linux/arch/x86/xen/enlighten.c
<<
>>
Prefs
   1/*
   2 * Core of Xen paravirt_ops implementation.
   3 *
   4 * This file contains the xen_paravirt_ops structure itself, and the
   5 * implementations for:
   6 * - privileged instructions
   7 * - interrupt flags
   8 * - segment operations
   9 * - booting and setup
  10 *
  11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12 */
  13
  14#include <linux/cpu.h>
  15#include <linux/kernel.h>
  16#include <linux/init.h>
  17#include <linux/smp.h>
  18#include <linux/preempt.h>
  19#include <linux/hardirq.h>
  20#include <linux/percpu.h>
  21#include <linux/delay.h>
  22#include <linux/start_kernel.h>
  23#include <linux/sched.h>
  24#include <linux/kprobes.h>
  25#include <linux/bootmem.h>
  26#include <linux/module.h>
  27#include <linux/mm.h>
  28#include <linux/page-flags.h>
  29#include <linux/highmem.h>
  30#include <linux/console.h>
  31#include <linux/pci.h>
  32#include <linux/gfp.h>
  33#include <linux/memblock.h>
  34#include <linux/edd.h>
  35
  36#include <xen/xen.h>
  37#include <xen/events.h>
  38#include <xen/interface/xen.h>
  39#include <xen/interface/version.h>
  40#include <xen/interface/physdev.h>
  41#include <xen/interface/vcpu.h>
  42#include <xen/interface/memory.h>
  43#include <xen/interface/nmi.h>
  44#include <xen/interface/xen-mca.h>
  45#include <xen/features.h>
  46#include <xen/page.h>
  47#include <xen/hvm.h>
  48#include <xen/hvc-console.h>
  49#include <xen/acpi.h>
  50
  51#include <asm/paravirt.h>
  52#include <asm/apic.h>
  53#include <asm/page.h>
  54#include <asm/xen/pci.h>
  55#include <asm/xen/hypercall.h>
  56#include <asm/xen/hypervisor.h>
  57#include <asm/fixmap.h>
  58#include <asm/processor.h>
  59#include <asm/proto.h>
  60#include <asm/msr-index.h>
  61#include <asm/traps.h>
  62#include <asm/setup.h>
  63#include <asm/desc.h>
  64#include <asm/pgalloc.h>
  65#include <asm/pgtable.h>
  66#include <asm/tlbflush.h>
  67#include <asm/reboot.h>
  68#include <asm/stackprotector.h>
  69#include <asm/hypervisor.h>
  70#include <asm/mach_traps.h>
  71#include <asm/mwait.h>
  72#include <asm/pci_x86.h>
  73#include <asm/pat.h>
  74
  75#ifdef CONFIG_ACPI
  76#include <linux/acpi.h>
  77#include <asm/acpi.h>
  78#include <acpi/pdc_intel.h>
  79#include <acpi/processor.h>
  80#include <xen/interface/platform.h>
  81#endif
  82
  83#include "xen-ops.h"
  84#include "mmu.h"
  85#include "smp.h"
  86#include "multicalls.h"
  87
  88EXPORT_SYMBOL_GPL(hypercall_page);
  89
  90/*
  91 * Pointer to the xen_vcpu_info structure or
  92 * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
  93 * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
  94 * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
  95 * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
  96 * acknowledge pending events.
  97 * Also more subtly it is used by the patched version of irq enable/disable
  98 * e.g. xen_irq_enable_direct and xen_iret in PV mode.
  99 *
 100 * The desire to be able to do those mask/unmask operations as a single
 101 * instruction by using the per-cpu offset held in %gs is the real reason
 102 * vcpu info is in a per-cpu pointer and the original reason for this
 103 * hypercall.
 104 *
 105 */
 106DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
 107
 108/*
 109 * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
 110 * hypercall. This can be used both in PV and PVHVM mode. The structure
 111 * overrides the default per_cpu(xen_vcpu, cpu) value.
 112 */
 113DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
 114
 115enum xen_domain_type xen_domain_type = XEN_NATIVE;
 116EXPORT_SYMBOL_GPL(xen_domain_type);
 117
 118unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
 119EXPORT_SYMBOL(machine_to_phys_mapping);
 120unsigned long  machine_to_phys_nr;
 121EXPORT_SYMBOL(machine_to_phys_nr);
 122
 123struct start_info *xen_start_info;
 124EXPORT_SYMBOL_GPL(xen_start_info);
 125
 126struct shared_info xen_dummy_shared_info;
 127
 128void *xen_initial_gdt;
 129
 130RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
 131__read_mostly int xen_have_vector_callback;
 132EXPORT_SYMBOL_GPL(xen_have_vector_callback);
 133
 134/*
 135 * Point at some empty memory to start with. We map the real shared_info
 136 * page as soon as fixmap is up and running.
 137 */
 138struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
 139
 140/*
 141 * Flag to determine whether vcpu info placement is available on all
 142 * VCPUs.  We assume it is to start with, and then set it to zero on
 143 * the first failure.  This is because it can succeed on some VCPUs
 144 * and not others, since it can involve hypervisor memory allocation,
 145 * or because the guest failed to guarantee all the appropriate
 146 * constraints on all VCPUs (ie buffer can't cross a page boundary).
 147 *
 148 * Note that any particular CPU may be using a placed vcpu structure,
 149 * but we can only optimise if the all are.
 150 *
 151 * 0: not available, 1: available
 152 */
 153static int have_vcpu_info_placement = 1;
 154
 155struct tls_descs {
 156        struct desc_struct desc[3];
 157};
 158
 159/*
 160 * Updating the 3 TLS descriptors in the GDT on every task switch is
 161 * surprisingly expensive so we avoid updating them if they haven't
 162 * changed.  Since Xen writes different descriptors than the one
 163 * passed in the update_descriptor hypercall we keep shadow copies to
 164 * compare against.
 165 */
 166static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
 167
 168static void clamp_max_cpus(void)
 169{
 170#ifdef CONFIG_SMP
 171        if (setup_max_cpus > MAX_VIRT_CPUS)
 172                setup_max_cpus = MAX_VIRT_CPUS;
 173#endif
 174}
 175
 176static void xen_vcpu_setup(int cpu)
 177{
 178        struct vcpu_register_vcpu_info info;
 179        int err;
 180        struct vcpu_info *vcpup;
 181
 182        BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
 183
 184        /*
 185         * This path is called twice on PVHVM - first during bootup via
 186         * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
 187         * hotplugged: cpu_up -> xen_hvm_cpu_notify.
 188         * As we can only do the VCPUOP_register_vcpu_info once lets
 189         * not over-write its result.
 190         *
 191         * For PV it is called during restore (xen_vcpu_restore) and bootup
 192         * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
 193         * use this function.
 194         */
 195        if (xen_hvm_domain()) {
 196                if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
 197                        return;
 198        }
 199        if (cpu < MAX_VIRT_CPUS)
 200                per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
 201
 202        if (!have_vcpu_info_placement) {
 203                if (cpu >= MAX_VIRT_CPUS)
 204                        clamp_max_cpus();
 205                return;
 206        }
 207
 208        vcpup = &per_cpu(xen_vcpu_info, cpu);
 209        info.mfn = arbitrary_virt_to_mfn(vcpup);
 210        info.offset = offset_in_page(vcpup);
 211
 212        /* Check to see if the hypervisor will put the vcpu_info
 213           structure where we want it, which allows direct access via
 214           a percpu-variable.
 215           N.B. This hypercall can _only_ be called once per CPU. Subsequent
 216           calls will error out with -EINVAL. This is due to the fact that
 217           hypervisor has no unregister variant and this hypercall does not
 218           allow to over-write info.mfn and info.offset.
 219         */
 220        err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
 221
 222        if (err) {
 223                printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
 224                have_vcpu_info_placement = 0;
 225                clamp_max_cpus();
 226        } else {
 227                /* This cpu is using the registered vcpu info, even if
 228                   later ones fail to. */
 229                per_cpu(xen_vcpu, cpu) = vcpup;
 230        }
 231}
 232
 233/*
 234 * On restore, set the vcpu placement up again.
 235 * If it fails, then we're in a bad state, since
 236 * we can't back out from using it...
 237 */
 238void xen_vcpu_restore(void)
 239{
 240        int cpu;
 241
 242        for_each_possible_cpu(cpu) {
 243                bool other_cpu = (cpu != smp_processor_id());
 244                bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
 245
 246                if (other_cpu && is_up &&
 247                    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
 248                        BUG();
 249
 250                xen_setup_runstate_info(cpu);
 251
 252                if (have_vcpu_info_placement)
 253                        xen_vcpu_setup(cpu);
 254
 255                if (other_cpu && is_up &&
 256                    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
 257                        BUG();
 258        }
 259}
 260
 261static void __init xen_banner(void)
 262{
 263        unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
 264        struct xen_extraversion extra;
 265        HYPERVISOR_xen_version(XENVER_extraversion, &extra);
 266
 267        pr_info("Booting paravirtualized kernel %son %s\n",
 268                xen_feature(XENFEAT_auto_translated_physmap) ?
 269                        "with PVH extensions " : "", pv_info.name);
 270        printk(KERN_INFO "Xen version: %d.%d%s%s\n",
 271               version >> 16, version & 0xffff, extra.extraversion,
 272               xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
 273}
 274/* Check if running on Xen version (major, minor) or later */
 275bool
 276xen_running_on_version_or_later(unsigned int major, unsigned int minor)
 277{
 278        unsigned int version;
 279
 280        if (!xen_domain())
 281                return false;
 282
 283        version = HYPERVISOR_xen_version(XENVER_version, NULL);
 284        if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
 285                ((version >> 16) > major))
 286                return true;
 287        return false;
 288}
 289
 290#define CPUID_THERM_POWER_LEAF 6
 291#define APERFMPERF_PRESENT 0
 292
 293static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
 294static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
 295
 296static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
 297static __read_mostly unsigned int cpuid_leaf5_ecx_val;
 298static __read_mostly unsigned int cpuid_leaf5_edx_val;
 299
 300static void xen_cpuid(unsigned int *ax, unsigned int *bx,
 301                      unsigned int *cx, unsigned int *dx)
 302{
 303        unsigned maskebx = ~0;
 304        unsigned maskecx = ~0;
 305        unsigned maskedx = ~0;
 306        unsigned setecx = 0;
 307        /*
 308         * Mask out inconvenient features, to try and disable as many
 309         * unsupported kernel subsystems as possible.
 310         */
 311        switch (*ax) {
 312        case 1:
 313                maskecx = cpuid_leaf1_ecx_mask;
 314                setecx = cpuid_leaf1_ecx_set_mask;
 315                maskedx = cpuid_leaf1_edx_mask;
 316                break;
 317
 318        case CPUID_MWAIT_LEAF:
 319                /* Synthesize the values.. */
 320                *ax = 0;
 321                *bx = 0;
 322                *cx = cpuid_leaf5_ecx_val;
 323                *dx = cpuid_leaf5_edx_val;
 324                return;
 325
 326        case CPUID_THERM_POWER_LEAF:
 327                /* Disabling APERFMPERF for kernel usage */
 328                maskecx = ~(1 << APERFMPERF_PRESENT);
 329                break;
 330
 331        case 0xb:
 332                /* Suppress extended topology stuff */
 333                maskebx = 0;
 334                break;
 335        }
 336
 337        asm(XEN_EMULATE_PREFIX "cpuid"
 338                : "=a" (*ax),
 339                  "=b" (*bx),
 340                  "=c" (*cx),
 341                  "=d" (*dx)
 342                : "0" (*ax), "2" (*cx));
 343
 344        *bx &= maskebx;
 345        *cx &= maskecx;
 346        *cx |= setecx;
 347        *dx &= maskedx;
 348
 349}
 350
 351static bool __init xen_check_mwait(void)
 352{
 353#ifdef CONFIG_ACPI
 354        struct xen_platform_op op = {
 355                .cmd                    = XENPF_set_processor_pminfo,
 356                .u.set_pminfo.id        = -1,
 357                .u.set_pminfo.type      = XEN_PM_PDC,
 358        };
 359        uint32_t buf[3];
 360        unsigned int ax, bx, cx, dx;
 361        unsigned int mwait_mask;
 362
 363        /* We need to determine whether it is OK to expose the MWAIT
 364         * capability to the kernel to harvest deeper than C3 states from ACPI
 365         * _CST using the processor_harvest_xen.c module. For this to work, we
 366         * need to gather the MWAIT_LEAF values (which the cstate.c code
 367         * checks against). The hypervisor won't expose the MWAIT flag because
 368         * it would break backwards compatibility; so we will find out directly
 369         * from the hardware and hypercall.
 370         */
 371        if (!xen_initial_domain())
 372                return false;
 373
 374        /*
 375         * When running under platform earlier than Xen4.2, do not expose
 376         * mwait, to avoid the risk of loading native acpi pad driver
 377         */
 378        if (!xen_running_on_version_or_later(4, 2))
 379                return false;
 380
 381        ax = 1;
 382        cx = 0;
 383
 384        native_cpuid(&ax, &bx, &cx, &dx);
 385
 386        mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
 387                     (1 << (X86_FEATURE_MWAIT % 32));
 388
 389        if ((cx & mwait_mask) != mwait_mask)
 390                return false;
 391
 392        /* We need to emulate the MWAIT_LEAF and for that we need both
 393         * ecx and edx. The hypercall provides only partial information.
 394         */
 395
 396        ax = CPUID_MWAIT_LEAF;
 397        bx = 0;
 398        cx = 0;
 399        dx = 0;
 400
 401        native_cpuid(&ax, &bx, &cx, &dx);
 402
 403        /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
 404         * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
 405         */
 406        buf[0] = ACPI_PDC_REVISION_ID;
 407        buf[1] = 1;
 408        buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
 409
 410        set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
 411
 412        if ((HYPERVISOR_dom0_op(&op) == 0) &&
 413            (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
 414                cpuid_leaf5_ecx_val = cx;
 415                cpuid_leaf5_edx_val = dx;
 416        }
 417        return true;
 418#else
 419        return false;
 420#endif
 421}
 422static void __init xen_init_cpuid_mask(void)
 423{
 424        unsigned int ax, bx, cx, dx;
 425        unsigned int xsave_mask;
 426
 427        cpuid_leaf1_edx_mask =
 428                ~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
 429                  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
 430
 431        if (!xen_initial_domain())
 432                cpuid_leaf1_edx_mask &=
 433                        ~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
 434
 435        cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
 436
 437        ax = 1;
 438        cx = 0;
 439        cpuid(1, &ax, &bx, &cx, &dx);
 440
 441        xsave_mask =
 442                (1 << (X86_FEATURE_XSAVE % 32)) |
 443                (1 << (X86_FEATURE_OSXSAVE % 32));
 444
 445        /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
 446        if ((cx & xsave_mask) != xsave_mask)
 447                cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
 448        if (xen_check_mwait())
 449                cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
 450}
 451
 452static void xen_set_debugreg(int reg, unsigned long val)
 453{
 454        HYPERVISOR_set_debugreg(reg, val);
 455}
 456
 457static unsigned long xen_get_debugreg(int reg)
 458{
 459        return HYPERVISOR_get_debugreg(reg);
 460}
 461
 462static void xen_end_context_switch(struct task_struct *next)
 463{
 464        xen_mc_flush();
 465        paravirt_end_context_switch(next);
 466}
 467
 468static unsigned long xen_store_tr(void)
 469{
 470        return 0;
 471}
 472
 473/*
 474 * Set the page permissions for a particular virtual address.  If the
 475 * address is a vmalloc mapping (or other non-linear mapping), then
 476 * find the linear mapping of the page and also set its protections to
 477 * match.
 478 */
 479static void set_aliased_prot(void *v, pgprot_t prot)
 480{
 481        int level;
 482        pte_t *ptep;
 483        pte_t pte;
 484        unsigned long pfn;
 485        struct page *page;
 486
 487        ptep = lookup_address((unsigned long)v, &level);
 488        BUG_ON(ptep == NULL);
 489
 490        pfn = pte_pfn(*ptep);
 491        page = pfn_to_page(pfn);
 492
 493        pte = pfn_pte(pfn, prot);
 494
 495        if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
 496                BUG();
 497
 498        if (!PageHighMem(page)) {
 499                void *av = __va(PFN_PHYS(pfn));
 500
 501                if (av != v)
 502                        if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
 503                                BUG();
 504        } else
 505                kmap_flush_unused();
 506}
 507
 508static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
 509{
 510        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 511        int i;
 512
 513        for(i = 0; i < entries; i += entries_per_page)
 514                set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
 515}
 516
 517static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
 518{
 519        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 520        int i;
 521
 522        for(i = 0; i < entries; i += entries_per_page)
 523                set_aliased_prot(ldt + i, PAGE_KERNEL);
 524}
 525
 526static void xen_set_ldt(const void *addr, unsigned entries)
 527{
 528        struct mmuext_op *op;
 529        struct multicall_space mcs = xen_mc_entry(sizeof(*op));
 530
 531        trace_xen_cpu_set_ldt(addr, entries);
 532
 533        op = mcs.args;
 534        op->cmd = MMUEXT_SET_LDT;
 535        op->arg1.linear_addr = (unsigned long)addr;
 536        op->arg2.nr_ents = entries;
 537
 538        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 539
 540        xen_mc_issue(PARAVIRT_LAZY_CPU);
 541}
 542
 543static void xen_load_gdt(const struct desc_ptr *dtr)
 544{
 545        unsigned long va = dtr->address;
 546        unsigned int size = dtr->size + 1;
 547        unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
 548        unsigned long frames[pages];
 549        int f;
 550
 551        /*
 552         * A GDT can be up to 64k in size, which corresponds to 8192
 553         * 8-byte entries, or 16 4k pages..
 554         */
 555
 556        BUG_ON(size > 65536);
 557        BUG_ON(va & ~PAGE_MASK);
 558
 559        for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
 560                int level;
 561                pte_t *ptep;
 562                unsigned long pfn, mfn;
 563                void *virt;
 564
 565                /*
 566                 * The GDT is per-cpu and is in the percpu data area.
 567                 * That can be virtually mapped, so we need to do a
 568                 * page-walk to get the underlying MFN for the
 569                 * hypercall.  The page can also be in the kernel's
 570                 * linear range, so we need to RO that mapping too.
 571                 */
 572                ptep = lookup_address(va, &level);
 573                BUG_ON(ptep == NULL);
 574
 575                pfn = pte_pfn(*ptep);
 576                mfn = pfn_to_mfn(pfn);
 577                virt = __va(PFN_PHYS(pfn));
 578
 579                frames[f] = mfn;
 580
 581                make_lowmem_page_readonly((void *)va);
 582                make_lowmem_page_readonly(virt);
 583        }
 584
 585        if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
 586                BUG();
 587}
 588
 589/*
 590 * load_gdt for early boot, when the gdt is only mapped once
 591 */
 592static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
 593{
 594        unsigned long va = dtr->address;
 595        unsigned int size = dtr->size + 1;
 596        unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
 597        unsigned long frames[pages];
 598        int f;
 599
 600        /*
 601         * A GDT can be up to 64k in size, which corresponds to 8192
 602         * 8-byte entries, or 16 4k pages..
 603         */
 604
 605        BUG_ON(size > 65536);
 606        BUG_ON(va & ~PAGE_MASK);
 607
 608        for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
 609                pte_t pte;
 610                unsigned long pfn, mfn;
 611
 612                pfn = virt_to_pfn(va);
 613                mfn = pfn_to_mfn(pfn);
 614
 615                pte = pfn_pte(pfn, PAGE_KERNEL_RO);
 616
 617                if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 618                        BUG();
 619
 620                frames[f] = mfn;
 621        }
 622
 623        if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
 624                BUG();
 625}
 626
 627static inline bool desc_equal(const struct desc_struct *d1,
 628                              const struct desc_struct *d2)
 629{
 630        return d1->a == d2->a && d1->b == d2->b;
 631}
 632
 633static void load_TLS_descriptor(struct thread_struct *t,
 634                                unsigned int cpu, unsigned int i)
 635{
 636        struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
 637        struct desc_struct *gdt;
 638        xmaddr_t maddr;
 639        struct multicall_space mc;
 640
 641        if (desc_equal(shadow, &t->tls_array[i]))
 642                return;
 643
 644        *shadow = t->tls_array[i];
 645
 646        gdt = get_cpu_gdt_table(cpu);
 647        maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
 648        mc = __xen_mc_entry(0);
 649
 650        MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
 651}
 652
 653static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
 654{
 655        /*
 656         * XXX sleazy hack: If we're being called in a lazy-cpu zone
 657         * and lazy gs handling is enabled, it means we're in a
 658         * context switch, and %gs has just been saved.  This means we
 659         * can zero it out to prevent faults on exit from the
 660         * hypervisor if the next process has no %gs.  Either way, it
 661         * has been saved, and the new value will get loaded properly.
 662         * This will go away as soon as Xen has been modified to not
 663         * save/restore %gs for normal hypercalls.
 664         *
 665         * On x86_64, this hack is not used for %gs, because gs points
 666         * to KERNEL_GS_BASE (and uses it for PDA references), so we
 667         * must not zero %gs on x86_64
 668         *
 669         * For x86_64, we need to zero %fs, otherwise we may get an
 670         * exception between the new %fs descriptor being loaded and
 671         * %fs being effectively cleared at __switch_to().
 672         */
 673        if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
 674#ifdef CONFIG_X86_32
 675                lazy_load_gs(0);
 676#else
 677                loadsegment(fs, 0);
 678#endif
 679        }
 680
 681        xen_mc_batch();
 682
 683        load_TLS_descriptor(t, cpu, 0);
 684        load_TLS_descriptor(t, cpu, 1);
 685        load_TLS_descriptor(t, cpu, 2);
 686
 687        xen_mc_issue(PARAVIRT_LAZY_CPU);
 688}
 689
 690#ifdef CONFIG_X86_64
 691static void xen_load_gs_index(unsigned int idx)
 692{
 693        if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
 694                BUG();
 695}
 696#endif
 697
 698static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
 699                                const void *ptr)
 700{
 701        xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
 702        u64 entry = *(u64 *)ptr;
 703
 704        trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
 705
 706        preempt_disable();
 707
 708        xen_mc_flush();
 709        if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
 710                BUG();
 711
 712        preempt_enable();
 713}
 714
 715static int cvt_gate_to_trap(int vector, const gate_desc *val,
 716                            struct trap_info *info)
 717{
 718        unsigned long addr;
 719
 720        if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
 721                return 0;
 722
 723        info->vector = vector;
 724
 725        addr = gate_offset(*val);
 726#ifdef CONFIG_X86_64
 727        /*
 728         * Look for known traps using IST, and substitute them
 729         * appropriately.  The debugger ones are the only ones we care
 730         * about.  Xen will handle faults like double_fault,
 731         * so we should never see them.  Warn if
 732         * there's an unexpected IST-using fault handler.
 733         */
 734        if (addr == (unsigned long)debug)
 735                addr = (unsigned long)xen_debug;
 736        else if (addr == (unsigned long)int3)
 737                addr = (unsigned long)xen_int3;
 738        else if (addr == (unsigned long)stack_segment)
 739                addr = (unsigned long)xen_stack_segment;
 740        else if (addr == (unsigned long)double_fault) {
 741                /* Don't need to handle these */
 742                return 0;
 743#ifdef CONFIG_X86_MCE
 744        } else if (addr == (unsigned long)machine_check) {
 745                /*
 746                 * when xen hypervisor inject vMCE to guest,
 747                 * use native mce handler to handle it
 748                 */
 749                ;
 750#endif
 751        } else if (addr == (unsigned long)nmi)
 752                /*
 753                 * Use the native version as well.
 754                 */
 755                ;
 756        else {
 757                /* Some other trap using IST? */
 758                if (WARN_ON(val->ist != 0))
 759                        return 0;
 760        }
 761#endif  /* CONFIG_X86_64 */
 762        info->address = addr;
 763
 764        info->cs = gate_segment(*val);
 765        info->flags = val->dpl;
 766        /* interrupt gates clear IF */
 767        if (val->type == GATE_INTERRUPT)
 768                info->flags |= 1 << 2;
 769
 770        return 1;
 771}
 772
 773/* Locations of each CPU's IDT */
 774static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
 775
 776/* Set an IDT entry.  If the entry is part of the current IDT, then
 777   also update Xen. */
 778static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
 779{
 780        unsigned long p = (unsigned long)&dt[entrynum];
 781        unsigned long start, end;
 782
 783        trace_xen_cpu_write_idt_entry(dt, entrynum, g);
 784
 785        preempt_disable();
 786
 787        start = __this_cpu_read(idt_desc.address);
 788        end = start + __this_cpu_read(idt_desc.size) + 1;
 789
 790        xen_mc_flush();
 791
 792        native_write_idt_entry(dt, entrynum, g);
 793
 794        if (p >= start && (p + 8) <= end) {
 795                struct trap_info info[2];
 796
 797                info[1].address = 0;
 798
 799                if (cvt_gate_to_trap(entrynum, g, &info[0]))
 800                        if (HYPERVISOR_set_trap_table(info))
 801                                BUG();
 802        }
 803
 804        preempt_enable();
 805}
 806
 807static void xen_convert_trap_info(const struct desc_ptr *desc,
 808                                  struct trap_info *traps)
 809{
 810        unsigned in, out, count;
 811
 812        count = (desc->size+1) / sizeof(gate_desc);
 813        BUG_ON(count > 256);
 814
 815        for (in = out = 0; in < count; in++) {
 816                gate_desc *entry = (gate_desc*)(desc->address) + in;
 817
 818                if (cvt_gate_to_trap(in, entry, &traps[out]))
 819                        out++;
 820        }
 821        traps[out].address = 0;
 822}
 823
 824void xen_copy_trap_info(struct trap_info *traps)
 825{
 826        const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
 827
 828        xen_convert_trap_info(desc, traps);
 829}
 830
 831/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
 832   hold a spinlock to protect the static traps[] array (static because
 833   it avoids allocation, and saves stack space). */
 834static void xen_load_idt(const struct desc_ptr *desc)
 835{
 836        static DEFINE_SPINLOCK(lock);
 837        static struct trap_info traps[257];
 838
 839        trace_xen_cpu_load_idt(desc);
 840
 841        spin_lock(&lock);
 842
 843        memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
 844
 845        xen_convert_trap_info(desc, traps);
 846
 847        xen_mc_flush();
 848        if (HYPERVISOR_set_trap_table(traps))
 849                BUG();
 850
 851        spin_unlock(&lock);
 852}
 853
 854/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
 855   they're handled differently. */
 856static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
 857                                const void *desc, int type)
 858{
 859        trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 860
 861        preempt_disable();
 862
 863        switch (type) {
 864        case DESC_LDT:
 865        case DESC_TSS:
 866                /* ignore */
 867                break;
 868
 869        default: {
 870                xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
 871
 872                xen_mc_flush();
 873                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 874                        BUG();
 875        }
 876
 877        }
 878
 879        preempt_enable();
 880}
 881
 882/*
 883 * Version of write_gdt_entry for use at early boot-time needed to
 884 * update an entry as simply as possible.
 885 */
 886static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
 887                                            const void *desc, int type)
 888{
 889        trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 890
 891        switch (type) {
 892        case DESC_LDT:
 893        case DESC_TSS:
 894                /* ignore */
 895                break;
 896
 897        default: {
 898                xmaddr_t maddr = virt_to_machine(&dt[entry]);
 899
 900                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 901                        dt[entry] = *(struct desc_struct *)desc;
 902        }
 903
 904        }
 905}
 906
 907static void xen_load_sp0(struct tss_struct *tss,
 908                         struct thread_struct *thread)
 909{
 910        struct multicall_space mcs;
 911
 912        mcs = xen_mc_entry(0);
 913        MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
 914        xen_mc_issue(PARAVIRT_LAZY_CPU);
 915}
 916
 917static void xen_set_iopl_mask(unsigned mask)
 918{
 919        struct physdev_set_iopl set_iopl;
 920
 921        /* Force the change at ring 0. */
 922        set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
 923        HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
 924}
 925
 926static void xen_io_delay(void)
 927{
 928}
 929
 930#ifdef CONFIG_X86_LOCAL_APIC
 931static unsigned long xen_set_apic_id(unsigned int x)
 932{
 933        WARN_ON(1);
 934        return x;
 935}
 936static unsigned int xen_get_apic_id(unsigned long x)
 937{
 938        return ((x)>>24) & 0xFFu;
 939}
 940static u32 xen_apic_read(u32 reg)
 941{
 942        struct xen_platform_op op = {
 943                .cmd = XENPF_get_cpuinfo,
 944                .interface_version = XENPF_INTERFACE_VERSION,
 945                .u.pcpu_info.xen_cpuid = 0,
 946        };
 947        int ret = 0;
 948
 949        /* Shouldn't need this as APIC is turned off for PV, and we only
 950         * get called on the bootup processor. But just in case. */
 951        if (!xen_initial_domain() || smp_processor_id())
 952                return 0;
 953
 954        if (reg == APIC_LVR)
 955                return 0x10;
 956
 957        if (reg != APIC_ID)
 958                return 0;
 959
 960        ret = HYPERVISOR_dom0_op(&op);
 961        if (ret)
 962                return 0;
 963
 964        return op.u.pcpu_info.apic_id << 24;
 965}
 966
 967static void xen_apic_write(u32 reg, u32 val)
 968{
 969        /* Warn to see if there's any stray references */
 970        WARN_ON(1);
 971}
 972
 973static u64 xen_apic_icr_read(void)
 974{
 975        return 0;
 976}
 977
 978static void xen_apic_icr_write(u32 low, u32 id)
 979{
 980        /* Warn to see if there's any stray references */
 981        WARN_ON(1);
 982}
 983
 984static void xen_apic_wait_icr_idle(void)
 985{
 986        return;
 987}
 988
 989static u32 xen_safe_apic_wait_icr_idle(void)
 990{
 991        return 0;
 992}
 993
 994static void set_xen_basic_apic_ops(void)
 995{
 996        apic->read = xen_apic_read;
 997        apic->write = xen_apic_write;
 998        apic->icr_read = xen_apic_icr_read;
 999        apic->icr_write = xen_apic_icr_write;
1000        apic->wait_icr_idle = xen_apic_wait_icr_idle;
1001        apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
1002        apic->set_apic_id = xen_set_apic_id;
1003        apic->get_apic_id = xen_get_apic_id;
1004
1005#ifdef CONFIG_SMP
1006        apic->send_IPI_allbutself = xen_send_IPI_allbutself;
1007        apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
1008        apic->send_IPI_mask = xen_send_IPI_mask;
1009        apic->send_IPI_all = xen_send_IPI_all;
1010        apic->send_IPI_self = xen_send_IPI_self;
1011#endif
1012}
1013
1014#endif
1015
1016static void xen_clts(void)
1017{
1018        struct multicall_space mcs;
1019
1020        mcs = xen_mc_entry(0);
1021
1022        MULTI_fpu_taskswitch(mcs.mc, 0);
1023
1024        xen_mc_issue(PARAVIRT_LAZY_CPU);
1025}
1026
1027static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
1028
1029static unsigned long xen_read_cr0(void)
1030{
1031        unsigned long cr0 = this_cpu_read(xen_cr0_value);
1032
1033        if (unlikely(cr0 == 0)) {
1034                cr0 = native_read_cr0();
1035                this_cpu_write(xen_cr0_value, cr0);
1036        }
1037
1038        return cr0;
1039}
1040
1041static void xen_write_cr0(unsigned long cr0)
1042{
1043        struct multicall_space mcs;
1044
1045        this_cpu_write(xen_cr0_value, cr0);
1046
1047        /* Only pay attention to cr0.TS; everything else is
1048           ignored. */
1049        mcs = xen_mc_entry(0);
1050
1051        MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1052
1053        xen_mc_issue(PARAVIRT_LAZY_CPU);
1054}
1055
1056static void xen_write_cr4(unsigned long cr4)
1057{
1058        cr4 &= ~X86_CR4_PGE;
1059        cr4 &= ~X86_CR4_PSE;
1060
1061        native_write_cr4(cr4);
1062}
1063#ifdef CONFIG_X86_64
1064static inline unsigned long xen_read_cr8(void)
1065{
1066        return 0;
1067}
1068static inline void xen_write_cr8(unsigned long val)
1069{
1070        BUG_ON(val);
1071}
1072#endif
1073
1074static u64 xen_read_msr_safe(unsigned int msr, int *err)
1075{
1076        u64 val;
1077
1078        val = native_read_msr_safe(msr, err);
1079        switch (msr) {
1080        case MSR_IA32_APICBASE:
1081#ifdef CONFIG_X86_X2APIC
1082                if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1083#endif
1084                        val &= ~X2APIC_ENABLE;
1085                break;
1086        }
1087        return val;
1088}
1089
1090static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1091{
1092        int ret;
1093
1094        ret = 0;
1095
1096        switch (msr) {
1097#ifdef CONFIG_X86_64
1098                unsigned which;
1099                u64 base;
1100
1101        case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
1102        case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
1103        case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
1104
1105        set:
1106                base = ((u64)high << 32) | low;
1107                if (HYPERVISOR_set_segment_base(which, base) != 0)
1108                        ret = -EIO;
1109                break;
1110#endif
1111
1112        case MSR_STAR:
1113        case MSR_CSTAR:
1114        case MSR_LSTAR:
1115        case MSR_SYSCALL_MASK:
1116        case MSR_IA32_SYSENTER_CS:
1117        case MSR_IA32_SYSENTER_ESP:
1118        case MSR_IA32_SYSENTER_EIP:
1119                /* Fast syscall setup is all done in hypercalls, so
1120                   these are all ignored.  Stub them out here to stop
1121                   Xen console noise. */
1122
1123        default:
1124                ret = native_write_msr_safe(msr, low, high);
1125        }
1126
1127        return ret;
1128}
1129
1130void xen_setup_shared_info(void)
1131{
1132        if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1133                set_fixmap(FIX_PARAVIRT_BOOTMAP,
1134                           xen_start_info->shared_info);
1135
1136                HYPERVISOR_shared_info =
1137                        (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1138        } else
1139                HYPERVISOR_shared_info =
1140                        (struct shared_info *)__va(xen_start_info->shared_info);
1141
1142#ifndef CONFIG_SMP
1143        /* In UP this is as good a place as any to set up shared info */
1144        xen_setup_vcpu_info_placement();
1145#endif
1146
1147        xen_setup_mfn_list_list();
1148}
1149
1150/* This is called once we have the cpu_possible_mask */
1151void xen_setup_vcpu_info_placement(void)
1152{
1153        int cpu;
1154
1155        for_each_possible_cpu(cpu)
1156                xen_vcpu_setup(cpu);
1157
1158        /* xen_vcpu_setup managed to place the vcpu_info within the
1159         * percpu area for all cpus, so make use of it. Note that for
1160         * PVH we want to use native IRQ mechanism. */
1161        if (have_vcpu_info_placement && !xen_pvh_domain()) {
1162                pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1163                pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1164                pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1165                pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1166                pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1167        }
1168}
1169
1170static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1171                          unsigned long addr, unsigned len)
1172{
1173        char *start, *end, *reloc;
1174        unsigned ret;
1175
1176        start = end = reloc = NULL;
1177
1178#define SITE(op, x)                                                     \
1179        case PARAVIRT_PATCH(op.x):                                      \
1180        if (have_vcpu_info_placement) {                                 \
1181                start = (char *)xen_##x##_direct;                       \
1182                end = xen_##x##_direct_end;                             \
1183                reloc = xen_##x##_direct_reloc;                         \
1184        }                                                               \
1185        goto patch_site
1186
1187        switch (type) {
1188                SITE(pv_irq_ops, irq_enable);
1189                SITE(pv_irq_ops, irq_disable);
1190                SITE(pv_irq_ops, save_fl);
1191                SITE(pv_irq_ops, restore_fl);
1192#undef SITE
1193
1194        patch_site:
1195                if (start == NULL || (end-start) > len)
1196                        goto default_patch;
1197
1198                ret = paravirt_patch_insns(insnbuf, len, start, end);
1199
1200                /* Note: because reloc is assigned from something that
1201                   appears to be an array, gcc assumes it's non-null,
1202                   but doesn't know its relationship with start and
1203                   end. */
1204                if (reloc > start && reloc < end) {
1205                        int reloc_off = reloc - start;
1206                        long *relocp = (long *)(insnbuf + reloc_off);
1207                        long delta = start - (char *)addr;
1208
1209                        *relocp += delta;
1210                }
1211                break;
1212
1213        default_patch:
1214        default:
1215                ret = paravirt_patch_default(type, clobbers, insnbuf,
1216                                             addr, len);
1217                break;
1218        }
1219
1220        return ret;
1221}
1222
1223static const struct pv_info xen_info __initconst = {
1224        .paravirt_enabled = 1,
1225        .shared_kernel_pmd = 0,
1226
1227#ifdef CONFIG_X86_64
1228        .extra_user_64bit_cs = FLAT_USER_CS64,
1229#endif
1230
1231        .name = "Xen",
1232};
1233
1234static const struct pv_init_ops xen_init_ops __initconst = {
1235        .patch = xen_patch,
1236};
1237
1238static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1239        .cpuid = xen_cpuid,
1240
1241        .set_debugreg = xen_set_debugreg,
1242        .get_debugreg = xen_get_debugreg,
1243
1244        .clts = xen_clts,
1245
1246        .read_cr0 = xen_read_cr0,
1247        .write_cr0 = xen_write_cr0,
1248
1249        .read_cr4 = native_read_cr4,
1250        .read_cr4_safe = native_read_cr4_safe,
1251        .write_cr4 = xen_write_cr4,
1252
1253#ifdef CONFIG_X86_64
1254        .read_cr8 = xen_read_cr8,
1255        .write_cr8 = xen_write_cr8,
1256#endif
1257
1258        .wbinvd = native_wbinvd,
1259
1260        .read_msr = xen_read_msr_safe,
1261        .write_msr = xen_write_msr_safe,
1262
1263        .read_tsc = native_read_tsc,
1264        .read_pmc = native_read_pmc,
1265
1266        .read_tscp = native_read_tscp,
1267
1268        .iret = xen_iret,
1269        .irq_enable_sysexit = xen_sysexit,
1270#ifdef CONFIG_X86_64
1271        .usergs_sysret32 = xen_sysret32,
1272        .usergs_sysret64 = xen_sysret64,
1273#endif
1274
1275        .load_tr_desc = paravirt_nop,
1276        .set_ldt = xen_set_ldt,
1277        .load_gdt = xen_load_gdt,
1278        .load_idt = xen_load_idt,
1279        .load_tls = xen_load_tls,
1280#ifdef CONFIG_X86_64
1281        .load_gs_index = xen_load_gs_index,
1282#endif
1283
1284        .alloc_ldt = xen_alloc_ldt,
1285        .free_ldt = xen_free_ldt,
1286
1287        .store_idt = native_store_idt,
1288        .store_tr = xen_store_tr,
1289
1290        .write_ldt_entry = xen_write_ldt_entry,
1291        .write_gdt_entry = xen_write_gdt_entry,
1292        .write_idt_entry = xen_write_idt_entry,
1293        .load_sp0 = xen_load_sp0,
1294
1295        .set_iopl_mask = xen_set_iopl_mask,
1296        .io_delay = xen_io_delay,
1297
1298        /* Xen takes care of %gs when switching to usermode for us */
1299        .swapgs = paravirt_nop,
1300
1301        .start_context_switch = paravirt_start_context_switch,
1302        .end_context_switch = xen_end_context_switch,
1303};
1304
1305static const struct pv_apic_ops xen_apic_ops __initconst = {
1306#ifdef CONFIG_X86_LOCAL_APIC
1307        .startup_ipi_hook = paravirt_nop,
1308#endif
1309};
1310
1311static void xen_reboot(int reason)
1312{
1313        struct sched_shutdown r = { .reason = reason };
1314
1315        if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1316                BUG();
1317}
1318
1319static void xen_restart(char *msg)
1320{
1321        xen_reboot(SHUTDOWN_reboot);
1322}
1323
1324static void xen_emergency_restart(void)
1325{
1326        xen_reboot(SHUTDOWN_reboot);
1327}
1328
1329static void xen_machine_halt(void)
1330{
1331        xen_reboot(SHUTDOWN_poweroff);
1332}
1333
1334static void xen_machine_power_off(void)
1335{
1336        if (pm_power_off)
1337                pm_power_off();
1338        xen_reboot(SHUTDOWN_poweroff);
1339}
1340
1341static void xen_crash_shutdown(struct pt_regs *regs)
1342{
1343        xen_reboot(SHUTDOWN_crash);
1344}
1345
1346static int
1347xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1348{
1349        xen_reboot(SHUTDOWN_crash);
1350        return NOTIFY_DONE;
1351}
1352
1353static struct notifier_block xen_panic_block = {
1354        .notifier_call= xen_panic_event,
1355        .priority = INT_MIN
1356};
1357
1358int xen_panic_handler_init(void)
1359{
1360        atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1361        return 0;
1362}
1363
1364static const struct machine_ops xen_machine_ops __initconst = {
1365        .restart = xen_restart,
1366        .halt = xen_machine_halt,
1367        .power_off = xen_machine_power_off,
1368        .shutdown = xen_machine_halt,
1369        .crash_shutdown = xen_crash_shutdown,
1370        .emergency_restart = xen_emergency_restart,
1371};
1372
1373static unsigned char xen_get_nmi_reason(void)
1374{
1375        unsigned char reason = 0;
1376
1377        /* Construct a value which looks like it came from port 0x61. */
1378        if (test_bit(_XEN_NMIREASON_io_error,
1379                     &HYPERVISOR_shared_info->arch.nmi_reason))
1380                reason |= NMI_REASON_IOCHK;
1381        if (test_bit(_XEN_NMIREASON_pci_serr,
1382                     &HYPERVISOR_shared_info->arch.nmi_reason))
1383                reason |= NMI_REASON_SERR;
1384
1385        return reason;
1386}
1387
1388static void __init xen_boot_params_init_edd(void)
1389{
1390#if IS_ENABLED(CONFIG_EDD)
1391        struct xen_platform_op op;
1392        struct edd_info *edd_info;
1393        u32 *mbr_signature;
1394        unsigned nr;
1395        int ret;
1396
1397        edd_info = boot_params.eddbuf;
1398        mbr_signature = boot_params.edd_mbr_sig_buffer;
1399
1400        op.cmd = XENPF_firmware_info;
1401
1402        op.u.firmware_info.type = XEN_FW_DISK_INFO;
1403        for (nr = 0; nr < EDDMAXNR; nr++) {
1404                struct edd_info *info = edd_info + nr;
1405
1406                op.u.firmware_info.index = nr;
1407                info->params.length = sizeof(info->params);
1408                set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1409                                     &info->params);
1410                ret = HYPERVISOR_dom0_op(&op);
1411                if (ret)
1412                        break;
1413
1414#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1415                C(device);
1416                C(version);
1417                C(interface_support);
1418                C(legacy_max_cylinder);
1419                C(legacy_max_head);
1420                C(legacy_sectors_per_track);
1421#undef C
1422        }
1423        boot_params.eddbuf_entries = nr;
1424
1425        op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1426        for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1427                op.u.firmware_info.index = nr;
1428                ret = HYPERVISOR_dom0_op(&op);
1429                if (ret)
1430                        break;
1431                mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1432        }
1433        boot_params.edd_mbr_sig_buf_entries = nr;
1434#endif
1435}
1436
1437/*
1438 * Set up the GDT and segment registers for -fstack-protector.  Until
1439 * we do this, we have to be careful not to call any stack-protected
1440 * function, which is most of the kernel.
1441 *
1442 * Note, that it is __ref because the only caller of this after init
1443 * is PVH which is not going to use xen_load_gdt_boot or other
1444 * __init functions.
1445 */
1446static void __ref xen_setup_gdt(int cpu)
1447{
1448        if (xen_feature(XENFEAT_auto_translated_physmap)) {
1449#ifdef CONFIG_X86_64
1450                unsigned long dummy;
1451
1452                load_percpu_segment(cpu); /* We need to access per-cpu area */
1453                switch_to_new_gdt(cpu); /* GDT and GS set */
1454
1455                /* We are switching of the Xen provided GDT to our HVM mode
1456                 * GDT. The new GDT has  __KERNEL_CS with CS.L = 1
1457                 * and we are jumping to reload it.
1458                 */
1459                asm volatile ("pushq %0\n"
1460                              "leaq 1f(%%rip),%0\n"
1461                              "pushq %0\n"
1462                              "lretq\n"
1463                              "1:\n"
1464                              : "=&r" (dummy) : "0" (__KERNEL_CS));
1465
1466                /*
1467                 * While not needed, we also set the %es, %ds, and %fs
1468                 * to zero. We don't care about %ss as it is NULL.
1469                 * Strictly speaking this is not needed as Xen zeros those
1470                 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1471                 *
1472                 * Linux zeros them in cpu_init() and in secondary_startup_64
1473                 * (for BSP).
1474                 */
1475                loadsegment(es, 0);
1476                loadsegment(ds, 0);
1477                loadsegment(fs, 0);
1478#else
1479                /* PVH: TODO Implement. */
1480                BUG();
1481#endif
1482                return; /* PVH does not need any PV GDT ops. */
1483        }
1484        pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1485        pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1486
1487        setup_stack_canary_segment(0);
1488        switch_to_new_gdt(0);
1489
1490        pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1491        pv_cpu_ops.load_gdt = xen_load_gdt;
1492}
1493
1494#ifdef CONFIG_XEN_PVH
1495/*
1496 * A PV guest starts with default flags that are not set for PVH, set them
1497 * here asap.
1498 */
1499static void xen_pvh_set_cr_flags(int cpu)
1500{
1501
1502        /* Some of these are setup in 'secondary_startup_64'. The others:
1503         * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1504         * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1505        write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1506
1507        if (!cpu)
1508                return;
1509        /*
1510         * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1511         * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu_init.
1512        */
1513        if (cpu_has_pse)
1514                cr4_set_bits_and_update_boot(X86_CR4_PSE);
1515
1516        if (cpu_has_pge)
1517                cr4_set_bits_and_update_boot(X86_CR4_PGE);
1518}
1519
1520/*
1521 * Note, that it is ref - because the only caller of this after init
1522 * is PVH which is not going to use xen_load_gdt_boot or other
1523 * __init functions.
1524 */
1525void __ref xen_pvh_secondary_vcpu_init(int cpu)
1526{
1527        xen_setup_gdt(cpu);
1528        xen_pvh_set_cr_flags(cpu);
1529}
1530
1531static void __init xen_pvh_early_guest_init(void)
1532{
1533        if (!xen_feature(XENFEAT_auto_translated_physmap))
1534                return;
1535
1536        if (!xen_feature(XENFEAT_hvm_callback_vector))
1537                return;
1538
1539        xen_have_vector_callback = 1;
1540
1541        xen_pvh_early_cpu_init(0, false);
1542        xen_pvh_set_cr_flags(0);
1543
1544#ifdef CONFIG_X86_32
1545        BUG(); /* PVH: Implement proper support. */
1546#endif
1547}
1548#endif    /* CONFIG_XEN_PVH */
1549
1550/* First C function to be called on Xen boot */
1551asmlinkage __visible void __init xen_start_kernel(void)
1552{
1553        struct physdev_set_iopl set_iopl;
1554        unsigned long initrd_start = 0;
1555        int rc;
1556
1557        if (!xen_start_info)
1558                return;
1559
1560        xen_domain_type = XEN_PV_DOMAIN;
1561
1562        xen_setup_features();
1563#ifdef CONFIG_XEN_PVH
1564        xen_pvh_early_guest_init();
1565#endif
1566        xen_setup_machphys_mapping();
1567
1568        /* Install Xen paravirt ops */
1569        pv_info = xen_info;
1570        pv_init_ops = xen_init_ops;
1571        pv_apic_ops = xen_apic_ops;
1572        if (!xen_pvh_domain()) {
1573                pv_cpu_ops = xen_cpu_ops;
1574
1575                x86_platform.get_nmi_reason = xen_get_nmi_reason;
1576        }
1577
1578        if (xen_feature(XENFEAT_auto_translated_physmap))
1579                x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1580        else
1581                x86_init.resources.memory_setup = xen_memory_setup;
1582        x86_init.oem.arch_setup = xen_arch_setup;
1583        x86_init.oem.banner = xen_banner;
1584
1585        xen_init_time_ops();
1586
1587        /*
1588         * Set up some pagetable state before starting to set any ptes.
1589         */
1590
1591        xen_init_mmu_ops();
1592
1593        /* Prevent unwanted bits from being set in PTEs. */
1594        __supported_pte_mask &= ~_PAGE_GLOBAL;
1595
1596        /*
1597         * Prevent page tables from being allocated in highmem, even
1598         * if CONFIG_HIGHPTE is enabled.
1599         */
1600        __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1601
1602        /* Work out if we support NX */
1603        x86_configure_nx();
1604
1605        /* Get mfn list */
1606        xen_build_dynamic_phys_to_machine();
1607
1608        /*
1609         * Set up kernel GDT and segment registers, mainly so that
1610         * -fstack-protector code can be executed.
1611         */
1612        xen_setup_gdt(0);
1613
1614        xen_init_irq_ops();
1615        xen_init_cpuid_mask();
1616
1617#ifdef CONFIG_X86_LOCAL_APIC
1618        /*
1619         * set up the basic apic ops.
1620         */
1621        set_xen_basic_apic_ops();
1622#endif
1623
1624        if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1625                pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1626                pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1627        }
1628
1629        machine_ops = xen_machine_ops;
1630
1631        /*
1632         * The only reliable way to retain the initial address of the
1633         * percpu gdt_page is to remember it here, so we can go and
1634         * mark it RW later, when the initial percpu area is freed.
1635         */
1636        xen_initial_gdt = &per_cpu(gdt_page, 0);
1637
1638        xen_smp_init();
1639
1640#ifdef CONFIG_ACPI_NUMA
1641        /*
1642         * The pages we from Xen are not related to machine pages, so
1643         * any NUMA information the kernel tries to get from ACPI will
1644         * be meaningless.  Prevent it from trying.
1645         */
1646        acpi_numa = -1;
1647#endif
1648        /* Don't do the full vcpu_info placement stuff until we have a
1649           possible map and a non-dummy shared_info. */
1650        per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1651
1652        local_irq_disable();
1653        early_boot_irqs_disabled = true;
1654
1655        xen_raw_console_write("mapping kernel into physical memory\n");
1656        xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1657
1658        /*
1659         * Modify the cache mode translation tables to match Xen's PAT
1660         * configuration.
1661         */
1662
1663        pat_init_cache_modes();
1664
1665        /* keep using Xen gdt for now; no urgent need to change it */
1666
1667#ifdef CONFIG_X86_32
1668        pv_info.kernel_rpl = 1;
1669        if (xen_feature(XENFEAT_supervisor_mode_kernel))
1670                pv_info.kernel_rpl = 0;
1671#else
1672        pv_info.kernel_rpl = 0;
1673#endif
1674        /* set the limit of our address space */
1675        xen_reserve_top();
1676
1677        /* PVH: runs at default kernel iopl of 0 */
1678        if (!xen_pvh_domain()) {
1679                /*
1680                 * We used to do this in xen_arch_setup, but that is too late
1681                 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1682                 * early_amd_init which pokes 0xcf8 port.
1683                 */
1684                set_iopl.iopl = 1;
1685                rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1686                if (rc != 0)
1687                        xen_raw_printk("physdev_op failed %d\n", rc);
1688        }
1689
1690#ifdef CONFIG_X86_32
1691        /* set up basic CPUID stuff */
1692        cpu_detect(&new_cpu_data);
1693        set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1694        new_cpu_data.wp_works_ok = 1;
1695        new_cpu_data.x86_capability[0] = cpuid_edx(1);
1696#endif
1697
1698        if (xen_start_info->mod_start) {
1699            if (xen_start_info->flags & SIF_MOD_START_PFN)
1700                initrd_start = PFN_PHYS(xen_start_info->mod_start);
1701            else
1702                initrd_start = __pa(xen_start_info->mod_start);
1703        }
1704
1705        /* Poke various useful things into boot_params */
1706        boot_params.hdr.type_of_loader = (9 << 4) | 0;
1707        boot_params.hdr.ramdisk_image = initrd_start;
1708        boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1709        boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1710
1711        if (!xen_initial_domain()) {
1712                add_preferred_console("xenboot", 0, NULL);
1713                add_preferred_console("tty", 0, NULL);
1714                add_preferred_console("hvc", 0, NULL);
1715                if (pci_xen)
1716                        x86_init.pci.arch_init = pci_xen_init;
1717        } else {
1718                const struct dom0_vga_console_info *info =
1719                        (void *)((char *)xen_start_info +
1720                                 xen_start_info->console.dom0.info_off);
1721                struct xen_platform_op op = {
1722                        .cmd = XENPF_firmware_info,
1723                        .interface_version = XENPF_INTERFACE_VERSION,
1724                        .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1725                };
1726
1727                xen_init_vga(info, xen_start_info->console.dom0.info_size);
1728                xen_start_info->console.domU.mfn = 0;
1729                xen_start_info->console.domU.evtchn = 0;
1730
1731                if (HYPERVISOR_dom0_op(&op) == 0)
1732                        boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1733
1734                xen_init_apic();
1735
1736                /* Make sure ACS will be enabled */
1737                pci_request_acs();
1738
1739                xen_acpi_sleep_register();
1740
1741                /* Avoid searching for BIOS MP tables */
1742                x86_init.mpparse.find_smp_config = x86_init_noop;
1743                x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1744
1745                xen_boot_params_init_edd();
1746        }
1747#ifdef CONFIG_PCI
1748        /* PCI BIOS service won't work from a PV guest. */
1749        pci_probe &= ~PCI_PROBE_BIOS;
1750#endif
1751        xen_raw_console_write("about to get started...\n");
1752
1753        xen_setup_runstate_info(0);
1754
1755        xen_efi_init();
1756
1757        /* Start the world */
1758#ifdef CONFIG_X86_32
1759        i386_start_kernel();
1760#else
1761        cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1762        x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1763#endif
1764}
1765
1766void __ref xen_hvm_init_shared_info(void)
1767{
1768        int cpu;
1769        struct xen_add_to_physmap xatp;
1770        static struct shared_info *shared_info_page = 0;
1771
1772        if (!shared_info_page)
1773                shared_info_page = (struct shared_info *)
1774                        extend_brk(PAGE_SIZE, PAGE_SIZE);
1775        xatp.domid = DOMID_SELF;
1776        xatp.idx = 0;
1777        xatp.space = XENMAPSPACE_shared_info;
1778        xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1779        if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1780                BUG();
1781
1782        HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1783
1784        /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1785         * page, we use it in the event channel upcall and in some pvclock
1786         * related functions. We don't need the vcpu_info placement
1787         * optimizations because we don't use any pv_mmu or pv_irq op on
1788         * HVM.
1789         * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1790         * online but xen_hvm_init_shared_info is run at resume time too and
1791         * in that case multiple vcpus might be online. */
1792        for_each_online_cpu(cpu) {
1793                /* Leave it to be NULL. */
1794                if (cpu >= MAX_VIRT_CPUS)
1795                        continue;
1796                per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1797        }
1798}
1799
1800#ifdef CONFIG_XEN_PVHVM
1801static void __init init_hvm_pv_info(void)
1802{
1803        int major, minor;
1804        uint32_t eax, ebx, ecx, edx, pages, msr, base;
1805        u64 pfn;
1806
1807        base = xen_cpuid_base();
1808        cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1809
1810        major = eax >> 16;
1811        minor = eax & 0xffff;
1812        printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1813
1814        cpuid(base + 2, &pages, &msr, &ecx, &edx);
1815
1816        pfn = __pa(hypercall_page);
1817        wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1818
1819        xen_setup_features();
1820
1821        pv_info.name = "Xen HVM";
1822
1823        xen_domain_type = XEN_HVM_DOMAIN;
1824}
1825
1826static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1827                              void *hcpu)
1828{
1829        int cpu = (long)hcpu;
1830        switch (action) {
1831        case CPU_UP_PREPARE:
1832                xen_vcpu_setup(cpu);
1833                if (xen_have_vector_callback) {
1834                        if (xen_feature(XENFEAT_hvm_safe_pvclock))
1835                                xen_setup_timer(cpu);
1836                }
1837                break;
1838        default:
1839                break;
1840        }
1841        return NOTIFY_OK;
1842}
1843
1844static struct notifier_block xen_hvm_cpu_notifier = {
1845        .notifier_call  = xen_hvm_cpu_notify,
1846};
1847
1848static void __init xen_hvm_guest_init(void)
1849{
1850        init_hvm_pv_info();
1851
1852        xen_hvm_init_shared_info();
1853
1854        xen_panic_handler_init();
1855
1856        if (xen_feature(XENFEAT_hvm_callback_vector))
1857                xen_have_vector_callback = 1;
1858        xen_hvm_smp_init();
1859        register_cpu_notifier(&xen_hvm_cpu_notifier);
1860        xen_unplug_emulated_devices();
1861        x86_init.irqs.intr_init = xen_init_IRQ;
1862        xen_hvm_init_time_ops();
1863        xen_hvm_init_mmu_ops();
1864}
1865
1866static bool xen_nopv = false;
1867static __init int xen_parse_nopv(char *arg)
1868{
1869       xen_nopv = true;
1870       return 0;
1871}
1872early_param("xen_nopv", xen_parse_nopv);
1873
1874static uint32_t __init xen_hvm_platform(void)
1875{
1876        if (xen_nopv)
1877                return 0;
1878
1879        if (xen_pv_domain())
1880                return 0;
1881
1882        return xen_cpuid_base();
1883}
1884
1885bool xen_hvm_need_lapic(void)
1886{
1887        if (xen_nopv)
1888                return false;
1889        if (xen_pv_domain())
1890                return false;
1891        if (!xen_hvm_domain())
1892                return false;
1893        if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1894                return false;
1895        return true;
1896}
1897EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1898
1899const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1900        .name                   = "Xen HVM",
1901        .detect                 = xen_hvm_platform,
1902        .init_platform          = xen_hvm_guest_init,
1903        .x2apic_available       = xen_x2apic_para_available,
1904};
1905EXPORT_SYMBOL(x86_hyper_xen_hvm);
1906#endif
1907