linux/arch/tile/mm/init.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 1995  Linus Torvalds
   3 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   4 *
   5 *   This program is free software; you can redistribute it and/or
   6 *   modify it under the terms of the GNU General Public License
   7 *   as published by the Free Software Foundation, version 2.
   8 *
   9 *   This program is distributed in the hope that it will be useful, but
  10 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  12 *   NON INFRINGEMENT.  See the GNU General Public License for
  13 *   more details.
  14 */
  15
  16#include <linux/module.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>
  20#include <linux/errno.h>
  21#include <linux/string.h>
  22#include <linux/types.h>
  23#include <linux/ptrace.h>
  24#include <linux/mman.h>
  25#include <linux/mm.h>
  26#include <linux/hugetlb.h>
  27#include <linux/swap.h>
  28#include <linux/smp.h>
  29#include <linux/init.h>
  30#include <linux/highmem.h>
  31#include <linux/pagemap.h>
  32#include <linux/poison.h>
  33#include <linux/bootmem.h>
  34#include <linux/slab.h>
  35#include <linux/proc_fs.h>
  36#include <linux/efi.h>
  37#include <linux/memory_hotplug.h>
  38#include <linux/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/processor.h>
  41#include <asm/pgtable.h>
  42#include <asm/pgalloc.h>
  43#include <asm/dma.h>
  44#include <asm/fixmap.h>
  45#include <asm/tlb.h>
  46#include <asm/tlbflush.h>
  47#include <asm/sections.h>
  48#include <asm/setup.h>
  49#include <asm/homecache.h>
  50#include <hv/hypervisor.h>
  51#include <arch/chip.h>
  52
  53#include "migrate.h"
  54
  55#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
  56
  57#ifndef __tilegx__
  58unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
  59EXPORT_SYMBOL(VMALLOC_RESERVE);
  60#endif
  61
  62/* Create an L2 page table */
  63static pte_t * __init alloc_pte(void)
  64{
  65        return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
  66}
  67
  68/*
  69 * L2 page tables per controller.  We allocate these all at once from
  70 * the bootmem allocator and store them here.  This saves on kernel L2
  71 * page table memory, compared to allocating a full 64K page per L2
  72 * page table, and also means that in cases where we use huge pages,
  73 * we are guaranteed to later be able to shatter those huge pages and
  74 * switch to using these page tables instead, without requiring
  75 * further allocation.  Each l2_ptes[] entry points to the first page
  76 * table for the first hugepage-size piece of memory on the
  77 * controller; other page tables are just indexed directly, i.e. the
  78 * L2 page tables are contiguous in memory for each controller.
  79 */
  80static pte_t *l2_ptes[MAX_NUMNODES];
  81static int num_l2_ptes[MAX_NUMNODES];
  82
  83static void init_prealloc_ptes(int node, int pages)
  84{
  85        BUG_ON(pages & (PTRS_PER_PTE - 1));
  86        if (pages) {
  87                num_l2_ptes[node] = pages;
  88                l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
  89                                                HV_PAGE_TABLE_ALIGN, 0);
  90        }
  91}
  92
  93pte_t *get_prealloc_pte(unsigned long pfn)
  94{
  95        int node = pfn_to_nid(pfn);
  96        pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
  97        BUG_ON(node >= MAX_NUMNODES);
  98        BUG_ON(pfn >= num_l2_ptes[node]);
  99        return &l2_ptes[node][pfn];
 100}
 101
 102/*
 103 * What caching do we expect pages from the heap to have when
 104 * they are allocated during bootup?  (Once we've installed the
 105 * "real" swapper_pg_dir.)
 106 */
 107static int initial_heap_home(void)
 108{
 109        if (hash_default)
 110                return PAGE_HOME_HASH;
 111        return smp_processor_id();
 112}
 113
 114/*
 115 * Place a pointer to an L2 page table in a middle page
 116 * directory entry.
 117 */
 118static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
 119{
 120        phys_addr_t pa = __pa(page_table);
 121        unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
 122        pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
 123        BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
 124        pteval = pte_set_home(pteval, initial_heap_home());
 125        *(pte_t *)pmd = pteval;
 126        if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
 127                BUG();
 128}
 129
 130#ifdef __tilegx__
 131
 132static inline pmd_t *alloc_pmd(void)
 133{
 134        return __alloc_bootmem(L1_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
 135}
 136
 137static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
 138{
 139        assign_pte((pmd_t *)pud, (pte_t *)pmd);
 140}
 141
 142#endif /* __tilegx__ */
 143
 144/* Replace the given pmd with a full PTE table. */
 145void __init shatter_pmd(pmd_t *pmd)
 146{
 147        pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
 148        assign_pte(pmd, pte);
 149}
 150
 151#ifdef __tilegx__
 152static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
 153{
 154        pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
 155        if (pud_none(*pud))
 156                assign_pmd(pud, alloc_pmd());
 157        return pmd_offset(pud, va);
 158}
 159#else
 160static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
 161{
 162        return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
 163}
 164#endif
 165
 166/*
 167 * This function initializes a certain range of kernel virtual memory
 168 * with new bootmem page tables, everywhere page tables are missing in
 169 * the given range.
 170 */
 171
 172/*
 173 * NOTE: The pagetables are allocated contiguous on the physical space
 174 * so we can cache the place of the first one and move around without
 175 * checking the pgd every time.
 176 */
 177static void __init page_table_range_init(unsigned long start,
 178                                         unsigned long end, pgd_t *pgd)
 179{
 180        unsigned long vaddr;
 181        start = round_down(start, PMD_SIZE);
 182        end = round_up(end, PMD_SIZE);
 183        for (vaddr = start; vaddr < end; vaddr += PMD_SIZE) {
 184                pmd_t *pmd = get_pmd(pgd, vaddr);
 185                if (pmd_none(*pmd))
 186                        assign_pte(pmd, alloc_pte());
 187        }
 188}
 189
 190
 191static int __initdata ktext_hash = 1;  /* .text pages */
 192static int __initdata kdata_hash = 1;  /* .data and .bss pages */
 193int __write_once hash_default = 1;     /* kernel allocator pages */
 194EXPORT_SYMBOL(hash_default);
 195int __write_once kstack_hash = 1;      /* if no homecaching, use h4h */
 196
 197/*
 198 * CPUs to use to for striping the pages of kernel data.  If hash-for-home
 199 * is available, this is only relevant if kcache_hash sets up the
 200 * .data and .bss to be page-homed, and we don't want the default mode
 201 * of using the full set of kernel cpus for the striping.
 202 */
 203static __initdata struct cpumask kdata_mask;
 204static __initdata int kdata_arg_seen;
 205
 206int __write_once kdata_huge;       /* if no homecaching, small pages */
 207
 208
 209/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
 210static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
 211{
 212        prot = pte_set_home(prot, home);
 213        if (home == PAGE_HOME_IMMUTABLE) {
 214                if (ktext_hash)
 215                        prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
 216                else
 217                        prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
 218        }
 219        return prot;
 220}
 221
 222/*
 223 * For a given kernel data VA, how should it be cached?
 224 * We return the complete pgprot_t with caching bits set.
 225 */
 226static pgprot_t __init init_pgprot(ulong address)
 227{
 228        int cpu;
 229        unsigned long page;
 230        enum { CODE_DELTA = MEM_SV_START - PAGE_OFFSET };
 231
 232        /* For kdata=huge, everything is just hash-for-home. */
 233        if (kdata_huge)
 234                return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 235
 236        /* We map the aliased pages of permanent text inaccessible. */
 237        if (address < (ulong) _sinittext - CODE_DELTA)
 238                return PAGE_NONE;
 239
 240        /* We map read-only data non-coherent for performance. */
 241        if ((address >= (ulong) __start_rodata &&
 242             address < (ulong) __end_rodata) ||
 243            address == (ulong) empty_zero_page) {
 244                return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
 245        }
 246
 247#ifndef __tilegx__
 248        /* Force the atomic_locks[] array page to be hash-for-home. */
 249        if (address == (ulong) atomic_locks)
 250                return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 251#endif
 252
 253        /*
 254         * Everything else that isn't data or bss is heap, so mark it
 255         * with the initial heap home (hash-for-home, or this cpu).  This
 256         * includes any addresses after the loaded image and any address before
 257         * __init_end, since we already captured the case of text before
 258         * _sinittext, and __pa(einittext) is approximately __pa(__init_begin).
 259         *
 260         * All the LOWMEM pages that we mark this way will get their
 261         * struct page homecache properly marked later, in set_page_homes().
 262         * The HIGHMEM pages we leave with a default zero for their
 263         * homes, but with a zero free_time we don't have to actually
 264         * do a flush action the first time we use them, either.
 265         */
 266        if (address >= (ulong) _end || address < (ulong) __init_end)
 267                return construct_pgprot(PAGE_KERNEL, initial_heap_home());
 268
 269        /* Use hash-for-home if requested for data/bss. */
 270        if (kdata_hash)
 271                return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 272
 273        /*
 274         * Otherwise we just hand out consecutive cpus.  To avoid
 275         * requiring this function to hold state, we just walk forward from
 276         * __end_rodata by PAGE_SIZE, skipping the readonly and init data, to
 277         * reach the requested address, while walking cpu home around
 278         * kdata_mask. This is typically no more than a dozen or so iterations.
 279         */
 280        page = (((ulong)__end_rodata) + PAGE_SIZE - 1) & PAGE_MASK;
 281        BUG_ON(address < page || address >= (ulong)_end);
 282        cpu = cpumask_first(&kdata_mask);
 283        for (; page < address; page += PAGE_SIZE) {
 284                if (page >= (ulong)&init_thread_union &&
 285                    page < (ulong)&init_thread_union + THREAD_SIZE)
 286                        continue;
 287                if (page == (ulong)empty_zero_page)
 288                        continue;
 289#ifndef __tilegx__
 290                if (page == (ulong)atomic_locks)
 291                        continue;
 292#endif
 293                cpu = cpumask_next(cpu, &kdata_mask);
 294                if (cpu == NR_CPUS)
 295                        cpu = cpumask_first(&kdata_mask);
 296        }
 297        return construct_pgprot(PAGE_KERNEL, cpu);
 298}
 299
 300/*
 301 * This function sets up how we cache the kernel text.  If we have
 302 * hash-for-home support, normally that is used instead (see the
 303 * kcache_hash boot flag for more information).  But if we end up
 304 * using a page-based caching technique, this option sets up the
 305 * details of that.  In addition, the "ktext=nocache" option may
 306 * always be used to disable local caching of text pages, if desired.
 307 */
 308
 309static int __initdata ktext_arg_seen;
 310static int __initdata ktext_small;
 311static int __initdata ktext_local;
 312static int __initdata ktext_all;
 313static int __initdata ktext_nondataplane;
 314static int __initdata ktext_nocache;
 315static struct cpumask __initdata ktext_mask;
 316
 317static int __init setup_ktext(char *str)
 318{
 319        if (str == NULL)
 320                return -EINVAL;
 321
 322        /* If you have a leading "nocache", turn off ktext caching */
 323        if (strncmp(str, "nocache", 7) == 0) {
 324                ktext_nocache = 1;
 325                pr_info("ktext: disabling local caching of kernel text\n");
 326                str += 7;
 327                if (*str == ',')
 328                        ++str;
 329                if (*str == '\0')
 330                        return 0;
 331        }
 332
 333        ktext_arg_seen = 1;
 334
 335        /* Default setting: use a huge page */
 336        if (strcmp(str, "huge") == 0)
 337                pr_info("ktext: using one huge locally cached page\n");
 338
 339        /* Pay TLB cost but get no cache benefit: cache small pages locally */
 340        else if (strcmp(str, "local") == 0) {
 341                ktext_small = 1;
 342                ktext_local = 1;
 343                pr_info("ktext: using small pages with local caching\n");
 344        }
 345
 346        /* Neighborhood cache ktext pages on all cpus. */
 347        else if (strcmp(str, "all") == 0) {
 348                ktext_small = 1;
 349                ktext_all = 1;
 350                pr_info("ktext: using maximal caching neighborhood\n");
 351        }
 352
 353
 354        /* Neighborhood ktext pages on specified mask */
 355        else if (cpulist_parse(str, &ktext_mask) == 0) {
 356                if (cpumask_weight(&ktext_mask) > 1) {
 357                        ktext_small = 1;
 358                        pr_info("ktext: using caching neighborhood %*pbl with small pages\n",
 359                                cpumask_pr_args(&ktext_mask));
 360                } else {
 361                        pr_info("ktext: caching on cpu %*pbl with one huge page\n",
 362                                cpumask_pr_args(&ktext_mask));
 363                }
 364        }
 365
 366        else if (*str)
 367                return -EINVAL;
 368
 369        return 0;
 370}
 371
 372early_param("ktext", setup_ktext);
 373
 374
 375static inline pgprot_t ktext_set_nocache(pgprot_t prot)
 376{
 377        if (!ktext_nocache)
 378                prot = hv_pte_set_nc(prot);
 379        else
 380                prot = hv_pte_set_no_alloc_l2(prot);
 381        return prot;
 382}
 383
 384/* Temporary page table we use for staging. */
 385static pgd_t pgtables[PTRS_PER_PGD]
 386 __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
 387
 388/*
 389 * This maps the physical memory to kernel virtual address space, a total
 390 * of max_low_pfn pages, by creating page tables starting from address
 391 * PAGE_OFFSET.
 392 *
 393 * This routine transitions us from using a set of compiled-in large
 394 * pages to using some more precise caching, including removing access
 395 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
 396 * marking read-only data as locally cacheable, striping the remaining
 397 * .data and .bss across all the available tiles, and removing access
 398 * to pages above the top of RAM (thus ensuring a page fault from a bad
 399 * virtual address rather than a hypervisor shoot down for accessing
 400 * memory outside the assigned limits).
 401 */
 402static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
 403{
 404        unsigned long long irqmask;
 405        unsigned long address, pfn;
 406        pmd_t *pmd;
 407        pte_t *pte;
 408        int pte_ofs;
 409        const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
 410        struct cpumask kstripe_mask;
 411        int rc, i;
 412
 413        if (ktext_arg_seen && ktext_hash) {
 414                pr_warn("warning: \"ktext\" boot argument ignored if \"kcache_hash\" sets up text hash-for-home\n");
 415                ktext_small = 0;
 416        }
 417
 418        if (kdata_arg_seen && kdata_hash) {
 419                pr_warn("warning: \"kdata\" boot argument ignored if \"kcache_hash\" sets up data hash-for-home\n");
 420        }
 421
 422        if (kdata_huge && !hash_default) {
 423                pr_warn("warning: disabling \"kdata=huge\"; requires kcache_hash=all or =allbutstack\n");
 424                kdata_huge = 0;
 425        }
 426
 427        /*
 428         * Set up a mask for cpus to use for kernel striping.
 429         * This is normally all cpus, but minus dataplane cpus if any.
 430         * If the dataplane covers the whole chip, we stripe over
 431         * the whole chip too.
 432         */
 433        cpumask_copy(&kstripe_mask, cpu_possible_mask);
 434        if (!kdata_arg_seen)
 435                kdata_mask = kstripe_mask;
 436
 437        /* Allocate and fill in L2 page tables */
 438        for (i = 0; i < MAX_NUMNODES; ++i) {
 439#ifdef CONFIG_HIGHMEM
 440                unsigned long end_pfn = node_lowmem_end_pfn[i];
 441#else
 442                unsigned long end_pfn = node_end_pfn[i];
 443#endif
 444                unsigned long end_huge_pfn = 0;
 445
 446                /* Pre-shatter the last huge page to allow per-cpu pages. */
 447                if (kdata_huge)
 448                        end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
 449
 450                pfn = node_start_pfn[i];
 451
 452                /* Allocate enough memory to hold L2 page tables for node. */
 453                init_prealloc_ptes(i, end_pfn - pfn);
 454
 455                address = (unsigned long) pfn_to_kaddr(pfn);
 456                while (pfn < end_pfn) {
 457                        BUG_ON(address & (HPAGE_SIZE-1));
 458                        pmd = get_pmd(pgtables, address);
 459                        pte = get_prealloc_pte(pfn);
 460                        if (pfn < end_huge_pfn) {
 461                                pgprot_t prot = init_pgprot(address);
 462                                *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
 463                                for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
 464                                     pfn++, pte_ofs++, address += PAGE_SIZE)
 465                                        pte[pte_ofs] = pfn_pte(pfn, prot);
 466                        } else {
 467                                if (kdata_huge)
 468                                        printk(KERN_DEBUG "pre-shattered huge page at %#lx\n",
 469                                               address);
 470                                for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
 471                                     pfn++, pte_ofs++, address += PAGE_SIZE) {
 472                                        pgprot_t prot = init_pgprot(address);
 473                                        pte[pte_ofs] = pfn_pte(pfn, prot);
 474                                }
 475                                assign_pte(pmd, pte);
 476                        }
 477                }
 478        }
 479
 480        /*
 481         * Set or check ktext_map now that we have cpu_possible_mask
 482         * and kstripe_mask to work with.
 483         */
 484        if (ktext_all)
 485                cpumask_copy(&ktext_mask, cpu_possible_mask);
 486        else if (ktext_nondataplane)
 487                ktext_mask = kstripe_mask;
 488        else if (!cpumask_empty(&ktext_mask)) {
 489                /* Sanity-check any mask that was requested */
 490                struct cpumask bad;
 491                cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
 492                cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
 493                if (!cpumask_empty(&bad))
 494                        pr_info("ktext: not using unavailable cpus %*pbl\n",
 495                                cpumask_pr_args(&bad));
 496                if (cpumask_empty(&ktext_mask)) {
 497                        pr_warn("ktext: no valid cpus; caching on %d\n",
 498                                smp_processor_id());
 499                        cpumask_copy(&ktext_mask,
 500                                     cpumask_of(smp_processor_id()));
 501                }
 502        }
 503
 504        address = MEM_SV_START;
 505        pmd = get_pmd(pgtables, address);
 506        pfn = 0;  /* code starts at PA 0 */
 507        if (ktext_small) {
 508                /* Allocate an L2 PTE for the kernel text */
 509                int cpu = 0;
 510                pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
 511                                                 PAGE_HOME_IMMUTABLE);
 512
 513                if (ktext_local) {
 514                        if (ktext_nocache)
 515                                prot = hv_pte_set_mode(prot,
 516                                                       HV_PTE_MODE_UNCACHED);
 517                        else
 518                                prot = hv_pte_set_mode(prot,
 519                                                       HV_PTE_MODE_CACHE_NO_L3);
 520                } else {
 521                        prot = hv_pte_set_mode(prot,
 522                                               HV_PTE_MODE_CACHE_TILE_L3);
 523                        cpu = cpumask_first(&ktext_mask);
 524
 525                        prot = ktext_set_nocache(prot);
 526                }
 527
 528                BUG_ON(address != (unsigned long)_text);
 529                pte = NULL;
 530                for (; address < (unsigned long)_einittext;
 531                     pfn++, address += PAGE_SIZE) {
 532                        pte_ofs = pte_index(address);
 533                        if (pte_ofs == 0) {
 534                                if (pte)
 535                                        assign_pte(pmd++, pte);
 536                                pte = alloc_pte();
 537                        }
 538                        if (!ktext_local) {
 539                                prot = set_remote_cache_cpu(prot, cpu);
 540                                cpu = cpumask_next(cpu, &ktext_mask);
 541                                if (cpu == NR_CPUS)
 542                                        cpu = cpumask_first(&ktext_mask);
 543                        }
 544                        pte[pte_ofs] = pfn_pte(pfn, prot);
 545                }
 546                if (pte)
 547                        assign_pte(pmd, pte);
 548        } else {
 549                pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
 550                pteval = pte_mkhuge(pteval);
 551                if (ktext_hash) {
 552                        pteval = hv_pte_set_mode(pteval,
 553                                                 HV_PTE_MODE_CACHE_HASH_L3);
 554                        pteval = ktext_set_nocache(pteval);
 555                } else
 556                if (cpumask_weight(&ktext_mask) == 1) {
 557                        pteval = set_remote_cache_cpu(pteval,
 558                                              cpumask_first(&ktext_mask));
 559                        pteval = hv_pte_set_mode(pteval,
 560                                                 HV_PTE_MODE_CACHE_TILE_L3);
 561                        pteval = ktext_set_nocache(pteval);
 562                } else if (ktext_nocache)
 563                        pteval = hv_pte_set_mode(pteval,
 564                                                 HV_PTE_MODE_UNCACHED);
 565                else
 566                        pteval = hv_pte_set_mode(pteval,
 567                                                 HV_PTE_MODE_CACHE_NO_L3);
 568                for (; address < (unsigned long)_einittext;
 569                     pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE)
 570                        *(pte_t *)(pmd++) = pfn_pte(pfn, pteval);
 571        }
 572
 573        /* Set swapper_pgprot here so it is flushed to memory right away. */
 574        swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
 575
 576        /*
 577         * Since we may be changing the caching of the stack and page
 578         * table itself, we invoke an assembly helper to do the
 579         * following steps:
 580         *
 581         *  - flush the cache so we start with an empty slate
 582         *  - install pgtables[] as the real page table
 583         *  - flush the TLB so the new page table takes effect
 584         */
 585        irqmask = interrupt_mask_save_mask();
 586        interrupt_mask_set_mask(-1ULL);
 587        rc = flush_and_install_context(__pa(pgtables),
 588                                       init_pgprot((unsigned long)pgtables),
 589                                       __this_cpu_read(current_asid),
 590                                       cpumask_bits(my_cpu_mask));
 591        interrupt_mask_restore_mask(irqmask);
 592        BUG_ON(rc != 0);
 593
 594        /* Copy the page table back to the normal swapper_pg_dir. */
 595        memcpy(pgd_base, pgtables, sizeof(pgtables));
 596        __install_page_table(pgd_base, __this_cpu_read(current_asid),
 597                             swapper_pgprot);
 598
 599        /*
 600         * We just read swapper_pgprot and thus brought it into the cache,
 601         * with its new home & caching mode.  When we start the other CPUs,
 602         * they're going to reference swapper_pgprot via their initial fake
 603         * VA-is-PA mappings, which cache everything locally.  At that
 604         * time, if it's in our cache with a conflicting home, the
 605         * simulator's coherence checker will complain.  So, flush it out
 606         * of our cache; we're not going to ever use it again anyway.
 607         */
 608        __insn_finv(&swapper_pgprot);
 609}
 610
 611/*
 612 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 613 * is valid. The argument is a physical page number.
 614 *
 615 * On Tile, the only valid things for which we can just hand out unchecked
 616 * PTEs are the kernel code and data.  Anything else might change its
 617 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
 618 * Note that init_thread_union is released to heap soon after boot,
 619 * so we include it in the init data.
 620 *
 621 * For TILE-Gx, we might want to consider allowing access to PA
 622 * regions corresponding to PCI space, etc.
 623 */
 624int devmem_is_allowed(unsigned long pagenr)
 625{
 626        return pagenr < kaddr_to_pfn(_end) &&
 627                !(pagenr >= kaddr_to_pfn(&init_thread_union) ||
 628                  pagenr < kaddr_to_pfn(__init_end)) &&
 629                !(pagenr >= kaddr_to_pfn(_sinittext) ||
 630                  pagenr <= kaddr_to_pfn(_einittext-1));
 631}
 632
 633#ifdef CONFIG_HIGHMEM
 634static void __init permanent_kmaps_init(pgd_t *pgd_base)
 635{
 636        pgd_t *pgd;
 637        pud_t *pud;
 638        pmd_t *pmd;
 639        pte_t *pte;
 640        unsigned long vaddr;
 641
 642        vaddr = PKMAP_BASE;
 643        page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
 644
 645        pgd = swapper_pg_dir + pgd_index(vaddr);
 646        pud = pud_offset(pgd, vaddr);
 647        pmd = pmd_offset(pud, vaddr);
 648        pte = pte_offset_kernel(pmd, vaddr);
 649        pkmap_page_table = pte;
 650}
 651#endif /* CONFIG_HIGHMEM */
 652
 653
 654#ifndef CONFIG_64BIT
 655static void __init init_free_pfn_range(unsigned long start, unsigned long end)
 656{
 657        unsigned long pfn;
 658        struct page *page = pfn_to_page(start);
 659
 660        for (pfn = start; pfn < end; ) {
 661                /* Optimize by freeing pages in large batches */
 662                int order = __ffs(pfn);
 663                int count, i;
 664                struct page *p;
 665
 666                if (order >= MAX_ORDER)
 667                        order = MAX_ORDER-1;
 668                count = 1 << order;
 669                while (pfn + count > end) {
 670                        count >>= 1;
 671                        --order;
 672                }
 673                for (p = page, i = 0; i < count; ++i, ++p) {
 674                        __ClearPageReserved(p);
 675                        /*
 676                         * Hacky direct set to avoid unnecessary
 677                         * lock take/release for EVERY page here.
 678                         */
 679                        p->_count.counter = 0;
 680                        p->_mapcount.counter = -1;
 681                }
 682                init_page_count(page);
 683                __free_pages(page, order);
 684                adjust_managed_page_count(page, count);
 685
 686                page += count;
 687                pfn += count;
 688        }
 689}
 690
 691static void __init set_non_bootmem_pages_init(void)
 692{
 693        struct zone *z;
 694        for_each_zone(z) {
 695                unsigned long start, end;
 696                int nid = z->zone_pgdat->node_id;
 697#ifdef CONFIG_HIGHMEM
 698                int idx = zone_idx(z);
 699#endif
 700
 701                start = z->zone_start_pfn;
 702                end = start + z->spanned_pages;
 703                start = max(start, node_free_pfn[nid]);
 704                start = max(start, max_low_pfn);
 705
 706#ifdef CONFIG_HIGHMEM
 707                if (idx == ZONE_HIGHMEM)
 708                        totalhigh_pages += z->spanned_pages;
 709#endif
 710                if (kdata_huge) {
 711                        unsigned long percpu_pfn = node_percpu_pfn[nid];
 712                        if (start < percpu_pfn && end > percpu_pfn)
 713                                end = percpu_pfn;
 714                }
 715#ifdef CONFIG_PCI
 716                if (start <= pci_reserve_start_pfn &&
 717                    end > pci_reserve_start_pfn) {
 718                        if (end > pci_reserve_end_pfn)
 719                                init_free_pfn_range(pci_reserve_end_pfn, end);
 720                        end = pci_reserve_start_pfn;
 721                }
 722#endif
 723                init_free_pfn_range(start, end);
 724        }
 725}
 726#endif
 727
 728/*
 729 * paging_init() sets up the page tables - note that all of lowmem is
 730 * already mapped by head.S.
 731 */
 732void __init paging_init(void)
 733{
 734#ifdef __tilegx__
 735        pud_t *pud;
 736#endif
 737        pgd_t *pgd_base = swapper_pg_dir;
 738
 739        kernel_physical_mapping_init(pgd_base);
 740
 741        /* Fixed mappings, only the page table structure has to be created. */
 742        page_table_range_init(fix_to_virt(__end_of_fixed_addresses - 1),
 743                              FIXADDR_TOP, pgd_base);
 744
 745#ifdef CONFIG_HIGHMEM
 746        permanent_kmaps_init(pgd_base);
 747#endif
 748
 749#ifdef __tilegx__
 750        /*
 751         * Since GX allocates just one pmd_t array worth of vmalloc space,
 752         * we go ahead and allocate it statically here, then share it
 753         * globally.  As a result we don't have to worry about any task
 754         * changing init_mm once we get up and running, and there's no
 755         * need for e.g. vmalloc_sync_all().
 756         */
 757        BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END - 1));
 758        pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
 759        assign_pmd(pud, alloc_pmd());
 760#endif
 761}
 762
 763
 764/*
 765 * Walk the kernel page tables and derive the page_home() from
 766 * the PTEs, so that set_pte() can properly validate the caching
 767 * of all PTEs it sees.
 768 */
 769void __init set_page_homes(void)
 770{
 771}
 772
 773static void __init set_max_mapnr_init(void)
 774{
 775#ifdef CONFIG_FLATMEM
 776        max_mapnr = max_low_pfn;
 777#endif
 778}
 779
 780void __init mem_init(void)
 781{
 782        int i;
 783#ifndef __tilegx__
 784        void *last;
 785#endif
 786
 787#ifdef CONFIG_FLATMEM
 788        BUG_ON(!mem_map);
 789#endif
 790
 791#ifdef CONFIG_HIGHMEM
 792        /* check that fixmap and pkmap do not overlap */
 793        if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
 794                pr_err("fixmap and kmap areas overlap - this will crash\n");
 795                pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
 796                       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1), FIXADDR_START);
 797                BUG();
 798        }
 799#endif
 800
 801        set_max_mapnr_init();
 802
 803        /* this will put all bootmem onto the freelists */
 804        free_all_bootmem();
 805
 806#ifndef CONFIG_64BIT
 807        /* count all remaining LOWMEM and give all HIGHMEM to page allocator */
 808        set_non_bootmem_pages_init();
 809#endif
 810
 811        mem_init_print_info(NULL);
 812
 813        /*
 814         * In debug mode, dump some interesting memory mappings.
 815         */
 816#ifdef CONFIG_HIGHMEM
 817        printk(KERN_DEBUG "  KMAP    %#lx - %#lx\n",
 818               FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
 819        printk(KERN_DEBUG "  PKMAP   %#lx - %#lx\n",
 820               PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
 821#endif
 822        printk(KERN_DEBUG "  VMALLOC %#lx - %#lx\n",
 823               _VMALLOC_START, _VMALLOC_END - 1);
 824#ifdef __tilegx__
 825        for (i = MAX_NUMNODES-1; i >= 0; --i) {
 826                struct pglist_data *node = &node_data[i];
 827                if (node->node_present_pages) {
 828                        unsigned long start = (unsigned long)
 829                                pfn_to_kaddr(node->node_start_pfn);
 830                        unsigned long end = start +
 831                                (node->node_present_pages << PAGE_SHIFT);
 832                        printk(KERN_DEBUG "  MEM%d    %#lx - %#lx\n",
 833                               i, start, end - 1);
 834                }
 835        }
 836#else
 837        last = high_memory;
 838        for (i = MAX_NUMNODES-1; i >= 0; --i) {
 839                if ((unsigned long)vbase_map[i] != -1UL) {
 840                        printk(KERN_DEBUG "  LOWMEM%d %#lx - %#lx\n",
 841                               i, (unsigned long) (vbase_map[i]),
 842                               (unsigned long) (last-1));
 843                        last = vbase_map[i];
 844                }
 845        }
 846#endif
 847
 848#ifndef __tilegx__
 849        /*
 850         * Convert from using one lock for all atomic operations to
 851         * one per cpu.
 852         */
 853        __init_atomic_per_cpu();
 854#endif
 855}
 856
 857/*
 858 * this is for the non-NUMA, single node SMP system case.
 859 * Specifically, in the case of x86, we will always add
 860 * memory to the highmem for now.
 861 */
 862#ifndef CONFIG_NEED_MULTIPLE_NODES
 863int arch_add_memory(u64 start, u64 size)
 864{
 865        struct pglist_data *pgdata = &contig_page_data;
 866        struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
 867        unsigned long start_pfn = start >> PAGE_SHIFT;
 868        unsigned long nr_pages = size >> PAGE_SHIFT;
 869
 870        return __add_pages(zone, start_pfn, nr_pages);
 871}
 872
 873int remove_memory(u64 start, u64 size)
 874{
 875        return -EINVAL;
 876}
 877
 878#ifdef CONFIG_MEMORY_HOTREMOVE
 879int arch_remove_memory(u64 start, u64 size)
 880{
 881        /* TODO */
 882        return -EBUSY;
 883}
 884#endif
 885#endif
 886
 887struct kmem_cache *pgd_cache;
 888
 889void __init pgtable_cache_init(void)
 890{
 891        pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
 892        if (!pgd_cache)
 893                panic("pgtable_cache_init(): Cannot create pgd cache");
 894}
 895
 896#ifdef CONFIG_DEBUG_PAGEALLOC
 897static long __write_once initfree;
 898#else
 899static long __write_once initfree = 1;
 900#endif
 901
 902/* Select whether to free (1) or mark unusable (0) the __init pages. */
 903static int __init set_initfree(char *str)
 904{
 905        long val;
 906        if (kstrtol(str, 0, &val) == 0) {
 907                initfree = val;
 908                pr_info("initfree: %s free init pages\n",
 909                        initfree ? "will" : "won't");
 910        }
 911        return 1;
 912}
 913__setup("initfree=", set_initfree);
 914
 915static void free_init_pages(char *what, unsigned long begin, unsigned long end)
 916{
 917        unsigned long addr = (unsigned long) begin;
 918
 919        if (kdata_huge && !initfree) {
 920                pr_warn("Warning: ignoring initfree=0: incompatible with kdata=huge\n");
 921                initfree = 1;
 922        }
 923        end = (end + PAGE_SIZE - 1) & PAGE_MASK;
 924        local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
 925        for (addr = begin; addr < end; addr += PAGE_SIZE) {
 926                /*
 927                 * Note we just reset the home here directly in the
 928                 * page table.  We know this is safe because our caller
 929                 * just flushed the caches on all the other cpus,
 930                 * and they won't be touching any of these pages.
 931                 */
 932                int pfn = kaddr_to_pfn((void *)addr);
 933                struct page *page = pfn_to_page(pfn);
 934                pte_t *ptep = virt_to_kpte(addr);
 935                if (!initfree) {
 936                        /*
 937                         * If debugging page accesses then do not free
 938                         * this memory but mark them not present - any
 939                         * buggy init-section access will create a
 940                         * kernel page fault:
 941                         */
 942                        pte_clear(&init_mm, addr, ptep);
 943                        continue;
 944                }
 945                if (pte_huge(*ptep))
 946                        BUG_ON(!kdata_huge);
 947                else
 948                        set_pte_at(&init_mm, addr, ptep,
 949                                   pfn_pte(pfn, PAGE_KERNEL));
 950                memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
 951                free_reserved_page(page);
 952        }
 953        pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
 954}
 955
 956void free_initmem(void)
 957{
 958        const unsigned long text_delta = MEM_SV_START - PAGE_OFFSET;
 959
 960        /*
 961         * Evict the cache on all cores to avoid incoherence.
 962         * We are guaranteed that no one will touch the init pages any more.
 963         */
 964        homecache_evict(&cpu_cacheable_map);
 965
 966        /* Free the data pages that we won't use again after init. */
 967        free_init_pages("unused kernel data",
 968                        (unsigned long)__init_begin,
 969                        (unsigned long)__init_end);
 970
 971        /*
 972         * Free the pages mapped from 0xc0000000 that correspond to code
 973         * pages from MEM_SV_START that we won't use again after init.
 974         */
 975        free_init_pages("unused kernel text",
 976                        (unsigned long)_sinittext - text_delta,
 977                        (unsigned long)_einittext - text_delta);
 978        /* Do a global TLB flush so everyone sees the changes. */
 979        flush_tlb_all();
 980}
 981