linux/drivers/block/loop.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/block/loop.c
   3 *
   4 *  Written by Theodore Ts'o, 3/29/93
   5 *
   6 * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
   7 * permitted under the GNU General Public License.
   8 *
   9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11 *
  12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14 *
  15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16 *
  17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18 *
  19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20 *
  21 * Loadable modules and other fixes by AK, 1998
  22 *
  23 * Make real block number available to downstream transfer functions, enables
  24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25 * Reed H. Petty, rhp@draper.net
  26 *
  27 * Maximum number of loop devices now dynamic via max_loop module parameter.
  28 * Russell Kroll <rkroll@exploits.org> 19990701
  29 *
  30 * Maximum number of loop devices when compiled-in now selectable by passing
  31 * max_loop=<1-255> to the kernel on boot.
  32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33 *
  34 * Completely rewrite request handling to be make_request_fn style and
  35 * non blocking, pushing work to a helper thread. Lots of fixes from
  36 * Al Viro too.
  37 * Jens Axboe <axboe@suse.de>, Nov 2000
  38 *
  39 * Support up to 256 loop devices
  40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41 *
  42 * Support for falling back on the write file operation when the address space
  43 * operations write_begin is not available on the backing filesystem.
  44 * Anton Altaparmakov, 16 Feb 2005
  45 *
  46 * Still To Fix:
  47 * - Advisory locking is ignored here.
  48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  49 *
  50 */
  51
  52#include <linux/module.h>
  53#include <linux/moduleparam.h>
  54#include <linux/sched.h>
  55#include <linux/fs.h>
  56#include <linux/file.h>
  57#include <linux/stat.h>
  58#include <linux/errno.h>
  59#include <linux/major.h>
  60#include <linux/wait.h>
  61#include <linux/blkdev.h>
  62#include <linux/blkpg.h>
  63#include <linux/init.h>
  64#include <linux/swap.h>
  65#include <linux/slab.h>
  66#include <linux/compat.h>
  67#include <linux/suspend.h>
  68#include <linux/freezer.h>
  69#include <linux/mutex.h>
  70#include <linux/writeback.h>
  71#include <linux/completion.h>
  72#include <linux/highmem.h>
  73#include <linux/kthread.h>
  74#include <linux/splice.h>
  75#include <linux/sysfs.h>
  76#include <linux/miscdevice.h>
  77#include <linux/falloc.h>
  78#include "loop.h"
  79
  80#include <asm/uaccess.h>
  81
  82static DEFINE_IDR(loop_index_idr);
  83static DEFINE_MUTEX(loop_index_mutex);
  84
  85static int max_part;
  86static int part_shift;
  87
  88static struct workqueue_struct *loop_wq;
  89
  90/*
  91 * Transfer functions
  92 */
  93static int transfer_none(struct loop_device *lo, int cmd,
  94                         struct page *raw_page, unsigned raw_off,
  95                         struct page *loop_page, unsigned loop_off,
  96                         int size, sector_t real_block)
  97{
  98        char *raw_buf = kmap_atomic(raw_page) + raw_off;
  99        char *loop_buf = kmap_atomic(loop_page) + loop_off;
 100
 101        if (cmd == READ)
 102                memcpy(loop_buf, raw_buf, size);
 103        else
 104                memcpy(raw_buf, loop_buf, size);
 105
 106        kunmap_atomic(loop_buf);
 107        kunmap_atomic(raw_buf);
 108        cond_resched();
 109        return 0;
 110}
 111
 112static int transfer_xor(struct loop_device *lo, int cmd,
 113                        struct page *raw_page, unsigned raw_off,
 114                        struct page *loop_page, unsigned loop_off,
 115                        int size, sector_t real_block)
 116{
 117        char *raw_buf = kmap_atomic(raw_page) + raw_off;
 118        char *loop_buf = kmap_atomic(loop_page) + loop_off;
 119        char *in, *out, *key;
 120        int i, keysize;
 121
 122        if (cmd == READ) {
 123                in = raw_buf;
 124                out = loop_buf;
 125        } else {
 126                in = loop_buf;
 127                out = raw_buf;
 128        }
 129
 130        key = lo->lo_encrypt_key;
 131        keysize = lo->lo_encrypt_key_size;
 132        for (i = 0; i < size; i++)
 133                *out++ = *in++ ^ key[(i & 511) % keysize];
 134
 135        kunmap_atomic(loop_buf);
 136        kunmap_atomic(raw_buf);
 137        cond_resched();
 138        return 0;
 139}
 140
 141static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
 142{
 143        if (unlikely(info->lo_encrypt_key_size <= 0))
 144                return -EINVAL;
 145        return 0;
 146}
 147
 148static struct loop_func_table none_funcs = {
 149        .number = LO_CRYPT_NONE,
 150        .transfer = transfer_none,
 151};      
 152
 153static struct loop_func_table xor_funcs = {
 154        .number = LO_CRYPT_XOR,
 155        .transfer = transfer_xor,
 156        .init = xor_init
 157};      
 158
 159/* xfer_funcs[0] is special - its release function is never called */
 160static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
 161        &none_funcs,
 162        &xor_funcs
 163};
 164
 165static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
 166{
 167        loff_t loopsize;
 168
 169        /* Compute loopsize in bytes */
 170        loopsize = i_size_read(file->f_mapping->host);
 171        if (offset > 0)
 172                loopsize -= offset;
 173        /* offset is beyond i_size, weird but possible */
 174        if (loopsize < 0)
 175                return 0;
 176
 177        if (sizelimit > 0 && sizelimit < loopsize)
 178                loopsize = sizelimit;
 179        /*
 180         * Unfortunately, if we want to do I/O on the device,
 181         * the number of 512-byte sectors has to fit into a sector_t.
 182         */
 183        return loopsize >> 9;
 184}
 185
 186static loff_t get_loop_size(struct loop_device *lo, struct file *file)
 187{
 188        return get_size(lo->lo_offset, lo->lo_sizelimit, file);
 189}
 190
 191static int
 192figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
 193{
 194        loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
 195        sector_t x = (sector_t)size;
 196        struct block_device *bdev = lo->lo_device;
 197
 198        if (unlikely((loff_t)x != size))
 199                return -EFBIG;
 200        if (lo->lo_offset != offset)
 201                lo->lo_offset = offset;
 202        if (lo->lo_sizelimit != sizelimit)
 203                lo->lo_sizelimit = sizelimit;
 204        set_capacity(lo->lo_disk, x);
 205        bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
 206        /* let user-space know about the new size */
 207        kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 208        return 0;
 209}
 210
 211static inline int
 212lo_do_transfer(struct loop_device *lo, int cmd,
 213               struct page *rpage, unsigned roffs,
 214               struct page *lpage, unsigned loffs,
 215               int size, sector_t rblock)
 216{
 217        if (unlikely(!lo->transfer))
 218                return 0;
 219
 220        return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
 221}
 222
 223/**
 224 * __do_lo_send_write - helper for writing data to a loop device
 225 *
 226 * This helper just factors out common code between do_lo_send_direct_write()
 227 * and do_lo_send_write().
 228 */
 229static int __do_lo_send_write(struct file *file,
 230                u8 *buf, const int len, loff_t pos)
 231{
 232        ssize_t bw;
 233        mm_segment_t old_fs = get_fs();
 234
 235        file_start_write(file);
 236        set_fs(get_ds());
 237        bw = file->f_op->write(file, buf, len, &pos);
 238        set_fs(old_fs);
 239        file_end_write(file);
 240        if (likely(bw == len))
 241                return 0;
 242        printk_ratelimited(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
 243                        (unsigned long long)pos, len);
 244        if (bw >= 0)
 245                bw = -EIO;
 246        return bw;
 247}
 248
 249/**
 250 * do_lo_send_direct_write - helper for writing data to a loop device
 251 *
 252 * This is the fast, non-transforming version that does not need double
 253 * buffering.
 254 */
 255static int do_lo_send_direct_write(struct loop_device *lo,
 256                struct bio_vec *bvec, loff_t pos, struct page *page)
 257{
 258        ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
 259                        kmap(bvec->bv_page) + bvec->bv_offset,
 260                        bvec->bv_len, pos);
 261        kunmap(bvec->bv_page);
 262        cond_resched();
 263        return bw;
 264}
 265
 266/**
 267 * do_lo_send_write - helper for writing data to a loop device
 268 *
 269 * This is the slow, transforming version that needs to double buffer the
 270 * data as it cannot do the transformations in place without having direct
 271 * access to the destination pages of the backing file.
 272 */
 273static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
 274                loff_t pos, struct page *page)
 275{
 276        int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
 277                        bvec->bv_offset, bvec->bv_len, pos >> 9);
 278        if (likely(!ret))
 279                return __do_lo_send_write(lo->lo_backing_file,
 280                                page_address(page), bvec->bv_len,
 281                                pos);
 282        printk_ratelimited(KERN_ERR "loop: Transfer error at byte offset %llu, "
 283                        "length %i.\n", (unsigned long long)pos, bvec->bv_len);
 284        if (ret > 0)
 285                ret = -EIO;
 286        return ret;
 287}
 288
 289static int lo_send(struct loop_device *lo, struct request *rq, loff_t pos)
 290{
 291        int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
 292                        struct page *page);
 293        struct bio_vec bvec;
 294        struct req_iterator iter;
 295        struct page *page = NULL;
 296        int ret = 0;
 297
 298        if (lo->transfer != transfer_none) {
 299                page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
 300                if (unlikely(!page))
 301                        goto fail;
 302                kmap(page);
 303                do_lo_send = do_lo_send_write;
 304        } else {
 305                do_lo_send = do_lo_send_direct_write;
 306        }
 307
 308        rq_for_each_segment(bvec, rq, iter) {
 309                ret = do_lo_send(lo, &bvec, pos, page);
 310                if (ret < 0)
 311                        break;
 312                pos += bvec.bv_len;
 313        }
 314        if (page) {
 315                kunmap(page);
 316                __free_page(page);
 317        }
 318out:
 319        return ret;
 320fail:
 321        printk_ratelimited(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
 322        ret = -ENOMEM;
 323        goto out;
 324}
 325
 326struct lo_read_data {
 327        struct loop_device *lo;
 328        struct page *page;
 329        unsigned offset;
 330        int bsize;
 331};
 332
 333static int
 334lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
 335                struct splice_desc *sd)
 336{
 337        struct lo_read_data *p = sd->u.data;
 338        struct loop_device *lo = p->lo;
 339        struct page *page = buf->page;
 340        sector_t IV;
 341        int size;
 342
 343        IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
 344                                                        (buf->offset >> 9);
 345        size = sd->len;
 346        if (size > p->bsize)
 347                size = p->bsize;
 348
 349        if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
 350                printk_ratelimited(KERN_ERR "loop: transfer error block %ld\n",
 351                       page->index);
 352                size = -EINVAL;
 353        }
 354
 355        flush_dcache_page(p->page);
 356
 357        if (size > 0)
 358                p->offset += size;
 359
 360        return size;
 361}
 362
 363static int
 364lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
 365{
 366        return __splice_from_pipe(pipe, sd, lo_splice_actor);
 367}
 368
 369static ssize_t
 370do_lo_receive(struct loop_device *lo,
 371              struct bio_vec *bvec, int bsize, loff_t pos)
 372{
 373        struct lo_read_data cookie;
 374        struct splice_desc sd;
 375        struct file *file;
 376        ssize_t retval;
 377
 378        cookie.lo = lo;
 379        cookie.page = bvec->bv_page;
 380        cookie.offset = bvec->bv_offset;
 381        cookie.bsize = bsize;
 382
 383        sd.len = 0;
 384        sd.total_len = bvec->bv_len;
 385        sd.flags = 0;
 386        sd.pos = pos;
 387        sd.u.data = &cookie;
 388
 389        file = lo->lo_backing_file;
 390        retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
 391
 392        return retval;
 393}
 394
 395static int
 396lo_receive(struct loop_device *lo, struct request *rq, int bsize, loff_t pos)
 397{
 398        struct bio_vec bvec;
 399        struct req_iterator iter;
 400        ssize_t s;
 401
 402        rq_for_each_segment(bvec, rq, iter) {
 403                s = do_lo_receive(lo, &bvec, bsize, pos);
 404                if (s < 0)
 405                        return s;
 406
 407                if (s != bvec.bv_len) {
 408                        struct bio *bio;
 409
 410                        __rq_for_each_bio(bio, rq)
 411                                zero_fill_bio(bio);
 412                        break;
 413                }
 414                pos += bvec.bv_len;
 415        }
 416        return 0;
 417}
 418
 419static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
 420{
 421        /*
 422         * We use punch hole to reclaim the free space used by the
 423         * image a.k.a. discard. However we do not support discard if
 424         * encryption is enabled, because it may give an attacker
 425         * useful information.
 426         */
 427        struct file *file = lo->lo_backing_file;
 428        int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
 429        int ret;
 430
 431        if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
 432                ret = -EOPNOTSUPP;
 433                goto out;
 434        }
 435
 436        ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
 437        if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
 438                ret = -EIO;
 439 out:
 440        return ret;
 441}
 442
 443static int lo_req_flush(struct loop_device *lo, struct request *rq)
 444{
 445        struct file *file = lo->lo_backing_file;
 446        int ret = vfs_fsync(file, 0);
 447        if (unlikely(ret && ret != -EINVAL))
 448                ret = -EIO;
 449
 450        return ret;
 451}
 452
 453static int do_req_filebacked(struct loop_device *lo, struct request *rq)
 454{
 455        loff_t pos;
 456        int ret;
 457
 458        pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
 459
 460        if (rq->cmd_flags & REQ_WRITE) {
 461                if (rq->cmd_flags & REQ_FLUSH)
 462                        ret = lo_req_flush(lo, rq);
 463                else if (rq->cmd_flags & REQ_DISCARD)
 464                        ret = lo_discard(lo, rq, pos);
 465                else
 466                        ret = lo_send(lo, rq, pos);
 467        } else
 468                ret = lo_receive(lo, rq, lo->lo_blocksize, pos);
 469
 470        return ret;
 471}
 472
 473struct switch_request {
 474        struct file *file;
 475        struct completion wait;
 476};
 477
 478/*
 479 * Do the actual switch; called from the BIO completion routine
 480 */
 481static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
 482{
 483        struct file *file = p->file;
 484        struct file *old_file = lo->lo_backing_file;
 485        struct address_space *mapping;
 486
 487        /* if no new file, only flush of queued bios requested */
 488        if (!file)
 489                return;
 490
 491        mapping = file->f_mapping;
 492        mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
 493        lo->lo_backing_file = file;
 494        lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
 495                mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
 496        lo->old_gfp_mask = mapping_gfp_mask(mapping);
 497        mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
 498}
 499
 500/*
 501 * loop_switch performs the hard work of switching a backing store.
 502 * First it needs to flush existing IO, it does this by sending a magic
 503 * BIO down the pipe. The completion of this BIO does the actual switch.
 504 */
 505static int loop_switch(struct loop_device *lo, struct file *file)
 506{
 507        struct switch_request w;
 508
 509        w.file = file;
 510
 511        /* freeze queue and wait for completion of scheduled requests */
 512        blk_mq_freeze_queue(lo->lo_queue);
 513
 514        /* do the switch action */
 515        do_loop_switch(lo, &w);
 516
 517        /* unfreeze */
 518        blk_mq_unfreeze_queue(lo->lo_queue);
 519
 520        return 0;
 521}
 522
 523/*
 524 * Helper to flush the IOs in loop, but keeping loop thread running
 525 */
 526static int loop_flush(struct loop_device *lo)
 527{
 528        return loop_switch(lo, NULL);
 529}
 530
 531/*
 532 * loop_change_fd switched the backing store of a loopback device to
 533 * a new file. This is useful for operating system installers to free up
 534 * the original file and in High Availability environments to switch to
 535 * an alternative location for the content in case of server meltdown.
 536 * This can only work if the loop device is used read-only, and if the
 537 * new backing store is the same size and type as the old backing store.
 538 */
 539static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
 540                          unsigned int arg)
 541{
 542        struct file     *file, *old_file;
 543        struct inode    *inode;
 544        int             error;
 545
 546        error = -ENXIO;
 547        if (lo->lo_state != Lo_bound)
 548                goto out;
 549
 550        /* the loop device has to be read-only */
 551        error = -EINVAL;
 552        if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
 553                goto out;
 554
 555        error = -EBADF;
 556        file = fget(arg);
 557        if (!file)
 558                goto out;
 559
 560        inode = file->f_mapping->host;
 561        old_file = lo->lo_backing_file;
 562
 563        error = -EINVAL;
 564
 565        if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
 566                goto out_putf;
 567
 568        /* size of the new backing store needs to be the same */
 569        if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
 570                goto out_putf;
 571
 572        /* and ... switch */
 573        error = loop_switch(lo, file);
 574        if (error)
 575                goto out_putf;
 576
 577        fput(old_file);
 578        if (lo->lo_flags & LO_FLAGS_PARTSCAN)
 579                ioctl_by_bdev(bdev, BLKRRPART, 0);
 580        return 0;
 581
 582 out_putf:
 583        fput(file);
 584 out:
 585        return error;
 586}
 587
 588static inline int is_loop_device(struct file *file)
 589{
 590        struct inode *i = file->f_mapping->host;
 591
 592        return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
 593}
 594
 595/* loop sysfs attributes */
 596
 597static ssize_t loop_attr_show(struct device *dev, char *page,
 598                              ssize_t (*callback)(struct loop_device *, char *))
 599{
 600        struct gendisk *disk = dev_to_disk(dev);
 601        struct loop_device *lo = disk->private_data;
 602
 603        return callback(lo, page);
 604}
 605
 606#define LOOP_ATTR_RO(_name)                                             \
 607static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);  \
 608static ssize_t loop_attr_do_show_##_name(struct device *d,              \
 609                                struct device_attribute *attr, char *b) \
 610{                                                                       \
 611        return loop_attr_show(d, b, loop_attr_##_name##_show);          \
 612}                                                                       \
 613static struct device_attribute loop_attr_##_name =                      \
 614        __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
 615
 616static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
 617{
 618        ssize_t ret;
 619        char *p = NULL;
 620
 621        spin_lock_irq(&lo->lo_lock);
 622        if (lo->lo_backing_file)
 623                p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
 624        spin_unlock_irq(&lo->lo_lock);
 625
 626        if (IS_ERR_OR_NULL(p))
 627                ret = PTR_ERR(p);
 628        else {
 629                ret = strlen(p);
 630                memmove(buf, p, ret);
 631                buf[ret++] = '\n';
 632                buf[ret] = 0;
 633        }
 634
 635        return ret;
 636}
 637
 638static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
 639{
 640        return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
 641}
 642
 643static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
 644{
 645        return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
 646}
 647
 648static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
 649{
 650        int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
 651
 652        return sprintf(buf, "%s\n", autoclear ? "1" : "0");
 653}
 654
 655static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
 656{
 657        int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
 658
 659        return sprintf(buf, "%s\n", partscan ? "1" : "0");
 660}
 661
 662LOOP_ATTR_RO(backing_file);
 663LOOP_ATTR_RO(offset);
 664LOOP_ATTR_RO(sizelimit);
 665LOOP_ATTR_RO(autoclear);
 666LOOP_ATTR_RO(partscan);
 667
 668static struct attribute *loop_attrs[] = {
 669        &loop_attr_backing_file.attr,
 670        &loop_attr_offset.attr,
 671        &loop_attr_sizelimit.attr,
 672        &loop_attr_autoclear.attr,
 673        &loop_attr_partscan.attr,
 674        NULL,
 675};
 676
 677static struct attribute_group loop_attribute_group = {
 678        .name = "loop",
 679        .attrs= loop_attrs,
 680};
 681
 682static int loop_sysfs_init(struct loop_device *lo)
 683{
 684        return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
 685                                  &loop_attribute_group);
 686}
 687
 688static void loop_sysfs_exit(struct loop_device *lo)
 689{
 690        sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
 691                           &loop_attribute_group);
 692}
 693
 694static void loop_config_discard(struct loop_device *lo)
 695{
 696        struct file *file = lo->lo_backing_file;
 697        struct inode *inode = file->f_mapping->host;
 698        struct request_queue *q = lo->lo_queue;
 699
 700        /*
 701         * We use punch hole to reclaim the free space used by the
 702         * image a.k.a. discard. However we do not support discard if
 703         * encryption is enabled, because it may give an attacker
 704         * useful information.
 705         */
 706        if ((!file->f_op->fallocate) ||
 707            lo->lo_encrypt_key_size) {
 708                q->limits.discard_granularity = 0;
 709                q->limits.discard_alignment = 0;
 710                q->limits.max_discard_sectors = 0;
 711                q->limits.discard_zeroes_data = 0;
 712                queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
 713                return;
 714        }
 715
 716        q->limits.discard_granularity = inode->i_sb->s_blocksize;
 717        q->limits.discard_alignment = 0;
 718        q->limits.max_discard_sectors = UINT_MAX >> 9;
 719        q->limits.discard_zeroes_data = 1;
 720        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
 721}
 722
 723static int loop_set_fd(struct loop_device *lo, fmode_t mode,
 724                       struct block_device *bdev, unsigned int arg)
 725{
 726        struct file     *file, *f;
 727        struct inode    *inode;
 728        struct address_space *mapping;
 729        unsigned lo_blocksize;
 730        int             lo_flags = 0;
 731        int             error;
 732        loff_t          size;
 733
 734        /* This is safe, since we have a reference from open(). */
 735        __module_get(THIS_MODULE);
 736
 737        error = -EBADF;
 738        file = fget(arg);
 739        if (!file)
 740                goto out;
 741
 742        error = -EBUSY;
 743        if (lo->lo_state != Lo_unbound)
 744                goto out_putf;
 745
 746        /* Avoid recursion */
 747        f = file;
 748        while (is_loop_device(f)) {
 749                struct loop_device *l;
 750
 751                if (f->f_mapping->host->i_bdev == bdev)
 752                        goto out_putf;
 753
 754                l = f->f_mapping->host->i_bdev->bd_disk->private_data;
 755                if (l->lo_state == Lo_unbound) {
 756                        error = -EINVAL;
 757                        goto out_putf;
 758                }
 759                f = l->lo_backing_file;
 760        }
 761
 762        mapping = file->f_mapping;
 763        inode = mapping->host;
 764
 765        error = -EINVAL;
 766        if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
 767                goto out_putf;
 768
 769        if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
 770            !file->f_op->write)
 771                lo_flags |= LO_FLAGS_READ_ONLY;
 772
 773        lo_blocksize = S_ISBLK(inode->i_mode) ?
 774                inode->i_bdev->bd_block_size : PAGE_SIZE;
 775
 776        error = -EFBIG;
 777        size = get_loop_size(lo, file);
 778        if ((loff_t)(sector_t)size != size)
 779                goto out_putf;
 780
 781        error = 0;
 782
 783        set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
 784
 785        lo->lo_blocksize = lo_blocksize;
 786        lo->lo_device = bdev;
 787        lo->lo_flags = lo_flags;
 788        lo->lo_backing_file = file;
 789        lo->transfer = transfer_none;
 790        lo->ioctl = NULL;
 791        lo->lo_sizelimit = 0;
 792        lo->old_gfp_mask = mapping_gfp_mask(mapping);
 793        mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
 794
 795        if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
 796                blk_queue_flush(lo->lo_queue, REQ_FLUSH);
 797
 798        set_capacity(lo->lo_disk, size);
 799        bd_set_size(bdev, size << 9);
 800        loop_sysfs_init(lo);
 801        /* let user-space know about the new size */
 802        kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 803
 804        set_blocksize(bdev, lo_blocksize);
 805
 806        lo->lo_state = Lo_bound;
 807        if (part_shift)
 808                lo->lo_flags |= LO_FLAGS_PARTSCAN;
 809        if (lo->lo_flags & LO_FLAGS_PARTSCAN)
 810                ioctl_by_bdev(bdev, BLKRRPART, 0);
 811
 812        /* Grab the block_device to prevent its destruction after we
 813         * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
 814         */
 815        bdgrab(bdev);
 816        return 0;
 817
 818 out_putf:
 819        fput(file);
 820 out:
 821        /* This is safe: open() is still holding a reference. */
 822        module_put(THIS_MODULE);
 823        return error;
 824}
 825
 826static int
 827loop_release_xfer(struct loop_device *lo)
 828{
 829        int err = 0;
 830        struct loop_func_table *xfer = lo->lo_encryption;
 831
 832        if (xfer) {
 833                if (xfer->release)
 834                        err = xfer->release(lo);
 835                lo->transfer = NULL;
 836                lo->lo_encryption = NULL;
 837                module_put(xfer->owner);
 838        }
 839        return err;
 840}
 841
 842static int
 843loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
 844               const struct loop_info64 *i)
 845{
 846        int err = 0;
 847
 848        if (xfer) {
 849                struct module *owner = xfer->owner;
 850
 851                if (!try_module_get(owner))
 852                        return -EINVAL;
 853                if (xfer->init)
 854                        err = xfer->init(lo, i);
 855                if (err)
 856                        module_put(owner);
 857                else
 858                        lo->lo_encryption = xfer;
 859        }
 860        return err;
 861}
 862
 863static int loop_clr_fd(struct loop_device *lo)
 864{
 865        struct file *filp = lo->lo_backing_file;
 866        gfp_t gfp = lo->old_gfp_mask;
 867        struct block_device *bdev = lo->lo_device;
 868
 869        if (lo->lo_state != Lo_bound)
 870                return -ENXIO;
 871
 872        /*
 873         * If we've explicitly asked to tear down the loop device,
 874         * and it has an elevated reference count, set it for auto-teardown when
 875         * the last reference goes away. This stops $!~#$@ udev from
 876         * preventing teardown because it decided that it needs to run blkid on
 877         * the loopback device whenever they appear. xfstests is notorious for
 878         * failing tests because blkid via udev races with a losetup
 879         * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
 880         * command to fail with EBUSY.
 881         */
 882        if (lo->lo_refcnt > 1) {
 883                lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
 884                mutex_unlock(&lo->lo_ctl_mutex);
 885                return 0;
 886        }
 887
 888        if (filp == NULL)
 889                return -EINVAL;
 890
 891        spin_lock_irq(&lo->lo_lock);
 892        lo->lo_state = Lo_rundown;
 893        lo->lo_backing_file = NULL;
 894        spin_unlock_irq(&lo->lo_lock);
 895
 896        loop_release_xfer(lo);
 897        lo->transfer = NULL;
 898        lo->ioctl = NULL;
 899        lo->lo_device = NULL;
 900        lo->lo_encryption = NULL;
 901        lo->lo_offset = 0;
 902        lo->lo_sizelimit = 0;
 903        lo->lo_encrypt_key_size = 0;
 904        memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
 905        memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
 906        memset(lo->lo_file_name, 0, LO_NAME_SIZE);
 907        if (bdev) {
 908                bdput(bdev);
 909                invalidate_bdev(bdev);
 910        }
 911        set_capacity(lo->lo_disk, 0);
 912        loop_sysfs_exit(lo);
 913        if (bdev) {
 914                bd_set_size(bdev, 0);
 915                /* let user-space know about this change */
 916                kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 917        }
 918        mapping_set_gfp_mask(filp->f_mapping, gfp);
 919        lo->lo_state = Lo_unbound;
 920        /* This is safe: open() is still holding a reference. */
 921        module_put(THIS_MODULE);
 922        if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
 923                ioctl_by_bdev(bdev, BLKRRPART, 0);
 924        lo->lo_flags = 0;
 925        if (!part_shift)
 926                lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
 927        mutex_unlock(&lo->lo_ctl_mutex);
 928        /*
 929         * Need not hold lo_ctl_mutex to fput backing file.
 930         * Calling fput holding lo_ctl_mutex triggers a circular
 931         * lock dependency possibility warning as fput can take
 932         * bd_mutex which is usually taken before lo_ctl_mutex.
 933         */
 934        fput(filp);
 935        return 0;
 936}
 937
 938static int
 939loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
 940{
 941        int err;
 942        struct loop_func_table *xfer;
 943        kuid_t uid = current_uid();
 944
 945        if (lo->lo_encrypt_key_size &&
 946            !uid_eq(lo->lo_key_owner, uid) &&
 947            !capable(CAP_SYS_ADMIN))
 948                return -EPERM;
 949        if (lo->lo_state != Lo_bound)
 950                return -ENXIO;
 951        if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
 952                return -EINVAL;
 953
 954        err = loop_release_xfer(lo);
 955        if (err)
 956                return err;
 957
 958        if (info->lo_encrypt_type) {
 959                unsigned int type = info->lo_encrypt_type;
 960
 961                if (type >= MAX_LO_CRYPT)
 962                        return -EINVAL;
 963                xfer = xfer_funcs[type];
 964                if (xfer == NULL)
 965                        return -EINVAL;
 966        } else
 967                xfer = NULL;
 968
 969        err = loop_init_xfer(lo, xfer, info);
 970        if (err)
 971                return err;
 972
 973        if (lo->lo_offset != info->lo_offset ||
 974            lo->lo_sizelimit != info->lo_sizelimit)
 975                if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
 976                        return -EFBIG;
 977
 978        loop_config_discard(lo);
 979
 980        memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
 981        memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
 982        lo->lo_file_name[LO_NAME_SIZE-1] = 0;
 983        lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
 984
 985        if (!xfer)
 986                xfer = &none_funcs;
 987        lo->transfer = xfer->transfer;
 988        lo->ioctl = xfer->ioctl;
 989
 990        if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
 991             (info->lo_flags & LO_FLAGS_AUTOCLEAR))
 992                lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
 993
 994        if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
 995             !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
 996                lo->lo_flags |= LO_FLAGS_PARTSCAN;
 997                lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
 998                ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
 999        }
1000
1001        lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1002        lo->lo_init[0] = info->lo_init[0];
1003        lo->lo_init[1] = info->lo_init[1];
1004        if (info->lo_encrypt_key_size) {
1005                memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1006                       info->lo_encrypt_key_size);
1007                lo->lo_key_owner = uid;
1008        }       
1009
1010        return 0;
1011}
1012
1013static int
1014loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1015{
1016        struct file *file = lo->lo_backing_file;
1017        struct kstat stat;
1018        int error;
1019
1020        if (lo->lo_state != Lo_bound)
1021                return -ENXIO;
1022        error = vfs_getattr(&file->f_path, &stat);
1023        if (error)
1024                return error;
1025        memset(info, 0, sizeof(*info));
1026        info->lo_number = lo->lo_number;
1027        info->lo_device = huge_encode_dev(stat.dev);
1028        info->lo_inode = stat.ino;
1029        info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1030        info->lo_offset = lo->lo_offset;
1031        info->lo_sizelimit = lo->lo_sizelimit;
1032        info->lo_flags = lo->lo_flags;
1033        memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1034        memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1035        info->lo_encrypt_type =
1036                lo->lo_encryption ? lo->lo_encryption->number : 0;
1037        if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1038                info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1039                memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1040                       lo->lo_encrypt_key_size);
1041        }
1042        return 0;
1043}
1044
1045static void
1046loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1047{
1048        memset(info64, 0, sizeof(*info64));
1049        info64->lo_number = info->lo_number;
1050        info64->lo_device = info->lo_device;
1051        info64->lo_inode = info->lo_inode;
1052        info64->lo_rdevice = info->lo_rdevice;
1053        info64->lo_offset = info->lo_offset;
1054        info64->lo_sizelimit = 0;
1055        info64->lo_encrypt_type = info->lo_encrypt_type;
1056        info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1057        info64->lo_flags = info->lo_flags;
1058        info64->lo_init[0] = info->lo_init[0];
1059        info64->lo_init[1] = info->lo_init[1];
1060        if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1061                memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1062        else
1063                memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1064        memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1065}
1066
1067static int
1068loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1069{
1070        memset(info, 0, sizeof(*info));
1071        info->lo_number = info64->lo_number;
1072        info->lo_device = info64->lo_device;
1073        info->lo_inode = info64->lo_inode;
1074        info->lo_rdevice = info64->lo_rdevice;
1075        info->lo_offset = info64->lo_offset;
1076        info->lo_encrypt_type = info64->lo_encrypt_type;
1077        info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1078        info->lo_flags = info64->lo_flags;
1079        info->lo_init[0] = info64->lo_init[0];
1080        info->lo_init[1] = info64->lo_init[1];
1081        if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1082                memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1083        else
1084                memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1085        memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1086
1087        /* error in case values were truncated */
1088        if (info->lo_device != info64->lo_device ||
1089            info->lo_rdevice != info64->lo_rdevice ||
1090            info->lo_inode != info64->lo_inode ||
1091            info->lo_offset != info64->lo_offset)
1092                return -EOVERFLOW;
1093
1094        return 0;
1095}
1096
1097static int
1098loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1099{
1100        struct loop_info info;
1101        struct loop_info64 info64;
1102
1103        if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1104                return -EFAULT;
1105        loop_info64_from_old(&info, &info64);
1106        return loop_set_status(lo, &info64);
1107}
1108
1109static int
1110loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1111{
1112        struct loop_info64 info64;
1113
1114        if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1115                return -EFAULT;
1116        return loop_set_status(lo, &info64);
1117}
1118
1119static int
1120loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1121        struct loop_info info;
1122        struct loop_info64 info64;
1123        int err = 0;
1124
1125        if (!arg)
1126                err = -EINVAL;
1127        if (!err)
1128                err = loop_get_status(lo, &info64);
1129        if (!err)
1130                err = loop_info64_to_old(&info64, &info);
1131        if (!err && copy_to_user(arg, &info, sizeof(info)))
1132                err = -EFAULT;
1133
1134        return err;
1135}
1136
1137static int
1138loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1139        struct loop_info64 info64;
1140        int err = 0;
1141
1142        if (!arg)
1143                err = -EINVAL;
1144        if (!err)
1145                err = loop_get_status(lo, &info64);
1146        if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1147                err = -EFAULT;
1148
1149        return err;
1150}
1151
1152static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1153{
1154        if (unlikely(lo->lo_state != Lo_bound))
1155                return -ENXIO;
1156
1157        return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1158}
1159
1160static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1161        unsigned int cmd, unsigned long arg)
1162{
1163        struct loop_device *lo = bdev->bd_disk->private_data;
1164        int err;
1165
1166        mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1167        switch (cmd) {
1168        case LOOP_SET_FD:
1169                err = loop_set_fd(lo, mode, bdev, arg);
1170                break;
1171        case LOOP_CHANGE_FD:
1172                err = loop_change_fd(lo, bdev, arg);
1173                break;
1174        case LOOP_CLR_FD:
1175                /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1176                err = loop_clr_fd(lo);
1177                if (!err)
1178                        goto out_unlocked;
1179                break;
1180        case LOOP_SET_STATUS:
1181                err = -EPERM;
1182                if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1183                        err = loop_set_status_old(lo,
1184                                        (struct loop_info __user *)arg);
1185                break;
1186        case LOOP_GET_STATUS:
1187                err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1188                break;
1189        case LOOP_SET_STATUS64:
1190                err = -EPERM;
1191                if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1192                        err = loop_set_status64(lo,
1193                                        (struct loop_info64 __user *) arg);
1194                break;
1195        case LOOP_GET_STATUS64:
1196                err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1197                break;
1198        case LOOP_SET_CAPACITY:
1199                err = -EPERM;
1200                if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1201                        err = loop_set_capacity(lo, bdev);
1202                break;
1203        default:
1204                err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1205        }
1206        mutex_unlock(&lo->lo_ctl_mutex);
1207
1208out_unlocked:
1209        return err;
1210}
1211
1212#ifdef CONFIG_COMPAT
1213struct compat_loop_info {
1214        compat_int_t    lo_number;      /* ioctl r/o */
1215        compat_dev_t    lo_device;      /* ioctl r/o */
1216        compat_ulong_t  lo_inode;       /* ioctl r/o */
1217        compat_dev_t    lo_rdevice;     /* ioctl r/o */
1218        compat_int_t    lo_offset;
1219        compat_int_t    lo_encrypt_type;
1220        compat_int_t    lo_encrypt_key_size;    /* ioctl w/o */
1221        compat_int_t    lo_flags;       /* ioctl r/o */
1222        char            lo_name[LO_NAME_SIZE];
1223        unsigned char   lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1224        compat_ulong_t  lo_init[2];
1225        char            reserved[4];
1226};
1227
1228/*
1229 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1230 * - noinlined to reduce stack space usage in main part of driver
1231 */
1232static noinline int
1233loop_info64_from_compat(const struct compat_loop_info __user *arg,
1234                        struct loop_info64 *info64)
1235{
1236        struct compat_loop_info info;
1237
1238        if (copy_from_user(&info, arg, sizeof(info)))
1239                return -EFAULT;
1240
1241        memset(info64, 0, sizeof(*info64));
1242        info64->lo_number = info.lo_number;
1243        info64->lo_device = info.lo_device;
1244        info64->lo_inode = info.lo_inode;
1245        info64->lo_rdevice = info.lo_rdevice;
1246        info64->lo_offset = info.lo_offset;
1247        info64->lo_sizelimit = 0;
1248        info64->lo_encrypt_type = info.lo_encrypt_type;
1249        info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1250        info64->lo_flags = info.lo_flags;
1251        info64->lo_init[0] = info.lo_init[0];
1252        info64->lo_init[1] = info.lo_init[1];
1253        if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1254                memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1255        else
1256                memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1257        memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1258        return 0;
1259}
1260
1261/*
1262 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1263 * - noinlined to reduce stack space usage in main part of driver
1264 */
1265static noinline int
1266loop_info64_to_compat(const struct loop_info64 *info64,
1267                      struct compat_loop_info __user *arg)
1268{
1269        struct compat_loop_info info;
1270
1271        memset(&info, 0, sizeof(info));
1272        info.lo_number = info64->lo_number;
1273        info.lo_device = info64->lo_device;
1274        info.lo_inode = info64->lo_inode;
1275        info.lo_rdevice = info64->lo_rdevice;
1276        info.lo_offset = info64->lo_offset;
1277        info.lo_encrypt_type = info64->lo_encrypt_type;
1278        info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1279        info.lo_flags = info64->lo_flags;
1280        info.lo_init[0] = info64->lo_init[0];
1281        info.lo_init[1] = info64->lo_init[1];
1282        if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1283                memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1284        else
1285                memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1286        memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1287
1288        /* error in case values were truncated */
1289        if (info.lo_device != info64->lo_device ||
1290            info.lo_rdevice != info64->lo_rdevice ||
1291            info.lo_inode != info64->lo_inode ||
1292            info.lo_offset != info64->lo_offset ||
1293            info.lo_init[0] != info64->lo_init[0] ||
1294            info.lo_init[1] != info64->lo_init[1])
1295                return -EOVERFLOW;
1296
1297        if (copy_to_user(arg, &info, sizeof(info)))
1298                return -EFAULT;
1299        return 0;
1300}
1301
1302static int
1303loop_set_status_compat(struct loop_device *lo,
1304                       const struct compat_loop_info __user *arg)
1305{
1306        struct loop_info64 info64;
1307        int ret;
1308
1309        ret = loop_info64_from_compat(arg, &info64);
1310        if (ret < 0)
1311                return ret;
1312        return loop_set_status(lo, &info64);
1313}
1314
1315static int
1316loop_get_status_compat(struct loop_device *lo,
1317                       struct compat_loop_info __user *arg)
1318{
1319        struct loop_info64 info64;
1320        int err = 0;
1321
1322        if (!arg)
1323                err = -EINVAL;
1324        if (!err)
1325                err = loop_get_status(lo, &info64);
1326        if (!err)
1327                err = loop_info64_to_compat(&info64, arg);
1328        return err;
1329}
1330
1331static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1332                           unsigned int cmd, unsigned long arg)
1333{
1334        struct loop_device *lo = bdev->bd_disk->private_data;
1335        int err;
1336
1337        switch(cmd) {
1338        case LOOP_SET_STATUS:
1339                mutex_lock(&lo->lo_ctl_mutex);
1340                err = loop_set_status_compat(
1341                        lo, (const struct compat_loop_info __user *) arg);
1342                mutex_unlock(&lo->lo_ctl_mutex);
1343                break;
1344        case LOOP_GET_STATUS:
1345                mutex_lock(&lo->lo_ctl_mutex);
1346                err = loop_get_status_compat(
1347                        lo, (struct compat_loop_info __user *) arg);
1348                mutex_unlock(&lo->lo_ctl_mutex);
1349                break;
1350        case LOOP_SET_CAPACITY:
1351        case LOOP_CLR_FD:
1352        case LOOP_GET_STATUS64:
1353        case LOOP_SET_STATUS64:
1354                arg = (unsigned long) compat_ptr(arg);
1355        case LOOP_SET_FD:
1356        case LOOP_CHANGE_FD:
1357                err = lo_ioctl(bdev, mode, cmd, arg);
1358                break;
1359        default:
1360                err = -ENOIOCTLCMD;
1361                break;
1362        }
1363        return err;
1364}
1365#endif
1366
1367static int lo_open(struct block_device *bdev, fmode_t mode)
1368{
1369        struct loop_device *lo;
1370        int err = 0;
1371
1372        mutex_lock(&loop_index_mutex);
1373        lo = bdev->bd_disk->private_data;
1374        if (!lo) {
1375                err = -ENXIO;
1376                goto out;
1377        }
1378
1379        mutex_lock(&lo->lo_ctl_mutex);
1380        lo->lo_refcnt++;
1381        mutex_unlock(&lo->lo_ctl_mutex);
1382out:
1383        mutex_unlock(&loop_index_mutex);
1384        return err;
1385}
1386
1387static void lo_release(struct gendisk *disk, fmode_t mode)
1388{
1389        struct loop_device *lo = disk->private_data;
1390        int err;
1391
1392        mutex_lock(&lo->lo_ctl_mutex);
1393
1394        if (--lo->lo_refcnt)
1395                goto out;
1396
1397        if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1398                /*
1399                 * In autoclear mode, stop the loop thread
1400                 * and remove configuration after last close.
1401                 */
1402                err = loop_clr_fd(lo);
1403                if (!err)
1404                        return;
1405        } else {
1406                /*
1407                 * Otherwise keep thread (if running) and config,
1408                 * but flush possible ongoing bios in thread.
1409                 */
1410                loop_flush(lo);
1411        }
1412
1413out:
1414        mutex_unlock(&lo->lo_ctl_mutex);
1415}
1416
1417static const struct block_device_operations lo_fops = {
1418        .owner =        THIS_MODULE,
1419        .open =         lo_open,
1420        .release =      lo_release,
1421        .ioctl =        lo_ioctl,
1422#ifdef CONFIG_COMPAT
1423        .compat_ioctl = lo_compat_ioctl,
1424#endif
1425};
1426
1427/*
1428 * And now the modules code and kernel interface.
1429 */
1430static int max_loop;
1431module_param(max_loop, int, S_IRUGO);
1432MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1433module_param(max_part, int, S_IRUGO);
1434MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1435MODULE_LICENSE("GPL");
1436MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1437
1438int loop_register_transfer(struct loop_func_table *funcs)
1439{
1440        unsigned int n = funcs->number;
1441
1442        if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1443                return -EINVAL;
1444        xfer_funcs[n] = funcs;
1445        return 0;
1446}
1447
1448static int unregister_transfer_cb(int id, void *ptr, void *data)
1449{
1450        struct loop_device *lo = ptr;
1451        struct loop_func_table *xfer = data;
1452
1453        mutex_lock(&lo->lo_ctl_mutex);
1454        if (lo->lo_encryption == xfer)
1455                loop_release_xfer(lo);
1456        mutex_unlock(&lo->lo_ctl_mutex);
1457        return 0;
1458}
1459
1460int loop_unregister_transfer(int number)
1461{
1462        unsigned int n = number;
1463        struct loop_func_table *xfer;
1464
1465        if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1466                return -EINVAL;
1467
1468        xfer_funcs[n] = NULL;
1469        idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1470        return 0;
1471}
1472
1473EXPORT_SYMBOL(loop_register_transfer);
1474EXPORT_SYMBOL(loop_unregister_transfer);
1475
1476static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1477                const struct blk_mq_queue_data *bd)
1478{
1479        struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1480
1481        blk_mq_start_request(bd->rq);
1482
1483        if (cmd->rq->cmd_flags & REQ_WRITE) {
1484                struct loop_device *lo = cmd->rq->q->queuedata;
1485                bool need_sched = true;
1486
1487                spin_lock_irq(&lo->lo_lock);
1488                if (lo->write_started)
1489                        need_sched = false;
1490                else
1491                        lo->write_started = true;
1492                list_add_tail(&cmd->list, &lo->write_cmd_head);
1493                spin_unlock_irq(&lo->lo_lock);
1494
1495                if (need_sched)
1496                        queue_work(loop_wq, &lo->write_work);
1497        } else {
1498                queue_work(loop_wq, &cmd->read_work);
1499        }
1500
1501        return BLK_MQ_RQ_QUEUE_OK;
1502}
1503
1504static void loop_handle_cmd(struct loop_cmd *cmd)
1505{
1506        const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1507        struct loop_device *lo = cmd->rq->q->queuedata;
1508        int ret = -EIO;
1509
1510        if (lo->lo_state != Lo_bound)
1511                goto failed;
1512
1513        if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY))
1514                goto failed;
1515
1516        ret = do_req_filebacked(lo, cmd->rq);
1517
1518 failed:
1519        if (ret)
1520                cmd->rq->errors = -EIO;
1521        blk_mq_complete_request(cmd->rq);
1522}
1523
1524static void loop_queue_write_work(struct work_struct *work)
1525{
1526        struct loop_device *lo =
1527                container_of(work, struct loop_device, write_work);
1528        LIST_HEAD(cmd_list);
1529
1530        spin_lock_irq(&lo->lo_lock);
1531 repeat:
1532        list_splice_init(&lo->write_cmd_head, &cmd_list);
1533        spin_unlock_irq(&lo->lo_lock);
1534
1535        while (!list_empty(&cmd_list)) {
1536                struct loop_cmd *cmd = list_first_entry(&cmd_list,
1537                                struct loop_cmd, list);
1538                list_del_init(&cmd->list);
1539                loop_handle_cmd(cmd);
1540        }
1541
1542        spin_lock_irq(&lo->lo_lock);
1543        if (!list_empty(&lo->write_cmd_head))
1544                goto repeat;
1545        lo->write_started = false;
1546        spin_unlock_irq(&lo->lo_lock);
1547}
1548
1549static void loop_queue_read_work(struct work_struct *work)
1550{
1551        struct loop_cmd *cmd =
1552                container_of(work, struct loop_cmd, read_work);
1553
1554        loop_handle_cmd(cmd);
1555}
1556
1557static int loop_init_request(void *data, struct request *rq,
1558                unsigned int hctx_idx, unsigned int request_idx,
1559                unsigned int numa_node)
1560{
1561        struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1562
1563        cmd->rq = rq;
1564        INIT_WORK(&cmd->read_work, loop_queue_read_work);
1565
1566        return 0;
1567}
1568
1569static struct blk_mq_ops loop_mq_ops = {
1570        .queue_rq       = loop_queue_rq,
1571        .map_queue      = blk_mq_map_queue,
1572        .init_request   = loop_init_request,
1573};
1574
1575static int loop_add(struct loop_device **l, int i)
1576{
1577        struct loop_device *lo;
1578        struct gendisk *disk;
1579        int err;
1580
1581        err = -ENOMEM;
1582        lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1583        if (!lo)
1584                goto out;
1585
1586        lo->lo_state = Lo_unbound;
1587
1588        /* allocate id, if @id >= 0, we're requesting that specific id */
1589        if (i >= 0) {
1590                err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1591                if (err == -ENOSPC)
1592                        err = -EEXIST;
1593        } else {
1594                err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1595        }
1596        if (err < 0)
1597                goto out_free_dev;
1598        i = err;
1599
1600        err = -ENOMEM;
1601        lo->tag_set.ops = &loop_mq_ops;
1602        lo->tag_set.nr_hw_queues = 1;
1603        lo->tag_set.queue_depth = 128;
1604        lo->tag_set.numa_node = NUMA_NO_NODE;
1605        lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1606        lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1607        lo->tag_set.driver_data = lo;
1608
1609        err = blk_mq_alloc_tag_set(&lo->tag_set);
1610        if (err)
1611                goto out_free_idr;
1612
1613        lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1614        if (IS_ERR_OR_NULL(lo->lo_queue)) {
1615                err = PTR_ERR(lo->lo_queue);
1616                goto out_cleanup_tags;
1617        }
1618        lo->lo_queue->queuedata = lo;
1619
1620        INIT_LIST_HEAD(&lo->write_cmd_head);
1621        INIT_WORK(&lo->write_work, loop_queue_write_work);
1622
1623        disk = lo->lo_disk = alloc_disk(1 << part_shift);
1624        if (!disk)
1625                goto out_free_queue;
1626
1627        /*
1628         * Disable partition scanning by default. The in-kernel partition
1629         * scanning can be requested individually per-device during its
1630         * setup. Userspace can always add and remove partitions from all
1631         * devices. The needed partition minors are allocated from the
1632         * extended minor space, the main loop device numbers will continue
1633         * to match the loop minors, regardless of the number of partitions
1634         * used.
1635         *
1636         * If max_part is given, partition scanning is globally enabled for
1637         * all loop devices. The minors for the main loop devices will be
1638         * multiples of max_part.
1639         *
1640         * Note: Global-for-all-devices, set-only-at-init, read-only module
1641         * parameteters like 'max_loop' and 'max_part' make things needlessly
1642         * complicated, are too static, inflexible and may surprise
1643         * userspace tools. Parameters like this in general should be avoided.
1644         */
1645        if (!part_shift)
1646                disk->flags |= GENHD_FL_NO_PART_SCAN;
1647        disk->flags |= GENHD_FL_EXT_DEVT;
1648        mutex_init(&lo->lo_ctl_mutex);
1649        lo->lo_number           = i;
1650        spin_lock_init(&lo->lo_lock);
1651        disk->major             = LOOP_MAJOR;
1652        disk->first_minor       = i << part_shift;
1653        disk->fops              = &lo_fops;
1654        disk->private_data      = lo;
1655        disk->queue             = lo->lo_queue;
1656        sprintf(disk->disk_name, "loop%d", i);
1657        add_disk(disk);
1658        *l = lo;
1659        return lo->lo_number;
1660
1661out_free_queue:
1662        blk_cleanup_queue(lo->lo_queue);
1663out_cleanup_tags:
1664        blk_mq_free_tag_set(&lo->tag_set);
1665out_free_idr:
1666        idr_remove(&loop_index_idr, i);
1667out_free_dev:
1668        kfree(lo);
1669out:
1670        return err;
1671}
1672
1673static void loop_remove(struct loop_device *lo)
1674{
1675        del_gendisk(lo->lo_disk);
1676        blk_cleanup_queue(lo->lo_queue);
1677        blk_mq_free_tag_set(&lo->tag_set);
1678        put_disk(lo->lo_disk);
1679        kfree(lo);
1680}
1681
1682static int find_free_cb(int id, void *ptr, void *data)
1683{
1684        struct loop_device *lo = ptr;
1685        struct loop_device **l = data;
1686
1687        if (lo->lo_state == Lo_unbound) {
1688                *l = lo;
1689                return 1;
1690        }
1691        return 0;
1692}
1693
1694static int loop_lookup(struct loop_device **l, int i)
1695{
1696        struct loop_device *lo;
1697        int ret = -ENODEV;
1698
1699        if (i < 0) {
1700                int err;
1701
1702                err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1703                if (err == 1) {
1704                        *l = lo;
1705                        ret = lo->lo_number;
1706                }
1707                goto out;
1708        }
1709
1710        /* lookup and return a specific i */
1711        lo = idr_find(&loop_index_idr, i);
1712        if (lo) {
1713                *l = lo;
1714                ret = lo->lo_number;
1715        }
1716out:
1717        return ret;
1718}
1719
1720static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1721{
1722        struct loop_device *lo;
1723        struct kobject *kobj;
1724        int err;
1725
1726        mutex_lock(&loop_index_mutex);
1727        err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1728        if (err < 0)
1729                err = loop_add(&lo, MINOR(dev) >> part_shift);
1730        if (err < 0)
1731                kobj = NULL;
1732        else
1733                kobj = get_disk(lo->lo_disk);
1734        mutex_unlock(&loop_index_mutex);
1735
1736        *part = 0;
1737        return kobj;
1738}
1739
1740static long loop_control_ioctl(struct file *file, unsigned int cmd,
1741                               unsigned long parm)
1742{
1743        struct loop_device *lo;
1744        int ret = -ENOSYS;
1745
1746        mutex_lock(&loop_index_mutex);
1747        switch (cmd) {
1748        case LOOP_CTL_ADD:
1749                ret = loop_lookup(&lo, parm);
1750                if (ret >= 0) {
1751                        ret = -EEXIST;
1752                        break;
1753                }
1754                ret = loop_add(&lo, parm);
1755                break;
1756        case LOOP_CTL_REMOVE:
1757                ret = loop_lookup(&lo, parm);
1758                if (ret < 0)
1759                        break;
1760                mutex_lock(&lo->lo_ctl_mutex);
1761                if (lo->lo_state != Lo_unbound) {
1762                        ret = -EBUSY;
1763                        mutex_unlock(&lo->lo_ctl_mutex);
1764                        break;
1765                }
1766                if (lo->lo_refcnt > 0) {
1767                        ret = -EBUSY;
1768                        mutex_unlock(&lo->lo_ctl_mutex);
1769                        break;
1770                }
1771                lo->lo_disk->private_data = NULL;
1772                mutex_unlock(&lo->lo_ctl_mutex);
1773                idr_remove(&loop_index_idr, lo->lo_number);
1774                loop_remove(lo);
1775                break;
1776        case LOOP_CTL_GET_FREE:
1777                ret = loop_lookup(&lo, -1);
1778                if (ret >= 0)
1779                        break;
1780                ret = loop_add(&lo, -1);
1781        }
1782        mutex_unlock(&loop_index_mutex);
1783
1784        return ret;
1785}
1786
1787static const struct file_operations loop_ctl_fops = {
1788        .open           = nonseekable_open,
1789        .unlocked_ioctl = loop_control_ioctl,
1790        .compat_ioctl   = loop_control_ioctl,
1791        .owner          = THIS_MODULE,
1792        .llseek         = noop_llseek,
1793};
1794
1795static struct miscdevice loop_misc = {
1796        .minor          = LOOP_CTRL_MINOR,
1797        .name           = "loop-control",
1798        .fops           = &loop_ctl_fops,
1799};
1800
1801MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1802MODULE_ALIAS("devname:loop-control");
1803
1804static int __init loop_init(void)
1805{
1806        int i, nr;
1807        unsigned long range;
1808        struct loop_device *lo;
1809        int err;
1810
1811        err = misc_register(&loop_misc);
1812        if (err < 0)
1813                return err;
1814
1815        part_shift = 0;
1816        if (max_part > 0) {
1817                part_shift = fls(max_part);
1818
1819                /*
1820                 * Adjust max_part according to part_shift as it is exported
1821                 * to user space so that user can decide correct minor number
1822                 * if [s]he want to create more devices.
1823                 *
1824                 * Note that -1 is required because partition 0 is reserved
1825                 * for the whole disk.
1826                 */
1827                max_part = (1UL << part_shift) - 1;
1828        }
1829
1830        if ((1UL << part_shift) > DISK_MAX_PARTS) {
1831                err = -EINVAL;
1832                goto misc_out;
1833        }
1834
1835        if (max_loop > 1UL << (MINORBITS - part_shift)) {
1836                err = -EINVAL;
1837                goto misc_out;
1838        }
1839
1840        /*
1841         * If max_loop is specified, create that many devices upfront.
1842         * This also becomes a hard limit. If max_loop is not specified,
1843         * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1844         * init time. Loop devices can be requested on-demand with the
1845         * /dev/loop-control interface, or be instantiated by accessing
1846         * a 'dead' device node.
1847         */
1848        if (max_loop) {
1849                nr = max_loop;
1850                range = max_loop << part_shift;
1851        } else {
1852                nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1853                range = 1UL << MINORBITS;
1854        }
1855
1856        if (register_blkdev(LOOP_MAJOR, "loop")) {
1857                err = -EIO;
1858                goto misc_out;
1859        }
1860
1861        loop_wq = alloc_workqueue("kloopd",
1862                        WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_UNBOUND, 0);
1863        if (!loop_wq) {
1864                err = -ENOMEM;
1865                goto misc_out;
1866        }
1867
1868        blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1869                                  THIS_MODULE, loop_probe, NULL, NULL);
1870
1871        /* pre-create number of devices given by config or max_loop */
1872        mutex_lock(&loop_index_mutex);
1873        for (i = 0; i < nr; i++)
1874                loop_add(&lo, i);
1875        mutex_unlock(&loop_index_mutex);
1876
1877        printk(KERN_INFO "loop: module loaded\n");
1878        return 0;
1879
1880misc_out:
1881        misc_deregister(&loop_misc);
1882        return err;
1883}
1884
1885static int loop_exit_cb(int id, void *ptr, void *data)
1886{
1887        struct loop_device *lo = ptr;
1888
1889        loop_remove(lo);
1890        return 0;
1891}
1892
1893static void __exit loop_exit(void)
1894{
1895        unsigned long range;
1896
1897        range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1898
1899        idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1900        idr_destroy(&loop_index_idr);
1901
1902        blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1903        unregister_blkdev(LOOP_MAJOR, "loop");
1904
1905        destroy_workqueue(loop_wq);
1906
1907        misc_deregister(&loop_misc);
1908}
1909
1910module_init(loop_init);
1911module_exit(loop_exit);
1912
1913#ifndef MODULE
1914static int __init max_loop_setup(char *str)
1915{
1916        max_loop = simple_strtol(str, NULL, 0);
1917        return 1;
1918}
1919
1920__setup("max_loop=", max_loop_setup);
1921#endif
1922