linux/arch/x86/mm/init.c
<<
>>
Prefs
   1#include <linux/gfp.h>
   2#include <linux/initrd.h>
   3#include <linux/ioport.h>
   4#include <linux/swap.h>
   5#include <linux/memblock.h>
   6#include <linux/bootmem.h>      /* for max_low_pfn */
   7
   8#include <asm/cacheflush.h>
   9#include <asm/e820.h>
  10#include <asm/init.h>
  11#include <asm/page.h>
  12#include <asm/page_types.h>
  13#include <asm/sections.h>
  14#include <asm/setup.h>
  15#include <asm/tlbflush.h>
  16#include <asm/tlb.h>
  17#include <asm/proto.h>
  18#include <asm/dma.h>            /* for MAX_DMA_PFN */
  19#include <asm/microcode.h>
  20
  21/*
  22 * We need to define the tracepoints somewhere, and tlb.c
  23 * is only compied when SMP=y.
  24 */
  25#define CREATE_TRACE_POINTS
  26#include <trace/events/tlb.h>
  27
  28#include "mm_internal.h"
  29
  30/*
  31 * Tables translating between page_cache_type_t and pte encoding.
  32 * Minimal supported modes are defined statically, modified if more supported
  33 * cache modes are available.
  34 * Index into __cachemode2pte_tbl is the cachemode.
  35 * Index into __pte2cachemode_tbl are the caching attribute bits of the pte
  36 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
  37 */
  38uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
  39        [_PAGE_CACHE_MODE_WB]           = 0,
  40        [_PAGE_CACHE_MODE_WC]           = _PAGE_PWT,
  41        [_PAGE_CACHE_MODE_UC_MINUS]     = _PAGE_PCD,
  42        [_PAGE_CACHE_MODE_UC]           = _PAGE_PCD | _PAGE_PWT,
  43        [_PAGE_CACHE_MODE_WT]           = _PAGE_PCD,
  44        [_PAGE_CACHE_MODE_WP]           = _PAGE_PCD,
  45};
  46EXPORT_SYMBOL(__cachemode2pte_tbl);
  47uint8_t __pte2cachemode_tbl[8] = {
  48        [__pte2cm_idx(0)] = _PAGE_CACHE_MODE_WB,
  49        [__pte2cm_idx(_PAGE_PWT)] = _PAGE_CACHE_MODE_WC,
  50        [__pte2cm_idx(_PAGE_PCD)] = _PAGE_CACHE_MODE_UC_MINUS,
  51        [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD)] = _PAGE_CACHE_MODE_UC,
  52        [__pte2cm_idx(_PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
  53        [__pte2cm_idx(_PAGE_PWT | _PAGE_PAT)] = _PAGE_CACHE_MODE_WC,
  54        [__pte2cm_idx(_PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  55        [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
  56};
  57EXPORT_SYMBOL(__pte2cachemode_tbl);
  58
  59static unsigned long __initdata pgt_buf_start;
  60static unsigned long __initdata pgt_buf_end;
  61static unsigned long __initdata pgt_buf_top;
  62
  63static unsigned long min_pfn_mapped;
  64
  65static bool __initdata can_use_brk_pgt = true;
  66
  67/*
  68 * Pages returned are already directly mapped.
  69 *
  70 * Changing that is likely to break Xen, see commit:
  71 *
  72 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
  73 *
  74 * for detailed information.
  75 */
  76__ref void *alloc_low_pages(unsigned int num)
  77{
  78        unsigned long pfn;
  79        int i;
  80
  81        if (after_bootmem) {
  82                unsigned int order;
  83
  84                order = get_order((unsigned long)num << PAGE_SHIFT);
  85                return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
  86                                                __GFP_ZERO, order);
  87        }
  88
  89        if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
  90                unsigned long ret;
  91                if (min_pfn_mapped >= max_pfn_mapped)
  92                        panic("alloc_low_pages: ran out of memory");
  93                ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
  94                                        max_pfn_mapped << PAGE_SHIFT,
  95                                        PAGE_SIZE * num , PAGE_SIZE);
  96                if (!ret)
  97                        panic("alloc_low_pages: can not alloc memory");
  98                memblock_reserve(ret, PAGE_SIZE * num);
  99                pfn = ret >> PAGE_SHIFT;
 100        } else {
 101                pfn = pgt_buf_end;
 102                pgt_buf_end += num;
 103                printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
 104                        pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
 105        }
 106
 107        for (i = 0; i < num; i++) {
 108                void *adr;
 109
 110                adr = __va((pfn + i) << PAGE_SHIFT);
 111                clear_page(adr);
 112        }
 113
 114        return __va(pfn << PAGE_SHIFT);
 115}
 116
 117/* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
 118#define INIT_PGT_BUF_SIZE       (6 * PAGE_SIZE)
 119RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
 120void  __init early_alloc_pgt_buf(void)
 121{
 122        unsigned long tables = INIT_PGT_BUF_SIZE;
 123        phys_addr_t base;
 124
 125        base = __pa(extend_brk(tables, PAGE_SIZE));
 126
 127        pgt_buf_start = base >> PAGE_SHIFT;
 128        pgt_buf_end = pgt_buf_start;
 129        pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 130}
 131
 132int after_bootmem;
 133
 134int direct_gbpages
 135#ifdef CONFIG_DIRECT_GBPAGES
 136                                = 1
 137#endif
 138;
 139
 140static void __init init_gbpages(void)
 141{
 142#ifdef CONFIG_X86_64
 143        if (direct_gbpages && cpu_has_gbpages)
 144                printk(KERN_INFO "Using GB pages for direct mapping\n");
 145        else
 146                direct_gbpages = 0;
 147#endif
 148}
 149
 150struct map_range {
 151        unsigned long start;
 152        unsigned long end;
 153        unsigned page_size_mask;
 154};
 155
 156static int page_size_mask;
 157
 158static void __init probe_page_size_mask(void)
 159{
 160        init_gbpages();
 161
 162#if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
 163        /*
 164         * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
 165         * This will simplify cpa(), which otherwise needs to support splitting
 166         * large pages into small in interrupt context, etc.
 167         */
 168        if (direct_gbpages)
 169                page_size_mask |= 1 << PG_LEVEL_1G;
 170        if (cpu_has_pse)
 171                page_size_mask |= 1 << PG_LEVEL_2M;
 172#endif
 173
 174        /* Enable PSE if available */
 175        if (cpu_has_pse)
 176                cr4_set_bits_and_update_boot(X86_CR4_PSE);
 177
 178        /* Enable PGE if available */
 179        if (cpu_has_pge) {
 180                cr4_set_bits_and_update_boot(X86_CR4_PGE);
 181                __supported_pte_mask |= _PAGE_GLOBAL;
 182        }
 183}
 184
 185#ifdef CONFIG_X86_32
 186#define NR_RANGE_MR 3
 187#else /* CONFIG_X86_64 */
 188#define NR_RANGE_MR 5
 189#endif
 190
 191static int __meminit save_mr(struct map_range *mr, int nr_range,
 192                             unsigned long start_pfn, unsigned long end_pfn,
 193                             unsigned long page_size_mask)
 194{
 195        if (start_pfn < end_pfn) {
 196                if (nr_range >= NR_RANGE_MR)
 197                        panic("run out of range for init_memory_mapping\n");
 198                mr[nr_range].start = start_pfn<<PAGE_SHIFT;
 199                mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
 200                mr[nr_range].page_size_mask = page_size_mask;
 201                nr_range++;
 202        }
 203
 204        return nr_range;
 205}
 206
 207/*
 208 * adjust the page_size_mask for small range to go with
 209 *      big page size instead small one if nearby are ram too.
 210 */
 211static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
 212                                                         int nr_range)
 213{
 214        int i;
 215
 216        for (i = 0; i < nr_range; i++) {
 217                if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
 218                    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
 219                        unsigned long start = round_down(mr[i].start, PMD_SIZE);
 220                        unsigned long end = round_up(mr[i].end, PMD_SIZE);
 221
 222#ifdef CONFIG_X86_32
 223                        if ((end >> PAGE_SHIFT) > max_low_pfn)
 224                                continue;
 225#endif
 226
 227                        if (memblock_is_region_memory(start, end - start))
 228                                mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
 229                }
 230                if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
 231                    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
 232                        unsigned long start = round_down(mr[i].start, PUD_SIZE);
 233                        unsigned long end = round_up(mr[i].end, PUD_SIZE);
 234
 235                        if (memblock_is_region_memory(start, end - start))
 236                                mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
 237                }
 238        }
 239}
 240
 241static const char *page_size_string(struct map_range *mr)
 242{
 243        static const char str_1g[] = "1G";
 244        static const char str_2m[] = "2M";
 245        static const char str_4m[] = "4M";
 246        static const char str_4k[] = "4k";
 247
 248        if (mr->page_size_mask & (1<<PG_LEVEL_1G))
 249                return str_1g;
 250        /*
 251         * 32-bit without PAE has a 4M large page size.
 252         * PG_LEVEL_2M is misnamed, but we can at least
 253         * print out the right size in the string.
 254         */
 255        if (IS_ENABLED(CONFIG_X86_32) &&
 256            !IS_ENABLED(CONFIG_X86_PAE) &&
 257            mr->page_size_mask & (1<<PG_LEVEL_2M))
 258                return str_4m;
 259
 260        if (mr->page_size_mask & (1<<PG_LEVEL_2M))
 261                return str_2m;
 262
 263        return str_4k;
 264}
 265
 266static int __meminit split_mem_range(struct map_range *mr, int nr_range,
 267                                     unsigned long start,
 268                                     unsigned long end)
 269{
 270        unsigned long start_pfn, end_pfn, limit_pfn;
 271        unsigned long pfn;
 272        int i;
 273
 274        limit_pfn = PFN_DOWN(end);
 275
 276        /* head if not big page alignment ? */
 277        pfn = start_pfn = PFN_DOWN(start);
 278#ifdef CONFIG_X86_32
 279        /*
 280         * Don't use a large page for the first 2/4MB of memory
 281         * because there are often fixed size MTRRs in there
 282         * and overlapping MTRRs into large pages can cause
 283         * slowdowns.
 284         */
 285        if (pfn == 0)
 286                end_pfn = PFN_DOWN(PMD_SIZE);
 287        else
 288                end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 289#else /* CONFIG_X86_64 */
 290        end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 291#endif
 292        if (end_pfn > limit_pfn)
 293                end_pfn = limit_pfn;
 294        if (start_pfn < end_pfn) {
 295                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 296                pfn = end_pfn;
 297        }
 298
 299        /* big page (2M) range */
 300        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 301#ifdef CONFIG_X86_32
 302        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 303#else /* CONFIG_X86_64 */
 304        end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 305        if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
 306                end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 307#endif
 308
 309        if (start_pfn < end_pfn) {
 310                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 311                                page_size_mask & (1<<PG_LEVEL_2M));
 312                pfn = end_pfn;
 313        }
 314
 315#ifdef CONFIG_X86_64
 316        /* big page (1G) range */
 317        start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 318        end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
 319        if (start_pfn < end_pfn) {
 320                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 321                                page_size_mask &
 322                                 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
 323                pfn = end_pfn;
 324        }
 325
 326        /* tail is not big page (1G) alignment */
 327        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 328        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 329        if (start_pfn < end_pfn) {
 330                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 331                                page_size_mask & (1<<PG_LEVEL_2M));
 332                pfn = end_pfn;
 333        }
 334#endif
 335
 336        /* tail is not big page (2M) alignment */
 337        start_pfn = pfn;
 338        end_pfn = limit_pfn;
 339        nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 340
 341        if (!after_bootmem)
 342                adjust_range_page_size_mask(mr, nr_range);
 343
 344        /* try to merge same page size and continuous */
 345        for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
 346                unsigned long old_start;
 347                if (mr[i].end != mr[i+1].start ||
 348                    mr[i].page_size_mask != mr[i+1].page_size_mask)
 349                        continue;
 350                /* move it */
 351                old_start = mr[i].start;
 352                memmove(&mr[i], &mr[i+1],
 353                        (nr_range - 1 - i) * sizeof(struct map_range));
 354                mr[i--].start = old_start;
 355                nr_range--;
 356        }
 357
 358        for (i = 0; i < nr_range; i++)
 359                printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
 360                                mr[i].start, mr[i].end - 1,
 361                                page_size_string(&mr[i]));
 362
 363        return nr_range;
 364}
 365
 366struct range pfn_mapped[E820_X_MAX];
 367int nr_pfn_mapped;
 368
 369static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
 370{
 371        nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
 372                                             nr_pfn_mapped, start_pfn, end_pfn);
 373        nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
 374
 375        max_pfn_mapped = max(max_pfn_mapped, end_pfn);
 376
 377        if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
 378                max_low_pfn_mapped = max(max_low_pfn_mapped,
 379                                         min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
 380}
 381
 382bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
 383{
 384        int i;
 385
 386        for (i = 0; i < nr_pfn_mapped; i++)
 387                if ((start_pfn >= pfn_mapped[i].start) &&
 388                    (end_pfn <= pfn_mapped[i].end))
 389                        return true;
 390
 391        return false;
 392}
 393
 394/*
 395 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 396 * This runs before bootmem is initialized and gets pages directly from
 397 * the physical memory. To access them they are temporarily mapped.
 398 */
 399unsigned long __init_refok init_memory_mapping(unsigned long start,
 400                                               unsigned long end)
 401{
 402        struct map_range mr[NR_RANGE_MR];
 403        unsigned long ret = 0;
 404        int nr_range, i;
 405
 406        pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
 407               start, end - 1);
 408
 409        memset(mr, 0, sizeof(mr));
 410        nr_range = split_mem_range(mr, 0, start, end);
 411
 412        for (i = 0; i < nr_range; i++)
 413                ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
 414                                                   mr[i].page_size_mask);
 415
 416        add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
 417
 418        return ret >> PAGE_SHIFT;
 419}
 420
 421/*
 422 * We need to iterate through the E820 memory map and create direct mappings
 423 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
 424 * create direct mappings for all pfns from [0 to max_low_pfn) and
 425 * [4GB to max_pfn) because of possible memory holes in high addresses
 426 * that cannot be marked as UC by fixed/variable range MTRRs.
 427 * Depending on the alignment of E820 ranges, this may possibly result
 428 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
 429 *
 430 * init_mem_mapping() calls init_range_memory_mapping() with big range.
 431 * That range would have hole in the middle or ends, and only ram parts
 432 * will be mapped in init_range_memory_mapping().
 433 */
 434static unsigned long __init init_range_memory_mapping(
 435                                           unsigned long r_start,
 436                                           unsigned long r_end)
 437{
 438        unsigned long start_pfn, end_pfn;
 439        unsigned long mapped_ram_size = 0;
 440        int i;
 441
 442        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 443                u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
 444                u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
 445                if (start >= end)
 446                        continue;
 447
 448                /*
 449                 * if it is overlapping with brk pgt, we need to
 450                 * alloc pgt buf from memblock instead.
 451                 */
 452                can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
 453                                    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
 454                init_memory_mapping(start, end);
 455                mapped_ram_size += end - start;
 456                can_use_brk_pgt = true;
 457        }
 458
 459        return mapped_ram_size;
 460}
 461
 462static unsigned long __init get_new_step_size(unsigned long step_size)
 463{
 464        /*
 465         * Initial mapped size is PMD_SIZE (2M).
 466         * We can not set step_size to be PUD_SIZE (1G) yet.
 467         * In worse case, when we cross the 1G boundary, and
 468         * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
 469         * to map 1G range with PTE. Hence we use one less than the
 470         * difference of page table level shifts.
 471         *
 472         * Don't need to worry about overflow in the top-down case, on 32bit,
 473         * when step_size is 0, round_down() returns 0 for start, and that
 474         * turns it into 0x100000000ULL.
 475         * In the bottom-up case, round_up(x, 0) returns 0 though too, which
 476         * needs to be taken into consideration by the code below.
 477         */
 478        return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
 479}
 480
 481/**
 482 * memory_map_top_down - Map [map_start, map_end) top down
 483 * @map_start: start address of the target memory range
 484 * @map_end: end address of the target memory range
 485 *
 486 * This function will setup direct mapping for memory range
 487 * [map_start, map_end) in top-down. That said, the page tables
 488 * will be allocated at the end of the memory, and we map the
 489 * memory in top-down.
 490 */
 491static void __init memory_map_top_down(unsigned long map_start,
 492                                       unsigned long map_end)
 493{
 494        unsigned long real_end, start, last_start;
 495        unsigned long step_size;
 496        unsigned long addr;
 497        unsigned long mapped_ram_size = 0;
 498
 499        /* xen has big range in reserved near end of ram, skip it at first.*/
 500        addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
 501        real_end = addr + PMD_SIZE;
 502
 503        /* step_size need to be small so pgt_buf from BRK could cover it */
 504        step_size = PMD_SIZE;
 505        max_pfn_mapped = 0; /* will get exact value next */
 506        min_pfn_mapped = real_end >> PAGE_SHIFT;
 507        last_start = start = real_end;
 508
 509        /*
 510         * We start from the top (end of memory) and go to the bottom.
 511         * The memblock_find_in_range() gets us a block of RAM from the
 512         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 513         * for page table.
 514         */
 515        while (last_start > map_start) {
 516                if (last_start > step_size) {
 517                        start = round_down(last_start - 1, step_size);
 518                        if (start < map_start)
 519                                start = map_start;
 520                } else
 521                        start = map_start;
 522                mapped_ram_size += init_range_memory_mapping(start,
 523                                                        last_start);
 524                last_start = start;
 525                min_pfn_mapped = last_start >> PAGE_SHIFT;
 526                if (mapped_ram_size >= step_size)
 527                        step_size = get_new_step_size(step_size);
 528        }
 529
 530        if (real_end < map_end)
 531                init_range_memory_mapping(real_end, map_end);
 532}
 533
 534/**
 535 * memory_map_bottom_up - Map [map_start, map_end) bottom up
 536 * @map_start: start address of the target memory range
 537 * @map_end: end address of the target memory range
 538 *
 539 * This function will setup direct mapping for memory range
 540 * [map_start, map_end) in bottom-up. Since we have limited the
 541 * bottom-up allocation above the kernel, the page tables will
 542 * be allocated just above the kernel and we map the memory
 543 * in [map_start, map_end) in bottom-up.
 544 */
 545static void __init memory_map_bottom_up(unsigned long map_start,
 546                                        unsigned long map_end)
 547{
 548        unsigned long next, start;
 549        unsigned long mapped_ram_size = 0;
 550        /* step_size need to be small so pgt_buf from BRK could cover it */
 551        unsigned long step_size = PMD_SIZE;
 552
 553        start = map_start;
 554        min_pfn_mapped = start >> PAGE_SHIFT;
 555
 556        /*
 557         * We start from the bottom (@map_start) and go to the top (@map_end).
 558         * The memblock_find_in_range() gets us a block of RAM from the
 559         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 560         * for page table.
 561         */
 562        while (start < map_end) {
 563                if (step_size && map_end - start > step_size) {
 564                        next = round_up(start + 1, step_size);
 565                        if (next > map_end)
 566                                next = map_end;
 567                } else {
 568                        next = map_end;
 569                }
 570
 571                mapped_ram_size += init_range_memory_mapping(start, next);
 572                start = next;
 573
 574                if (mapped_ram_size >= step_size)
 575                        step_size = get_new_step_size(step_size);
 576        }
 577}
 578
 579void __init init_mem_mapping(void)
 580{
 581        unsigned long end;
 582
 583        probe_page_size_mask();
 584
 585#ifdef CONFIG_X86_64
 586        end = max_pfn << PAGE_SHIFT;
 587#else
 588        end = max_low_pfn << PAGE_SHIFT;
 589#endif
 590
 591        /* the ISA range is always mapped regardless of memory holes */
 592        init_memory_mapping(0, ISA_END_ADDRESS);
 593
 594        /*
 595         * If the allocation is in bottom-up direction, we setup direct mapping
 596         * in bottom-up, otherwise we setup direct mapping in top-down.
 597         */
 598        if (memblock_bottom_up()) {
 599                unsigned long kernel_end = __pa_symbol(_end);
 600
 601                /*
 602                 * we need two separate calls here. This is because we want to
 603                 * allocate page tables above the kernel. So we first map
 604                 * [kernel_end, end) to make memory above the kernel be mapped
 605                 * as soon as possible. And then use page tables allocated above
 606                 * the kernel to map [ISA_END_ADDRESS, kernel_end).
 607                 */
 608                memory_map_bottom_up(kernel_end, end);
 609                memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
 610        } else {
 611                memory_map_top_down(ISA_END_ADDRESS, end);
 612        }
 613
 614#ifdef CONFIG_X86_64
 615        if (max_pfn > max_low_pfn) {
 616                /* can we preseve max_low_pfn ?*/
 617                max_low_pfn = max_pfn;
 618        }
 619#else
 620        early_ioremap_page_table_range_init();
 621#endif
 622
 623        load_cr3(swapper_pg_dir);
 624        __flush_tlb_all();
 625
 626        early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
 627}
 628
 629/*
 630 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 631 * is valid. The argument is a physical page number.
 632 *
 633 *
 634 * On x86, access has to be given to the first megabyte of ram because that area
 635 * contains BIOS code and data regions used by X and dosemu and similar apps.
 636 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
 637 * mmio resources as well as potential bios/acpi data regions.
 638 */
 639int devmem_is_allowed(unsigned long pagenr)
 640{
 641        if (pagenr < 256)
 642                return 1;
 643        if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
 644                return 0;
 645        if (!page_is_ram(pagenr))
 646                return 1;
 647        return 0;
 648}
 649
 650void free_init_pages(char *what, unsigned long begin, unsigned long end)
 651{
 652        unsigned long begin_aligned, end_aligned;
 653
 654        /* Make sure boundaries are page aligned */
 655        begin_aligned = PAGE_ALIGN(begin);
 656        end_aligned   = end & PAGE_MASK;
 657
 658        if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
 659                begin = begin_aligned;
 660                end   = end_aligned;
 661        }
 662
 663        if (begin >= end)
 664                return;
 665
 666        /*
 667         * If debugging page accesses then do not free this memory but
 668         * mark them not present - any buggy init-section access will
 669         * create a kernel page fault:
 670         */
 671#ifdef CONFIG_DEBUG_PAGEALLOC
 672        printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
 673                begin, end - 1);
 674        set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
 675#else
 676        /*
 677         * We just marked the kernel text read only above, now that
 678         * we are going to free part of that, we need to make that
 679         * writeable and non-executable first.
 680         */
 681        set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
 682        set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
 683
 684        free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
 685#endif
 686}
 687
 688void free_initmem(void)
 689{
 690        free_init_pages("unused kernel",
 691                        (unsigned long)(&__init_begin),
 692                        (unsigned long)(&__init_end));
 693}
 694
 695#ifdef CONFIG_BLK_DEV_INITRD
 696void __init free_initrd_mem(unsigned long start, unsigned long end)
 697{
 698#ifdef CONFIG_MICROCODE_EARLY
 699        /*
 700         * Remember, initrd memory may contain microcode or other useful things.
 701         * Before we lose initrd mem, we need to find a place to hold them
 702         * now that normal virtual memory is enabled.
 703         */
 704        save_microcode_in_initrd();
 705#endif
 706
 707        /*
 708         * end could be not aligned, and We can not align that,
 709         * decompresser could be confused by aligned initrd_end
 710         * We already reserve the end partial page before in
 711         *   - i386_start_kernel()
 712         *   - x86_64_start_kernel()
 713         *   - relocate_initrd()
 714         * So here We can do PAGE_ALIGN() safely to get partial page to be freed
 715         */
 716        free_init_pages("initrd", start, PAGE_ALIGN(end));
 717}
 718#endif
 719
 720void __init zone_sizes_init(void)
 721{
 722        unsigned long max_zone_pfns[MAX_NR_ZONES];
 723
 724        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 725
 726#ifdef CONFIG_ZONE_DMA
 727        max_zone_pfns[ZONE_DMA]         = min(MAX_DMA_PFN, max_low_pfn);
 728#endif
 729#ifdef CONFIG_ZONE_DMA32
 730        max_zone_pfns[ZONE_DMA32]       = min(MAX_DMA32_PFN, max_low_pfn);
 731#endif
 732        max_zone_pfns[ZONE_NORMAL]      = max_low_pfn;
 733#ifdef CONFIG_HIGHMEM
 734        max_zone_pfns[ZONE_HIGHMEM]     = max_pfn;
 735#endif
 736
 737        free_area_init_nodes(max_zone_pfns);
 738}
 739
 740DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
 741#ifdef CONFIG_SMP
 742        .active_mm = &init_mm,
 743        .state = 0,
 744#endif
 745        .cr4 = ~0UL,    /* fail hard if we screw up cr4 shadow initialization */
 746};
 747EXPORT_SYMBOL_GPL(cpu_tlbstate);
 748
 749void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
 750{
 751        /* entry 0 MUST be WB (hardwired to speed up translations) */
 752        BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
 753
 754        __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
 755        __pte2cachemode_tbl[entry] = cache;
 756}
 757