fs());
 636
 637        __asm__ __volatile__("flushw");
 638}
 639
 640void __flush_dcache_range(unsigned long start, unsigned long end)
 641{
 642        unsigned long va;
 643
 644        if (tlb_type == spitfire) {
 645                int n = 0;
 646
 647                for (va = start; va < end; va += 32) {
 648                        spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 649                        if (++n >= 512)
 650                                break;
 651                }
 652        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 653                start = __pa(start);
 654                end = __pa(end);
 655                for (va = start; va < end; va += 32)
 656                        __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 657                                             "membar #Sync"
 658                                             : /* no outputs */
 659                                             : "r" (va),
 660                                               "i" (ASI_DCACHE_INVALIDATE));
 661        }
 662}
 663EXPORT_SYMBOL(__flush_dcache_range);
 664
 665/* get_new_mmu_context() uses "cache + 1".  */
 666DEFINE_SPINLOCK(ctx_alloc_lock);
 667unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
 668#define MAX_CTX_NR      (1UL << CTX_NR_BITS)
 669#define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
 670DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 671
 672/* Caller does TLB context flushing on local CPU if necessary.
 673 * The caller also ensures that CTX_VALID(mm->context) is false.
 674 *
 675 * We must be careful about boundary cases so that we never
 676 * let the user have CTX 0 (nucleus) or we ever use a CTX
 677 * version of zero (and thus NO_CONTEXT would not be caught
 678 * by version mis-match tests in mmu_context.h).
 679 *
 680 * Always invoked with interrupts disabled.
 681 */
 682void get_new_mmu_context(struct mm_struct *mm)
 683{
 684        unsigned long ctx, new_ctx;
 685        unsigned long orig_pgsz_bits;
 686        int new_version;
 687
 688        spin_lock(&ctx_alloc_lock);
 689        orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 690        ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 691        new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 692        new_version = 0;
 693        if (new_ctx >= (1 << CTX_NR_BITS)) {
 694                new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 695                if (new_ctx >= ctx) {
 696                        int i;
 697                        new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
 698                                CTX_FIRST_VERSION;
 699                        if (new_ctx == 1)
 700                                new_ctx = CTX_FIRST_VERSION;
 701
 702                        /* Don't call memset, for 16 entries that's just
 703                         * plain silly...
 704                         */
 705                        mmu_context_bmap[0] = 3;
 706                        mmu_context_bmap[1] = 0;
 707                        mmu_context_bmap[2] = 0;
 708                        mmu_context_bmap[3] = 0;
 709                        for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
 710                                mmu_context_bmap[i + 0] = 0;
 711                                mmu_context_bmap[i + 1] = 0;
 712                                mmu_context_bmap[i + 2] = 0;
 713                                mmu_context_bmap[i + 3] = 0;
 714                        }
 715                        new_version = 1;
 716                        goto out;
 717                }
 718        }
 719        mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 720        new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 721out:
 722        tlb_context_cache = new_ctx;
 723        mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 724        spin_unlock(&ctx_alloc_lock);
 725
 726        if (unlikely(new_version))
 727                smp_new_mmu_context_version();
 728}
 729
 730static int numa_enabled = 1;
 731static int numa_debug;
 732
 733static int __init early_numa(char *p)
 734{
 735        if (!p)
 736                return 0;
 737
 738        if (strstr(p, "off"))
 739                numa_enabled = 0;
 740
 741        if (strstr(p, "debug"))
 742                numa_debug = 1;
 743
 744        return 0;
 745}
 746early_param("numa", early_numa);
 747
 748#define numadbg(f, a...) \
 749do {    if (numa_debug) \
 750                printk(KERN_INFO f, ## a); \
 751} while (0)
 752
 753static void __init find_ramdisk(unsigned long phys_base)
 754{
 755#ifdef CONFIG_BLK_DEV_INITRD
 756        if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 757                unsigned long ramdisk_image;
 758
 759                /* Older versions of the bootloader only supported a
 760                 * 32-bit physical address for the ramdisk image
 761                 * location, stored at sparc_ramdisk_image.  Newer
 762                 * SILO versions set sparc_ramdisk_image to zero and
 763                 * provide a full 64-bit physical address at
 764                 * sparc_ramdisk_image64.
 765                 */
 766                ramdisk_image = sparc_ramdisk_image;
 767                if (!ramdisk_image)
 768                        ramdisk_image = sparc_ramdisk_image64;
 769
 770                /* Another bootloader quirk.  The bootloader normalizes
 771                 * the physical address to KERNBASE, so we have to
 772                 * factor that back out and add in the lowest valid
 773                 * physical page address to get the true physical address.
 774                 */
 775                ramdisk_image -= KERNBASE;
 776                ramdisk_image += phys_base;
 777
 778                numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 779                        ramdisk_image, sparc_ramdisk_size);
 780
 781                initrd_start = ramdisk_image;
 782                initrd_end = ramdisk_image + sparc_ramdisk_size;
 783
 784                memblock_reserve(initrd_start, sparc_ramdisk_size);
 785
 786                initrd_start += PAGE_OFFSET;
 787                initrd_end += PAGE_OFFSET;
 788        }
 789#endif
 790}
 791
 792struct node_mem_mask {
 793        unsigned long mask;
 794        unsigned long val;
 795};
 796static struct node_mem_mask node_masks[MAX_NUMNODES];
 797static int num_node_masks;
 798
 799#ifdef CONFIG_NEED_MULTIPLE_NODES
 800
 801int numa_cpu_lookup_table[NR_CPUS];
 802cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 803
 804struct mdesc_mblock {
 805        u64     base;
 806        u64     size;
 807        u64     offset; /* RA-to-PA */
 808};
 809static struct mdesc_mblock *mblocks;
 810static int num_mblocks;
 811
 812static unsigned long ra_to_pa(unsigned long addr)
 813{
 814        int i;
 815
 816        for (i = 0; i < num_mblocks; i++) {
 817                struct mdesc_mblock *m = &mblocks[i];
 818
 819                if (addr >= m->base &&
 820                    addr < (m->base + m->size)) {
 821                        addr += m->offset;
 822                        break;
 823                }
 824        }
 825        return addr;
 826}
 827
 828static int find_node(unsigned long addr)
 829{
 830        int i;
 831
 832        addr = ra_to_pa(addr);
 833        for (i = 0; i < num_node_masks; i++) {
 834                struct node_mem_mask *p = &node_masks[i];
 835
 836                if ((addr & p->mask) == p->val)
 837                        return i;
 838        }
 839        /* The following condition has been observed on LDOM guests.*/
 840        WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
 841                " rule. Some physical memory will be owned by node 0.");
 842        return 0;
 843}
 844
 845static u64 memblock_nid_range(u64 start, u64 end, int *nid)
 846{
 847        *nid = find_node(start);
 848        start += PAGE_SIZE;
 849        while (start < end) {
 850                int n = find_node(start);
 851
 852                if (n != *nid)
 853                        break;
 854                start += PAGE_SIZE;
 855        }
 856
 857        if (start > end)
 858                start = end;
 859
 860        return start;
 861}
 862#endif
 863
 864/* This must be invoked after performing all of the necessary
 865 * memblock_set_node() calls for 'nid'.  We need to be able to get
 866 * correct data from get_pfn_range_for_nid().
 867 */
 868static void __init allocate_node_data(int nid)
 869{
 870        struct pglist_data *p;
 871        unsigned long start_pfn, end_pfn;
 872#ifdef CONFIG_NEED_MULTIPLE_NODES
 873        unsigned long paddr;
 874
 875        paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
 876        if (!paddr) {
 877                prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
 878                prom_halt();
 879        }
 880        NODE_DATA(nid) = __va(paddr);
 881        memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 882
 883        NODE_DATA(nid)->node_id = nid;
 884#endif
 885
 886        p = NODE_DATA(nid);
 887
 888        get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 889        p->node_start_pfn = start_pfn;
 890        p->node_spanned_pages = end_pfn - start_pfn;
 891}
 892
 893static void init_node_masks_nonnuma(void)
 894{
 895#ifdef CONFIG_NEED_MULTIPLE_NODES
 896        int i;
 897#endif
 898
 899        numadbg("Initializing tables for non-numa.\n");
 900
 901        node_masks[0].mask = node_masks[0].val = 0;
 902        num_node_masks = 1;
 903
 904#ifdef CONFIG_NEED_MULTIPLE_NODES
 905        for (i = 0; i < NR_CPUS; i++)
 906                numa_cpu_lookup_table[i] = 0;
 907
 908        cpumask_setall(&numa_cpumask_lookup_table[0]);
 909#endif
 910}
 911
 912#ifdef CONFIG_NEED_MULTIPLE_NODES
 913struct pglist_data *node_data[MAX_NUMNODES];
 914
 915EXPORT_SYMBOL(numa_cpu_lookup_table);
 916EXPORT_SYMBOL(numa_cpumask_lookup_table);
 917EXPORT_SYMBOL(node_data);
 918
 919struct mdesc_mlgroup {
 920        u64     node;
 921        u64     latency;
 922        u64     match;
 923        u64     mask;
 924};
 925static struct mdesc_mlgroup *mlgroups;
 926static int num_mlgroups;
 927
 928static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
 929                                   u32 cfg_handle)
 930{
 931        u64 arc;
 932
 933        mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
 934                u64 target = mdesc_arc_target(md, arc);
 935                const u64 *val;
 936
 937                val = mdesc_get_property(md, target,
 938                                         "cfg-handle", NULL);
 939                if (val && *val == cfg_handle)
 940                        return 0;
 941        }
 942        return -ENODEV;
 943}
 944
 945static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
 946                                    u32 cfg_handle)
 947{
 948        u64 arc, candidate, best_latency = ~(u64)0;
 949
 950        candidate = MDESC_NODE_NULL;
 951        mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 952                u64 target = mdesc_arc_target(md, arc);
 953                const char *name = mdesc_node_name(md, target);
 954                const u64 *val;
 955
 956                if (strcmp(name, "pio-latency-group"))
 957                        continue;
 958
 959                val = mdesc_get_property(md, target, "latency", NULL);
 960                if (!val)
 961                        continue;
 962
 963                if (*val < best_latency) {
 964                        candidate = target;
 965                        best_latency = *val;
 966                }
 967        }
 968
 969        if (candidate == MDESC_NODE_NULL)
 970                return -ENODEV;
 971
 972        return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
 973}
 974
 975int of_node_to_nid(struct device_node *dp)
 976{
 977        const struct linux_prom64_registers *regs;
 978        struct mdesc_handle *md;
 979        u32 cfg_handle;
 980        int count, nid;
 981        u64 grp;
 982
 983        /* This is the right thing to do on currently supported
 984         * SUN4U NUMA platforms as well, as the PCI controller does
 985         * not sit behind any particular memory controller.
 986         */
 987        if (!mlgroups)
 988                return -1;
 989
 990        regs = of_get_property(dp, "reg", NULL);
 991        if (!regs)
 992                return -1;
 993
 994        cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
 995
 996        md = mdesc_grab();
 997
 998        count = 0;
 999        nid = -1;
1000        mdesc_for_each_node_by_name(md, grp, "group") {
1001                if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1002                        nid = count;
1003                        break;
1004                }
1005                count++;
1006        }
1007
1008        mdesc_release(md);
1009
1010        return nid;
1011}
1012
1013static void __init add_node_ranges(void)
1014{
1015        struct memblock_region *reg;
1016
1017        for_each_memblock(memory, reg) {
1018                unsigned long size = reg->size;
1019                unsigned long start, end;
1020
1021                start = reg->base;
1022                end = start + size;
1023                while (start < end) {
1024                        unsigned long this_end;
1025                        int nid;
1026
1027                        this_end = memblock_nid_range(start, end, &nid);
1028
1029                        numadbg("Setting memblock NUMA node nid[%d] "
1030                                "start[%lx] end[%lx]\n",
1031                                nid, start, this_end);
1032
1033                        memblock_set_node(start, this_end - start,
1034                                          &memblock.memory, nid);
1035                        start = this_end;
1036                }
1037        }
1038}
1039
1040static int __init grab_mlgroups(struct mdesc_handle *md)
1041{
1042        unsigned long paddr;
1043        int count = 0;
1044        u64 node;
1045
1046        mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1047                count++;
1048        if (!count)
1049                return -ENOENT;
1050
1051        paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1052                          SMP_CACHE_BYTES);
1053        if (!paddr)
1054                return -ENOMEM;
1055
1056        mlgroups = __va(paddr);
1057        num_mlgroups = count;
1058
1059        count = 0;
1060        mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1061                struct mdesc_mlgroup *m = &mlgroups[count++];
1062                const u64 *val;
1063
1064                m->node = node;
1065
1066                val = mdesc_get_property(md, node, "latency", NULL);
1067                m->latency = *val;
1068                val = mdesc_get_property(md, node, "address-match", NULL);
1069                m->match = *val;
1070                val = mdesc_get_property(md, node, "address-mask", NULL);
1071                m->mask = *val;
1072
1073                numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1074                        "match[%llx] mask[%llx]\n",
1075                        count - 1, m->node, m->latency, m->match, m->mask);
1076        }
1077
1078        return 0;
1079}
1080
1081static int __init grab_mblocks(struct mdesc_handle *md)
1082{
1083        unsigned long paddr;
1084        int count = 0;
1085        u64 node;
1086
1087        mdesc_for_each_node_by_name(md, node, "mblock")
1088                count++;
1089        if (!count)
1090                return -ENOENT;
1091
1092        paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1093                          SMP_CACHE_BYTES);
1094        if (!paddr)
1095                return -ENOMEM;
1096
1097        mblocks = __va(paddr);
1098        num_mblocks = count;
1099
1100        count = 0;
1101        mdesc_for_each_node_by_name(md, node, "mblock") {
1102                struct mdesc_mblock *m = &mblocks[count++];
1103                const u64 *val;
1104
1105                val = mdesc_get_property(md, node, "base", NULL);
1106                m->base = *val;
1107                val = mdesc_get_property(md, node, "size", NULL);
1108                m->size = *val;
1109                val = mdesc_get_property(md, node,
1110                                         "address-congruence-offset", NULL);
1111
1112                /* The address-congruence-offset property is optional.
1113                 * Explicity zero it be identifty this.
1114                 */
1115                if (val)
1116                        m->offset = *val;
1117                else
1118                        m->offset = 0UL;
1119
1120                numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1121                        count - 1, m->base, m->size, m->offset);
1122        }
1123
1124        return 0;
1125}
1126
1127static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1128                                               u64 grp, cpumask_t *mask)
1129{
1130        u64 arc;
1131
1132        cpumask_clear(mask);
1133
1134        mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1135                u64 target = mdesc_arc_target(md, arc);
1136                const char *name = mdesc_node_name(md, target);
1137                const u64 *id;
1138
1139                if (strcmp(name, "cpu"))
1140                        continue;
1141                id = mdesc_get_property(md, target, "id", NULL);
1142                if (*id < nr_cpu_ids)
1143                        cpumask_set_cpu(*id, mask);
1144        }
1145}
1146
1147static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1148{
1149        int i;
1150
1151        for (i = 0; i < num_mlgroups; i++) {
1152                struct mdesc_mlgroup *m = &mlgroups[i];
1153                if (m->node == node)
1154                        return m;
1155        }
1156        return NULL;
1157}
1158
1159static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1160                                      int index)
1161{
1162        struct mdesc_mlgroup *candidate = NULL;
1163        u64 arc, best_latency = ~(u64)0;
1164        struct node_mem_mask *n;
1165
1166        mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1167                u64 target = mdesc_arc_target(md, arc);
1168                struct mdesc_mlgroup *m = find_mlgroup(target);
1169                if (!m)
1170                        continue;
1171                if (m->latency < best_latency) {
1172                        candidate = m;
1173                        best_latency = m->latency;
1174                }
1175        }
1176        if (!candidate)
1177                return -ENOENT;
1178
1179        if (num_node_masks != index) {
1180                printk(KERN_ERR "Inconsistent NUMA state, "
1181                       "index[%d] != num_node_masks[%d]\n",
1182                       index, num_node_masks);
1183                return -EINVAL;
1184        }
1185
1186        n = &node_masks[num_node_masks++];
1187
1188        n->mask = candidate->mask;
1189        n->val = candidate->match;
1190
1191        numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1192                index, n->mask, n->val, candidate->latency);
1193
1194        return 0;
1195}
1196
1197static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1198                                         int index)
1199{
1200        cpumask_t mask;
1201        int cpu;
1202
1203        numa_parse_mdesc_group_cpus(md, grp, &mask);
1204
1205        for_each_cpu(cpu, &mask)
1206                numa_cpu_lookup_table[cpu] = index;
1207        cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1208
1209        if (numa_debug) {
1210                printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1211                for_each_cpu(cpu, &mask)
1212                        printk("%d ", cpu);
1213                printk("]\n");
1214        }
1215
1216        return numa_attach_mlgroup(md, grp, index);
1217}
1218
1219static int __init numa_parse_mdesc(void)
1220{
1221        struct mdesc_handle *md = mdesc_grab();
1222        int i, err, count;
1223        u64 node;
1224
1225        node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1226        if (node == MDESC_NODE_NULL) {
1227                mdesc_release(md);
1228                return -ENOENT;
1229        }
1230
1231        err = grab_mblocks(md);
1232        if (err < 0)
1233                goto out;
1234
1235        err = grab_mlgroups(md);
1236        if (err < 0)
1237                goto out;
1238
1239        count = 0;
1240        mdesc_for_each_node_by_name(md, node, "group") {
1241                err = numa_parse_mdesc_group(md, node, count);
1242                if (err < 0)
1243                        break;
1244                count++;
1245        }
1246
1247        add_node_ranges();
1248
1249        for (i = 0; i < num_node_masks; i++) {
1250                allocate_node_data(i);
1251                node_set_online(i);
1252        }
1253
1254        err = 0;
1255out:
1256        mdesc_release(md);
1257        return err;
1258}
1259
1260static int __init numa_parse_jbus(void)
1261{
1262        unsigned long cpu, index;
1263
1264        /* NUMA node id is encoded in bits 36 and higher, and there is
1265         * a 1-to-1 mapping from CPU ID to NUMA node ID.
1266         */
1267        index = 0;
1268        for_each_present_cpu(cpu) {
1269                numa_cpu_lookup_table[cpu] = index;
1270                cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1271                node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1272                node_masks[index].val = cpu << 36UL;
1273
1274                index++;
1275        }
1276        num_node_masks = index;
1277
1278        add_node_ranges();
1279
1280        for (index = 0; index < num_node_masks; index++) {
1281                allocate_node_data(index);
1282                node_set_online(index);
1283        }
1284
1285        return 0;
1286}
1287
1288static int __init numa_parse_sun4u(void)
1289{
1290        if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1291                unsigned long ver;
1292
1293                __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1294                if ((ver >> 32UL) == __JALAPENO_ID ||
1295                    (ver >> 32UL) == __SERRANO_ID)
1296                        return numa_parse_jbus();
1297        }
1298        return -1;
1299}
1300
1301static int __init bootmem_init_numa(void)
1302{
1303        int err = -1;
1304
1305        numadbg("bootmem_init_numa()\n");
1306
1307        if (numa_enabled) {
1308                if (tlb_type == hypervisor)
1309                        err = numa_parse_mdesc();
1310                else
1311                        err = numa_parse_sun4u();
1312        }
1313        return err;
1314}
1315
1316#else
1317
1318static int bootmem_init_numa(void)
1319{
1320        return -1;
1321}
1322
1323#endif
1324
1325static void __init bootmem_init_nonnuma(void)
1326{
1327        unsigned long top_of_ram = memblock_end_of_DRAM();
1328        unsigned long total_ram = memblock_phys_mem_size();
1329
1330        numadbg("bootmem_init_nonnuma()\n");
1331
1332        printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1333               top_of_ram, total_ram);
1334        printk(KERN_INFO "Memory hole size: %ldMB\n",
1335               (top_of_ram - total_ram) >> 20);
1336
1337        init_node_masks_nonnuma();
1338        memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1339        allocate_node_data(0);
1340        node_set_online(0);
1341}
1342
1343static unsigned long __init bootmem_init(unsigned long phys_base)
1344{
1345        unsigned long end_pfn;
1346
1347        end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1348        max_pfn = max_low_pfn = end_pfn;
1349        min_low_pfn = (phys_base >> PAGE_SHIFT);
1350
1351        if (bootmem_init_numa() < 0)
1352                bootmem_init_nonnuma();
1353
1354        /* Dump memblock with node info. */
1355        memblock_dump_all();
1356
1357        /* XXX cpu notifier XXX */
1358
1359        sparse_memory_present_with_active_regions(MAX_NUMNODES);
1360        sparse_init();
1361
1362        return end_pfn;
1363}
1364
1365static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1366static int pall_ents __initdata;
1367
1368static unsigned long max_phys_bits = 40;
1369
1370bool kern_addr_valid(unsigned long addr)
1371{
1372        pgd_t *pgd;
1373        pud_t *pud;
1374        pmd_t *pmd;
1375        pte_t *pte;
1376
1377        if ((long)addr < 0L) {
1378                unsigned long pa = __pa(addr);
1379
1380                if ((addr >> max_phys_bits) != 0UL)
1381                        return false;
1382
1383                return pfn_valid(pa >> PAGE_SHIFT);
1384        }
1385
1386        if (addr >= (unsigned long) KERNBASE &&
1387            addr < (unsigned long)&_end)
1388                return true;
1389
1390        pgd = pgd_offset_k(addr);
1391        if (pgd_none(*pgd))
1392                return 0;
1393
1394        pud = pud_offset(pgd, addr);
1395        if (pud_none(*pud))
1396                return 0;
1397
1398        if (pud_large(*pud))
1399                return pfn_valid(pud_pfn(*pud));
1400
1401        pmd = pmd_offset(pud, addr);
1402        if (pmd_none(*pmd))
1403                return 0;
1404
1405        if (pmd_large(*pmd))
1406                return pfn_valid(pmd_pfn(*pmd));
1407
1408        pte = pte_offset_kernel(pmd, addr);
1409        if (pte_none(*pte))
1410                return 0;
1411
1412        return pfn_valid(pte_pfn(*pte));
1413}
1414EXPORT_SYMBOL(kern_addr_valid);
1415
1416static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1417                                              unsigned long vend,
1418                                              pud_t *pud)
1419{
1420        const unsigned long mask16gb = (1UL << 34) - 1UL;
1421        u64 pte_val = vstart;
1422
1423        /* Each PUD is 8GB */
1424        if ((vstart & mask16gb) ||
1425            (vend - vstart <= mask16gb)) {
1426                pte_val ^= kern_linear_pte_xor[2];
1427                pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1428
1429                return vstart + PUD_SIZE;
1430        }
1431
1432        pte_val ^= kern_linear_pte_xor[3];
1433        pte_val |= _PAGE_PUD_HUGE;
1434
1435        vend = vstart + mask16gb + 1UL;
1436        while (vstart < vend) {
1437                pud_val(*pud) = pte_val;
1438
1439                pte_val += PUD_SIZE;
1440                vstart += PUD_SIZE;
1441                pud++;
1442        }
1443        return vstart;
1444}
1445
1446static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1447                                   bool guard)
1448{
1449        if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1450                return true;
1451
1452        return false;
1453}
1454
1455static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1456                                              unsigned long vend,
1457                                              pmd_t *pmd)
1458{
1459        const unsigned long mask256mb = (1UL << 28) - 1UL;
1460        const unsigned long mask2gb = (1UL << 31) - 1UL;
1461        u64 pte_val = vstart;
1462
1463        /* Each PMD is 8MB */
1464        if ((vstart & mask256mb) ||
1465            (vend - vstart <= mask256mb)) {
1466                pte_val ^= kern_linear_pte_xor[0];
1467                pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1468
1469                return vstart + PMD_SIZE;
1470        }
1471
1472        if ((vstart & mask2gb) ||
1473            (vend - vstart <= mask2gb)) {
1474                pte_val ^= kern_linear_pte_xor[1];
1475                pte_val |= _PAGE_PMD_HUGE;
1476                vend = vstart + mask256mb + 1UL;
1477        } else {
1478                pte_val ^= kern_linear_pte_xor[2];
1479                pte_val |= _PAGE_PMD_HUGE;
1480                vend = vstart + mask2gb + 1UL;
1481        }
1482
1483        while (vstart < vend) {
1484                pmd_val(*pmd) = pte_val;
1485
1486                pte_val += PMD_SIZE;
1487                vstart += PMD_SIZE;
1488                pmd++;
1489        }
1490
1491        return vstart;
1492}
1493
1494static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1495                                   bool guard)
1496{
1497        if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1498                return true;
1499
1500        return false;
1501}
1502
1503static unsigned long __ref kernel_map_range(unsigned long pstart,
1504                                            unsigned long pend, pgprot_t prot,
1505                                            bool use_huge)
1506{
1507        unsigned long vstart = PAGE_OFFSET + pstart;
1508        unsigned long vend = PAGE_OFFSET + pend;
1509        unsigned long alloc_bytes = 0UL;
1510
1511        if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1512                prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1513                            vstart, vend);
1514                prom_halt();
1515        }
1516
1517        while (vstart < vend) {
1518                unsigned long this_end, paddr = __pa(vstart);
1519                pgd_t *pgd = pgd_offset_k(vstart);
1520                pud_t *pud;
1521                pmd_t *pmd;
1522                pte_t *pte;
1523
1524                if (pgd_none(*pgd)) {
1525                        pud_t *new;
1526
1527                        new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1528                        alloc_bytes += PAGE_SIZE;
1529                        pgd_populate(&init_mm, pgd, new);
1530                }
1531                pud = pud_offset(pgd, vstart);
1532                if (pud_none(*pud)) {
1533                        pmd_t *new;
1534
1535                        if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1536                                vstart = kernel_map_hugepud(vstart, vend, pud);
1537                                continue;
1538                        }
1539                        new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1540                        alloc_bytes += PAGE_SIZE;
1541                        pud_populate(&init_mm, pud, new);
1542                }
1543
1544                pmd = pmd_offset(pud, vstart);
1545                if (pmd_none(*pmd)) {
1546                        pte_t *new;
1547
1548                        if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1549                                vstart = kernel_map_hugepmd(vstart, vend, pmd);
1550                                continue;
1551                        }
1552                        new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1553                        alloc_bytes += PAGE_SIZE;
1554                        pmd_populate_kernel(&init_mm, pmd, new);
1555                }
1556
1557                pte = pte_offset_kernel(pmd, vstart);
1558                this_end = (vstart + PMD_SIZE) & PMD_MASK;
1559                if (this_end > vend)
1560                        this_end = vend;
1561
1562                while (vstart < this_end) {
1563                        pte_val(*pte) = (paddr | pgprot_val(prot));
1564
1565                        vstart += PAGE_SIZE;
1566                        paddr += PAGE_SIZE;
1567                        pte++;
1568                }
1569        }
1570
1571        return alloc_bytes;
1572}
1573
1574static void __init flush_all_kernel_tsbs(void)
1575{
1576        int i;
1577
1578        for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1579                struct tsb *ent = &swapper_tsb[i];
1580
1581                ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1582        }
1583#ifndef CONFIG_DEBUG_PAGEALLOC
1584        for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1585                struct tsb *ent = &swapper_4m_tsb[i];
1586
1587                ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1588        }
1589#endif
1590}
1591
1592extern unsigned int kvmap_linear_patch[1];
1593
1594static void __init kernel_physical_mapping_init(void)
1595{
1596        unsigned long i, mem_alloced = 0UL;
1597        bool use_huge = true;
1598
1599#ifdef CONFIG_DEBUG_PAGEALLOC
1600        use_huge = false;
1601#endif
1602        for (i = 0; i < pall_ents; i++) {
1603                unsigned long phys_start, phys_end;
1604
1605                phys_start = pall[i].phys_addr;
1606                phys_end = phys_start + pall[i].reg_size;
1607
1608                mem_alloced += kernel_map_range(phys_start, phys_end,
1609                                                PAGE_KERNEL, use_huge);
1610        }
1611
1612        printk("Allocated %ld bytes for kernel page tables.\n",
1613               mem_alloced);
1614
1615        kvmap_linear_patch[0] = 0x01000000; /* nop */
1616        flushi(&kvmap_linear_patch[0]);
1617
1618        flush_all_kernel_tsbs();
1619
1620        __flush_tlb_all();
1621}
1622
1623#ifdef CONFIG_DEBUG_PAGEALLOC
1624void __kernel_map_pages(struct page *page, int numpages, int enable)
1625{
1626        unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1627        unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1628
1629        kernel_map_range(phys_start, phys_end,
1630                         (enable ? PAGE_KERNEL : __pgprot(0)), false);
1631
1632        flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1633                               PAGE_OFFSET + phys_end);
1634
1635        /* we should perform an IPI and flush all tlbs,
1636         * but that can deadlock->flush only current cpu.
1637         */
1638        __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1639                                 PAGE_OFFSET + phys_end);
1640}
1641#endif
1642
1643unsigned long __init find_ecache_flush_span(unsigned long size)
1644{
1645        int i;
1646
1647        for (i = 0; i < pavail_ents; i++) {
1648                if (pavail[i].reg_size >= size)
1649                        return pavail[i].phys_addr;
1650        }
1651
1652        return ~0UL;
1653}
1654
1655unsigned long PAGE_OFFSET;
1656EXPORT_SYMBOL(PAGE_OFFSET);
1657
1658unsigned long VMALLOC_END   = 0x0000010000000000UL;
1659EXPORT_SYMBOL(VMALLOC_END);
1660
1661unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1662unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1663
1664static void __init setup_page_offset(void)
1665{
1666        if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1667                /* Cheetah/Panther support a full 64-bit virtual
1668                 * address, so we can use all that our page tables
1669                 * support.
1670                 */
1671                sparc64_va_hole_top =    0xfff0000000000000UL;
1672                sparc64_va_hole_bottom = 0x0010000000000000UL;
1673
1674                max_phys_bits = 42;
1675        } else if (tlb_type == hypervisor) {
1676                switch (sun4v_chip_type) {
1677                case SUN4V_CHIP_NIAGARA1:
1678                case SUN4V_CHIP_NIAGARA2:
1679                        /* T1 and T2 support 48-bit virtual addresses.  */
1680                        sparc64_va_hole_top =    0xffff800000000000UL;
1681                        sparc64_va_hole_bottom = 0x0000800000000000UL;
1682
1683                        max_phys_bits = 39;
1684                        break;
1685                case SUN4V_CHIP_NIAGARA3:
1686                        /* T3 supports 48-bit virtual addresses.  */
1687                        sparc64_va_hole_top =    0xffff800000000000UL;
1688                        sparc64_va_hole_bottom = 0x0000800000000000UL;
1689
1690                        max_phys_bits = 43;
1691                        break;
1692                case SUN4V_CHIP_NIAGARA4:
1693                case SUN4V_CHIP_NIAGARA5:
1694                case SUN4V_CHIP_SPARC64X:
1695                case SUN4V_CHIP_SPARC_M6:
1696                        /* T4 and later support 52-bit virtual addresses.  */
1697                        sparc64_va_hole_top =    0xfff8000000000000UL;
1698                        sparc64_va_hole_bottom = 0x0008000000000000UL;
1699                        max_phys_bits = 47;
1700                        break;
1701                case SUN4V_CHIP_SPARC_M7:
1702                default:
1703                        /* M7 and later support 52-bit virtual addresses.  */
1704                        sparc64_va_hole_top =    0xfff8000000000000UL;
1705                        sparc64_va_hole_bottom = 0x0008000000000000UL;
1706                        max_phys_bits = 49;
1707                        break;
1708                }
1709        }
1710
1711        if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1712                prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1713                            max_phys_bits);
1714                prom_halt();
1715        }
1716
1717        PAGE_OFFSET = sparc64_va_hole_top;
1718        VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1719                       (sparc64_va_hole_bottom >> 2));
1720
1721        pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1722                PAGE_OFFSET, max_phys_bits);
1723        pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1724                VMALLOC_START, VMALLOC_END);
1725        pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1726                VMEMMAP_BASE, VMEMMAP_BASE << 1);
1727}
1728
1729static void __init tsb_phys_patch(void)
1730{
1731        struct tsb_ldquad_phys_patch_entry *pquad;
1732        struct tsb_phys_patch_entry *p;
1733
1734        pquad = &__tsb_ldquad_phys_patch;
1735        while (pquad < &__tsb_ldquad_phys_patch_end) {
1736                unsigned long addr = pquad->addr;
1737
1738                if (tlb_type == hypervisor)
1739                        *(unsigned int *) addr = pquad->sun4v_insn;
1740                else
1741                        *(unsigned int *) addr = pquad->sun4u_insn;
1742                wmb();
1743                __asm__ __volatile__("flush     %0"
1744                                     : /* no outputs */
1745                                     : "r" (addr));
1746
1747                pquad++;
1748        }
1749
1750        p = &__tsb_phys_patch;
1751        while (p < &__tsb_phys_patch_end) {
1752                unsigned long addr = p->addr;
1753
1754                *(unsigned int *) addr = p->insn;
1755                wmb();
1756                __asm__ __volatile__("flush     %0"
1757                                     : /* no outputs */
1758                                     : "r" (addr));
1759
1760                p++;
1761        }
1762}
1763
1764/* Don't mark as init, we give this to the Hypervisor.  */
1765#ifndef CONFIG_DEBUG_PAGEALLOC
1766#define NUM_KTSB_DESCR  2
1767#else
1768#define NUM_KTSB_DESCR  1
1769#endif
1770static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1771
1772/* The swapper TSBs are loaded with a base sequence of:
1773 *
1774 *      sethi   %uhi(SYMBOL), REG1
1775 *      sethi   %hi(SYMBOL), REG2
1776 *      or      REG1, %ulo(SYMBOL), REG1
1777 *      or      REG2, %lo(SYMBOL), REG2
1778 *      sllx    REG1, 32, REG1
1779 *      or      REG1, REG2, REG1
1780 *
1781 * When we use physical addressing for the TSB accesses, we patch the
1782 * first four instructions in the above sequence.
1783 */
1784
1785static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1786{
1787        unsigned long high_bits, low_bits;
1788
1789        high_bits = (pa >> 32) & 0xffffffff;
1790        low_bits = (pa >> 0) & 0xffffffff;
1791
1792        while (start < end) {
1793                unsigned int *ia = (unsigned int *)(unsigned long)*start;
1794
1795                ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1796                __asm__ __volatile__("flush     %0" : : "r" (ia));
1797
1798                ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1799                __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
1800
1801                ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1802                __asm__ __volatile__("flush     %0" : : "r" (ia + 2));
1803
1804                ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1805                __asm__ __volatile__("flush     %0" : : "r" (ia + 3));
1806
1807                start++;
1808        }
1809}
1810
1811static void ktsb_phys_patch(void)
1812{
1813        extern unsigned int __swapper_tsb_phys_patch;
1814        extern unsigned int __swapper_tsb_phys_patch_end;
1815        unsigned long ktsb_pa;
1816
1817        ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1818        patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1819                            &__swapper_tsb_phys_patch_end, ktsb_pa);
1820#ifndef CONFIG_DEBUG_PAGEALLOC
1821        {
1822        extern unsigned int __swapper_4m_tsb_phys_patch;
1823        extern unsigned int __swapper_4m_tsb_phys_patch_end;
1824        ktsb_pa = (kern_base +
1825                   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1826        patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1827                            &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1828        }
1829#endif
1830}
1831
1832static void __init sun4v_ktsb_init(void)
1833{
1834        unsigned long ktsb_pa;
1835
1836        /* First KTSB for PAGE_SIZE mappings.  */
1837        ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1838
1839        switch (PAGE_SIZE) {
1840        case 8 * 1024:
1841        default:
1842                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1843                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1844                break;
1845
1846        case 64 * 1024:
1847                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1848                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1849                break;
1850
1851        case 512 * 1024:
1852                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1853                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1854                break;
1855
1856        case 4 * 1024 * 1024:
1857                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1858                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1859                break;
1860        }
1861
1862        ktsb_descr[0].assoc = 1;
1863        ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1864        ktsb_descr[0].ctx_idx = 0;
1865        ktsb_descr[0].tsb_base = ktsb_pa;
1866        ktsb_descr[0].resv = 0;
1867
1868#ifndef CONFIG_DEBUG_PAGEALLOC
1869        /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1870        ktsb_pa = (kern_base +
1871                   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1872
1873        ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1874        ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1875                                    HV_PGSZ_MASK_256MB |
1876                                    HV_PGSZ_MASK_2GB |
1877                                    HV_PGSZ_MASK_16GB) &
1878                                   cpu_pgsz_mask);
1879        ktsb_descr[1].assoc = 1;
1880        ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1881        ktsb_descr[1].ctx_idx = 0;
1882        ktsb_descr[1].tsb_base = ktsb_pa;
1883        ktsb_descr[1].resv = 0;
1884#endif
1885}
1886
1887void sun4v_ktsb_register(void)
1888{
1889        unsigned long pa, ret;
1890
1891        pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1892
1893        ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1894        if (ret != 0) {
1895                prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1896                            "errors with %lx\n", pa, ret);
1897                prom_halt();
1898        }
1899}
1900
1901static void __init sun4u_linear_pte_xor_finalize(void)
1902{
1903#ifndef CONFIG_DEBUG_PAGEALLOC
1904        /* This is where we would add Panther support for
1905         * 32MB and 256MB pages.
1906         */
1907#endif
1908}
1909
1910static void __init sun4v_linear_pte_xor_finalize(void)
1911{
1912#ifndef CONFIG_DEBUG_PAGEALLOC
1913        if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1914                kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1915                        PAGE_OFFSET;
1916                kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1917                                           _PAGE_P_4V | _PAGE_W_4V);
1918        } else {
1919                kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1920        }
1921
1922        if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1923                kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1924                        PAGE_OFFSET;
1925                kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1926                                           _PAGE_P_4V | _PAGE_W_4V);
1927        } else {
1928                kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1929        }
1930
1931        if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1932                kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1933                        PAGE_OFFSET;
1934                kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1935                                           _PAGE_P_4V | _PAGE_W_4V);
1936        } else {
1937                kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1938        }
1939#endif
1940}
1941
1942/* paging_init() sets up the page tables */
1943
1944static unsigned long last_valid_pfn;
1945
1946static void sun4u_pgprot_init(void);
1947static void sun4v_pgprot_init(void);
1948
1949static phys_addr_t __init available_memory(void)
1950{
1951        phys_addr_t available = 0ULL;
1952        phys_addr_t pa_start, pa_end;
1953        u64 i;
1954
1955        for_each_free_mem_range(i, NUMA_NO_NODE, &pa_start, &pa_end, NULL)
1956                available = available + (pa_end  - pa_start);
1957
1958        return available;
1959}
1960
1961/* We need to exclude reserved regions. This exclusion will include
1962 * vmlinux and initrd. To be more precise the initrd size could be used to
1963 * compute a new lower limit because it is freed later during initialization.
1964 */
1965static void __init reduce_memory(phys_addr_t limit_ram)
1966{
1967        phys_addr_t avail_ram = available_memory();
1968        phys_addr_t pa_start, pa_end;
1969        u64 i;
1970
1971        if (limit_ram >= avail_ram)
1972                return;
1973
1974        for_each_free_mem_range(i, NUMA_NO_NODE, &pa_start, &pa_end, NULL) {
1975                phys_addr_t region_size = pa_end - pa_start;
1976                phys_addr_t clip_start = pa_start;
1977
1978                avail_ram = avail_ram - region_size;
1979                /* Are we consuming too much? */
1980                if (avail_ram < limit_ram) {
1981                        phys_addr_t give_back = limit_ram - avail_ram;
1982
1983                        region_size = region_size - give_back;
1984                        clip_start = clip_start + give_back;
1985                }
1986
1987                memblock_remove(clip_start, region_size);
1988
1989                if (avail_ram <= limit_ram)
1990                        break;
1991                i = 0UL;
1992        }
1993}
1994
1995void __init paging_init(void)
1996{
1997        unsigned long end_pfn, shift, phys_base;
1998        unsigned long real_end, i;
1999        int node;
2000
2001        setup_page_offset();
2002
2003        /* These build time checkes make sure that the dcache_dirty_cpu()
2004         * page->flags usage will work.
2005         *
2006         * When a page gets marked as dcache-dirty, we store the
2007         * cpu number starting at bit 32 in the page->flags.  Also,
2008         * functions like clear_dcache_dirty_cpu use the cpu mask
2009         * in 13-bit signed-immediate instruction fields.
2010         */
2011
2012        /*
2013         * Page flags must not reach into upper 32 bits that are used
2014         * for the cpu number
2015         */
2016        BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2017
2018        /*
2019         * The bit fields placed in the high range must not reach below
2020         * the 32 bit boundary. Otherwise we cannot place the cpu field
2021         * at the 32 bit boundary.
2022         */
2023        BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2024                ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2025
2026        BUILD_BUG_ON(NR_CPUS > 4096);
2027
2028        kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2029        kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2030
2031        /* Invalidate both kernel TSBs.  */
2032        memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2033#ifndef CONFIG_DEBUG_PAGEALLOC
2034        memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2035#endif
2036
2037        if (tlb_type == hypervisor)
2038                sun4v_pgprot_init();
2039        else
2040                sun4u_pgprot_init();
2041
2042        if (tlb_type == cheetah_plus ||
2043            tlb_type == hypervisor) {
2044                tsb_phys_patch();
2045                ktsb_phys_patch();
2046        }
2047
2048        if (tlb_type == hypervisor)
2049                sun4v_patch_tlb_handlers();
2050
2051        /* Find available physical memory...
2052         *
2053         * Read it twice in order to work around a bug in openfirmware.
2054         * The call to grab this table itself can cause openfirmware to
2055         * allocate memory, which in turn can take away some space from
2056         * the list of available memory.  Reading it twice makes sure
2057         * we really do get the final value.
2058         */
2059        read_obp_translations();
2060        read_obp_memory("reg", &pall[0], &pall_ents);
2061        read_obp_memory("available", &pavail[0], &pavail_ents);
2062        read_obp_memory("available", &pavail[0], &pavail_ents);
2063
2064        phys_base = 0xffffffffffffffffUL;
2065        for (i = 0; i < pavail_ents; i++) {
2066                phys_base = min(phys_base, pavail[i].phys_addr);
2067                memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2068        }
2069
2070        memblock_reserve(kern_base, kern_size);
2071
2072        find_ramdisk(phys_base);
2073
2074        if (cmdline_memory_size)
2075                reduce_memory(cmdline_memory_size);
2076
2077        memblock_allow_resize();
2078        memblock_dump_all();
2079
2080        set_bit(0, mmu_context_bmap);
2081
2082        shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2083
2084        real_end = (unsigned long)_end;
2085        num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2086        printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2087               num_kernel_image_mappings);
2088
2089        /* Set kernel pgd to upper alias so physical page computations
2090         * work.
2091         */
2092        init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2093        
2094        memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2095
2096        inherit_prom_mappings();
2097        
2098        /* Ok, we can use our TLB miss and window trap handlers safely.  */
2099        setup_tba();
2100
2101        __flush_tlb_all();
2102
2103        prom_build_devicetree();
2104        of_populate_present_mask();
2105#ifndef CONFIG_SMP
2106        of_fill_in_cpu_data();
2107#endif
2108
2109        if (tlb_type == hypervisor) {
2110                sun4v_mdesc_init();
2111                mdesc_populate_present_mask(cpu_all_mask);
2112#ifndef CONFIG_SMP
2113                mdesc_fill_in_cpu_data(cpu_all_mask);
2114#endif
2115                mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2116
2117                sun4v_linear_pte_xor_finalize();
2118
2119                sun4v_ktsb_init();
2120                sun4v_ktsb_register();
2121        } else {
2122                unsigned long impl, ver;
2123
2124                cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2125                                 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2126
2127                __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2128                impl = ((ver >> 32) & 0xffff);
2129                if (impl == PANTHER_IMPL)
2130                        cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2131                                          HV_PGSZ_MASK_256MB);
2132
2133                sun4u_linear_pte_xor_finalize();
2134        }
2135
2136        /* Flush the TLBs and the 4M TSB so that the updated linear
2137         * pte XOR settings are realized for all mappings.
2138         */
2139        __flush_tlb_all();
2140#ifndef CONFIG_DEBUG_PAGEALLOC
2141        memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2142#endif
2143        __flush_tlb_all();
2144
2145        /* Setup bootmem... */
2146        last_valid_pfn = end_pfn = bootmem_init(phys_base);
2147
2148        /* Once the OF device tree and MDESC have been setup, we know
2149         * the list of possible cpus.  Therefore we can allocate the
2150         * IRQ stacks.
2151         */
2152        for_each_possible_cpu(i) {
2153                node = cpu_to_node(i);
2154
2155                softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2156                                                        THREAD_SIZE,
2157                                                        THREAD_SIZE, 0);
2158                hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2159                                                        THREAD_SIZE,
2160                                                        THREAD_SIZE, 0);
2161        }
2162
2163        kernel_physical_mapping_init();
2164
2165        {
2166                unsigned long max_zone_pfns[MAX_NR_ZONES];
2167
2168                memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2169
2170                max_zone_pfns[ZONE_NORMAL] = end_pfn;
2171
2172                free_area_init_nodes(max_zone_pfns);
2173        }
2174
2175        printk("Booting Linux...\n");
2176}
2177
2178int page_in_phys_avail(unsigned long paddr)
2179{
2180        int i;
2181
2182        paddr &= PAGE_MASK;
2183
2184        for (i = 0; i < pavail_ents; i++) {
2185                unsigned long start, end;
2186
2187                start = pavail[i].phys_addr;
2188                end = start + pavail[i].reg_size;
2189
2190                if (paddr >= start && paddr < end)
2191                        return 1;
2192        }
2193        if (paddr >= kern_base && paddr < (kern_base + kern_size))
2194                return 1;
2195#ifdef CONFIG_BLK_DEV_INITRD
2196        if (paddr >= __pa(initrd_start) &&
2197            paddr < __pa(PAGE_ALIGN(initrd_end)))
2198                return 1;
2199#endif
2200
2201        return 0;
2202}
2203
2204static void __init register_page_bootmem_info(void)
2205{
2206#ifdef CONFIG_NEED_MULTIPLE_NODES
2207        int i;
2208
2209        for_each_online_node(i)
2210                if (NODE_DATA(i)->node_spanned_pages)
2211                        register_page_bootmem_info_node(NODE_DATA(i));
2212#endif
2213}
2214void __init mem_init(void)
2215{
2216        high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2217
2218        register_page_bootmem_info();
2219        free_all_bootmem();
2220
2221        /*
2222         * Set up the zero page, mark it reserved, so that page count
2223         * is not manipulated when freeing the page from user ptes.
2224         */
2225        mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2226        if (mem_map_zero == NULL) {
2227                prom_printf("paging_init: Cannot alloc zero page.\n");
2228                prom_halt();
2229        }
2230        mark_page_reserved(mem_map_zero);
2231
2232        mem_init_print_info(NULL);
2233
2234        if (tlb_type == cheetah || tlb_type == cheetah_plus)
2235                cheetah_ecache_flush_init();
2236}
2237
2238void free_initmem(void)
2239{
2240        unsigned long addr, initend;
2241        int do_free = 1;
2242
2243        /* If the physical memory maps were trimmed by kernel command
2244         * line options, don't even try freeing this initmem stuff up.
2245         * The kernel image could have been in the trimmed out region
2246         * and if so the freeing below will free invalid page structs.
2247         */
2248        if (cmdline_memory_size)
2249                do_free = 0;
2250
2251        /*
2252         * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2253         */
2254        addr = PAGE_ALIGN((unsigned long)(__init_begin));
2255        initend = (unsigned long)(__init_end) & PAGE_MASK;
2256        for (; addr < initend; addr += PAGE_SIZE) {
2257                unsigned long page;
2258
2259                page = (addr +
2260                        ((unsigned long) __va(kern_base)) -
2261                        ((unsigned long) KERNBASE));
2262                memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2263
2264                if (do_free)
2265                        free_reserved_page(virt_to_page(page));
2266        }
2267}
2268
2269#ifdef CONFIG_BLK_DEV_INITRD
2270void free_initrd_mem(unsigned long start, unsigned long end)
2271{
2272        free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2273                           "initrd");
2274}
2275#endif
2276
2277#define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2278#define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2279#define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2280#define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2281#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2282#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2283
2284pgprot_t PAGE_KERNEL __read_mostly;
2285EXPORT_SYMBOL(PAGE_KERNEL);
2286
2287pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2288pgprot_t PAGE_COPY __read_mostly;
2289
2290pgprot_t PAGE_SHARED __read_mostly;
2291EXPORT_SYMBOL(PAGE_SHARED);
2292
2293unsigned long pg_iobits __read_mostly;
2294
2295unsigned long _PAGE_IE __read_mostly;
2296EXPORT_SYMBOL(_PAGE_IE);
2297
2298unsigned long _PAGE_E __read_mostly;
2299EXPORT_SYMBOL(_PAGE_E);
2300
2301unsigned long _PAGE_CACHE __read_mostly;
2302EXPORT_SYMBOL(_PAGE_CACHE);
2303
2304#ifdef CONFIG_SPARSEMEM_VMEMMAP
2305int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2306                               int node)
2307{
2308        unsigned long pte_base;
2309
2310        pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2311                    _PAGE_CP_4U | _PAGE_CV_4U |
2312                    _PAGE_P_4U | _PAGE_W_4U);
2313        if (tlb_type == hypervisor)
2314                pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2315                            _PAGE_CP_4V | _PAGE_CV_4V |
2316                            _PAGE_P_4V | _PAGE_W_4V);
2317
2318        pte_base |= _PAGE_PMD_HUGE;
2319
2320        vstart = vstart & PMD_MASK;
2321        vend = ALIGN(vend, PMD_SIZE);
2322        for (; vstart < vend; vstart += PMD_SIZE) {
2323                pgd_t *pgd = pgd_offset_k(vstart);
2324                unsigned long pte;
2325                pud_t *pud;
2326                pmd_t *pmd;
2327
2328                if (pgd_none(*pgd)) {
2329                        pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2330
2331                        if (!new)
2332                                return -ENOMEM;
2333                        pgd_populate(&init_mm, pgd, new);
2334                }
2335
2336                pud = pud_offset(pgd, vstart);
2337                if (pud_none(*pud)) {
2338                        pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2339
2340                        if (!new)
2341                                return -ENOMEM;
2342                        pud_populate(&init_mm, pud, new);
2343                }
2344
2345                pmd = pmd_offset(pud, vstart);
2346
2347                pte = pmd_val(*pmd);
2348                if (!(pte & _PAGE_VALID)) {
2349                        void *block = vmemmap_alloc_block(PMD_SIZE, node);
2350
2351                        if (!block)
2352                                return -ENOMEM;
2353
2354                        pmd_val(*pmd) = pte_base | __pa(block);
2355                }
2356        }
2357
2358        return 0;
2359}
2360
2361void vmemmap_free(unsigned long start, unsigned long end)
2362{
2363}
2364#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2365
2366static void prot_init_common(unsigned long page_none,
2367                             unsigned long page_shared,
2368                             unsigned long page_copy,
2369                             unsigned long page_readonly,
2370                             unsigned long page_exec_bit)
2371{
2372        PAGE_COPY = __pgprot(page_copy);
2373        PAGE_SHARED = __pgprot(page_shared);
2374
2375        protection_map[0x0] = __pgprot(page_none);
2376        protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2377        protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2378        protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2379        protection_map[0x4] = __pgprot(page_readonly);
2380        protection_map[0x5] = __pgprot(page_readonly);
2381        protection_map[0x6] = __pgprot(page_copy);
2382        protection_map[0x7] = __pgprot(page_copy);
2383        protection_map[0x8] = __pgprot(page_none);
2384        protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2385        protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2386        protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2387        protection_map[0xc] = __pgprot(page_readonly);
2388        protection_map[0xd] = __pgprot(page_readonly);
2389        protection_map[0xe] = __pgprot(page_shared);
2390        protection_map[0xf] = __pgprot(page_shared);
2391}
2392
2393static void __init sun4u_pgprot_init(void)
2394{
2395        unsigned long page_none, page_shared, page_copy, page_readonly;
2396        unsigned long page_exec_bit;
2397        int i;
2398
2399        PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2400                                _PAGE_CACHE_4U | _PAGE_P_4U |
2401                                __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2402                                _PAGE_EXEC_4U);
2403        PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2404                                       _PAGE_CACHE_4U | _PAGE_P_4U |
2405                                       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2406                                       _PAGE_EXEC_4U | _PAGE_L_4U);
2407
2408        _PAGE_IE = _PAGE_IE_4U;
2409        _PAGE_E = _PAGE_E_4U;
2410        _PAGE_CACHE = _PAGE_CACHE_4U;
2411
2412        pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2413                     __ACCESS_BITS_4U | _PAGE_E_4U);
2414
2415#ifdef CONFIG_DEBUG_PAGEALLOC
2416        kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2417#else
2418        kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2419                PAGE_OFFSET;
2420#endif
2421        kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2422                                   _PAGE_P_4U | _PAGE_W_4U);
2423
2424        for (i = 1; i < 4; i++)
2425                kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2426
2427        _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2428                              _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2429                              _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2430
2431
2432        page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2433        page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2434                       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2435        page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2436                       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2437        page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2438                           __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2439
2440        page_exec_bit = _PAGE_EXEC_4U;
2441
2442        prot_init_common(page_none, page_shared, page_copy, page_readonly,
2443                         page_exec_bit);
2444}
2445
2446static void __init sun4v_pgprot_init(void)
2447{
2448        unsigned long page_none, page_shared, page_copy, page_readonly;
2449        unsigned long page_exec_bit;
2450        int i;
2451
2452        PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2453                                _PAGE_CACHE_4V | _PAGE_P_4V |
2454                                __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2455                                _PAGE_EXEC_4V);
2456        PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2457
2458        _PAGE_IE = _PAGE_IE_4V;
2459        _PAGE_E = _PAGE_E_4V;
2460        _PAGE_CACHE = _PAGE_CACHE_4V;
2461
2462#ifdef CONFIG_DEBUG_PAGEALLOC
2463        kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2464#else
2465        kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2466                PAGE_OFFSET;
2467#endif
2468        kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2469                                   _PAGE_P_4V | _PAGE_W_4V);
2470
2471        for (i = 1; i < 4; i++)
2472                kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2473
2474        pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2475                     __ACCESS_BITS_4V | _PAGE_E_4V);
2476
2477        _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2478                             _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2479                             _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2480                             _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2481
2482        page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2483        page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2484                       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2485        page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2486                       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2487        page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2488                         __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2489
2490        page_exec_bit = _PAGE_EXEC_4V;
2491
2492        prot_init_common(page_none, page_shared, page_copy, page_readonly,
2493                         page_exec_bit);
2494}
2495
2496unsigned long pte_sz_bits(unsigned long sz)
2497{
2498        if (tlb_type == hypervisor) {
2499                switch (sz) {
2500                case 8 * 1024:
2501                default:
2502                        return _PAGE_SZ8K_4V;
2503                case 64 * 1024:
2504                        return _PAGE_SZ64K_4V;
2505                case 512 * 1024:
2506                        return _PAGE_SZ512K_4V;
2507                case 4 * 1024 * 1024:
2508                        return _PAGE_SZ4MB_4V;
2509                }
2510        } else {
2511                switch (sz) {
2512                case 8 * 1024:
2513                default:
2514                        return _PAGE_SZ8K_4U;
2515                case 64 * 1024:
2516                        return _PAGE_SZ64K_4U;
2517                case 512 * 1024:
2518                        return _PAGE_SZ512K_4U;
2519                case 4 * 1024 * 1024:
2520                        return _PAGE_SZ4MB_4U;
2521                }
2522        }
2523}
2524
2525pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2526{
2527        pte_t pte;
2528
2529        pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2530        pte_val(pte) |= (((unsigned long)space) << 32);
2531        pte_val(pte) |= pte_sz_bits(page_size);
2532
2533        return pte;
2534}
2535
2536static unsigned long kern_large_tte(unsigned long paddr)
2537{
2538        unsigned long val;
2539
2540        val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2541               _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2542               _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2543        if (tlb_type == hypervisor)
2544                val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2545                       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2546                       _PAGE_EXEC_4V | _PAGE_W_4V);
2547
2548        return val | paddr;
2549}
2550
2551/* If not locked, zap it. */
2552void __flush_tlb_all(void)
2553{
2554        unsigned long pstate;
2555        int i;
2556
2557        __asm__ __volatile__("flushw\n\t"
2558                             "rdpr      %%pstate, %0\n\t"
2559                             "wrpr      %0, %1, %%pstate"
2560                             : "=r" (pstate)
2561                             : "i" (PSTATE_IE));
2562        if (tlb_type == hypervisor) {
2563                sun4v_mmu_demap_all();
2564        } else if (tlb_type == spitfire) {
2565                for (i = 0; i < 64; i++) {
2566                        /* Spitfire Errata #32 workaround */
2567                        /* NOTE: Always runs on spitfire, so no
2568                         *       cheetah+ page size encodings.
2569                         */
2570                        __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2571                                             "flush     %%g6"
2572                                             : /* No outputs */
2573                                             : "r" (0),
2574                                             "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2575
2576                        if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2577                                __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2578                                                     "membar #Sync"
2579                                                     : /* no outputs */
2580                                                     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2581                                spitfire_put_dtlb_data(i, 0x0UL);
2582                        }
2583
2584                        /* Spitfire Errata #32 workaround */
2585                        /* NOTE: Always runs on spitfire, so no
2586                         *       cheetah+ page size encodings.
2587                         */
2588                        __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2589                                             "flush     %%g6"
2590                                             : /* No outputs */
2591                                             : "r" (0),
2592                                             "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2593
2594                        if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2595                                __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2596                                                     "membar #Sync"
2597                                                     : /* no outputs */
2598                                                     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2599                                spitfire_put_itlb_data(i, 0x0UL);
2600                        }
2601                }
2602        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2603                cheetah_flush_dtlb_all();
2604                cheetah_flush_itlb_all();
2605        }
2606        __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2607                             : : "r" (pstate));
2608}
2609
2610pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2611                            unsigned long address)
2612{
2613        struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2614                                       __GFP_REPEAT | __GFP_ZERO);
2615        pte_t *pte = NULL;
2616
2617        if (page)
2618                pte = (pte_t *) page_address(page);
2619
2620        return pte;
2621}
2622
2623pgtable_t pte_alloc_one(struct mm_struct *mm,
2624                        unsigned long address)
2625{
2626        struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2627                                       __GFP_REPEAT | __GFP_ZERO);
2628        if (!page)
2629                return NULL;
2630        if (!pgtable_page_ctor(page)) {
2631                free_hot_cold_page(page, 0);
2632                return NULL;
2633        }
2634        return (pte_t *) page_address(page);
2635}
2636
2637void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2638{
2639        free_page((unsigned long)pte);
2640}
2641
2642static void __pte_free(pgtable_t pte)
2643{
2644        struct page *page = virt_to_page(pte);
2645
2646        pgtable_page_dtor(page);
2647        __free_page(page);
2648}
2649
2650void pte_free(struct mm_struct *mm, pgtable_t pte)
2651{
2652        __pte_free(pte);
2653}
2654
2655void pgtable_free(void *table, bool is_page)
2656{
2657        if (is_page)
2658                __pte_free(table);
2659        else
2660                kmem_cache_free(pgtable_cache, table);
2661}
2662
2663#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2664void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2665                          pmd_t *pmd)
2666{
2667        unsigned long pte, flags;
2668        struct mm_struct *mm;
2669        pmd_t entry = *pmd;
2670
2671        if (!pmd_large(entry) || !pmd_young(entry))
2672                return;
2673
2674        pte = pmd_val(entry);
2675
2676        /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2677        if (!(pte & _PAGE_VALID))
2678                return;
2679
2680        /* We are fabricating 8MB pages using 4MB real hw pages.  */
2681        pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2682
2683        mm = vma->vm_mm;
2684
2685        spin_lock_irqsave(&mm->context.lock, flags);
2686
2687        if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2688                __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2689                                        addr, pte);
2690
2691        spin_unlock_irqrestore(&mm->context.lock, flags);
2692}
2693#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2694
2695#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2696static void context_reload(void *__data)
2697{
2698        struct mm_struct *mm = __data;
2699
2700        if (mm == current->mm)
2701                load_secondary_context(mm);
2702}
2703
2704void hugetlb_setup(struct pt_regs *regs)
2705{
2706        struct mm_struct *mm = current->mm;
2707        struct tsb_config *tp;
2708
2709        if (in_atomic() || !mm) {
2710                const struct exception_table_entry *entry;
2711
2712                entry = search_exception_tables(regs->tpc);
2713                if (entry) {
2714                        regs->tpc = entry->fixup;
2715                        regs->tnpc = regs->tpc + 4;
2716                        return;
2717                }
2718                pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2719                die_if_kernel("HugeTSB in atomic", regs);
2720        }
2721
2722        tp = &mm->context.tsb_block[MM_TSB_HUGE];
2723        if (likely(tp->tsb == NULL))
2724                tsb_grow(mm, MM_TSB_HUGE, 0);
2725
2726        tsb_context_switch(mm);
2727        smp_tsb_sync(mm);
2728
2729        /* On UltraSPARC-III+ and later, configure the second half of
2730         * the Data-TLB for huge pages.
2731         */
2732        if (tlb_type == cheetah_plus) {
2733                unsigned long ctx;
2734
2735                spin_lock(&ctx_alloc_lock);
2736                ctx = mm->context.sparc64_ctx_val;
2737                ctx &= ~CTX_PGSZ_MASK;
2738                ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2739                ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2740
2741                if (ctx != mm->context.sparc64_ctx_val) {
2742                        /* When changing the page size fields, we
2743                         * must perform a context flush so that no
2744                         * stale entries match.  This flush must
2745                         * occur with the original context register
2746                         * settings.
2747                         */
2748                        do_flush_tlb_mm(mm);
2749
2750                        /* Reload the context register of all processors
2751                         * also executing in this address space.
2752                         */
2753                        mm->context.sparc64_ctx_val = ctx;
2754                        on_each_cpu(context_reload, mm, 0);
2755                }
2756                spin_unlock(&ctx_alloc_lock);
2757        }
2758}
2759#endif
2760
2761static struct resource code_resource = {
2762        .name   = "Kernel code",
2763        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
2764};
2765
2766static struct resource data_resource = {
2767        .name   = "Kernel data",
2768        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
2769};
2770
2771static struct resource bss_resource = {
2772        .name   = "Kernel bss",
2773        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
2774};
2775
2776static inline resource_size_t compute_kern_paddr(void *addr)
2777{
2778        return (resource_size_t) (addr - KERNBASE + kern_base);
2779}
2780
2781static void __init kernel_lds_init(void)
2782{
2783        code_resource.start = compute_kern_paddr(_text);
2784        code_resource.end   = compute_kern_paddr(_etext - 1);
2785        data_resource.start = compute_kern_paddr(_etext);
2786        data_resource.end   = compute_kern_paddr(_edata - 1);
2787        bss_resource.start  = compute_kern_paddr(__bss_start);
2788        bss_resource.end    = compute_kern_paddr(_end - 1);
2789}
2790
2791static int __init report_memory(void)
2792{
2793        int i;
2794        struct resource *res;
2795
2796        kernel_lds_init();
2797
2798        for (i = 0; i < pavail_ents; i++) {
2799                res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2800
2801                if (!res) {
2802                        pr_warn("Failed to allocate source.\n");
2803                        break;
2804                }
2805
2806                res->name = "System RAM";
2807                res->start = pavail[i].phys_addr;
2808                res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2809                res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
2810
2811                if (insert_resource(&iomem_resource, res) < 0) {
2812                        pr_warn("Resource insertion failed.\n");
2813                        break;
2814                }
2815
2816                insert_resource(res, &code_resource);
2817                insert_resource(res, &data_resource);
2818                insert_resource(res, &bss_resource);
2819        }
2820
2821        return 0;
2822}
2823arch_initcall(report_memory);
2824
2825#ifdef CONFIG_SMP
2826#define do_flush_tlb_kernel_range       smp_flush_tlb_kernel_range
2827#else
2828#define do_flush_tlb_kernel_range       __flush_tlb_kernel_range
2829#endif
2830
2831void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2832{
2833        if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2834                if (start < LOW_OBP_ADDRESS) {
2835                        flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2836                        do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2837                }
2838                if (end > HI_OBP_ADDRESS) {
2839                        flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2840                        do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
2841                }
2842        } else {
2843                flush_tsb_kernel_range(start, end);
2844                do_flush_tlb_kernel_range(start, end);
2845        }
2846}
2847