linux/drivers/block/nvme-core.c
<<
>>
Prefs
   1/*
   2 * NVM Express device driver
   3 * Copyright (c) 2011-2014, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 */
  14
  15#include <linux/nvme.h>
  16#include <linux/bitops.h>
  17#include <linux/blkdev.h>
  18#include <linux/blk-mq.h>
  19#include <linux/cpu.h>
  20#include <linux/delay.h>
  21#include <linux/errno.h>
  22#include <linux/fs.h>
  23#include <linux/genhd.h>
  24#include <linux/hdreg.h>
  25#include <linux/idr.h>
  26#include <linux/init.h>
  27#include <linux/interrupt.h>
  28#include <linux/io.h>
  29#include <linux/kdev_t.h>
  30#include <linux/kthread.h>
  31#include <linux/kernel.h>
  32#include <linux/mm.h>
  33#include <linux/module.h>
  34#include <linux/moduleparam.h>
  35#include <linux/pci.h>
  36#include <linux/poison.h>
  37#include <linux/ptrace.h>
  38#include <linux/sched.h>
  39#include <linux/slab.h>
  40#include <linux/t10-pi.h>
  41#include <linux/types.h>
  42#include <scsi/sg.h>
  43#include <asm-generic/io-64-nonatomic-lo-hi.h>
  44
  45#define NVME_MINORS             (1U << MINORBITS)
  46#define NVME_Q_DEPTH            1024
  47#define NVME_AQ_DEPTH           64
  48#define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
  49#define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
  50#define ADMIN_TIMEOUT           (admin_timeout * HZ)
  51#define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
  52
  53static unsigned char admin_timeout = 60;
  54module_param(admin_timeout, byte, 0644);
  55MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
  56
  57unsigned char nvme_io_timeout = 30;
  58module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
  59MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
  60
  61static unsigned char shutdown_timeout = 5;
  62module_param(shutdown_timeout, byte, 0644);
  63MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
  64
  65static int nvme_major;
  66module_param(nvme_major, int, 0);
  67
  68static int nvme_char_major;
  69module_param(nvme_char_major, int, 0);
  70
  71static int use_threaded_interrupts;
  72module_param(use_threaded_interrupts, int, 0);
  73
  74static DEFINE_SPINLOCK(dev_list_lock);
  75static LIST_HEAD(dev_list);
  76static struct task_struct *nvme_thread;
  77static struct workqueue_struct *nvme_workq;
  78static wait_queue_head_t nvme_kthread_wait;
  79
  80static struct class *nvme_class;
  81
  82static void nvme_reset_failed_dev(struct work_struct *ws);
  83static int nvme_process_cq(struct nvme_queue *nvmeq);
  84
  85struct async_cmd_info {
  86        struct kthread_work work;
  87        struct kthread_worker *worker;
  88        struct request *req;
  89        u32 result;
  90        int status;
  91        void *ctx;
  92};
  93
  94/*
  95 * An NVM Express queue.  Each device has at least two (one for admin
  96 * commands and one for I/O commands).
  97 */
  98struct nvme_queue {
  99        struct device *q_dmadev;
 100        struct nvme_dev *dev;
 101        char irqname[24];       /* nvme4294967295-65535\0 */
 102        spinlock_t q_lock;
 103        struct nvme_command *sq_cmds;
 104        volatile struct nvme_completion *cqes;
 105        dma_addr_t sq_dma_addr;
 106        dma_addr_t cq_dma_addr;
 107        u32 __iomem *q_db;
 108        u16 q_depth;
 109        s16 cq_vector;
 110        u16 sq_head;
 111        u16 sq_tail;
 112        u16 cq_head;
 113        u16 qid;
 114        u8 cq_phase;
 115        u8 cqe_seen;
 116        struct async_cmd_info cmdinfo;
 117        struct blk_mq_hw_ctx *hctx;
 118};
 119
 120/*
 121 * Check we didin't inadvertently grow the command struct
 122 */
 123static inline void _nvme_check_size(void)
 124{
 125        BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
 126        BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
 127        BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
 128        BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
 129        BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
 130        BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
 131        BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
 132        BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
 133        BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
 134        BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
 135        BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
 136        BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
 137}
 138
 139typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
 140                                                struct nvme_completion *);
 141
 142struct nvme_cmd_info {
 143        nvme_completion_fn fn;
 144        void *ctx;
 145        int aborted;
 146        struct nvme_queue *nvmeq;
 147        struct nvme_iod iod[0];
 148};
 149
 150/*
 151 * Max size of iod being embedded in the request payload
 152 */
 153#define NVME_INT_PAGES          2
 154#define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->page_size)
 155
 156/*
 157 * Will slightly overestimate the number of pages needed.  This is OK
 158 * as it only leads to a small amount of wasted memory for the lifetime of
 159 * the I/O.
 160 */
 161static int nvme_npages(unsigned size, struct nvme_dev *dev)
 162{
 163        unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
 164        return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
 165}
 166
 167static unsigned int nvme_cmd_size(struct nvme_dev *dev)
 168{
 169        unsigned int ret = sizeof(struct nvme_cmd_info);
 170
 171        ret += sizeof(struct nvme_iod);
 172        ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
 173        ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
 174
 175        return ret;
 176}
 177
 178static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 179                                unsigned int hctx_idx)
 180{
 181        struct nvme_dev *dev = data;
 182        struct nvme_queue *nvmeq = dev->queues[0];
 183
 184        WARN_ON(nvmeq->hctx);
 185        nvmeq->hctx = hctx;
 186        hctx->driver_data = nvmeq;
 187        return 0;
 188}
 189
 190static int nvme_admin_init_request(void *data, struct request *req,
 191                                unsigned int hctx_idx, unsigned int rq_idx,
 192                                unsigned int numa_node)
 193{
 194        struct nvme_dev *dev = data;
 195        struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
 196        struct nvme_queue *nvmeq = dev->queues[0];
 197
 198        BUG_ON(!nvmeq);
 199        cmd->nvmeq = nvmeq;
 200        return 0;
 201}
 202
 203static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 204{
 205        struct nvme_queue *nvmeq = hctx->driver_data;
 206
 207        nvmeq->hctx = NULL;
 208}
 209
 210static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 211                          unsigned int hctx_idx)
 212{
 213        struct nvme_dev *dev = data;
 214        struct nvme_queue *nvmeq = dev->queues[
 215                                        (hctx_idx % dev->queue_count) + 1];
 216
 217        if (!nvmeq->hctx)
 218                nvmeq->hctx = hctx;
 219
 220        /* nvmeq queues are shared between namespaces. We assume here that
 221         * blk-mq map the tags so they match up with the nvme queue tags. */
 222        WARN_ON(nvmeq->hctx->tags != hctx->tags);
 223
 224        hctx->driver_data = nvmeq;
 225        return 0;
 226}
 227
 228static int nvme_init_request(void *data, struct request *req,
 229                                unsigned int hctx_idx, unsigned int rq_idx,
 230                                unsigned int numa_node)
 231{
 232        struct nvme_dev *dev = data;
 233        struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
 234        struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
 235
 236        BUG_ON(!nvmeq);
 237        cmd->nvmeq = nvmeq;
 238        return 0;
 239}
 240
 241static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
 242                                nvme_completion_fn handler)
 243{
 244        cmd->fn = handler;
 245        cmd->ctx = ctx;
 246        cmd->aborted = 0;
 247        blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
 248}
 249
 250static void *iod_get_private(struct nvme_iod *iod)
 251{
 252        return (void *) (iod->private & ~0x1UL);
 253}
 254
 255/*
 256 * If bit 0 is set, the iod is embedded in the request payload.
 257 */
 258static bool iod_should_kfree(struct nvme_iod *iod)
 259{
 260        return (iod->private & 0x01) == 0;
 261}
 262
 263/* Special values must be less than 0x1000 */
 264#define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
 265#define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
 266#define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
 267#define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
 268
 269static void special_completion(struct nvme_queue *nvmeq, void *ctx,
 270                                                struct nvme_completion *cqe)
 271{
 272        if (ctx == CMD_CTX_CANCELLED)
 273                return;
 274        if (ctx == CMD_CTX_COMPLETED) {
 275                dev_warn(nvmeq->q_dmadev,
 276                                "completed id %d twice on queue %d\n",
 277                                cqe->command_id, le16_to_cpup(&cqe->sq_id));
 278                return;
 279        }
 280        if (ctx == CMD_CTX_INVALID) {
 281                dev_warn(nvmeq->q_dmadev,
 282                                "invalid id %d completed on queue %d\n",
 283                                cqe->command_id, le16_to_cpup(&cqe->sq_id));
 284                return;
 285        }
 286        dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
 287}
 288
 289static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
 290{
 291        void *ctx;
 292
 293        if (fn)
 294                *fn = cmd->fn;
 295        ctx = cmd->ctx;
 296        cmd->fn = special_completion;
 297        cmd->ctx = CMD_CTX_CANCELLED;
 298        return ctx;
 299}
 300
 301static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
 302                                                struct nvme_completion *cqe)
 303{
 304        struct request *req = ctx;
 305
 306        u32 result = le32_to_cpup(&cqe->result);
 307        u16 status = le16_to_cpup(&cqe->status) >> 1;
 308
 309        if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
 310                ++nvmeq->dev->event_limit;
 311        if (status == NVME_SC_SUCCESS)
 312                dev_warn(nvmeq->q_dmadev,
 313                        "async event result %08x\n", result);
 314
 315        blk_mq_free_hctx_request(nvmeq->hctx, req);
 316}
 317
 318static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
 319                                                struct nvme_completion *cqe)
 320{
 321        struct request *req = ctx;
 322
 323        u16 status = le16_to_cpup(&cqe->status) >> 1;
 324        u32 result = le32_to_cpup(&cqe->result);
 325
 326        blk_mq_free_hctx_request(nvmeq->hctx, req);
 327
 328        dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
 329        ++nvmeq->dev->abort_limit;
 330}
 331
 332static void async_completion(struct nvme_queue *nvmeq, void *ctx,
 333                                                struct nvme_completion *cqe)
 334{
 335        struct async_cmd_info *cmdinfo = ctx;
 336        cmdinfo->result = le32_to_cpup(&cqe->result);
 337        cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
 338        queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
 339        blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
 340}
 341
 342static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
 343                                  unsigned int tag)
 344{
 345        struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
 346        struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
 347
 348        return blk_mq_rq_to_pdu(req);
 349}
 350
 351/*
 352 * Called with local interrupts disabled and the q_lock held.  May not sleep.
 353 */
 354static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
 355                                                nvme_completion_fn *fn)
 356{
 357        struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
 358        void *ctx;
 359        if (tag >= nvmeq->q_depth) {
 360                *fn = special_completion;
 361                return CMD_CTX_INVALID;
 362        }
 363        if (fn)
 364                *fn = cmd->fn;
 365        ctx = cmd->ctx;
 366        cmd->fn = special_completion;
 367        cmd->ctx = CMD_CTX_COMPLETED;
 368        return ctx;
 369}
 370
 371/**
 372 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
 373 * @nvmeq: The queue to use
 374 * @cmd: The command to send
 375 *
 376 * Safe to use from interrupt context
 377 */
 378static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
 379{
 380        u16 tail = nvmeq->sq_tail;
 381
 382        memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
 383        if (++tail == nvmeq->q_depth)
 384                tail = 0;
 385        writel(tail, nvmeq->q_db);
 386        nvmeq->sq_tail = tail;
 387
 388        return 0;
 389}
 390
 391static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
 392{
 393        unsigned long flags;
 394        int ret;
 395        spin_lock_irqsave(&nvmeq->q_lock, flags);
 396        ret = __nvme_submit_cmd(nvmeq, cmd);
 397        spin_unlock_irqrestore(&nvmeq->q_lock, flags);
 398        return ret;
 399}
 400
 401static __le64 **iod_list(struct nvme_iod *iod)
 402{
 403        return ((void *)iod) + iod->offset;
 404}
 405
 406static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
 407                            unsigned nseg, unsigned long private)
 408{
 409        iod->private = private;
 410        iod->offset = offsetof(struct nvme_iod, sg[nseg]);
 411        iod->npages = -1;
 412        iod->length = nbytes;
 413        iod->nents = 0;
 414}
 415
 416static struct nvme_iod *
 417__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
 418                 unsigned long priv, gfp_t gfp)
 419{
 420        struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
 421                                sizeof(__le64 *) * nvme_npages(bytes, dev) +
 422                                sizeof(struct scatterlist) * nseg, gfp);
 423
 424        if (iod)
 425                iod_init(iod, bytes, nseg, priv);
 426
 427        return iod;
 428}
 429
 430static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
 431                                       gfp_t gfp)
 432{
 433        unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
 434                                                sizeof(struct nvme_dsm_range);
 435        unsigned long mask = 0;
 436        struct nvme_iod *iod;
 437
 438        if (rq->nr_phys_segments <= NVME_INT_PAGES &&
 439            size <= NVME_INT_BYTES(dev)) {
 440                struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
 441
 442                iod = cmd->iod;
 443                mask = 0x01;
 444                iod_init(iod, size, rq->nr_phys_segments,
 445                                (unsigned long) rq | 0x01);
 446                return iod;
 447        }
 448
 449        return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
 450                                (unsigned long) rq, gfp);
 451}
 452
 453void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
 454{
 455        const int last_prp = dev->page_size / 8 - 1;
 456        int i;
 457        __le64 **list = iod_list(iod);
 458        dma_addr_t prp_dma = iod->first_dma;
 459
 460        if (iod->npages == 0)
 461                dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
 462        for (i = 0; i < iod->npages; i++) {
 463                __le64 *prp_list = list[i];
 464                dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
 465                dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
 466                prp_dma = next_prp_dma;
 467        }
 468
 469        if (iod_should_kfree(iod))
 470                kfree(iod);
 471}
 472
 473static int nvme_error_status(u16 status)
 474{
 475        switch (status & 0x7ff) {
 476        case NVME_SC_SUCCESS:
 477                return 0;
 478        case NVME_SC_CAP_EXCEEDED:
 479                return -ENOSPC;
 480        default:
 481                return -EIO;
 482        }
 483}
 484
 485#ifdef CONFIG_BLK_DEV_INTEGRITY
 486static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
 487{
 488        if (be32_to_cpu(pi->ref_tag) == v)
 489                pi->ref_tag = cpu_to_be32(p);
 490}
 491
 492static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
 493{
 494        if (be32_to_cpu(pi->ref_tag) == p)
 495                pi->ref_tag = cpu_to_be32(v);
 496}
 497
 498/**
 499 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
 500 *
 501 * The virtual start sector is the one that was originally submitted by the
 502 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
 503 * start sector may be different. Remap protection information to match the
 504 * physical LBA on writes, and back to the original seed on reads.
 505 *
 506 * Type 0 and 3 do not have a ref tag, so no remapping required.
 507 */
 508static void nvme_dif_remap(struct request *req,
 509                        void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
 510{
 511        struct nvme_ns *ns = req->rq_disk->private_data;
 512        struct bio_integrity_payload *bip;
 513        struct t10_pi_tuple *pi;
 514        void *p, *pmap;
 515        u32 i, nlb, ts, phys, virt;
 516
 517        if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
 518                return;
 519
 520        bip = bio_integrity(req->bio);
 521        if (!bip)
 522                return;
 523
 524        pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
 525        if (!pmap)
 526                return;
 527
 528        p = pmap;
 529        virt = bip_get_seed(bip);
 530        phys = nvme_block_nr(ns, blk_rq_pos(req));
 531        nlb = (blk_rq_bytes(req) >> ns->lba_shift);
 532        ts = ns->disk->integrity->tuple_size;
 533
 534        for (i = 0; i < nlb; i++, virt++, phys++) {
 535                pi = (struct t10_pi_tuple *)p;
 536                dif_swap(phys, virt, pi);
 537                p += ts;
 538        }
 539        kunmap_atomic(pmap);
 540}
 541
 542static int nvme_noop_verify(struct blk_integrity_iter *iter)
 543{
 544        return 0;
 545}
 546
 547static int nvme_noop_generate(struct blk_integrity_iter *iter)
 548{
 549        return 0;
 550}
 551
 552struct blk_integrity nvme_meta_noop = {
 553        .name                   = "NVME_META_NOOP",
 554        .generate_fn            = nvme_noop_generate,
 555        .verify_fn              = nvme_noop_verify,
 556};
 557
 558static void nvme_init_integrity(struct nvme_ns *ns)
 559{
 560        struct blk_integrity integrity;
 561
 562        switch (ns->pi_type) {
 563        case NVME_NS_DPS_PI_TYPE3:
 564                integrity = t10_pi_type3_crc;
 565                break;
 566        case NVME_NS_DPS_PI_TYPE1:
 567        case NVME_NS_DPS_PI_TYPE2:
 568                integrity = t10_pi_type1_crc;
 569                break;
 570        default:
 571                integrity = nvme_meta_noop;
 572                break;
 573        }
 574        integrity.tuple_size = ns->ms;
 575        blk_integrity_register(ns->disk, &integrity);
 576        blk_queue_max_integrity_segments(ns->queue, 1);
 577}
 578#else /* CONFIG_BLK_DEV_INTEGRITY */
 579static void nvme_dif_remap(struct request *req,
 580                        void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
 581{
 582}
 583static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
 584{
 585}
 586static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
 587{
 588}
 589static void nvme_init_integrity(struct nvme_ns *ns)
 590{
 591}
 592#endif
 593
 594static void req_completion(struct nvme_queue *nvmeq, void *ctx,
 595                                                struct nvme_completion *cqe)
 596{
 597        struct nvme_iod *iod = ctx;
 598        struct request *req = iod_get_private(iod);
 599        struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
 600
 601        u16 status = le16_to_cpup(&cqe->status) >> 1;
 602
 603        if (unlikely(status)) {
 604                if (!(status & NVME_SC_DNR || blk_noretry_request(req))
 605                    && (jiffies - req->start_time) < req->timeout) {
 606                        unsigned long flags;
 607
 608                        blk_mq_requeue_request(req);
 609                        spin_lock_irqsave(req->q->queue_lock, flags);
 610                        if (!blk_queue_stopped(req->q))
 611                                blk_mq_kick_requeue_list(req->q);
 612                        spin_unlock_irqrestore(req->q->queue_lock, flags);
 613                        return;
 614                }
 615                req->errors = nvme_error_status(status);
 616        } else
 617                req->errors = 0;
 618
 619        if (cmd_rq->aborted)
 620                dev_warn(&nvmeq->dev->pci_dev->dev,
 621                        "completing aborted command with status:%04x\n",
 622                        status);
 623
 624        if (iod->nents) {
 625                dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
 626                        rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 627                if (blk_integrity_rq(req)) {
 628                        if (!rq_data_dir(req))
 629                                nvme_dif_remap(req, nvme_dif_complete);
 630                        dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->meta_sg, 1,
 631                                rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 632                }
 633        }
 634        nvme_free_iod(nvmeq->dev, iod);
 635
 636        blk_mq_complete_request(req);
 637}
 638
 639/* length is in bytes.  gfp flags indicates whether we may sleep. */
 640int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
 641                                                                gfp_t gfp)
 642{
 643        struct dma_pool *pool;
 644        int length = total_len;
 645        struct scatterlist *sg = iod->sg;
 646        int dma_len = sg_dma_len(sg);
 647        u64 dma_addr = sg_dma_address(sg);
 648        int offset = offset_in_page(dma_addr);
 649        __le64 *prp_list;
 650        __le64 **list = iod_list(iod);
 651        dma_addr_t prp_dma;
 652        int nprps, i;
 653        u32 page_size = dev->page_size;
 654
 655        length -= (page_size - offset);
 656        if (length <= 0)
 657                return total_len;
 658
 659        dma_len -= (page_size - offset);
 660        if (dma_len) {
 661                dma_addr += (page_size - offset);
 662        } else {
 663                sg = sg_next(sg);
 664                dma_addr = sg_dma_address(sg);
 665                dma_len = sg_dma_len(sg);
 666        }
 667
 668        if (length <= page_size) {
 669                iod->first_dma = dma_addr;
 670                return total_len;
 671        }
 672
 673        nprps = DIV_ROUND_UP(length, page_size);
 674        if (nprps <= (256 / 8)) {
 675                pool = dev->prp_small_pool;
 676                iod->npages = 0;
 677        } else {
 678                pool = dev->prp_page_pool;
 679                iod->npages = 1;
 680        }
 681
 682        prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
 683        if (!prp_list) {
 684                iod->first_dma = dma_addr;
 685                iod->npages = -1;
 686                return (total_len - length) + page_size;
 687        }
 688        list[0] = prp_list;
 689        iod->first_dma = prp_dma;
 690        i = 0;
 691        for (;;) {
 692                if (i == page_size >> 3) {
 693                        __le64 *old_prp_list = prp_list;
 694                        prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
 695                        if (!prp_list)
 696                                return total_len - length;
 697                        list[iod->npages++] = prp_list;
 698                        prp_list[0] = old_prp_list[i - 1];
 699                        old_prp_list[i - 1] = cpu_to_le64(prp_dma);
 700                        i = 1;
 701                }
 702                prp_list[i++] = cpu_to_le64(dma_addr);
 703                dma_len -= page_size;
 704                dma_addr += page_size;
 705                length -= page_size;
 706                if (length <= 0)
 707                        break;
 708                if (dma_len > 0)
 709                        continue;
 710                BUG_ON(dma_len < 0);
 711                sg = sg_next(sg);
 712                dma_addr = sg_dma_address(sg);
 713                dma_len = sg_dma_len(sg);
 714        }
 715
 716        return total_len;
 717}
 718
 719/*
 720 * We reuse the small pool to allocate the 16-byte range here as it is not
 721 * worth having a special pool for these or additional cases to handle freeing
 722 * the iod.
 723 */
 724static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
 725                struct request *req, struct nvme_iod *iod)
 726{
 727        struct nvme_dsm_range *range =
 728                                (struct nvme_dsm_range *)iod_list(iod)[0];
 729        struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
 730
 731        range->cattr = cpu_to_le32(0);
 732        range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
 733        range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
 734
 735        memset(cmnd, 0, sizeof(*cmnd));
 736        cmnd->dsm.opcode = nvme_cmd_dsm;
 737        cmnd->dsm.command_id = req->tag;
 738        cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
 739        cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
 740        cmnd->dsm.nr = 0;
 741        cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
 742
 743        if (++nvmeq->sq_tail == nvmeq->q_depth)
 744                nvmeq->sq_tail = 0;
 745        writel(nvmeq->sq_tail, nvmeq->q_db);
 746}
 747
 748static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
 749                                                                int cmdid)
 750{
 751        struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
 752
 753        memset(cmnd, 0, sizeof(*cmnd));
 754        cmnd->common.opcode = nvme_cmd_flush;
 755        cmnd->common.command_id = cmdid;
 756        cmnd->common.nsid = cpu_to_le32(ns->ns_id);
 757
 758        if (++nvmeq->sq_tail == nvmeq->q_depth)
 759                nvmeq->sq_tail = 0;
 760        writel(nvmeq->sq_tail, nvmeq->q_db);
 761}
 762
 763static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
 764                                                        struct nvme_ns *ns)
 765{
 766        struct request *req = iod_get_private(iod);
 767        struct nvme_command *cmnd;
 768        u16 control = 0;
 769        u32 dsmgmt = 0;
 770
 771        if (req->cmd_flags & REQ_FUA)
 772                control |= NVME_RW_FUA;
 773        if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
 774                control |= NVME_RW_LR;
 775
 776        if (req->cmd_flags & REQ_RAHEAD)
 777                dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
 778
 779        cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
 780        memset(cmnd, 0, sizeof(*cmnd));
 781
 782        cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
 783        cmnd->rw.command_id = req->tag;
 784        cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
 785        cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
 786        cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
 787        cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
 788        cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
 789
 790        if (blk_integrity_rq(req)) {
 791                cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
 792                switch (ns->pi_type) {
 793                case NVME_NS_DPS_PI_TYPE3:
 794                        control |= NVME_RW_PRINFO_PRCHK_GUARD;
 795                        break;
 796                case NVME_NS_DPS_PI_TYPE1:
 797                case NVME_NS_DPS_PI_TYPE2:
 798                        control |= NVME_RW_PRINFO_PRCHK_GUARD |
 799                                        NVME_RW_PRINFO_PRCHK_REF;
 800                        cmnd->rw.reftag = cpu_to_le32(
 801                                        nvme_block_nr(ns, blk_rq_pos(req)));
 802                        break;
 803                }
 804        } else if (ns->ms)
 805                control |= NVME_RW_PRINFO_PRACT;
 806
 807        cmnd->rw.control = cpu_to_le16(control);
 808        cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
 809
 810        if (++nvmeq->sq_tail == nvmeq->q_depth)
 811                nvmeq->sq_tail = 0;
 812        writel(nvmeq->sq_tail, nvmeq->q_db);
 813
 814        return 0;
 815}
 816
 817static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
 818                         const struct blk_mq_queue_data *bd)
 819{
 820        struct nvme_ns *ns = hctx->queue->queuedata;
 821        struct nvme_queue *nvmeq = hctx->driver_data;
 822        struct request *req = bd->rq;
 823        struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
 824        struct nvme_iod *iod;
 825        enum dma_data_direction dma_dir;
 826
 827        /*
 828         * If formated with metadata, require the block layer provide a buffer
 829         * unless this namespace is formated such that the metadata can be
 830         * stripped/generated by the controller with PRACT=1.
 831         */
 832        if (ns->ms && !blk_integrity_rq(req)) {
 833                if (!(ns->pi_type && ns->ms == 8)) {
 834                        req->errors = -EFAULT;
 835                        blk_mq_complete_request(req);
 836                        return BLK_MQ_RQ_QUEUE_OK;
 837                }
 838        }
 839
 840        iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
 841        if (!iod)
 842                return BLK_MQ_RQ_QUEUE_BUSY;
 843
 844        if (req->cmd_flags & REQ_DISCARD) {
 845                void *range;
 846                /*
 847                 * We reuse the small pool to allocate the 16-byte range here
 848                 * as it is not worth having a special pool for these or
 849                 * additional cases to handle freeing the iod.
 850                 */
 851                range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
 852                                                GFP_ATOMIC,
 853                                                &iod->first_dma);
 854                if (!range)
 855                        goto retry_cmd;
 856                iod_list(iod)[0] = (__le64 *)range;
 857                iod->npages = 0;
 858        } else if (req->nr_phys_segments) {
 859                dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
 860
 861                sg_init_table(iod->sg, req->nr_phys_segments);
 862                iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
 863                if (!iod->nents)
 864                        goto error_cmd;
 865
 866                if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
 867                        goto retry_cmd;
 868
 869                if (blk_rq_bytes(req) !=
 870                    nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
 871                        dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
 872                                        iod->nents, dma_dir);
 873                        goto retry_cmd;
 874                }
 875                if (blk_integrity_rq(req)) {
 876                        if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
 877                                goto error_cmd;
 878
 879                        sg_init_table(iod->meta_sg, 1);
 880                        if (blk_rq_map_integrity_sg(
 881                                        req->q, req->bio, iod->meta_sg) != 1)
 882                                goto error_cmd;
 883
 884                        if (rq_data_dir(req))
 885                                nvme_dif_remap(req, nvme_dif_prep);
 886
 887                        if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
 888                                goto error_cmd;
 889                }
 890        }
 891
 892        nvme_set_info(cmd, iod, req_completion);
 893        spin_lock_irq(&nvmeq->q_lock);
 894        if (req->cmd_flags & REQ_DISCARD)
 895                nvme_submit_discard(nvmeq, ns, req, iod);
 896        else if (req->cmd_flags & REQ_FLUSH)
 897                nvme_submit_flush(nvmeq, ns, req->tag);
 898        else
 899                nvme_submit_iod(nvmeq, iod, ns);
 900
 901        nvme_process_cq(nvmeq);
 902        spin_unlock_irq(&nvmeq->q_lock);
 903        return BLK_MQ_RQ_QUEUE_OK;
 904
 905 error_cmd:
 906        nvme_free_iod(nvmeq->dev, iod);
 907        return BLK_MQ_RQ_QUEUE_ERROR;
 908 retry_cmd:
 909        nvme_free_iod(nvmeq->dev, iod);
 910        return BLK_MQ_RQ_QUEUE_BUSY;
 911}
 912
 913static int nvme_process_cq(struct nvme_queue *nvmeq)
 914{
 915        u16 head, phase;
 916
 917        head = nvmeq->cq_head;
 918        phase = nvmeq->cq_phase;
 919
 920        for (;;) {
 921                void *ctx;
 922                nvme_completion_fn fn;
 923                struct nvme_completion cqe = nvmeq->cqes[head];
 924                if ((le16_to_cpu(cqe.status) & 1) != phase)
 925                        break;
 926                nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
 927                if (++head == nvmeq->q_depth) {
 928                        head = 0;
 929                        phase = !phase;
 930                }
 931                ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
 932                fn(nvmeq, ctx, &cqe);
 933        }
 934
 935        /* If the controller ignores the cq head doorbell and continuously
 936         * writes to the queue, it is theoretically possible to wrap around
 937         * the queue twice and mistakenly return IRQ_NONE.  Linux only
 938         * requires that 0.1% of your interrupts are handled, so this isn't
 939         * a big problem.
 940         */
 941        if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
 942                return 0;
 943
 944        writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 945        nvmeq->cq_head = head;
 946        nvmeq->cq_phase = phase;
 947
 948        nvmeq->cqe_seen = 1;
 949        return 1;
 950}
 951
 952/* Admin queue isn't initialized as a request queue. If at some point this
 953 * happens anyway, make sure to notify the user */
 954static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
 955                               const struct blk_mq_queue_data *bd)
 956{
 957        WARN_ON_ONCE(1);
 958        return BLK_MQ_RQ_QUEUE_ERROR;
 959}
 960
 961static irqreturn_t nvme_irq(int irq, void *data)
 962{
 963        irqreturn_t result;
 964        struct nvme_queue *nvmeq = data;
 965        spin_lock(&nvmeq->q_lock);
 966        nvme_process_cq(nvmeq);
 967        result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
 968        nvmeq->cqe_seen = 0;
 969        spin_unlock(&nvmeq->q_lock);
 970        return result;
 971}
 972
 973static irqreturn_t nvme_irq_check(int irq, void *data)
 974{
 975        struct nvme_queue *nvmeq = data;
 976        struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
 977        if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
 978                return IRQ_NONE;
 979        return IRQ_WAKE_THREAD;
 980}
 981
 982struct sync_cmd_info {
 983        struct task_struct *task;
 984        u32 result;
 985        int status;
 986};
 987
 988static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
 989                                                struct nvme_completion *cqe)
 990{
 991        struct sync_cmd_info *cmdinfo = ctx;
 992        cmdinfo->result = le32_to_cpup(&cqe->result);
 993        cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
 994        wake_up_process(cmdinfo->task);
 995}
 996
 997/*
 998 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 999 * if the result is positive, it's an NVM Express status code
1000 */
1001static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
1002                                                u32 *result, unsigned timeout)
1003{
1004        struct sync_cmd_info cmdinfo;
1005        struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1006        struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1007
1008        cmdinfo.task = current;
1009        cmdinfo.status = -EINTR;
1010
1011        cmd->common.command_id = req->tag;
1012
1013        nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
1014
1015        set_current_state(TASK_UNINTERRUPTIBLE);
1016        nvme_submit_cmd(nvmeq, cmd);
1017        schedule();
1018
1019        if (result)
1020                *result = cmdinfo.result;
1021        return cmdinfo.status;
1022}
1023
1024static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1025{
1026        struct nvme_queue *nvmeq = dev->queues[0];
1027        struct nvme_command c;
1028        struct nvme_cmd_info *cmd_info;
1029        struct request *req;
1030
1031        req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, false);
1032        if (IS_ERR(req))
1033                return PTR_ERR(req);
1034
1035        req->cmd_flags |= REQ_NO_TIMEOUT;
1036        cmd_info = blk_mq_rq_to_pdu(req);
1037        nvme_set_info(cmd_info, req, async_req_completion);
1038
1039        memset(&c, 0, sizeof(c));
1040        c.common.opcode = nvme_admin_async_event;
1041        c.common.command_id = req->tag;
1042
1043        return __nvme_submit_cmd(nvmeq, &c);
1044}
1045
1046static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1047                        struct nvme_command *cmd,
1048                        struct async_cmd_info *cmdinfo, unsigned timeout)
1049{
1050        struct nvme_queue *nvmeq = dev->queues[0];
1051        struct request *req;
1052        struct nvme_cmd_info *cmd_rq;
1053
1054        req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1055        if (IS_ERR(req))
1056                return PTR_ERR(req);
1057
1058        req->timeout = timeout;
1059        cmd_rq = blk_mq_rq_to_pdu(req);
1060        cmdinfo->req = req;
1061        nvme_set_info(cmd_rq, cmdinfo, async_completion);
1062        cmdinfo->status = -EINTR;
1063
1064        cmd->common.command_id = req->tag;
1065
1066        return nvme_submit_cmd(nvmeq, cmd);
1067}
1068
1069static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1070                                                u32 *result, unsigned timeout)
1071{
1072        int res;
1073        struct request *req;
1074
1075        req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1076        if (IS_ERR(req))
1077                return PTR_ERR(req);
1078        res = nvme_submit_sync_cmd(req, cmd, result, timeout);
1079        blk_mq_free_request(req);
1080        return res;
1081}
1082
1083int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1084                                                                u32 *result)
1085{
1086        return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
1087}
1088
1089int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1090                                        struct nvme_command *cmd, u32 *result)
1091{
1092        int res;
1093        struct request *req;
1094
1095        req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
1096                                                                        false);
1097        if (IS_ERR(req))
1098                return PTR_ERR(req);
1099        res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
1100        blk_mq_free_request(req);
1101        return res;
1102}
1103
1104static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1105{
1106        struct nvme_command c;
1107
1108        memset(&c, 0, sizeof(c));
1109        c.delete_queue.opcode = opcode;
1110        c.delete_queue.qid = cpu_to_le16(id);
1111
1112        return nvme_submit_admin_cmd(dev, &c, NULL);
1113}
1114
1115static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1116                                                struct nvme_queue *nvmeq)
1117{
1118        struct nvme_command c;
1119        int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1120
1121        memset(&c, 0, sizeof(c));
1122        c.create_cq.opcode = nvme_admin_create_cq;
1123        c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1124        c.create_cq.cqid = cpu_to_le16(qid);
1125        c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1126        c.create_cq.cq_flags = cpu_to_le16(flags);
1127        c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1128
1129        return nvme_submit_admin_cmd(dev, &c, NULL);
1130}
1131
1132static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1133                                                struct nvme_queue *nvmeq)
1134{
1135        struct nvme_command c;
1136        int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1137
1138        memset(&c, 0, sizeof(c));
1139        c.create_sq.opcode = nvme_admin_create_sq;
1140        c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1141        c.create_sq.sqid = cpu_to_le16(qid);
1142        c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1143        c.create_sq.sq_flags = cpu_to_le16(flags);
1144        c.create_sq.cqid = cpu_to_le16(qid);
1145
1146        return nvme_submit_admin_cmd(dev, &c, NULL);
1147}
1148
1149static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1150{
1151        return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1152}
1153
1154static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1155{
1156        return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1157}
1158
1159int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1160                                                        dma_addr_t dma_addr)
1161{
1162        struct nvme_command c;
1163
1164        memset(&c, 0, sizeof(c));
1165        c.identify.opcode = nvme_admin_identify;
1166        c.identify.nsid = cpu_to_le32(nsid);
1167        c.identify.prp1 = cpu_to_le64(dma_addr);
1168        c.identify.cns = cpu_to_le32(cns);
1169
1170        return nvme_submit_admin_cmd(dev, &c, NULL);
1171}
1172
1173int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1174                                        dma_addr_t dma_addr, u32 *result)
1175{
1176        struct nvme_command c;
1177
1178        memset(&c, 0, sizeof(c));
1179        c.features.opcode = nvme_admin_get_features;
1180        c.features.nsid = cpu_to_le32(nsid);
1181        c.features.prp1 = cpu_to_le64(dma_addr);
1182        c.features.fid = cpu_to_le32(fid);
1183
1184        return nvme_submit_admin_cmd(dev, &c, result);
1185}
1186
1187int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1188                                        dma_addr_t dma_addr, u32 *result)
1189{
1190        struct nvme_command c;
1191
1192        memset(&c, 0, sizeof(c));
1193        c.features.opcode = nvme_admin_set_features;
1194        c.features.prp1 = cpu_to_le64(dma_addr);
1195        c.features.fid = cpu_to_le32(fid);
1196        c.features.dword11 = cpu_to_le32(dword11);
1197
1198        return nvme_submit_admin_cmd(dev, &c, result);
1199}
1200
1201/**
1202 * nvme_abort_req - Attempt aborting a request
1203 *
1204 * Schedule controller reset if the command was already aborted once before and
1205 * still hasn't been returned to the driver, or if this is the admin queue.
1206 */
1207static void nvme_abort_req(struct request *req)
1208{
1209        struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1210        struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1211        struct nvme_dev *dev = nvmeq->dev;
1212        struct request *abort_req;
1213        struct nvme_cmd_info *abort_cmd;
1214        struct nvme_command cmd;
1215
1216        if (!nvmeq->qid || cmd_rq->aborted) {
1217                unsigned long flags;
1218
1219                spin_lock_irqsave(&dev_list_lock, flags);
1220                if (work_busy(&dev->reset_work))
1221                        goto out;
1222                list_del_init(&dev->node);
1223                dev_warn(&dev->pci_dev->dev,
1224                        "I/O %d QID %d timeout, reset controller\n",
1225                                                        req->tag, nvmeq->qid);
1226                dev->reset_workfn = nvme_reset_failed_dev;
1227                queue_work(nvme_workq, &dev->reset_work);
1228 out:
1229                spin_unlock_irqrestore(&dev_list_lock, flags);
1230                return;
1231        }
1232
1233        if (!dev->abort_limit)
1234                return;
1235
1236        abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1237                                                                        false);
1238        if (IS_ERR(abort_req))
1239                return;
1240
1241        abort_cmd = blk_mq_rq_to_pdu(abort_req);
1242        nvme_set_info(abort_cmd, abort_req, abort_completion);
1243
1244        memset(&cmd, 0, sizeof(cmd));
1245        cmd.abort.opcode = nvme_admin_abort_cmd;
1246        cmd.abort.cid = req->tag;
1247        cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1248        cmd.abort.command_id = abort_req->tag;
1249
1250        --dev->abort_limit;
1251        cmd_rq->aborted = 1;
1252
1253        dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1254                                                        nvmeq->qid);
1255        if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1256                dev_warn(nvmeq->q_dmadev,
1257                                "Could not abort I/O %d QID %d",
1258                                req->tag, nvmeq->qid);
1259                blk_mq_free_request(abort_req);
1260        }
1261}
1262
1263static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1264                                struct request *req, void *data, bool reserved)
1265{
1266        struct nvme_queue *nvmeq = data;
1267        void *ctx;
1268        nvme_completion_fn fn;
1269        struct nvme_cmd_info *cmd;
1270        struct nvme_completion cqe;
1271
1272        if (!blk_mq_request_started(req))
1273                return;
1274
1275        cmd = blk_mq_rq_to_pdu(req);
1276
1277        if (cmd->ctx == CMD_CTX_CANCELLED)
1278                return;
1279
1280        if (blk_queue_dying(req->q))
1281                cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1282        else
1283                cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1284
1285
1286        dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1287                                                req->tag, nvmeq->qid);
1288        ctx = cancel_cmd_info(cmd, &fn);
1289        fn(nvmeq, ctx, &cqe);
1290}
1291
1292static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1293{
1294        struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1295        struct nvme_queue *nvmeq = cmd->nvmeq;
1296
1297        dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1298                                                        nvmeq->qid);
1299        spin_lock_irq(&nvmeq->q_lock);
1300        nvme_abort_req(req);
1301        spin_unlock_irq(&nvmeq->q_lock);
1302
1303        /*
1304         * The aborted req will be completed on receiving the abort req.
1305         * We enable the timer again. If hit twice, it'll cause a device reset,
1306         * as the device then is in a faulty state.
1307         */
1308        return BLK_EH_RESET_TIMER;
1309}
1310
1311static void nvme_free_queue(struct nvme_queue *nvmeq)
1312{
1313        dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1314                                (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1315        dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1316                                        nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1317        kfree(nvmeq);
1318}
1319
1320static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1321{
1322        int i;
1323
1324        for (i = dev->queue_count - 1; i >= lowest; i--) {
1325                struct nvme_queue *nvmeq = dev->queues[i];
1326                dev->queue_count--;
1327                dev->queues[i] = NULL;
1328                nvme_free_queue(nvmeq);
1329        }
1330}
1331
1332/**
1333 * nvme_suspend_queue - put queue into suspended state
1334 * @nvmeq - queue to suspend
1335 */
1336static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1337{
1338        int vector;
1339
1340        spin_lock_irq(&nvmeq->q_lock);
1341        if (nvmeq->cq_vector == -1) {
1342                spin_unlock_irq(&nvmeq->q_lock);
1343                return 1;
1344        }
1345        vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1346        nvmeq->dev->online_queues--;
1347        nvmeq->cq_vector = -1;
1348        spin_unlock_irq(&nvmeq->q_lock);
1349
1350        irq_set_affinity_hint(vector, NULL);
1351        free_irq(vector, nvmeq);
1352
1353        return 0;
1354}
1355
1356static void nvme_clear_queue(struct nvme_queue *nvmeq)
1357{
1358        struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1359
1360        spin_lock_irq(&nvmeq->q_lock);
1361        if (hctx && hctx->tags)
1362                blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
1363        spin_unlock_irq(&nvmeq->q_lock);
1364}
1365
1366static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1367{
1368        struct nvme_queue *nvmeq = dev->queues[qid];
1369
1370        if (!nvmeq)
1371                return;
1372        if (nvme_suspend_queue(nvmeq))
1373                return;
1374
1375        /* Don't tell the adapter to delete the admin queue.
1376         * Don't tell a removed adapter to delete IO queues. */
1377        if (qid && readl(&dev->bar->csts) != -1) {
1378                adapter_delete_sq(dev, qid);
1379                adapter_delete_cq(dev, qid);
1380        }
1381        if (!qid && dev->admin_q)
1382                blk_mq_freeze_queue_start(dev->admin_q);
1383
1384        spin_lock_irq(&nvmeq->q_lock);
1385        nvme_process_cq(nvmeq);
1386        spin_unlock_irq(&nvmeq->q_lock);
1387}
1388
1389static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1390                                                        int depth)
1391{
1392        struct device *dmadev = &dev->pci_dev->dev;
1393        struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1394        if (!nvmeq)
1395                return NULL;
1396
1397        nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1398                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1399        if (!nvmeq->cqes)
1400                goto free_nvmeq;
1401
1402        nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1403                                        &nvmeq->sq_dma_addr, GFP_KERNEL);
1404        if (!nvmeq->sq_cmds)
1405                goto free_cqdma;
1406
1407        nvmeq->q_dmadev = dmadev;
1408        nvmeq->dev = dev;
1409        snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1410                        dev->instance, qid);
1411        spin_lock_init(&nvmeq->q_lock);
1412        nvmeq->cq_head = 0;
1413        nvmeq->cq_phase = 1;
1414        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1415        nvmeq->q_depth = depth;
1416        nvmeq->qid = qid;
1417        dev->queue_count++;
1418        dev->queues[qid] = nvmeq;
1419
1420        return nvmeq;
1421
1422 free_cqdma:
1423        dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1424                                                        nvmeq->cq_dma_addr);
1425 free_nvmeq:
1426        kfree(nvmeq);
1427        return NULL;
1428}
1429
1430static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1431                                                        const char *name)
1432{
1433        if (use_threaded_interrupts)
1434                return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1435                                        nvme_irq_check, nvme_irq, IRQF_SHARED,
1436                                        name, nvmeq);
1437        return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1438                                IRQF_SHARED, name, nvmeq);
1439}
1440
1441static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1442{
1443        struct nvme_dev *dev = nvmeq->dev;
1444
1445        spin_lock_irq(&nvmeq->q_lock);
1446        nvmeq->sq_tail = 0;
1447        nvmeq->cq_head = 0;
1448        nvmeq->cq_phase = 1;
1449        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1450        memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1451        dev->online_queues++;
1452        spin_unlock_irq(&nvmeq->q_lock);
1453}
1454
1455static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1456{
1457        struct nvme_dev *dev = nvmeq->dev;
1458        int result;
1459
1460        nvmeq->cq_vector = qid - 1;
1461        result = adapter_alloc_cq(dev, qid, nvmeq);
1462        if (result < 0)
1463                return result;
1464
1465        result = adapter_alloc_sq(dev, qid, nvmeq);
1466        if (result < 0)
1467                goto release_cq;
1468
1469        result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1470        if (result < 0)
1471                goto release_sq;
1472
1473        nvme_init_queue(nvmeq, qid);
1474        return result;
1475
1476 release_sq:
1477        adapter_delete_sq(dev, qid);
1478 release_cq:
1479        adapter_delete_cq(dev, qid);
1480        return result;
1481}
1482
1483static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1484{
1485        unsigned long timeout;
1486        u32 bit = enabled ? NVME_CSTS_RDY : 0;
1487
1488        timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1489
1490        while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1491                msleep(100);
1492                if (fatal_signal_pending(current))
1493                        return -EINTR;
1494                if (time_after(jiffies, timeout)) {
1495                        dev_err(&dev->pci_dev->dev,
1496                                "Device not ready; aborting %s\n", enabled ?
1497                                                "initialisation" : "reset");
1498                        return -ENODEV;
1499                }
1500        }
1501
1502        return 0;
1503}
1504
1505/*
1506 * If the device has been passed off to us in an enabled state, just clear
1507 * the enabled bit.  The spec says we should set the 'shutdown notification
1508 * bits', but doing so may cause the device to complete commands to the
1509 * admin queue ... and we don't know what memory that might be pointing at!
1510 */
1511static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1512{
1513        dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1514        dev->ctrl_config &= ~NVME_CC_ENABLE;
1515        writel(dev->ctrl_config, &dev->bar->cc);
1516
1517        return nvme_wait_ready(dev, cap, false);
1518}
1519
1520static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1521{
1522        dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1523        dev->ctrl_config |= NVME_CC_ENABLE;
1524        writel(dev->ctrl_config, &dev->bar->cc);
1525
1526        return nvme_wait_ready(dev, cap, true);
1527}
1528
1529static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1530{
1531        unsigned long timeout;
1532
1533        dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1534        dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1535
1536        writel(dev->ctrl_config, &dev->bar->cc);
1537
1538        timeout = SHUTDOWN_TIMEOUT + jiffies;
1539        while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1540                                                        NVME_CSTS_SHST_CMPLT) {
1541                msleep(100);
1542                if (fatal_signal_pending(current))
1543                        return -EINTR;
1544                if (time_after(jiffies, timeout)) {
1545                        dev_err(&dev->pci_dev->dev,
1546                                "Device shutdown incomplete; abort shutdown\n");
1547                        return -ENODEV;
1548                }
1549        }
1550
1551        return 0;
1552}
1553
1554static struct blk_mq_ops nvme_mq_admin_ops = {
1555        .queue_rq       = nvme_admin_queue_rq,
1556        .map_queue      = blk_mq_map_queue,
1557        .init_hctx      = nvme_admin_init_hctx,
1558        .exit_hctx      = nvme_exit_hctx,
1559        .init_request   = nvme_admin_init_request,
1560        .timeout        = nvme_timeout,
1561};
1562
1563static struct blk_mq_ops nvme_mq_ops = {
1564        .queue_rq       = nvme_queue_rq,
1565        .map_queue      = blk_mq_map_queue,
1566        .init_hctx      = nvme_init_hctx,
1567        .exit_hctx      = nvme_exit_hctx,
1568        .init_request   = nvme_init_request,
1569        .timeout        = nvme_timeout,
1570};
1571
1572static void nvme_dev_remove_admin(struct nvme_dev *dev)
1573{
1574        if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1575                blk_cleanup_queue(dev->admin_q);
1576                blk_mq_free_tag_set(&dev->admin_tagset);
1577        }
1578}
1579
1580static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1581{
1582        if (!dev->admin_q) {
1583                dev->admin_tagset.ops = &nvme_mq_admin_ops;
1584                dev->admin_tagset.nr_hw_queues = 1;
1585                dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1586                dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1587                dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
1588                dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1589                dev->admin_tagset.driver_data = dev;
1590
1591                if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1592                        return -ENOMEM;
1593
1594                dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1595                if (IS_ERR(dev->admin_q)) {
1596                        blk_mq_free_tag_set(&dev->admin_tagset);
1597                        return -ENOMEM;
1598                }
1599                if (!blk_get_queue(dev->admin_q)) {
1600                        nvme_dev_remove_admin(dev);
1601                        return -ENODEV;
1602                }
1603        } else
1604                blk_mq_unfreeze_queue(dev->admin_q);
1605
1606        return 0;
1607}
1608
1609static int nvme_configure_admin_queue(struct nvme_dev *dev)
1610{
1611        int result;
1612        u32 aqa;
1613        u64 cap = readq(&dev->bar->cap);
1614        struct nvme_queue *nvmeq;
1615        unsigned page_shift = PAGE_SHIFT;
1616        unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1617        unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1618
1619        if (page_shift < dev_page_min) {
1620                dev_err(&dev->pci_dev->dev,
1621                                "Minimum device page size (%u) too large for "
1622                                "host (%u)\n", 1 << dev_page_min,
1623                                1 << page_shift);
1624                return -ENODEV;
1625        }
1626        if (page_shift > dev_page_max) {
1627                dev_info(&dev->pci_dev->dev,
1628                                "Device maximum page size (%u) smaller than "
1629                                "host (%u); enabling work-around\n",
1630                                1 << dev_page_max, 1 << page_shift);
1631                page_shift = dev_page_max;
1632        }
1633
1634        result = nvme_disable_ctrl(dev, cap);
1635        if (result < 0)
1636                return result;
1637
1638        nvmeq = dev->queues[0];
1639        if (!nvmeq) {
1640                nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1641                if (!nvmeq)
1642                        return -ENOMEM;
1643        }
1644
1645        aqa = nvmeq->q_depth - 1;
1646        aqa |= aqa << 16;
1647
1648        dev->page_size = 1 << page_shift;
1649
1650        dev->ctrl_config = NVME_CC_CSS_NVM;
1651        dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1652        dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1653        dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1654
1655        writel(aqa, &dev->bar->aqa);
1656        writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1657        writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1658
1659        result = nvme_enable_ctrl(dev, cap);
1660        if (result)
1661                goto free_nvmeq;
1662
1663        nvmeq->cq_vector = 0;
1664        result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1665        if (result)
1666                goto free_nvmeq;
1667
1668        return result;
1669
1670 free_nvmeq:
1671        nvme_free_queues(dev, 0);
1672        return result;
1673}
1674
1675struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1676                                unsigned long addr, unsigned length)
1677{
1678        int i, err, count, nents, offset;
1679        struct scatterlist *sg;
1680        struct page **pages;
1681        struct nvme_iod *iod;
1682
1683        if (addr & 3)
1684                return ERR_PTR(-EINVAL);
1685        if (!length || length > INT_MAX - PAGE_SIZE)
1686                return ERR_PTR(-EINVAL);
1687
1688        offset = offset_in_page(addr);
1689        count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1690        pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1691        if (!pages)
1692                return ERR_PTR(-ENOMEM);
1693
1694        err = get_user_pages_fast(addr, count, 1, pages);
1695        if (err < count) {
1696                count = err;
1697                err = -EFAULT;
1698                goto put_pages;
1699        }
1700
1701        err = -ENOMEM;
1702        iod = __nvme_alloc_iod(count, length, dev, 0, GFP_KERNEL);
1703        if (!iod)
1704                goto put_pages;
1705
1706        sg = iod->sg;
1707        sg_init_table(sg, count);
1708        for (i = 0; i < count; i++) {
1709                sg_set_page(&sg[i], pages[i],
1710                            min_t(unsigned, length, PAGE_SIZE - offset),
1711                            offset);
1712                length -= (PAGE_SIZE - offset);
1713                offset = 0;
1714        }
1715        sg_mark_end(&sg[i - 1]);
1716        iod->nents = count;
1717
1718        nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1719                                write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1720        if (!nents)
1721                goto free_iod;
1722
1723        kfree(pages);
1724        return iod;
1725
1726 free_iod:
1727        kfree(iod);
1728 put_pages:
1729        for (i = 0; i < count; i++)
1730                put_page(pages[i]);
1731        kfree(pages);
1732        return ERR_PTR(err);
1733}
1734
1735void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1736                        struct nvme_iod *iod)
1737{
1738        int i;
1739
1740        dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1741                                write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1742
1743        for (i = 0; i < iod->nents; i++)
1744                put_page(sg_page(&iod->sg[i]));
1745}
1746
1747static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1748{
1749        struct nvme_dev *dev = ns->dev;
1750        struct nvme_user_io io;
1751        struct nvme_command c;
1752        unsigned length, meta_len;
1753        int status, i;
1754        struct nvme_iod *iod, *meta_iod = NULL;
1755        dma_addr_t meta_dma_addr;
1756        void *meta, *uninitialized_var(meta_mem);
1757
1758        if (copy_from_user(&io, uio, sizeof(io)))
1759                return -EFAULT;
1760        length = (io.nblocks + 1) << ns->lba_shift;
1761        meta_len = (io.nblocks + 1) * ns->ms;
1762
1763        if (meta_len && ((io.metadata & 3) || !io.metadata))
1764                return -EINVAL;
1765
1766        switch (io.opcode) {
1767        case nvme_cmd_write:
1768        case nvme_cmd_read:
1769        case nvme_cmd_compare:
1770                iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1771                break;
1772        default:
1773                return -EINVAL;
1774        }
1775
1776        if (IS_ERR(iod))
1777                return PTR_ERR(iod);
1778
1779        memset(&c, 0, sizeof(c));
1780        c.rw.opcode = io.opcode;
1781        c.rw.flags = io.flags;
1782        c.rw.nsid = cpu_to_le32(ns->ns_id);
1783        c.rw.slba = cpu_to_le64(io.slba);
1784        c.rw.length = cpu_to_le16(io.nblocks);
1785        c.rw.control = cpu_to_le16(io.control);
1786        c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1787        c.rw.reftag = cpu_to_le32(io.reftag);
1788        c.rw.apptag = cpu_to_le16(io.apptag);
1789        c.rw.appmask = cpu_to_le16(io.appmask);
1790
1791        if (meta_len) {
1792                meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1793                                                                meta_len);
1794                if (IS_ERR(meta_iod)) {
1795                        status = PTR_ERR(meta_iod);
1796                        meta_iod = NULL;
1797                        goto unmap;
1798                }
1799
1800                meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1801                                                &meta_dma_addr, GFP_KERNEL);
1802                if (!meta_mem) {
1803                        status = -ENOMEM;
1804                        goto unmap;
1805                }
1806
1807                if (io.opcode & 1) {
1808                        int meta_offset = 0;
1809
1810                        for (i = 0; i < meta_iod->nents; i++) {
1811                                meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1812                                                meta_iod->sg[i].offset;
1813                                memcpy(meta_mem + meta_offset, meta,
1814                                                meta_iod->sg[i].length);
1815                                kunmap_atomic(meta);
1816                                meta_offset += meta_iod->sg[i].length;
1817                        }
1818                }
1819
1820                c.rw.metadata = cpu_to_le64(meta_dma_addr);
1821        }
1822
1823        length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1824        c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1825        c.rw.prp2 = cpu_to_le64(iod->first_dma);
1826
1827        if (length != (io.nblocks + 1) << ns->lba_shift)
1828                status = -ENOMEM;
1829        else
1830                status = nvme_submit_io_cmd(dev, ns, &c, NULL);
1831
1832        if (meta_len) {
1833                if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1834                        int meta_offset = 0;
1835
1836                        for (i = 0; i < meta_iod->nents; i++) {
1837                                meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1838                                                meta_iod->sg[i].offset;
1839                                memcpy(meta, meta_mem + meta_offset,
1840                                                meta_iod->sg[i].length);
1841                                kunmap_atomic(meta);
1842                                meta_offset += meta_iod->sg[i].length;
1843                        }
1844                }
1845
1846                dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1847                                                                meta_dma_addr);
1848        }
1849
1850 unmap:
1851        nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1852        nvme_free_iod(dev, iod);
1853
1854        if (meta_iod) {
1855                nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1856                nvme_free_iod(dev, meta_iod);
1857        }
1858
1859        return status;
1860}
1861
1862static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1863                        struct nvme_passthru_cmd __user *ucmd)
1864{
1865        struct nvme_passthru_cmd cmd;
1866        struct nvme_command c;
1867        int status, length;
1868        struct nvme_iod *uninitialized_var(iod);
1869        unsigned timeout;
1870
1871        if (!capable(CAP_SYS_ADMIN))
1872                return -EACCES;
1873        if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1874                return -EFAULT;
1875
1876        memset(&c, 0, sizeof(c));
1877        c.common.opcode = cmd.opcode;
1878        c.common.flags = cmd.flags;
1879        c.common.nsid = cpu_to_le32(cmd.nsid);
1880        c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1881        c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1882        c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1883        c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1884        c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1885        c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1886        c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1887        c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1888
1889        length = cmd.data_len;
1890        if (cmd.data_len) {
1891                iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1892                                                                length);
1893                if (IS_ERR(iod))
1894                        return PTR_ERR(iod);
1895                length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1896                c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1897                c.common.prp2 = cpu_to_le64(iod->first_dma);
1898        }
1899
1900        timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1901                                                                ADMIN_TIMEOUT;
1902
1903        if (length != cmd.data_len)
1904                status = -ENOMEM;
1905        else if (ns) {
1906                struct request *req;
1907
1908                req = blk_mq_alloc_request(ns->queue, WRITE,
1909                                                (GFP_KERNEL|__GFP_WAIT), false);
1910                if (IS_ERR(req))
1911                        status = PTR_ERR(req);
1912                else {
1913                        status = nvme_submit_sync_cmd(req, &c, &cmd.result,
1914                                                                timeout);
1915                        blk_mq_free_request(req);
1916                }
1917        } else
1918                status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
1919
1920        if (cmd.data_len) {
1921                nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1922                nvme_free_iod(dev, iod);
1923        }
1924
1925        if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1926                                                        sizeof(cmd.result)))
1927                status = -EFAULT;
1928
1929        return status;
1930}
1931
1932static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1933                                                        unsigned long arg)
1934{
1935        struct nvme_ns *ns = bdev->bd_disk->private_data;
1936
1937        switch (cmd) {
1938        case NVME_IOCTL_ID:
1939                force_successful_syscall_return();
1940                return ns->ns_id;
1941        case NVME_IOCTL_ADMIN_CMD:
1942                return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1943        case NVME_IOCTL_IO_CMD:
1944                return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1945        case NVME_IOCTL_SUBMIT_IO:
1946                return nvme_submit_io(ns, (void __user *)arg);
1947        case SG_GET_VERSION_NUM:
1948                return nvme_sg_get_version_num((void __user *)arg);
1949        case SG_IO:
1950                return nvme_sg_io(ns, (void __user *)arg);
1951        default:
1952                return -ENOTTY;
1953        }
1954}
1955
1956#ifdef CONFIG_COMPAT
1957static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1958                                        unsigned int cmd, unsigned long arg)
1959{
1960        switch (cmd) {
1961        case SG_IO:
1962                return -ENOIOCTLCMD;
1963        }
1964        return nvme_ioctl(bdev, mode, cmd, arg);
1965}
1966#else
1967#define nvme_compat_ioctl       NULL
1968#endif
1969
1970static int nvme_open(struct block_device *bdev, fmode_t mode)
1971{
1972        int ret = 0;
1973        struct nvme_ns *ns;
1974
1975        spin_lock(&dev_list_lock);
1976        ns = bdev->bd_disk->private_data;
1977        if (!ns)
1978                ret = -ENXIO;
1979        else if (!kref_get_unless_zero(&ns->dev->kref))
1980                ret = -ENXIO;
1981        spin_unlock(&dev_list_lock);
1982
1983        return ret;
1984}
1985
1986static void nvme_free_dev(struct kref *kref);
1987
1988static void nvme_release(struct gendisk *disk, fmode_t mode)
1989{
1990        struct nvme_ns *ns = disk->private_data;
1991        struct nvme_dev *dev = ns->dev;
1992
1993        kref_put(&dev->kref, nvme_free_dev);
1994}
1995
1996static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1997{
1998        /* some standard values */
1999        geo->heads = 1 << 6;
2000        geo->sectors = 1 << 5;
2001        geo->cylinders = get_capacity(bd->bd_disk) >> 11;
2002        return 0;
2003}
2004
2005static void nvme_config_discard(struct nvme_ns *ns)
2006{
2007        u32 logical_block_size = queue_logical_block_size(ns->queue);
2008        ns->queue->limits.discard_zeroes_data = 0;
2009        ns->queue->limits.discard_alignment = logical_block_size;
2010        ns->queue->limits.discard_granularity = logical_block_size;
2011        ns->queue->limits.max_discard_sectors = 0xffffffff;
2012        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
2013}
2014
2015static int nvme_revalidate_disk(struct gendisk *disk)
2016{
2017        struct nvme_ns *ns = disk->private_data;
2018        struct nvme_dev *dev = ns->dev;
2019        struct nvme_id_ns *id;
2020        dma_addr_t dma_addr;
2021        int lbaf, pi_type, old_ms;
2022        unsigned short bs;
2023
2024        id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
2025                                                                GFP_KERNEL);
2026        if (!id) {
2027                dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
2028                                                                __func__);
2029                return 0;
2030        }
2031        if (nvme_identify(dev, ns->ns_id, 0, dma_addr)) {
2032                dev_warn(&dev->pci_dev->dev,
2033                        "identify failed ns:%d, setting capacity to 0\n",
2034                        ns->ns_id);
2035                memset(id, 0, sizeof(*id));
2036        }
2037
2038        old_ms = ns->ms;
2039        lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2040        ns->lba_shift = id->lbaf[lbaf].ds;
2041        ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2042
2043        /*
2044         * If identify namespace failed, use default 512 byte block size so
2045         * block layer can use before failing read/write for 0 capacity.
2046         */
2047        if (ns->lba_shift == 0)
2048                ns->lba_shift = 9;
2049        bs = 1 << ns->lba_shift;
2050
2051        /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2052        pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2053                                        id->dps & NVME_NS_DPS_PI_MASK : 0;
2054
2055        if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2056                                ns->ms != old_ms ||
2057                                bs != queue_logical_block_size(disk->queue) ||
2058                                (ns->ms && id->flbas & NVME_NS_FLBAS_META_EXT)))
2059                blk_integrity_unregister(disk);
2060
2061        ns->pi_type = pi_type;
2062        blk_queue_logical_block_size(ns->queue, bs);
2063
2064        if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
2065                                !(id->flbas & NVME_NS_FLBAS_META_EXT))
2066                nvme_init_integrity(ns);
2067
2068        if (id->ncap == 0 || (ns->ms && !blk_get_integrity(disk)))
2069                set_capacity(disk, 0);
2070        else
2071                set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2072
2073        if (dev->oncs & NVME_CTRL_ONCS_DSM)
2074                nvme_config_discard(ns);
2075
2076        dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
2077        return 0;
2078}
2079
2080static const struct block_device_operations nvme_fops = {
2081        .owner          = THIS_MODULE,
2082        .ioctl          = nvme_ioctl,
2083        .compat_ioctl   = nvme_compat_ioctl,
2084        .open           = nvme_open,
2085        .release        = nvme_release,
2086        .getgeo         = nvme_getgeo,
2087        .revalidate_disk= nvme_revalidate_disk,
2088};
2089
2090static int nvme_kthread(void *data)
2091{
2092        struct nvme_dev *dev, *next;
2093
2094        while (!kthread_should_stop()) {
2095                set_current_state(TASK_INTERRUPTIBLE);
2096                spin_lock(&dev_list_lock);
2097                list_for_each_entry_safe(dev, next, &dev_list, node) {
2098                        int i;
2099                        if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
2100                                if (work_busy(&dev->reset_work))
2101                                        continue;
2102                                list_del_init(&dev->node);
2103                                dev_warn(&dev->pci_dev->dev,
2104                                        "Failed status: %x, reset controller\n",
2105                                        readl(&dev->bar->csts));
2106                                dev->reset_workfn = nvme_reset_failed_dev;
2107                                queue_work(nvme_workq, &dev->reset_work);
2108                                continue;
2109                        }
2110                        for (i = 0; i < dev->queue_count; i++) {
2111                                struct nvme_queue *nvmeq = dev->queues[i];
2112                                if (!nvmeq)
2113                                        continue;
2114                                spin_lock_irq(&nvmeq->q_lock);
2115                                nvme_process_cq(nvmeq);
2116
2117                                while ((i == 0) && (dev->event_limit > 0)) {
2118                                        if (nvme_submit_async_admin_req(dev))
2119                                                break;
2120                                        dev->event_limit--;
2121                                }
2122                                spin_unlock_irq(&nvmeq->q_lock);
2123                        }
2124                }
2125                spin_unlock(&dev_list_lock);
2126                schedule_timeout(round_jiffies_relative(HZ));
2127        }
2128        return 0;
2129}
2130
2131static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2132{
2133        struct nvme_ns *ns;
2134        struct gendisk *disk;
2135        int node = dev_to_node(&dev->pci_dev->dev);
2136
2137        ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2138        if (!ns)
2139                return;
2140
2141        ns->queue = blk_mq_init_queue(&dev->tagset);
2142        if (IS_ERR(ns->queue))
2143                goto out_free_ns;
2144        queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2145        queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2146        queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2147        ns->dev = dev;
2148        ns->queue->queuedata = ns;
2149
2150        disk = alloc_disk_node(0, node);
2151        if (!disk)
2152                goto out_free_queue;
2153
2154        ns->ns_id = nsid;
2155        ns->disk = disk;
2156        ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2157        list_add_tail(&ns->list, &dev->namespaces);
2158
2159        blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2160        if (dev->max_hw_sectors)
2161                blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2162        if (dev->stripe_size)
2163                blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2164        if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2165                blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2166
2167        disk->major = nvme_major;
2168        disk->first_minor = 0;
2169        disk->fops = &nvme_fops;
2170        disk->private_data = ns;
2171        disk->queue = ns->queue;
2172        disk->driverfs_dev = dev->device;
2173        disk->flags = GENHD_FL_EXT_DEVT;
2174        sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2175
2176        /*
2177         * Initialize capacity to 0 until we establish the namespace format and
2178         * setup integrity extentions if necessary. The revalidate_disk after
2179         * add_disk allows the driver to register with integrity if the format
2180         * requires it.
2181         */
2182        set_capacity(disk, 0);
2183        nvme_revalidate_disk(ns->disk);
2184        add_disk(ns->disk);
2185        if (ns->ms)
2186                revalidate_disk(ns->disk);
2187        return;
2188 out_free_queue:
2189        blk_cleanup_queue(ns->queue);
2190 out_free_ns:
2191        kfree(ns);
2192}
2193
2194static void nvme_create_io_queues(struct nvme_dev *dev)
2195{
2196        unsigned i;
2197
2198        for (i = dev->queue_count; i <= dev->max_qid; i++)
2199                if (!nvme_alloc_queue(dev, i, dev->q_depth))
2200                        break;
2201
2202        for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2203                if (nvme_create_queue(dev->queues[i], i))
2204                        break;
2205}
2206
2207static int set_queue_count(struct nvme_dev *dev, int count)
2208{
2209        int status;
2210        u32 result;
2211        u32 q_count = (count - 1) | ((count - 1) << 16);
2212
2213        status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2214                                                                &result);
2215        if (status < 0)
2216                return status;
2217        if (status > 0) {
2218                dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2219                                                                        status);
2220                return 0;
2221        }
2222        return min(result & 0xffff, result >> 16) + 1;
2223}
2224
2225static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2226{
2227        return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2228}
2229
2230static int nvme_setup_io_queues(struct nvme_dev *dev)
2231{
2232        struct nvme_queue *adminq = dev->queues[0];
2233        struct pci_dev *pdev = dev->pci_dev;
2234        int result, i, vecs, nr_io_queues, size;
2235
2236        nr_io_queues = num_possible_cpus();
2237        result = set_queue_count(dev, nr_io_queues);
2238        if (result <= 0)
2239                return result;
2240        if (result < nr_io_queues)
2241                nr_io_queues = result;
2242
2243        size = db_bar_size(dev, nr_io_queues);
2244        if (size > 8192) {
2245                iounmap(dev->bar);
2246                do {
2247                        dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2248                        if (dev->bar)
2249                                break;
2250                        if (!--nr_io_queues)
2251                                return -ENOMEM;
2252                        size = db_bar_size(dev, nr_io_queues);
2253                } while (1);
2254                dev->dbs = ((void __iomem *)dev->bar) + 4096;
2255                adminq->q_db = dev->dbs;
2256        }
2257
2258        /* Deregister the admin queue's interrupt */
2259        free_irq(dev->entry[0].vector, adminq);
2260
2261        /*
2262         * If we enable msix early due to not intx, disable it again before
2263         * setting up the full range we need.
2264         */
2265        if (!pdev->irq)
2266                pci_disable_msix(pdev);
2267
2268        for (i = 0; i < nr_io_queues; i++)
2269                dev->entry[i].entry = i;
2270        vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2271        if (vecs < 0) {
2272                vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2273                if (vecs < 0) {
2274                        vecs = 1;
2275                } else {
2276                        for (i = 0; i < vecs; i++)
2277                                dev->entry[i].vector = i + pdev->irq;
2278                }
2279        }
2280
2281        /*
2282         * Should investigate if there's a performance win from allocating
2283         * more queues than interrupt vectors; it might allow the submission
2284         * path to scale better, even if the receive path is limited by the
2285         * number of interrupts.
2286         */
2287        nr_io_queues = vecs;
2288        dev->max_qid = nr_io_queues;
2289
2290        result = queue_request_irq(dev, adminq, adminq->irqname);
2291        if (result)
2292                goto free_queues;
2293
2294        /* Free previously allocated queues that are no longer usable */
2295        nvme_free_queues(dev, nr_io_queues + 1);
2296        nvme_create_io_queues(dev);
2297
2298        return 0;
2299
2300 free_queues:
2301        nvme_free_queues(dev, 1);
2302        return result;
2303}
2304
2305/*
2306 * Return: error value if an error occurred setting up the queues or calling
2307 * Identify Device.  0 if these succeeded, even if adding some of the
2308 * namespaces failed.  At the moment, these failures are silent.  TBD which
2309 * failures should be reported.
2310 */
2311static int nvme_dev_add(struct nvme_dev *dev)
2312{
2313        struct pci_dev *pdev = dev->pci_dev;
2314        int res;
2315        unsigned nn, i;
2316        struct nvme_id_ctrl *ctrl;
2317        void *mem;
2318        dma_addr_t dma_addr;
2319        int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2320
2321        mem = dma_alloc_coherent(&pdev->dev, 4096, &dma_addr, GFP_KERNEL);
2322        if (!mem)
2323                return -ENOMEM;
2324
2325        res = nvme_identify(dev, 0, 1, dma_addr);
2326        if (res) {
2327                dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2328                dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2329                return -EIO;
2330        }
2331
2332        ctrl = mem;
2333        nn = le32_to_cpup(&ctrl->nn);
2334        dev->oncs = le16_to_cpup(&ctrl->oncs);
2335        dev->abort_limit = ctrl->acl + 1;
2336        dev->vwc = ctrl->vwc;
2337        dev->event_limit = min(ctrl->aerl + 1, 8);
2338        memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2339        memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2340        memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2341        if (ctrl->mdts)
2342                dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2343        if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2344                        (pdev->device == 0x0953) && ctrl->vs[3]) {
2345                unsigned int max_hw_sectors;
2346
2347                dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2348                max_hw_sectors = dev->stripe_size >> (shift - 9);
2349                if (dev->max_hw_sectors) {
2350                        dev->max_hw_sectors = min(max_hw_sectors,
2351                                                        dev->max_hw_sectors);
2352                } else
2353                        dev->max_hw_sectors = max_hw_sectors;
2354        }
2355        dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2356
2357        dev->tagset.ops = &nvme_mq_ops;
2358        dev->tagset.nr_hw_queues = dev->online_queues - 1;
2359        dev->tagset.timeout = NVME_IO_TIMEOUT;
2360        dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
2361        dev->tagset.queue_depth =
2362                                min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2363        dev->tagset.cmd_size = nvme_cmd_size(dev);
2364        dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2365        dev->tagset.driver_data = dev;
2366
2367        if (blk_mq_alloc_tag_set(&dev->tagset))
2368                return 0;
2369
2370        for (i = 1; i <= nn; i++)
2371                nvme_alloc_ns(dev, i);
2372
2373        return 0;
2374}
2375
2376static int nvme_dev_map(struct nvme_dev *dev)
2377{
2378        u64 cap;
2379        int bars, result = -ENOMEM;
2380        struct pci_dev *pdev = dev->pci_dev;
2381
2382        if (pci_enable_device_mem(pdev))
2383                return result;
2384
2385        dev->entry[0].vector = pdev->irq;
2386        pci_set_master(pdev);
2387        bars = pci_select_bars(pdev, IORESOURCE_MEM);
2388        if (!bars)
2389                goto disable_pci;
2390
2391        if (pci_request_selected_regions(pdev, bars, "nvme"))
2392                goto disable_pci;
2393
2394        if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2395            dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2396                goto disable;
2397
2398        dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2399        if (!dev->bar)
2400                goto disable;
2401
2402        if (readl(&dev->bar->csts) == -1) {
2403                result = -ENODEV;
2404                goto unmap;
2405        }
2406
2407        /*
2408         * Some devices don't advertse INTx interrupts, pre-enable a single
2409         * MSIX vec for setup. We'll adjust this later.
2410         */
2411        if (!pdev->irq) {
2412                result = pci_enable_msix(pdev, dev->entry, 1);
2413                if (result < 0)
2414                        goto unmap;
2415        }
2416
2417        cap = readq(&dev->bar->cap);
2418        dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2419        dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2420        dev->dbs = ((void __iomem *)dev->bar) + 4096;
2421
2422        return 0;
2423
2424 unmap:
2425        iounmap(dev->bar);
2426        dev->bar = NULL;
2427 disable:
2428        pci_release_regions(pdev);
2429 disable_pci:
2430        pci_disable_device(pdev);
2431        return result;
2432}
2433
2434static void nvme_dev_unmap(struct nvme_dev *dev)
2435{
2436        if (dev->pci_dev->msi_enabled)
2437                pci_disable_msi(dev->pci_dev);
2438        else if (dev->pci_dev->msix_enabled)
2439                pci_disable_msix(dev->pci_dev);
2440
2441        if (dev->bar) {
2442                iounmap(dev->bar);
2443                dev->bar = NULL;
2444                pci_release_regions(dev->pci_dev);
2445        }
2446
2447        if (pci_is_enabled(dev->pci_dev))
2448                pci_disable_device(dev->pci_dev);
2449}
2450
2451struct nvme_delq_ctx {
2452        struct task_struct *waiter;
2453        struct kthread_worker *worker;
2454        atomic_t refcount;
2455};
2456
2457static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2458{
2459        dq->waiter = current;
2460        mb();
2461
2462        for (;;) {
2463                set_current_state(TASK_KILLABLE);
2464                if (!atomic_read(&dq->refcount))
2465                        break;
2466                if (!schedule_timeout(ADMIN_TIMEOUT) ||
2467                                        fatal_signal_pending(current)) {
2468                        /*
2469                         * Disable the controller first since we can't trust it
2470                         * at this point, but leave the admin queue enabled
2471                         * until all queue deletion requests are flushed.
2472                         * FIXME: This may take a while if there are more h/w
2473                         * queues than admin tags.
2474                         */
2475                        set_current_state(TASK_RUNNING);
2476                        nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2477                        nvme_clear_queue(dev->queues[0]);
2478                        flush_kthread_worker(dq->worker);
2479                        nvme_disable_queue(dev, 0);
2480                        return;
2481                }
2482        }
2483        set_current_state(TASK_RUNNING);
2484}
2485
2486static void nvme_put_dq(struct nvme_delq_ctx *dq)
2487{
2488        atomic_dec(&dq->refcount);
2489        if (dq->waiter)
2490                wake_up_process(dq->waiter);
2491}
2492
2493static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2494{
2495        atomic_inc(&dq->refcount);
2496        return dq;
2497}
2498
2499static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2500{
2501        struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2502        nvme_put_dq(dq);
2503}
2504
2505static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2506                                                kthread_work_func_t fn)
2507{
2508        struct nvme_command c;
2509
2510        memset(&c, 0, sizeof(c));
2511        c.delete_queue.opcode = opcode;
2512        c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2513
2514        init_kthread_work(&nvmeq->cmdinfo.work, fn);
2515        return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2516                                                                ADMIN_TIMEOUT);
2517}
2518
2519static void nvme_del_cq_work_handler(struct kthread_work *work)
2520{
2521        struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2522                                                        cmdinfo.work);
2523        nvme_del_queue_end(nvmeq);
2524}
2525
2526static int nvme_delete_cq(struct nvme_queue *nvmeq)
2527{
2528        return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2529                                                nvme_del_cq_work_handler);
2530}
2531
2532static void nvme_del_sq_work_handler(struct kthread_work *work)
2533{
2534        struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2535                                                        cmdinfo.work);
2536        int status = nvmeq->cmdinfo.status;
2537
2538        if (!status)
2539                status = nvme_delete_cq(nvmeq);
2540        if (status)
2541                nvme_del_queue_end(nvmeq);
2542}
2543
2544static int nvme_delete_sq(struct nvme_queue *nvmeq)
2545{
2546        return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2547                                                nvme_del_sq_work_handler);
2548}
2549
2550static void nvme_del_queue_start(struct kthread_work *work)
2551{
2552        struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2553                                                        cmdinfo.work);
2554        if (nvme_delete_sq(nvmeq))
2555                nvme_del_queue_end(nvmeq);
2556}
2557
2558static void nvme_disable_io_queues(struct nvme_dev *dev)
2559{
2560        int i;
2561        DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2562        struct nvme_delq_ctx dq;
2563        struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2564                                        &worker, "nvme%d", dev->instance);
2565
2566        if (IS_ERR(kworker_task)) {
2567                dev_err(&dev->pci_dev->dev,
2568                        "Failed to create queue del task\n");
2569                for (i = dev->queue_count - 1; i > 0; i--)
2570                        nvme_disable_queue(dev, i);
2571                return;
2572        }
2573
2574        dq.waiter = NULL;
2575        atomic_set(&dq.refcount, 0);
2576        dq.worker = &worker;
2577        for (i = dev->queue_count - 1; i > 0; i--) {
2578                struct nvme_queue *nvmeq = dev->queues[i];
2579
2580                if (nvme_suspend_queue(nvmeq))
2581                        continue;
2582                nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2583                nvmeq->cmdinfo.worker = dq.worker;
2584                init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2585                queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2586        }
2587        nvme_wait_dq(&dq, dev);
2588        kthread_stop(kworker_task);
2589}
2590
2591/*
2592* Remove the node from the device list and check
2593* for whether or not we need to stop the nvme_thread.
2594*/
2595static void nvme_dev_list_remove(struct nvme_dev *dev)
2596{
2597        struct task_struct *tmp = NULL;
2598
2599        spin_lock(&dev_list_lock);
2600        list_del_init(&dev->node);
2601        if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2602                tmp = nvme_thread;
2603                nvme_thread = NULL;
2604        }
2605        spin_unlock(&dev_list_lock);
2606
2607        if (tmp)
2608                kthread_stop(tmp);
2609}
2610
2611static void nvme_freeze_queues(struct nvme_dev *dev)
2612{
2613        struct nvme_ns *ns;
2614
2615        list_for_each_entry(ns, &dev->namespaces, list) {
2616                blk_mq_freeze_queue_start(ns->queue);
2617
2618                spin_lock(ns->queue->queue_lock);
2619                queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2620                spin_unlock(ns->queue->queue_lock);
2621
2622                blk_mq_cancel_requeue_work(ns->queue);
2623                blk_mq_stop_hw_queues(ns->queue);
2624        }
2625}
2626
2627static void nvme_unfreeze_queues(struct nvme_dev *dev)
2628{
2629        struct nvme_ns *ns;
2630
2631        list_for_each_entry(ns, &dev->namespaces, list) {
2632                queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2633                blk_mq_unfreeze_queue(ns->queue);
2634                blk_mq_start_stopped_hw_queues(ns->queue, true);
2635                blk_mq_kick_requeue_list(ns->queue);
2636        }
2637}
2638
2639static void nvme_dev_shutdown(struct nvme_dev *dev)
2640{
2641        int i;
2642        u32 csts = -1;
2643
2644        nvme_dev_list_remove(dev);
2645
2646        if (dev->bar) {
2647                nvme_freeze_queues(dev);
2648                csts = readl(&dev->bar->csts);
2649        }
2650        if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2651                for (i = dev->queue_count - 1; i >= 0; i--) {
2652                        struct nvme_queue *nvmeq = dev->queues[i];
2653                        nvme_suspend_queue(nvmeq);
2654                }
2655        } else {
2656                nvme_disable_io_queues(dev);
2657                nvme_shutdown_ctrl(dev);
2658                nvme_disable_queue(dev, 0);
2659        }
2660        nvme_dev_unmap(dev);
2661
2662        for (i = dev->queue_count - 1; i >= 0; i--)
2663                nvme_clear_queue(dev->queues[i]);
2664}
2665
2666static void nvme_dev_remove(struct nvme_dev *dev)
2667{
2668        struct nvme_ns *ns;
2669
2670        list_for_each_entry(ns, &dev->namespaces, list) {
2671                if (ns->disk->flags & GENHD_FL_UP) {
2672                        if (blk_get_integrity(ns->disk))
2673                                blk_integrity_unregister(ns->disk);
2674                        del_gendisk(ns->disk);
2675                }
2676                if (!blk_queue_dying(ns->queue)) {
2677                        blk_mq_abort_requeue_list(ns->queue);
2678                        blk_cleanup_queue(ns->queue);
2679                }
2680        }
2681}
2682
2683static int nvme_setup_prp_pools(struct nvme_dev *dev)
2684{
2685        struct device *dmadev = &dev->pci_dev->dev;
2686        dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2687                                                PAGE_SIZE, PAGE_SIZE, 0);
2688        if (!dev->prp_page_pool)
2689                return -ENOMEM;
2690
2691        /* Optimisation for I/Os between 4k and 128k */
2692        dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2693                                                256, 256, 0);
2694        if (!dev->prp_small_pool) {
2695                dma_pool_destroy(dev->prp_page_pool);
2696                return -ENOMEM;
2697        }
2698        return 0;
2699}
2700
2701static void nvme_release_prp_pools(struct nvme_dev *dev)
2702{
2703        dma_pool_destroy(dev->prp_page_pool);
2704        dma_pool_destroy(dev->prp_small_pool);
2705}
2706
2707static DEFINE_IDA(nvme_instance_ida);
2708
2709static int nvme_set_instance(struct nvme_dev *dev)
2710{
2711        int instance, error;
2712
2713        do {
2714                if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2715                        return -ENODEV;
2716
2717                spin_lock(&dev_list_lock);
2718                error = ida_get_new(&nvme_instance_ida, &instance);
2719                spin_unlock(&dev_list_lock);
2720        } while (error == -EAGAIN);
2721
2722        if (error)
2723                return -ENODEV;
2724
2725        dev->instance = instance;
2726        return 0;
2727}
2728
2729static void nvme_release_instance(struct nvme_dev *dev)
2730{
2731        spin_lock(&dev_list_lock);
2732        ida_remove(&nvme_instance_ida, dev->instance);
2733        spin_unlock(&dev_list_lock);
2734}
2735
2736static void nvme_free_namespaces(struct nvme_dev *dev)
2737{
2738        struct nvme_ns *ns, *next;
2739
2740        list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2741                list_del(&ns->list);
2742
2743                spin_lock(&dev_list_lock);
2744                ns->disk->private_data = NULL;
2745                spin_unlock(&dev_list_lock);
2746
2747                put_disk(ns->disk);
2748                kfree(ns);
2749        }
2750}
2751
2752static void nvme_free_dev(struct kref *kref)
2753{
2754        struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2755
2756        pci_dev_put(dev->pci_dev);
2757        put_device(dev->device);
2758        nvme_free_namespaces(dev);
2759        nvme_release_instance(dev);
2760        blk_mq_free_tag_set(&dev->tagset);
2761        blk_put_queue(dev->admin_q);
2762        kfree(dev->queues);
2763        kfree(dev->entry);
2764        kfree(dev);
2765}
2766
2767static int nvme_dev_open(struct inode *inode, struct file *f)
2768{
2769        struct nvme_dev *dev;
2770        int instance = iminor(inode);
2771        int ret = -ENODEV;
2772
2773        spin_lock(&dev_list_lock);
2774        list_for_each_entry(dev, &dev_list, node) {
2775                if (dev->instance == instance) {
2776                        if (!dev->admin_q) {
2777                                ret = -EWOULDBLOCK;
2778                                break;
2779                        }
2780                        if (!kref_get_unless_zero(&dev->kref))
2781                                break;
2782                        f->private_data = dev;
2783                        ret = 0;
2784                        break;
2785                }
2786        }
2787        spin_unlock(&dev_list_lock);
2788
2789        return ret;
2790}
2791
2792static int nvme_dev_release(struct inode *inode, struct file *f)
2793{
2794        struct nvme_dev *dev = f->private_data;
2795        kref_put(&dev->kref, nvme_free_dev);
2796        return 0;
2797}
2798
2799static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2800{
2801        struct nvme_dev *dev = f->private_data;
2802        struct nvme_ns *ns;
2803
2804        switch (cmd) {
2805        case NVME_IOCTL_ADMIN_CMD:
2806                return nvme_user_cmd(dev, NULL, (void __user *)arg);
2807        case NVME_IOCTL_IO_CMD:
2808                if (list_empty(&dev->namespaces))
2809                        return -ENOTTY;
2810                ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2811                return nvme_user_cmd(dev, ns, (void __user *)arg);
2812        default:
2813                return -ENOTTY;
2814        }
2815}
2816
2817static const struct file_operations nvme_dev_fops = {
2818        .owner          = THIS_MODULE,
2819        .open           = nvme_dev_open,
2820        .release        = nvme_dev_release,
2821        .unlocked_ioctl = nvme_dev_ioctl,
2822        .compat_ioctl   = nvme_dev_ioctl,
2823};
2824
2825static void nvme_set_irq_hints(struct nvme_dev *dev)
2826{
2827        struct nvme_queue *nvmeq;
2828        int i;
2829
2830        for (i = 0; i < dev->online_queues; i++) {
2831                nvmeq = dev->queues[i];
2832
2833                if (!nvmeq->hctx)
2834                        continue;
2835
2836                irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2837                                                        nvmeq->hctx->cpumask);
2838        }
2839}
2840
2841static int nvme_dev_start(struct nvme_dev *dev)
2842{
2843        int result;
2844        bool start_thread = false;
2845
2846        result = nvme_dev_map(dev);
2847        if (result)
2848                return result;
2849
2850        result = nvme_configure_admin_queue(dev);
2851        if (result)
2852                goto unmap;
2853
2854        spin_lock(&dev_list_lock);
2855        if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2856                start_thread = true;
2857                nvme_thread = NULL;
2858        }
2859        list_add(&dev->node, &dev_list);
2860        spin_unlock(&dev_list_lock);
2861
2862        if (start_thread) {
2863                nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2864                wake_up_all(&nvme_kthread_wait);
2865        } else
2866                wait_event_killable(nvme_kthread_wait, nvme_thread);
2867
2868        if (IS_ERR_OR_NULL(nvme_thread)) {
2869                result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2870                goto disable;
2871        }
2872
2873        nvme_init_queue(dev->queues[0], 0);
2874        result = nvme_alloc_admin_tags(dev);
2875        if (result)
2876                goto disable;
2877
2878        result = nvme_setup_io_queues(dev);
2879        if (result)
2880                goto free_tags;
2881
2882        nvme_set_irq_hints(dev);
2883
2884        return result;
2885
2886 free_tags:
2887        nvme_dev_remove_admin(dev);
2888 disable:
2889        nvme_disable_queue(dev, 0);
2890        nvme_dev_list_remove(dev);
2891 unmap:
2892        nvme_dev_unmap(dev);
2893        return result;
2894}
2895
2896static int nvme_remove_dead_ctrl(void *arg)
2897{
2898        struct nvme_dev *dev = (struct nvme_dev *)arg;
2899        struct pci_dev *pdev = dev->pci_dev;
2900
2901        if (pci_get_drvdata(pdev))
2902                pci_stop_and_remove_bus_device_locked(pdev);
2903        kref_put(&dev->kref, nvme_free_dev);
2904        return 0;
2905}
2906
2907static void nvme_remove_disks(struct work_struct *ws)
2908{
2909        struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2910
2911        nvme_free_queues(dev, 1);
2912        nvme_dev_remove(dev);
2913}
2914
2915static int nvme_dev_resume(struct nvme_dev *dev)
2916{
2917        int ret;
2918
2919        ret = nvme_dev_start(dev);
2920        if (ret)
2921                return ret;
2922        if (dev->online_queues < 2) {
2923                spin_lock(&dev_list_lock);
2924                dev->reset_workfn = nvme_remove_disks;
2925                queue_work(nvme_workq, &dev->reset_work);
2926                spin_unlock(&dev_list_lock);
2927        } else {
2928                nvme_unfreeze_queues(dev);
2929                nvme_set_irq_hints(dev);
2930        }
2931        return 0;
2932}
2933
2934static void nvme_dev_reset(struct nvme_dev *dev)
2935{
2936        nvme_dev_shutdown(dev);
2937        if (nvme_dev_resume(dev)) {
2938                dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
2939                kref_get(&dev->kref);
2940                if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2941                                                        dev->instance))) {
2942                        dev_err(&dev->pci_dev->dev,
2943                                "Failed to start controller remove task\n");
2944                        kref_put(&dev->kref, nvme_free_dev);
2945                }
2946        }
2947}
2948
2949static void nvme_reset_failed_dev(struct work_struct *ws)
2950{
2951        struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2952        nvme_dev_reset(dev);
2953}
2954
2955static void nvme_reset_workfn(struct work_struct *work)
2956{
2957        struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2958        dev->reset_workfn(work);
2959}
2960
2961static void nvme_async_probe(struct work_struct *work);
2962static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2963{
2964        int node, result = -ENOMEM;
2965        struct nvme_dev *dev;
2966
2967        node = dev_to_node(&pdev->dev);
2968        if (node == NUMA_NO_NODE)
2969                set_dev_node(&pdev->dev, 0);
2970
2971        dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2972        if (!dev)
2973                return -ENOMEM;
2974        dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2975                                                        GFP_KERNEL, node);
2976        if (!dev->entry)
2977                goto free;
2978        dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2979                                                        GFP_KERNEL, node);
2980        if (!dev->queues)
2981                goto free;
2982
2983        INIT_LIST_HEAD(&dev->namespaces);
2984        dev->reset_workfn = nvme_reset_failed_dev;
2985        INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2986        dev->pci_dev = pci_dev_get(pdev);
2987        pci_set_drvdata(pdev, dev);
2988        result = nvme_set_instance(dev);
2989        if (result)
2990                goto put_pci;
2991
2992        result = nvme_setup_prp_pools(dev);
2993        if (result)
2994                goto release;
2995
2996        kref_init(&dev->kref);
2997        dev->device = device_create(nvme_class, &pdev->dev,
2998                                MKDEV(nvme_char_major, dev->instance),
2999                                dev, "nvme%d", dev->instance);
3000        if (IS_ERR(dev->device)) {
3001                result = PTR_ERR(dev->device);
3002                goto release_pools;
3003        }
3004        get_device(dev->device);
3005
3006        INIT_LIST_HEAD(&dev->node);
3007        INIT_WORK(&dev->probe_work, nvme_async_probe);
3008        schedule_work(&dev->probe_work);
3009        return 0;
3010
3011 release_pools:
3012        nvme_release_prp_pools(dev);
3013 release:
3014        nvme_release_instance(dev);
3015 put_pci:
3016        pci_dev_put(dev->pci_dev);
3017 free:
3018        kfree(dev->queues);
3019        kfree(dev->entry);
3020        kfree(dev);
3021        return result;
3022}
3023
3024static void nvme_async_probe(struct work_struct *work)
3025{
3026        struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3027        int result;
3028
3029        result = nvme_dev_start(dev);
3030        if (result)
3031                goto reset;
3032
3033        if (dev->online_queues > 1)
3034                result = nvme_dev_add(dev);
3035        if (result)
3036                goto reset;
3037
3038        nvme_set_irq_hints(dev);
3039        return;
3040 reset:
3041        if (!work_busy(&dev->reset_work)) {
3042                dev->reset_workfn = nvme_reset_failed_dev;
3043                queue_work(nvme_workq, &dev->reset_work);
3044        }
3045}
3046
3047static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3048{
3049        struct nvme_dev *dev = pci_get_drvdata(pdev);
3050
3051        if (prepare)
3052                nvme_dev_shutdown(dev);
3053        else
3054                nvme_dev_resume(dev);
3055}
3056
3057static void nvme_shutdown(struct pci_dev *pdev)
3058{
3059        struct nvme_dev *dev = pci_get_drvdata(pdev);
3060        nvme_dev_shutdown(dev);
3061}
3062
3063static void nvme_remove(struct pci_dev *pdev)
3064{
3065        struct nvme_dev *dev = pci_get_drvdata(pdev);
3066
3067        spin_lock(&dev_list_lock);
3068        list_del_init(&dev->node);
3069        spin_unlock(&dev_list_lock);
3070
3071        pci_set_drvdata(pdev, NULL);
3072        flush_work(&dev->probe_work);
3073        flush_work(&dev->reset_work);
3074        nvme_dev_shutdown(dev);
3075        nvme_dev_remove(dev);
3076        nvme_dev_remove_admin(dev);
3077        device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3078        nvme_free_queues(dev, 0);
3079        nvme_release_prp_pools(dev);
3080        kref_put(&dev->kref, nvme_free_dev);
3081}
3082
3083/* These functions are yet to be implemented */
3084#define nvme_error_detected NULL
3085#define nvme_dump_registers NULL
3086#define nvme_link_reset NULL
3087#define nvme_slot_reset NULL
3088#define nvme_error_resume NULL
3089
3090#ifdef CONFIG_PM_SLEEP
3091static int nvme_suspend(struct device *dev)
3092{
3093        struct pci_dev *pdev = to_pci_dev(dev);
3094        struct nvme_dev *ndev = pci_get_drvdata(pdev);
3095
3096        nvme_dev_shutdown(ndev);
3097        return 0;
3098}
3099
3100static int nvme_resume(struct device *dev)
3101{
3102        struct pci_dev *pdev = to_pci_dev(dev);
3103        struct nvme_dev *ndev = pci_get_drvdata(pdev);
3104
3105        if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3106                ndev->reset_workfn = nvme_reset_failed_dev;
3107                queue_work(nvme_workq, &ndev->reset_work);
3108        }
3109        return 0;
3110}
3111#endif
3112
3113static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3114
3115static const struct pci_error_handlers nvme_err_handler = {
3116        .error_detected = nvme_error_detected,
3117        .mmio_enabled   = nvme_dump_registers,
3118        .link_reset     = nvme_link_reset,
3119        .slot_reset     = nvme_slot_reset,
3120        .resume         = nvme_error_resume,
3121        .reset_notify   = nvme_reset_notify,
3122};
3123
3124/* Move to pci_ids.h later */
3125#define PCI_CLASS_STORAGE_EXPRESS       0x010802
3126
3127static const struct pci_device_id nvme_id_table[] = {
3128        { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3129        { 0, }
3130};
3131MODULE_DEVICE_TABLE(pci, nvme_id_table);
3132
3133static struct pci_driver nvme_driver = {
3134        .name           = "nvme",
3135        .id_table       = nvme_id_table,
3136        .probe          = nvme_probe,
3137        .remove         = nvme_remove,
3138        .shutdown       = nvme_shutdown,
3139        .driver         = {
3140                .pm     = &nvme_dev_pm_ops,
3141        },
3142        .err_handler    = &nvme_err_handler,
3143};
3144
3145static int __init nvme_init(void)
3146{
3147        int result;
3148
3149        init_waitqueue_head(&nvme_kthread_wait);
3150
3151        nvme_workq = create_singlethread_workqueue("nvme");
3152        if (!nvme_workq)
3153                return -ENOMEM;
3154
3155        result = register_blkdev(nvme_major, "nvme");
3156        if (result < 0)
3157                goto kill_workq;
3158        else if (result > 0)
3159                nvme_major = result;
3160
3161        result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3162                                                        &nvme_dev_fops);
3163        if (result < 0)
3164                goto unregister_blkdev;
3165        else if (result > 0)
3166                nvme_char_major = result;
3167
3168        nvme_class = class_create(THIS_MODULE, "nvme");
3169        if (!nvme_class)
3170                goto unregister_chrdev;
3171
3172        result = pci_register_driver(&nvme_driver);
3173        if (result)
3174                goto destroy_class;
3175        return 0;
3176
3177 destroy_class:
3178        class_destroy(nvme_class);
3179 unregister_chrdev:
3180        __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3181 unregister_blkdev:
3182        unregister_blkdev(nvme_major, "nvme");
3183 kill_workq:
3184        destroy_workqueue(nvme_workq);
3185        return result;
3186}
3187
3188static void __exit nvme_exit(void)
3189{
3190        pci_unregister_driver(&nvme_driver);
3191        unregister_blkdev(nvme_major, "nvme");
3192        destroy_workqueue(nvme_workq);
3193        class_destroy(nvme_class);
3194        __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3195        BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3196        _nvme_check_size();
3197}
3198
3199MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3200MODULE_LICENSE("GPL");
3201MODULE_VERSION("1.0");
3202module_init(nvme_init);
3203module_exit(nvme_exit);
3204