linux/drivers/block/rbd.c
<<
>>
Prefs
   1
   2/*
   3   rbd.c -- Export ceph rados objects as a Linux block device
   4
   5
   6   based on drivers/block/osdblk.c:
   7
   8   Copyright 2009 Red Hat, Inc.
   9
  10   This program is free software; you can redistribute it and/or modify
  11   it under the terms of the GNU General Public License as published by
  12   the Free Software Foundation.
  13
  14   This program is distributed in the hope that it will be useful,
  15   but WITHOUT ANY WARRANTY; without even the implied warranty of
  16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17   GNU General Public License for more details.
  18
  19   You should have received a copy of the GNU General Public License
  20   along with this program; see the file COPYING.  If not, write to
  21   the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  22
  23
  24
  25   For usage instructions, please refer to:
  26
  27                 Documentation/ABI/testing/sysfs-bus-rbd
  28
  29 */
  30
  31#include <linux/ceph/libceph.h>
  32#include <linux/ceph/osd_client.h>
  33#include <linux/ceph/mon_client.h>
  34#include <linux/ceph/decode.h>
  35#include <linux/parser.h>
  36#include <linux/bsearch.h>
  37
  38#include <linux/kernel.h>
  39#include <linux/device.h>
  40#include <linux/module.h>
  41#include <linux/blk-mq.h>
  42#include <linux/fs.h>
  43#include <linux/blkdev.h>
  44#include <linux/slab.h>
  45#include <linux/idr.h>
  46#include <linux/workqueue.h>
  47
  48#include "rbd_types.h"
  49
  50#define RBD_DEBUG       /* Activate rbd_assert() calls */
  51
  52/*
  53 * The basic unit of block I/O is a sector.  It is interpreted in a
  54 * number of contexts in Linux (blk, bio, genhd), but the default is
  55 * universally 512 bytes.  These symbols are just slightly more
  56 * meaningful than the bare numbers they represent.
  57 */
  58#define SECTOR_SHIFT    9
  59#define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
  60
  61/*
  62 * Increment the given counter and return its updated value.
  63 * If the counter is already 0 it will not be incremented.
  64 * If the counter is already at its maximum value returns
  65 * -EINVAL without updating it.
  66 */
  67static int atomic_inc_return_safe(atomic_t *v)
  68{
  69        unsigned int counter;
  70
  71        counter = (unsigned int)__atomic_add_unless(v, 1, 0);
  72        if (counter <= (unsigned int)INT_MAX)
  73                return (int)counter;
  74
  75        atomic_dec(v);
  76
  77        return -EINVAL;
  78}
  79
  80/* Decrement the counter.  Return the resulting value, or -EINVAL */
  81static int atomic_dec_return_safe(atomic_t *v)
  82{
  83        int counter;
  84
  85        counter = atomic_dec_return(v);
  86        if (counter >= 0)
  87                return counter;
  88
  89        atomic_inc(v);
  90
  91        return -EINVAL;
  92}
  93
  94#define RBD_DRV_NAME "rbd"
  95
  96#define RBD_MINORS_PER_MAJOR            256
  97#define RBD_SINGLE_MAJOR_PART_SHIFT     4
  98
  99#define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
 100#define RBD_MAX_SNAP_NAME_LEN   \
 101                        (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
 102
 103#define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
 104
 105#define RBD_SNAP_HEAD_NAME      "-"
 106
 107#define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
 108
 109/* This allows a single page to hold an image name sent by OSD */
 110#define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
 111#define RBD_IMAGE_ID_LEN_MAX    64
 112
 113#define RBD_OBJ_PREFIX_LEN_MAX  64
 114
 115/* Feature bits */
 116
 117#define RBD_FEATURE_LAYERING    (1<<0)
 118#define RBD_FEATURE_STRIPINGV2  (1<<1)
 119#define RBD_FEATURES_ALL \
 120            (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
 121
 122/* Features supported by this (client software) implementation. */
 123
 124#define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
 125
 126/*
 127 * An RBD device name will be "rbd#", where the "rbd" comes from
 128 * RBD_DRV_NAME above, and # is a unique integer identifier.
 129 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
 130 * enough to hold all possible device names.
 131 */
 132#define DEV_NAME_LEN            32
 133#define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
 134
 135/*
 136 * block device image metadata (in-memory version)
 137 */
 138struct rbd_image_header {
 139        /* These six fields never change for a given rbd image */
 140        char *object_prefix;
 141        __u8 obj_order;
 142        __u8 crypt_type;
 143        __u8 comp_type;
 144        u64 stripe_unit;
 145        u64 stripe_count;
 146        u64 features;           /* Might be changeable someday? */
 147
 148        /* The remaining fields need to be updated occasionally */
 149        u64 image_size;
 150        struct ceph_snap_context *snapc;
 151        char *snap_names;       /* format 1 only */
 152        u64 *snap_sizes;        /* format 1 only */
 153};
 154
 155/*
 156 * An rbd image specification.
 157 *
 158 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
 159 * identify an image.  Each rbd_dev structure includes a pointer to
 160 * an rbd_spec structure that encapsulates this identity.
 161 *
 162 * Each of the id's in an rbd_spec has an associated name.  For a
 163 * user-mapped image, the names are supplied and the id's associated
 164 * with them are looked up.  For a layered image, a parent image is
 165 * defined by the tuple, and the names are looked up.
 166 *
 167 * An rbd_dev structure contains a parent_spec pointer which is
 168 * non-null if the image it represents is a child in a layered
 169 * image.  This pointer will refer to the rbd_spec structure used
 170 * by the parent rbd_dev for its own identity (i.e., the structure
 171 * is shared between the parent and child).
 172 *
 173 * Since these structures are populated once, during the discovery
 174 * phase of image construction, they are effectively immutable so
 175 * we make no effort to synchronize access to them.
 176 *
 177 * Note that code herein does not assume the image name is known (it
 178 * could be a null pointer).
 179 */
 180struct rbd_spec {
 181        u64             pool_id;
 182        const char      *pool_name;
 183
 184        const char      *image_id;
 185        const char      *image_name;
 186
 187        u64             snap_id;
 188        const char      *snap_name;
 189
 190        struct kref     kref;
 191};
 192
 193/*
 194 * an instance of the client.  multiple devices may share an rbd client.
 195 */
 196struct rbd_client {
 197        struct ceph_client      *client;
 198        struct kref             kref;
 199        struct list_head        node;
 200};
 201
 202struct rbd_img_request;
 203typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
 204
 205#define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
 206
 207struct rbd_obj_request;
 208typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
 209
 210enum obj_request_type {
 211        OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
 212};
 213
 214enum obj_operation_type {
 215        OBJ_OP_WRITE,
 216        OBJ_OP_READ,
 217        OBJ_OP_DISCARD,
 218};
 219
 220enum obj_req_flags {
 221        OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
 222        OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
 223        OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
 224        OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
 225};
 226
 227struct rbd_obj_request {
 228        const char              *object_name;
 229        u64                     offset;         /* object start byte */
 230        u64                     length;         /* bytes from offset */
 231        unsigned long           flags;
 232
 233        /*
 234         * An object request associated with an image will have its
 235         * img_data flag set; a standalone object request will not.
 236         *
 237         * A standalone object request will have which == BAD_WHICH
 238         * and a null obj_request pointer.
 239         *
 240         * An object request initiated in support of a layered image
 241         * object (to check for its existence before a write) will
 242         * have which == BAD_WHICH and a non-null obj_request pointer.
 243         *
 244         * Finally, an object request for rbd image data will have
 245         * which != BAD_WHICH, and will have a non-null img_request
 246         * pointer.  The value of which will be in the range
 247         * 0..(img_request->obj_request_count-1).
 248         */
 249        union {
 250                struct rbd_obj_request  *obj_request;   /* STAT op */
 251                struct {
 252                        struct rbd_img_request  *img_request;
 253                        u64                     img_offset;
 254                        /* links for img_request->obj_requests list */
 255                        struct list_head        links;
 256                };
 257        };
 258        u32                     which;          /* posn image request list */
 259
 260        enum obj_request_type   type;
 261        union {
 262                struct bio      *bio_list;
 263                struct {
 264                        struct page     **pages;
 265                        u32             page_count;
 266                };
 267        };
 268        struct page             **copyup_pages;
 269        u32                     copyup_page_count;
 270
 271        struct ceph_osd_request *osd_req;
 272
 273        u64                     xferred;        /* bytes transferred */
 274        int                     result;
 275
 276        rbd_obj_callback_t      callback;
 277        struct completion       completion;
 278
 279        struct kref             kref;
 280};
 281
 282enum img_req_flags {
 283        IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
 284        IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
 285        IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
 286        IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
 287};
 288
 289struct rbd_img_request {
 290        struct rbd_device       *rbd_dev;
 291        u64                     offset; /* starting image byte offset */
 292        u64                     length; /* byte count from offset */
 293        unsigned long           flags;
 294        union {
 295                u64                     snap_id;        /* for reads */
 296                struct ceph_snap_context *snapc;        /* for writes */
 297        };
 298        union {
 299                struct request          *rq;            /* block request */
 300                struct rbd_obj_request  *obj_request;   /* obj req initiator */
 301        };
 302        struct page             **copyup_pages;
 303        u32                     copyup_page_count;
 304        spinlock_t              completion_lock;/* protects next_completion */
 305        u32                     next_completion;
 306        rbd_img_callback_t      callback;
 307        u64                     xferred;/* aggregate bytes transferred */
 308        int                     result; /* first nonzero obj_request result */
 309
 310        u32                     obj_request_count;
 311        struct list_head        obj_requests;   /* rbd_obj_request structs */
 312
 313        struct kref             kref;
 314};
 315
 316#define for_each_obj_request(ireq, oreq) \
 317        list_for_each_entry(oreq, &(ireq)->obj_requests, links)
 318#define for_each_obj_request_from(ireq, oreq) \
 319        list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
 320#define for_each_obj_request_safe(ireq, oreq, n) \
 321        list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
 322
 323struct rbd_mapping {
 324        u64                     size;
 325        u64                     features;
 326        bool                    read_only;
 327};
 328
 329/*
 330 * a single device
 331 */
 332struct rbd_device {
 333        int                     dev_id;         /* blkdev unique id */
 334
 335        int                     major;          /* blkdev assigned major */
 336        int                     minor;
 337        struct gendisk          *disk;          /* blkdev's gendisk and rq */
 338
 339        u32                     image_format;   /* Either 1 or 2 */
 340        struct rbd_client       *rbd_client;
 341
 342        char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
 343
 344        spinlock_t              lock;           /* queue, flags, open_count */
 345
 346        struct rbd_image_header header;
 347        unsigned long           flags;          /* possibly lock protected */
 348        struct rbd_spec         *spec;
 349
 350        char                    *header_name;
 351
 352        struct ceph_file_layout layout;
 353
 354        struct ceph_osd_event   *watch_event;
 355        struct rbd_obj_request  *watch_request;
 356
 357        struct rbd_spec         *parent_spec;
 358        u64                     parent_overlap;
 359        atomic_t                parent_ref;
 360        struct rbd_device       *parent;
 361
 362        /* Block layer tags. */
 363        struct blk_mq_tag_set   tag_set;
 364
 365        /* protects updating the header */
 366        struct rw_semaphore     header_rwsem;
 367
 368        struct rbd_mapping      mapping;
 369
 370        struct list_head        node;
 371
 372        /* sysfs related */
 373        struct device           dev;
 374        unsigned long           open_count;     /* protected by lock */
 375};
 376
 377/*
 378 * Flag bits for rbd_dev->flags.  If atomicity is required,
 379 * rbd_dev->lock is used to protect access.
 380 *
 381 * Currently, only the "removing" flag (which is coupled with the
 382 * "open_count" field) requires atomic access.
 383 */
 384enum rbd_dev_flags {
 385        RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
 386        RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
 387};
 388
 389static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
 390
 391static LIST_HEAD(rbd_dev_list);    /* devices */
 392static DEFINE_SPINLOCK(rbd_dev_list_lock);
 393
 394static LIST_HEAD(rbd_client_list);              /* clients */
 395static DEFINE_SPINLOCK(rbd_client_list_lock);
 396
 397/* Slab caches for frequently-allocated structures */
 398
 399static struct kmem_cache        *rbd_img_request_cache;
 400static struct kmem_cache        *rbd_obj_request_cache;
 401static struct kmem_cache        *rbd_segment_name_cache;
 402
 403static int rbd_major;
 404static DEFINE_IDA(rbd_dev_id_ida);
 405
 406static struct workqueue_struct *rbd_wq;
 407
 408/*
 409 * Default to false for now, as single-major requires >= 0.75 version of
 410 * userspace rbd utility.
 411 */
 412static bool single_major = false;
 413module_param(single_major, bool, S_IRUGO);
 414MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
 415
 416static int rbd_img_request_submit(struct rbd_img_request *img_request);
 417
 418static void rbd_dev_device_release(struct device *dev);
 419
 420static ssize_t rbd_add(struct bus_type *bus, const char *buf,
 421                       size_t count);
 422static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
 423                          size_t count);
 424static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
 425                                    size_t count);
 426static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
 427                                       size_t count);
 428static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
 429static void rbd_spec_put(struct rbd_spec *spec);
 430
 431static int rbd_dev_id_to_minor(int dev_id)
 432{
 433        return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
 434}
 435
 436static int minor_to_rbd_dev_id(int minor)
 437{
 438        return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
 439}
 440
 441static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
 442static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
 443static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
 444static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
 445
 446static struct attribute *rbd_bus_attrs[] = {
 447        &bus_attr_add.attr,
 448        &bus_attr_remove.attr,
 449        &bus_attr_add_single_major.attr,
 450        &bus_attr_remove_single_major.attr,
 451        NULL,
 452};
 453
 454static umode_t rbd_bus_is_visible(struct kobject *kobj,
 455                                  struct attribute *attr, int index)
 456{
 457        if (!single_major &&
 458            (attr == &bus_attr_add_single_major.attr ||
 459             attr == &bus_attr_remove_single_major.attr))
 460                return 0;
 461
 462        return attr->mode;
 463}
 464
 465static const struct attribute_group rbd_bus_group = {
 466        .attrs = rbd_bus_attrs,
 467        .is_visible = rbd_bus_is_visible,
 468};
 469__ATTRIBUTE_GROUPS(rbd_bus);
 470
 471static struct bus_type rbd_bus_type = {
 472        .name           = "rbd",
 473        .bus_groups     = rbd_bus_groups,
 474};
 475
 476static void rbd_root_dev_release(struct device *dev)
 477{
 478}
 479
 480static struct device rbd_root_dev = {
 481        .init_name =    "rbd",
 482        .release =      rbd_root_dev_release,
 483};
 484
 485static __printf(2, 3)
 486void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
 487{
 488        struct va_format vaf;
 489        va_list args;
 490
 491        va_start(args, fmt);
 492        vaf.fmt = fmt;
 493        vaf.va = &args;
 494
 495        if (!rbd_dev)
 496                printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
 497        else if (rbd_dev->disk)
 498                printk(KERN_WARNING "%s: %s: %pV\n",
 499                        RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
 500        else if (rbd_dev->spec && rbd_dev->spec->image_name)
 501                printk(KERN_WARNING "%s: image %s: %pV\n",
 502                        RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
 503        else if (rbd_dev->spec && rbd_dev->spec->image_id)
 504                printk(KERN_WARNING "%s: id %s: %pV\n",
 505                        RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
 506        else    /* punt */
 507                printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
 508                        RBD_DRV_NAME, rbd_dev, &vaf);
 509        va_end(args);
 510}
 511
 512#ifdef RBD_DEBUG
 513#define rbd_assert(expr)                                                \
 514                if (unlikely(!(expr))) {                                \
 515                        printk(KERN_ERR "\nAssertion failure in %s() "  \
 516                                                "at line %d:\n\n"       \
 517                                        "\trbd_assert(%s);\n\n",        \
 518                                        __func__, __LINE__, #expr);     \
 519                        BUG();                                          \
 520                }
 521#else /* !RBD_DEBUG */
 522#  define rbd_assert(expr)      ((void) 0)
 523#endif /* !RBD_DEBUG */
 524
 525static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
 526static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
 527static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
 528
 529static int rbd_dev_refresh(struct rbd_device *rbd_dev);
 530static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
 531static int rbd_dev_header_info(struct rbd_device *rbd_dev);
 532static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
 533static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
 534                                        u64 snap_id);
 535static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
 536                                u8 *order, u64 *snap_size);
 537static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
 538                u64 *snap_features);
 539static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
 540
 541static int rbd_open(struct block_device *bdev, fmode_t mode)
 542{
 543        struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
 544        bool removing = false;
 545
 546        if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
 547                return -EROFS;
 548
 549        spin_lock_irq(&rbd_dev->lock);
 550        if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
 551                removing = true;
 552        else
 553                rbd_dev->open_count++;
 554        spin_unlock_irq(&rbd_dev->lock);
 555        if (removing)
 556                return -ENOENT;
 557
 558        (void) get_device(&rbd_dev->dev);
 559
 560        return 0;
 561}
 562
 563static void rbd_release(struct gendisk *disk, fmode_t mode)
 564{
 565        struct rbd_device *rbd_dev = disk->private_data;
 566        unsigned long open_count_before;
 567
 568        spin_lock_irq(&rbd_dev->lock);
 569        open_count_before = rbd_dev->open_count--;
 570        spin_unlock_irq(&rbd_dev->lock);
 571        rbd_assert(open_count_before > 0);
 572
 573        put_device(&rbd_dev->dev);
 574}
 575
 576static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
 577{
 578        int ret = 0;
 579        int val;
 580        bool ro;
 581        bool ro_changed = false;
 582
 583        /* get_user() may sleep, so call it before taking rbd_dev->lock */
 584        if (get_user(val, (int __user *)(arg)))
 585                return -EFAULT;
 586
 587        ro = val ? true : false;
 588        /* Snapshot doesn't allow to write*/
 589        if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
 590                return -EROFS;
 591
 592        spin_lock_irq(&rbd_dev->lock);
 593        /* prevent others open this device */
 594        if (rbd_dev->open_count > 1) {
 595                ret = -EBUSY;
 596                goto out;
 597        }
 598
 599        if (rbd_dev->mapping.read_only != ro) {
 600                rbd_dev->mapping.read_only = ro;
 601                ro_changed = true;
 602        }
 603
 604out:
 605        spin_unlock_irq(&rbd_dev->lock);
 606        /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
 607        if (ret == 0 && ro_changed)
 608                set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
 609
 610        return ret;
 611}
 612
 613static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
 614                        unsigned int cmd, unsigned long arg)
 615{
 616        struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
 617        int ret = 0;
 618
 619        switch (cmd) {
 620        case BLKROSET:
 621                ret = rbd_ioctl_set_ro(rbd_dev, arg);
 622                break;
 623        default:
 624                ret = -ENOTTY;
 625        }
 626
 627        return ret;
 628}
 629
 630#ifdef CONFIG_COMPAT
 631static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
 632                                unsigned int cmd, unsigned long arg)
 633{
 634        return rbd_ioctl(bdev, mode, cmd, arg);
 635}
 636#endif /* CONFIG_COMPAT */
 637
 638static const struct block_device_operations rbd_bd_ops = {
 639        .owner                  = THIS_MODULE,
 640        .open                   = rbd_open,
 641        .release                = rbd_release,
 642        .ioctl                  = rbd_ioctl,
 643#ifdef CONFIG_COMPAT
 644        .compat_ioctl           = rbd_compat_ioctl,
 645#endif
 646};
 647
 648/*
 649 * Initialize an rbd client instance.  Success or not, this function
 650 * consumes ceph_opts.  Caller holds client_mutex.
 651 */
 652static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
 653{
 654        struct rbd_client *rbdc;
 655        int ret = -ENOMEM;
 656
 657        dout("%s:\n", __func__);
 658        rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
 659        if (!rbdc)
 660                goto out_opt;
 661
 662        kref_init(&rbdc->kref);
 663        INIT_LIST_HEAD(&rbdc->node);
 664
 665        rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
 666        if (IS_ERR(rbdc->client))
 667                goto out_rbdc;
 668        ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
 669
 670        ret = ceph_open_session(rbdc->client);
 671        if (ret < 0)
 672                goto out_client;
 673
 674        spin_lock(&rbd_client_list_lock);
 675        list_add_tail(&rbdc->node, &rbd_client_list);
 676        spin_unlock(&rbd_client_list_lock);
 677
 678        dout("%s: rbdc %p\n", __func__, rbdc);
 679
 680        return rbdc;
 681out_client:
 682        ceph_destroy_client(rbdc->client);
 683out_rbdc:
 684        kfree(rbdc);
 685out_opt:
 686        if (ceph_opts)
 687                ceph_destroy_options(ceph_opts);
 688        dout("%s: error %d\n", __func__, ret);
 689
 690        return ERR_PTR(ret);
 691}
 692
 693static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
 694{
 695        kref_get(&rbdc->kref);
 696
 697        return rbdc;
 698}
 699
 700/*
 701 * Find a ceph client with specific addr and configuration.  If
 702 * found, bump its reference count.
 703 */
 704static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
 705{
 706        struct rbd_client *client_node;
 707        bool found = false;
 708
 709        if (ceph_opts->flags & CEPH_OPT_NOSHARE)
 710                return NULL;
 711
 712        spin_lock(&rbd_client_list_lock);
 713        list_for_each_entry(client_node, &rbd_client_list, node) {
 714                if (!ceph_compare_options(ceph_opts, client_node->client)) {
 715                        __rbd_get_client(client_node);
 716
 717                        found = true;
 718                        break;
 719                }
 720        }
 721        spin_unlock(&rbd_client_list_lock);
 722
 723        return found ? client_node : NULL;
 724}
 725
 726/*
 727 * mount options
 728 */
 729enum {
 730        Opt_last_int,
 731        /* int args above */
 732        Opt_last_string,
 733        /* string args above */
 734        Opt_read_only,
 735        Opt_read_write,
 736        /* Boolean args above */
 737        Opt_last_bool,
 738};
 739
 740static match_table_t rbd_opts_tokens = {
 741        /* int args above */
 742        /* string args above */
 743        {Opt_read_only, "read_only"},
 744        {Opt_read_only, "ro"},          /* Alternate spelling */
 745        {Opt_read_write, "read_write"},
 746        {Opt_read_write, "rw"},         /* Alternate spelling */
 747        /* Boolean args above */
 748        {-1, NULL}
 749};
 750
 751struct rbd_options {
 752        bool    read_only;
 753};
 754
 755#define RBD_READ_ONLY_DEFAULT   false
 756
 757static int parse_rbd_opts_token(char *c, void *private)
 758{
 759        struct rbd_options *rbd_opts = private;
 760        substring_t argstr[MAX_OPT_ARGS];
 761        int token, intval, ret;
 762
 763        token = match_token(c, rbd_opts_tokens, argstr);
 764        if (token < 0)
 765                return -EINVAL;
 766
 767        if (token < Opt_last_int) {
 768                ret = match_int(&argstr[0], &intval);
 769                if (ret < 0) {
 770                        pr_err("bad mount option arg (not int) "
 771                               "at '%s'\n", c);
 772                        return ret;
 773                }
 774                dout("got int token %d val %d\n", token, intval);
 775        } else if (token > Opt_last_int && token < Opt_last_string) {
 776                dout("got string token %d val %s\n", token,
 777                     argstr[0].from);
 778        } else if (token > Opt_last_string && token < Opt_last_bool) {
 779                dout("got Boolean token %d\n", token);
 780        } else {
 781                dout("got token %d\n", token);
 782        }
 783
 784        switch (token) {
 785        case Opt_read_only:
 786                rbd_opts->read_only = true;
 787                break;
 788        case Opt_read_write:
 789                rbd_opts->read_only = false;
 790                break;
 791        default:
 792                rbd_assert(false);
 793                break;
 794        }
 795        return 0;
 796}
 797
 798static char* obj_op_name(enum obj_operation_type op_type)
 799{
 800        switch (op_type) {
 801        case OBJ_OP_READ:
 802                return "read";
 803        case OBJ_OP_WRITE:
 804                return "write";
 805        case OBJ_OP_DISCARD:
 806                return "discard";
 807        default:
 808                return "???";
 809        }
 810}
 811
 812/*
 813 * Get a ceph client with specific addr and configuration, if one does
 814 * not exist create it.  Either way, ceph_opts is consumed by this
 815 * function.
 816 */
 817static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
 818{
 819        struct rbd_client *rbdc;
 820
 821        mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
 822        rbdc = rbd_client_find(ceph_opts);
 823        if (rbdc)       /* using an existing client */
 824                ceph_destroy_options(ceph_opts);
 825        else
 826                rbdc = rbd_client_create(ceph_opts);
 827        mutex_unlock(&client_mutex);
 828
 829        return rbdc;
 830}
 831
 832/*
 833 * Destroy ceph client
 834 *
 835 * Caller must hold rbd_client_list_lock.
 836 */
 837static void rbd_client_release(struct kref *kref)
 838{
 839        struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
 840
 841        dout("%s: rbdc %p\n", __func__, rbdc);
 842        spin_lock(&rbd_client_list_lock);
 843        list_del(&rbdc->node);
 844        spin_unlock(&rbd_client_list_lock);
 845
 846        ceph_destroy_client(rbdc->client);
 847        kfree(rbdc);
 848}
 849
 850/*
 851 * Drop reference to ceph client node. If it's not referenced anymore, release
 852 * it.
 853 */
 854static void rbd_put_client(struct rbd_client *rbdc)
 855{
 856        if (rbdc)
 857                kref_put(&rbdc->kref, rbd_client_release);
 858}
 859
 860static bool rbd_image_format_valid(u32 image_format)
 861{
 862        return image_format == 1 || image_format == 2;
 863}
 864
 865static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
 866{
 867        size_t size;
 868        u32 snap_count;
 869
 870        /* The header has to start with the magic rbd header text */
 871        if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
 872                return false;
 873
 874        /* The bio layer requires at least sector-sized I/O */
 875
 876        if (ondisk->options.order < SECTOR_SHIFT)
 877                return false;
 878
 879        /* If we use u64 in a few spots we may be able to loosen this */
 880
 881        if (ondisk->options.order > 8 * sizeof (int) - 1)
 882                return false;
 883
 884        /*
 885         * The size of a snapshot header has to fit in a size_t, and
 886         * that limits the number of snapshots.
 887         */
 888        snap_count = le32_to_cpu(ondisk->snap_count);
 889        size = SIZE_MAX - sizeof (struct ceph_snap_context);
 890        if (snap_count > size / sizeof (__le64))
 891                return false;
 892
 893        /*
 894         * Not only that, but the size of the entire the snapshot
 895         * header must also be representable in a size_t.
 896         */
 897        size -= snap_count * sizeof (__le64);
 898        if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
 899                return false;
 900
 901        return true;
 902}
 903
 904/*
 905 * Fill an rbd image header with information from the given format 1
 906 * on-disk header.
 907 */
 908static int rbd_header_from_disk(struct rbd_device *rbd_dev,
 909                                 struct rbd_image_header_ondisk *ondisk)
 910{
 911        struct rbd_image_header *header = &rbd_dev->header;
 912        bool first_time = header->object_prefix == NULL;
 913        struct ceph_snap_context *snapc;
 914        char *object_prefix = NULL;
 915        char *snap_names = NULL;
 916        u64 *snap_sizes = NULL;
 917        u32 snap_count;
 918        size_t size;
 919        int ret = -ENOMEM;
 920        u32 i;
 921
 922        /* Allocate this now to avoid having to handle failure below */
 923
 924        if (first_time) {
 925                size_t len;
 926
 927                len = strnlen(ondisk->object_prefix,
 928                                sizeof (ondisk->object_prefix));
 929                object_prefix = kmalloc(len + 1, GFP_KERNEL);
 930                if (!object_prefix)
 931                        return -ENOMEM;
 932                memcpy(object_prefix, ondisk->object_prefix, len);
 933                object_prefix[len] = '\0';
 934        }
 935
 936        /* Allocate the snapshot context and fill it in */
 937
 938        snap_count = le32_to_cpu(ondisk->snap_count);
 939        snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
 940        if (!snapc)
 941                goto out_err;
 942        snapc->seq = le64_to_cpu(ondisk->snap_seq);
 943        if (snap_count) {
 944                struct rbd_image_snap_ondisk *snaps;
 945                u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
 946
 947                /* We'll keep a copy of the snapshot names... */
 948
 949                if (snap_names_len > (u64)SIZE_MAX)
 950                        goto out_2big;
 951                snap_names = kmalloc(snap_names_len, GFP_KERNEL);
 952                if (!snap_names)
 953                        goto out_err;
 954
 955                /* ...as well as the array of their sizes. */
 956
 957                size = snap_count * sizeof (*header->snap_sizes);
 958                snap_sizes = kmalloc(size, GFP_KERNEL);
 959                if (!snap_sizes)
 960                        goto out_err;
 961
 962                /*
 963                 * Copy the names, and fill in each snapshot's id
 964                 * and size.
 965                 *
 966                 * Note that rbd_dev_v1_header_info() guarantees the
 967                 * ondisk buffer we're working with has
 968                 * snap_names_len bytes beyond the end of the
 969                 * snapshot id array, this memcpy() is safe.
 970                 */
 971                memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
 972                snaps = ondisk->snaps;
 973                for (i = 0; i < snap_count; i++) {
 974                        snapc->snaps[i] = le64_to_cpu(snaps[i].id);
 975                        snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
 976                }
 977        }
 978
 979        /* We won't fail any more, fill in the header */
 980
 981        if (first_time) {
 982                header->object_prefix = object_prefix;
 983                header->obj_order = ondisk->options.order;
 984                header->crypt_type = ondisk->options.crypt_type;
 985                header->comp_type = ondisk->options.comp_type;
 986                /* The rest aren't used for format 1 images */
 987                header->stripe_unit = 0;
 988                header->stripe_count = 0;
 989                header->features = 0;
 990        } else {
 991                ceph_put_snap_context(header->snapc);
 992                kfree(header->snap_names);
 993                kfree(header->snap_sizes);
 994        }
 995
 996        /* The remaining fields always get updated (when we refresh) */
 997
 998        header->image_size = le64_to_cpu(ondisk->image_size);
 999        header->snapc = snapc;
1000        header->snap_names = snap_names;
1001        header->snap_sizes = snap_sizes;
1002
1003        return 0;
1004out_2big:
1005        ret = -EIO;
1006out_err:
1007        kfree(snap_sizes);
1008        kfree(snap_names);
1009        ceph_put_snap_context(snapc);
1010        kfree(object_prefix);
1011
1012        return ret;
1013}
1014
1015static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1016{
1017        const char *snap_name;
1018
1019        rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1020
1021        /* Skip over names until we find the one we are looking for */
1022
1023        snap_name = rbd_dev->header.snap_names;
1024        while (which--)
1025                snap_name += strlen(snap_name) + 1;
1026
1027        return kstrdup(snap_name, GFP_KERNEL);
1028}
1029
1030/*
1031 * Snapshot id comparison function for use with qsort()/bsearch().
1032 * Note that result is for snapshots in *descending* order.
1033 */
1034static int snapid_compare_reverse(const void *s1, const void *s2)
1035{
1036        u64 snap_id1 = *(u64 *)s1;
1037        u64 snap_id2 = *(u64 *)s2;
1038
1039        if (snap_id1 < snap_id2)
1040                return 1;
1041        return snap_id1 == snap_id2 ? 0 : -1;
1042}
1043
1044/*
1045 * Search a snapshot context to see if the given snapshot id is
1046 * present.
1047 *
1048 * Returns the position of the snapshot id in the array if it's found,
1049 * or BAD_SNAP_INDEX otherwise.
1050 *
1051 * Note: The snapshot array is in kept sorted (by the osd) in
1052 * reverse order, highest snapshot id first.
1053 */
1054static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1055{
1056        struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1057        u64 *found;
1058
1059        found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1060                                sizeof (snap_id), snapid_compare_reverse);
1061
1062        return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1063}
1064
1065static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1066                                        u64 snap_id)
1067{
1068        u32 which;
1069        const char *snap_name;
1070
1071        which = rbd_dev_snap_index(rbd_dev, snap_id);
1072        if (which == BAD_SNAP_INDEX)
1073                return ERR_PTR(-ENOENT);
1074
1075        snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1076        return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1077}
1078
1079static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1080{
1081        if (snap_id == CEPH_NOSNAP)
1082                return RBD_SNAP_HEAD_NAME;
1083
1084        rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1085        if (rbd_dev->image_format == 1)
1086                return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1087
1088        return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1089}
1090
1091static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1092                                u64 *snap_size)
1093{
1094        rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1095        if (snap_id == CEPH_NOSNAP) {
1096                *snap_size = rbd_dev->header.image_size;
1097        } else if (rbd_dev->image_format == 1) {
1098                u32 which;
1099
1100                which = rbd_dev_snap_index(rbd_dev, snap_id);
1101                if (which == BAD_SNAP_INDEX)
1102                        return -ENOENT;
1103
1104                *snap_size = rbd_dev->header.snap_sizes[which];
1105        } else {
1106                u64 size = 0;
1107                int ret;
1108
1109                ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1110                if (ret)
1111                        return ret;
1112
1113                *snap_size = size;
1114        }
1115        return 0;
1116}
1117
1118static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1119                        u64 *snap_features)
1120{
1121        rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1122        if (snap_id == CEPH_NOSNAP) {
1123                *snap_features = rbd_dev->header.features;
1124        } else if (rbd_dev->image_format == 1) {
1125                *snap_features = 0;     /* No features for format 1 */
1126        } else {
1127                u64 features = 0;
1128                int ret;
1129
1130                ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1131                if (ret)
1132                        return ret;
1133
1134                *snap_features = features;
1135        }
1136        return 0;
1137}
1138
1139static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1140{
1141        u64 snap_id = rbd_dev->spec->snap_id;
1142        u64 size = 0;
1143        u64 features = 0;
1144        int ret;
1145
1146        ret = rbd_snap_size(rbd_dev, snap_id, &size);
1147        if (ret)
1148                return ret;
1149        ret = rbd_snap_features(rbd_dev, snap_id, &features);
1150        if (ret)
1151                return ret;
1152
1153        rbd_dev->mapping.size = size;
1154        rbd_dev->mapping.features = features;
1155
1156        return 0;
1157}
1158
1159static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1160{
1161        rbd_dev->mapping.size = 0;
1162        rbd_dev->mapping.features = 0;
1163}
1164
1165static void rbd_segment_name_free(const char *name)
1166{
1167        /* The explicit cast here is needed to drop the const qualifier */
1168
1169        kmem_cache_free(rbd_segment_name_cache, (void *)name);
1170}
1171
1172static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1173{
1174        char *name;
1175        u64 segment;
1176        int ret;
1177        char *name_format;
1178
1179        name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1180        if (!name)
1181                return NULL;
1182        segment = offset >> rbd_dev->header.obj_order;
1183        name_format = "%s.%012llx";
1184        if (rbd_dev->image_format == 2)
1185                name_format = "%s.%016llx";
1186        ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1187                        rbd_dev->header.object_prefix, segment);
1188        if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1189                pr_err("error formatting segment name for #%llu (%d)\n",
1190                        segment, ret);
1191                rbd_segment_name_free(name);
1192                name = NULL;
1193        }
1194
1195        return name;
1196}
1197
1198static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1199{
1200        u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1201
1202        return offset & (segment_size - 1);
1203}
1204
1205static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1206                                u64 offset, u64 length)
1207{
1208        u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1209
1210        offset &= segment_size - 1;
1211
1212        rbd_assert(length <= U64_MAX - offset);
1213        if (offset + length > segment_size)
1214                length = segment_size - offset;
1215
1216        return length;
1217}
1218
1219/*
1220 * returns the size of an object in the image
1221 */
1222static u64 rbd_obj_bytes(struct rbd_image_header *header)
1223{
1224        return 1 << header->obj_order;
1225}
1226
1227/*
1228 * bio helpers
1229 */
1230
1231static void bio_chain_put(struct bio *chain)
1232{
1233        struct bio *tmp;
1234
1235        while (chain) {
1236                tmp = chain;
1237                chain = chain->bi_next;
1238                bio_put(tmp);
1239        }
1240}
1241
1242/*
1243 * zeros a bio chain, starting at specific offset
1244 */
1245static void zero_bio_chain(struct bio *chain, int start_ofs)
1246{
1247        struct bio_vec bv;
1248        struct bvec_iter iter;
1249        unsigned long flags;
1250        void *buf;
1251        int pos = 0;
1252
1253        while (chain) {
1254                bio_for_each_segment(bv, chain, iter) {
1255                        if (pos + bv.bv_len > start_ofs) {
1256                                int remainder = max(start_ofs - pos, 0);
1257                                buf = bvec_kmap_irq(&bv, &flags);
1258                                memset(buf + remainder, 0,
1259                                       bv.bv_len - remainder);
1260                                flush_dcache_page(bv.bv_page);
1261                                bvec_kunmap_irq(buf, &flags);
1262                        }
1263                        pos += bv.bv_len;
1264                }
1265
1266                chain = chain->bi_next;
1267        }
1268}
1269
1270/*
1271 * similar to zero_bio_chain(), zeros data defined by a page array,
1272 * starting at the given byte offset from the start of the array and
1273 * continuing up to the given end offset.  The pages array is
1274 * assumed to be big enough to hold all bytes up to the end.
1275 */
1276static void zero_pages(struct page **pages, u64 offset, u64 end)
1277{
1278        struct page **page = &pages[offset >> PAGE_SHIFT];
1279
1280        rbd_assert(end > offset);
1281        rbd_assert(end - offset <= (u64)SIZE_MAX);
1282        while (offset < end) {
1283                size_t page_offset;
1284                size_t length;
1285                unsigned long flags;
1286                void *kaddr;
1287
1288                page_offset = offset & ~PAGE_MASK;
1289                length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1290                local_irq_save(flags);
1291                kaddr = kmap_atomic(*page);
1292                memset(kaddr + page_offset, 0, length);
1293                flush_dcache_page(*page);
1294                kunmap_atomic(kaddr);
1295                local_irq_restore(flags);
1296
1297                offset += length;
1298                page++;
1299        }
1300}
1301
1302/*
1303 * Clone a portion of a bio, starting at the given byte offset
1304 * and continuing for the number of bytes indicated.
1305 */
1306static struct bio *bio_clone_range(struct bio *bio_src,
1307                                        unsigned int offset,
1308                                        unsigned int len,
1309                                        gfp_t gfpmask)
1310{
1311        struct bio *bio;
1312
1313        bio = bio_clone(bio_src, gfpmask);
1314        if (!bio)
1315                return NULL;    /* ENOMEM */
1316
1317        bio_advance(bio, offset);
1318        bio->bi_iter.bi_size = len;
1319
1320        return bio;
1321}
1322
1323/*
1324 * Clone a portion of a bio chain, starting at the given byte offset
1325 * into the first bio in the source chain and continuing for the
1326 * number of bytes indicated.  The result is another bio chain of
1327 * exactly the given length, or a null pointer on error.
1328 *
1329 * The bio_src and offset parameters are both in-out.  On entry they
1330 * refer to the first source bio and the offset into that bio where
1331 * the start of data to be cloned is located.
1332 *
1333 * On return, bio_src is updated to refer to the bio in the source
1334 * chain that contains first un-cloned byte, and *offset will
1335 * contain the offset of that byte within that bio.
1336 */
1337static struct bio *bio_chain_clone_range(struct bio **bio_src,
1338                                        unsigned int *offset,
1339                                        unsigned int len,
1340                                        gfp_t gfpmask)
1341{
1342        struct bio *bi = *bio_src;
1343        unsigned int off = *offset;
1344        struct bio *chain = NULL;
1345        struct bio **end;
1346
1347        /* Build up a chain of clone bios up to the limit */
1348
1349        if (!bi || off >= bi->bi_iter.bi_size || !len)
1350                return NULL;            /* Nothing to clone */
1351
1352        end = &chain;
1353        while (len) {
1354                unsigned int bi_size;
1355                struct bio *bio;
1356
1357                if (!bi) {
1358                        rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1359                        goto out_err;   /* EINVAL; ran out of bio's */
1360                }
1361                bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1362                bio = bio_clone_range(bi, off, bi_size, gfpmask);
1363                if (!bio)
1364                        goto out_err;   /* ENOMEM */
1365
1366                *end = bio;
1367                end = &bio->bi_next;
1368
1369                off += bi_size;
1370                if (off == bi->bi_iter.bi_size) {
1371                        bi = bi->bi_next;
1372                        off = 0;
1373                }
1374                len -= bi_size;
1375        }
1376        *bio_src = bi;
1377        *offset = off;
1378
1379        return chain;
1380out_err:
1381        bio_chain_put(chain);
1382
1383        return NULL;
1384}
1385
1386/*
1387 * The default/initial value for all object request flags is 0.  For
1388 * each flag, once its value is set to 1 it is never reset to 0
1389 * again.
1390 */
1391static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1392{
1393        if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1394                struct rbd_device *rbd_dev;
1395
1396                rbd_dev = obj_request->img_request->rbd_dev;
1397                rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1398                        obj_request);
1399        }
1400}
1401
1402static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1403{
1404        smp_mb();
1405        return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1406}
1407
1408static void obj_request_done_set(struct rbd_obj_request *obj_request)
1409{
1410        if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1411                struct rbd_device *rbd_dev = NULL;
1412
1413                if (obj_request_img_data_test(obj_request))
1414                        rbd_dev = obj_request->img_request->rbd_dev;
1415                rbd_warn(rbd_dev, "obj_request %p already marked done",
1416                        obj_request);
1417        }
1418}
1419
1420static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1421{
1422        smp_mb();
1423        return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1424}
1425
1426/*
1427 * This sets the KNOWN flag after (possibly) setting the EXISTS
1428 * flag.  The latter is set based on the "exists" value provided.
1429 *
1430 * Note that for our purposes once an object exists it never goes
1431 * away again.  It's possible that the response from two existence
1432 * checks are separated by the creation of the target object, and
1433 * the first ("doesn't exist") response arrives *after* the second
1434 * ("does exist").  In that case we ignore the second one.
1435 */
1436static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1437                                bool exists)
1438{
1439        if (exists)
1440                set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1441        set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1442        smp_mb();
1443}
1444
1445static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1446{
1447        smp_mb();
1448        return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1449}
1450
1451static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1452{
1453        smp_mb();
1454        return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1455}
1456
1457static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1458{
1459        struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1460
1461        return obj_request->img_offset <
1462            round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1463}
1464
1465static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1466{
1467        dout("%s: obj %p (was %d)\n", __func__, obj_request,
1468                atomic_read(&obj_request->kref.refcount));
1469        kref_get(&obj_request->kref);
1470}
1471
1472static void rbd_obj_request_destroy(struct kref *kref);
1473static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1474{
1475        rbd_assert(obj_request != NULL);
1476        dout("%s: obj %p (was %d)\n", __func__, obj_request,
1477                atomic_read(&obj_request->kref.refcount));
1478        kref_put(&obj_request->kref, rbd_obj_request_destroy);
1479}
1480
1481static void rbd_img_request_get(struct rbd_img_request *img_request)
1482{
1483        dout("%s: img %p (was %d)\n", __func__, img_request,
1484             atomic_read(&img_request->kref.refcount));
1485        kref_get(&img_request->kref);
1486}
1487
1488static bool img_request_child_test(struct rbd_img_request *img_request);
1489static void rbd_parent_request_destroy(struct kref *kref);
1490static void rbd_img_request_destroy(struct kref *kref);
1491static void rbd_img_request_put(struct rbd_img_request *img_request)
1492{
1493        rbd_assert(img_request != NULL);
1494        dout("%s: img %p (was %d)\n", __func__, img_request,
1495                atomic_read(&img_request->kref.refcount));
1496        if (img_request_child_test(img_request))
1497                kref_put(&img_request->kref, rbd_parent_request_destroy);
1498        else
1499                kref_put(&img_request->kref, rbd_img_request_destroy);
1500}
1501
1502static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1503                                        struct rbd_obj_request *obj_request)
1504{
1505        rbd_assert(obj_request->img_request == NULL);
1506
1507        /* Image request now owns object's original reference */
1508        obj_request->img_request = img_request;
1509        obj_request->which = img_request->obj_request_count;
1510        rbd_assert(!obj_request_img_data_test(obj_request));
1511        obj_request_img_data_set(obj_request);
1512        rbd_assert(obj_request->which != BAD_WHICH);
1513        img_request->obj_request_count++;
1514        list_add_tail(&obj_request->links, &img_request->obj_requests);
1515        dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1516                obj_request->which);
1517}
1518
1519static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1520                                        struct rbd_obj_request *obj_request)
1521{
1522        rbd_assert(obj_request->which != BAD_WHICH);
1523
1524        dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1525                obj_request->which);
1526        list_del(&obj_request->links);
1527        rbd_assert(img_request->obj_request_count > 0);
1528        img_request->obj_request_count--;
1529        rbd_assert(obj_request->which == img_request->obj_request_count);
1530        obj_request->which = BAD_WHICH;
1531        rbd_assert(obj_request_img_data_test(obj_request));
1532        rbd_assert(obj_request->img_request == img_request);
1533        obj_request->img_request = NULL;
1534        obj_request->callback = NULL;
1535        rbd_obj_request_put(obj_request);
1536}
1537
1538static bool obj_request_type_valid(enum obj_request_type type)
1539{
1540        switch (type) {
1541        case OBJ_REQUEST_NODATA:
1542        case OBJ_REQUEST_BIO:
1543        case OBJ_REQUEST_PAGES:
1544                return true;
1545        default:
1546                return false;
1547        }
1548}
1549
1550static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1551                                struct rbd_obj_request *obj_request)
1552{
1553        dout("%s %p\n", __func__, obj_request);
1554        return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1555}
1556
1557static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1558{
1559        dout("%s %p\n", __func__, obj_request);
1560        ceph_osdc_cancel_request(obj_request->osd_req);
1561}
1562
1563/*
1564 * Wait for an object request to complete.  If interrupted, cancel the
1565 * underlying osd request.
1566 */
1567static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1568{
1569        int ret;
1570
1571        dout("%s %p\n", __func__, obj_request);
1572
1573        ret = wait_for_completion_interruptible(&obj_request->completion);
1574        if (ret < 0) {
1575                dout("%s %p interrupted\n", __func__, obj_request);
1576                rbd_obj_request_end(obj_request);
1577                return ret;
1578        }
1579
1580        dout("%s %p done\n", __func__, obj_request);
1581        return 0;
1582}
1583
1584static void rbd_img_request_complete(struct rbd_img_request *img_request)
1585{
1586
1587        dout("%s: img %p\n", __func__, img_request);
1588
1589        /*
1590         * If no error occurred, compute the aggregate transfer
1591         * count for the image request.  We could instead use
1592         * atomic64_cmpxchg() to update it as each object request
1593         * completes; not clear which way is better off hand.
1594         */
1595        if (!img_request->result) {
1596                struct rbd_obj_request *obj_request;
1597                u64 xferred = 0;
1598
1599                for_each_obj_request(img_request, obj_request)
1600                        xferred += obj_request->xferred;
1601                img_request->xferred = xferred;
1602        }
1603
1604        if (img_request->callback)
1605                img_request->callback(img_request);
1606        else
1607                rbd_img_request_put(img_request);
1608}
1609
1610/*
1611 * The default/initial value for all image request flags is 0.  Each
1612 * is conditionally set to 1 at image request initialization time
1613 * and currently never change thereafter.
1614 */
1615static void img_request_write_set(struct rbd_img_request *img_request)
1616{
1617        set_bit(IMG_REQ_WRITE, &img_request->flags);
1618        smp_mb();
1619}
1620
1621static bool img_request_write_test(struct rbd_img_request *img_request)
1622{
1623        smp_mb();
1624        return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1625}
1626
1627/*
1628 * Set the discard flag when the img_request is an discard request
1629 */
1630static void img_request_discard_set(struct rbd_img_request *img_request)
1631{
1632        set_bit(IMG_REQ_DISCARD, &img_request->flags);
1633        smp_mb();
1634}
1635
1636static bool img_request_discard_test(struct rbd_img_request *img_request)
1637{
1638        smp_mb();
1639        return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1640}
1641
1642static void img_request_child_set(struct rbd_img_request *img_request)
1643{
1644        set_bit(IMG_REQ_CHILD, &img_request->flags);
1645        smp_mb();
1646}
1647
1648static void img_request_child_clear(struct rbd_img_request *img_request)
1649{
1650        clear_bit(IMG_REQ_CHILD, &img_request->flags);
1651        smp_mb();
1652}
1653
1654static bool img_request_child_test(struct rbd_img_request *img_request)
1655{
1656        smp_mb();
1657        return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1658}
1659
1660static void img_request_layered_set(struct rbd_img_request *img_request)
1661{
1662        set_bit(IMG_REQ_LAYERED, &img_request->flags);
1663        smp_mb();
1664}
1665
1666static void img_request_layered_clear(struct rbd_img_request *img_request)
1667{
1668        clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1669        smp_mb();
1670}
1671
1672static bool img_request_layered_test(struct rbd_img_request *img_request)
1673{
1674        smp_mb();
1675        return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1676}
1677
1678static enum obj_operation_type
1679rbd_img_request_op_type(struct rbd_img_request *img_request)
1680{
1681        if (img_request_write_test(img_request))
1682                return OBJ_OP_WRITE;
1683        else if (img_request_discard_test(img_request))
1684                return OBJ_OP_DISCARD;
1685        else
1686                return OBJ_OP_READ;
1687}
1688
1689static void
1690rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1691{
1692        u64 xferred = obj_request->xferred;
1693        u64 length = obj_request->length;
1694
1695        dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1696                obj_request, obj_request->img_request, obj_request->result,
1697                xferred, length);
1698        /*
1699         * ENOENT means a hole in the image.  We zero-fill the entire
1700         * length of the request.  A short read also implies zero-fill
1701         * to the end of the request.  An error requires the whole
1702         * length of the request to be reported finished with an error
1703         * to the block layer.  In each case we update the xferred
1704         * count to indicate the whole request was satisfied.
1705         */
1706        rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1707        if (obj_request->result == -ENOENT) {
1708                if (obj_request->type == OBJ_REQUEST_BIO)
1709                        zero_bio_chain(obj_request->bio_list, 0);
1710                else
1711                        zero_pages(obj_request->pages, 0, length);
1712                obj_request->result = 0;
1713        } else if (xferred < length && !obj_request->result) {
1714                if (obj_request->type == OBJ_REQUEST_BIO)
1715                        zero_bio_chain(obj_request->bio_list, xferred);
1716                else
1717                        zero_pages(obj_request->pages, xferred, length);
1718        }
1719        obj_request->xferred = length;
1720        obj_request_done_set(obj_request);
1721}
1722
1723static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1724{
1725        dout("%s: obj %p cb %p\n", __func__, obj_request,
1726                obj_request->callback);
1727        if (obj_request->callback)
1728                obj_request->callback(obj_request);
1729        else
1730                complete_all(&obj_request->completion);
1731}
1732
1733static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1734{
1735        dout("%s: obj %p\n", __func__, obj_request);
1736        obj_request_done_set(obj_request);
1737}
1738
1739static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1740{
1741        struct rbd_img_request *img_request = NULL;
1742        struct rbd_device *rbd_dev = NULL;
1743        bool layered = false;
1744
1745        if (obj_request_img_data_test(obj_request)) {
1746                img_request = obj_request->img_request;
1747                layered = img_request && img_request_layered_test(img_request);
1748                rbd_dev = img_request->rbd_dev;
1749        }
1750
1751        dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1752                obj_request, img_request, obj_request->result,
1753                obj_request->xferred, obj_request->length);
1754        if (layered && obj_request->result == -ENOENT &&
1755                        obj_request->img_offset < rbd_dev->parent_overlap)
1756                rbd_img_parent_read(obj_request);
1757        else if (img_request)
1758                rbd_img_obj_request_read_callback(obj_request);
1759        else
1760                obj_request_done_set(obj_request);
1761}
1762
1763static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1764{
1765        dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1766                obj_request->result, obj_request->length);
1767        /*
1768         * There is no such thing as a successful short write.  Set
1769         * it to our originally-requested length.
1770         */
1771        obj_request->xferred = obj_request->length;
1772        obj_request_done_set(obj_request);
1773}
1774
1775static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1776{
1777        dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1778                obj_request->result, obj_request->length);
1779        /*
1780         * There is no such thing as a successful short discard.  Set
1781         * it to our originally-requested length.
1782         */
1783        obj_request->xferred = obj_request->length;
1784        /* discarding a non-existent object is not a problem */
1785        if (obj_request->result == -ENOENT)
1786                obj_request->result = 0;
1787        obj_request_done_set(obj_request);
1788}
1789
1790/*
1791 * For a simple stat call there's nothing to do.  We'll do more if
1792 * this is part of a write sequence for a layered image.
1793 */
1794static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1795{
1796        dout("%s: obj %p\n", __func__, obj_request);
1797        obj_request_done_set(obj_request);
1798}
1799
1800static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1801                                struct ceph_msg *msg)
1802{
1803        struct rbd_obj_request *obj_request = osd_req->r_priv;
1804        u16 opcode;
1805
1806        dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1807        rbd_assert(osd_req == obj_request->osd_req);
1808        if (obj_request_img_data_test(obj_request)) {
1809                rbd_assert(obj_request->img_request);
1810                rbd_assert(obj_request->which != BAD_WHICH);
1811        } else {
1812                rbd_assert(obj_request->which == BAD_WHICH);
1813        }
1814
1815        if (osd_req->r_result < 0)
1816                obj_request->result = osd_req->r_result;
1817
1818        rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1819
1820        /*
1821         * We support a 64-bit length, but ultimately it has to be
1822         * passed to the block layer, which just supports a 32-bit
1823         * length field.
1824         */
1825        obj_request->xferred = osd_req->r_reply_op_len[0];
1826        rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1827
1828        opcode = osd_req->r_ops[0].op;
1829        switch (opcode) {
1830        case CEPH_OSD_OP_READ:
1831                rbd_osd_read_callback(obj_request);
1832                break;
1833        case CEPH_OSD_OP_SETALLOCHINT:
1834                rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1835                /* fall through */
1836        case CEPH_OSD_OP_WRITE:
1837                rbd_osd_write_callback(obj_request);
1838                break;
1839        case CEPH_OSD_OP_STAT:
1840                rbd_osd_stat_callback(obj_request);
1841                break;
1842        case CEPH_OSD_OP_DELETE:
1843        case CEPH_OSD_OP_TRUNCATE:
1844        case CEPH_OSD_OP_ZERO:
1845                rbd_osd_discard_callback(obj_request);
1846                break;
1847        case CEPH_OSD_OP_CALL:
1848        case CEPH_OSD_OP_NOTIFY_ACK:
1849        case CEPH_OSD_OP_WATCH:
1850                rbd_osd_trivial_callback(obj_request);
1851                break;
1852        default:
1853                rbd_warn(NULL, "%s: unsupported op %hu",
1854                        obj_request->object_name, (unsigned short) opcode);
1855                break;
1856        }
1857
1858        if (obj_request_done_test(obj_request))
1859                rbd_obj_request_complete(obj_request);
1860}
1861
1862static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1863{
1864        struct rbd_img_request *img_request = obj_request->img_request;
1865        struct ceph_osd_request *osd_req = obj_request->osd_req;
1866        u64 snap_id;
1867
1868        rbd_assert(osd_req != NULL);
1869
1870        snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1871        ceph_osdc_build_request(osd_req, obj_request->offset,
1872                        NULL, snap_id, NULL);
1873}
1874
1875static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1876{
1877        struct rbd_img_request *img_request = obj_request->img_request;
1878        struct ceph_osd_request *osd_req = obj_request->osd_req;
1879        struct ceph_snap_context *snapc;
1880        struct timespec mtime = CURRENT_TIME;
1881
1882        rbd_assert(osd_req != NULL);
1883
1884        snapc = img_request ? img_request->snapc : NULL;
1885        ceph_osdc_build_request(osd_req, obj_request->offset,
1886                        snapc, CEPH_NOSNAP, &mtime);
1887}
1888
1889/*
1890 * Create an osd request.  A read request has one osd op (read).
1891 * A write request has either one (watch) or two (hint+write) osd ops.
1892 * (All rbd data writes are prefixed with an allocation hint op, but
1893 * technically osd watch is a write request, hence this distinction.)
1894 */
1895static struct ceph_osd_request *rbd_osd_req_create(
1896                                        struct rbd_device *rbd_dev,
1897                                        enum obj_operation_type op_type,
1898                                        unsigned int num_ops,
1899                                        struct rbd_obj_request *obj_request)
1900{
1901        struct ceph_snap_context *snapc = NULL;
1902        struct ceph_osd_client *osdc;
1903        struct ceph_osd_request *osd_req;
1904
1905        if (obj_request_img_data_test(obj_request) &&
1906                (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1907                struct rbd_img_request *img_request = obj_request->img_request;
1908                if (op_type == OBJ_OP_WRITE) {
1909                        rbd_assert(img_request_write_test(img_request));
1910                } else {
1911                        rbd_assert(img_request_discard_test(img_request));
1912                }
1913                snapc = img_request->snapc;
1914        }
1915
1916        rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1917
1918        /* Allocate and initialize the request, for the num_ops ops */
1919
1920        osdc = &rbd_dev->rbd_client->client->osdc;
1921        osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1922                                          GFP_ATOMIC);
1923        if (!osd_req)
1924                return NULL;    /* ENOMEM */
1925
1926        if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1927                osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1928        else
1929                osd_req->r_flags = CEPH_OSD_FLAG_READ;
1930
1931        osd_req->r_callback = rbd_osd_req_callback;
1932        osd_req->r_priv = obj_request;
1933
1934        osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1935        ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1936
1937        return osd_req;
1938}
1939
1940/*
1941 * Create a copyup osd request based on the information in the object
1942 * request supplied.  A copyup request has two or three osd ops, a
1943 * copyup method call, potentially a hint op, and a write or truncate
1944 * or zero op.
1945 */
1946static struct ceph_osd_request *
1947rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1948{
1949        struct rbd_img_request *img_request;
1950        struct ceph_snap_context *snapc;
1951        struct rbd_device *rbd_dev;
1952        struct ceph_osd_client *osdc;
1953        struct ceph_osd_request *osd_req;
1954        int num_osd_ops = 3;
1955
1956        rbd_assert(obj_request_img_data_test(obj_request));
1957        img_request = obj_request->img_request;
1958        rbd_assert(img_request);
1959        rbd_assert(img_request_write_test(img_request) ||
1960                        img_request_discard_test(img_request));
1961
1962        if (img_request_discard_test(img_request))
1963                num_osd_ops = 2;
1964
1965        /* Allocate and initialize the request, for all the ops */
1966
1967        snapc = img_request->snapc;
1968        rbd_dev = img_request->rbd_dev;
1969        osdc = &rbd_dev->rbd_client->client->osdc;
1970        osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1971                                                false, GFP_ATOMIC);
1972        if (!osd_req)
1973                return NULL;    /* ENOMEM */
1974
1975        osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1976        osd_req->r_callback = rbd_osd_req_callback;
1977        osd_req->r_priv = obj_request;
1978
1979        osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1980        ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1981
1982        return osd_req;
1983}
1984
1985
1986static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1987{
1988        ceph_osdc_put_request(osd_req);
1989}
1990
1991/* object_name is assumed to be a non-null pointer and NUL-terminated */
1992
1993static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1994                                                u64 offset, u64 length,
1995                                                enum obj_request_type type)
1996{
1997        struct rbd_obj_request *obj_request;
1998        size_t size;
1999        char *name;
2000
2001        rbd_assert(obj_request_type_valid(type));
2002
2003        size = strlen(object_name) + 1;
2004        name = kmalloc(size, GFP_KERNEL);
2005        if (!name)
2006                return NULL;
2007
2008        obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2009        if (!obj_request) {
2010                kfree(name);
2011                return NULL;
2012        }
2013
2014        obj_request->object_name = memcpy(name, object_name, size);
2015        obj_request->offset = offset;
2016        obj_request->length = length;
2017        obj_request->flags = 0;
2018        obj_request->which = BAD_WHICH;
2019        obj_request->type = type;
2020        INIT_LIST_HEAD(&obj_request->links);
2021        init_completion(&obj_request->completion);
2022        kref_init(&obj_request->kref);
2023
2024        dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2025                offset, length, (int)type, obj_request);
2026
2027        return obj_request;
2028}
2029
2030static void rbd_obj_request_destroy(struct kref *kref)
2031{
2032        struct rbd_obj_request *obj_request;
2033
2034        obj_request = container_of(kref, struct rbd_obj_request, kref);
2035
2036        dout("%s: obj %p\n", __func__, obj_request);
2037
2038        rbd_assert(obj_request->img_request == NULL);
2039        rbd_assert(obj_request->which == BAD_WHICH);
2040
2041        if (obj_request->osd_req)
2042                rbd_osd_req_destroy(obj_request->osd_req);
2043
2044        rbd_assert(obj_request_type_valid(obj_request->type));
2045        switch (obj_request->type) {
2046        case OBJ_REQUEST_NODATA:
2047                break;          /* Nothing to do */
2048        case OBJ_REQUEST_BIO:
2049                if (obj_request->bio_list)
2050                        bio_chain_put(obj_request->bio_list);
2051                break;
2052        case OBJ_REQUEST_PAGES:
2053                if (obj_request->pages)
2054                        ceph_release_page_vector(obj_request->pages,
2055                                                obj_request->page_count);
2056                break;
2057        }
2058
2059        kfree(obj_request->object_name);
2060        obj_request->object_name = NULL;
2061        kmem_cache_free(rbd_obj_request_cache, obj_request);
2062}
2063
2064/* It's OK to call this for a device with no parent */
2065
2066static void rbd_spec_put(struct rbd_spec *spec);
2067static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2068{
2069        rbd_dev_remove_parent(rbd_dev);
2070        rbd_spec_put(rbd_dev->parent_spec);
2071        rbd_dev->parent_spec = NULL;
2072        rbd_dev->parent_overlap = 0;
2073}
2074
2075/*
2076 * Parent image reference counting is used to determine when an
2077 * image's parent fields can be safely torn down--after there are no
2078 * more in-flight requests to the parent image.  When the last
2079 * reference is dropped, cleaning them up is safe.
2080 */
2081static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2082{
2083        int counter;
2084
2085        if (!rbd_dev->parent_spec)
2086                return;
2087
2088        counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2089        if (counter > 0)
2090                return;
2091
2092        /* Last reference; clean up parent data structures */
2093
2094        if (!counter)
2095                rbd_dev_unparent(rbd_dev);
2096        else
2097                rbd_warn(rbd_dev, "parent reference underflow");
2098}
2099
2100/*
2101 * If an image has a non-zero parent overlap, get a reference to its
2102 * parent.
2103 *
2104 * Returns true if the rbd device has a parent with a non-zero
2105 * overlap and a reference for it was successfully taken, or
2106 * false otherwise.
2107 */
2108static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2109{
2110        int counter = 0;
2111
2112        if (!rbd_dev->parent_spec)
2113                return false;
2114
2115        down_read(&rbd_dev->header_rwsem);
2116        if (rbd_dev->parent_overlap)
2117                counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2118        up_read(&rbd_dev->header_rwsem);
2119
2120        if (counter < 0)
2121                rbd_warn(rbd_dev, "parent reference overflow");
2122
2123        return counter > 0;
2124}
2125
2126/*
2127 * Caller is responsible for filling in the list of object requests
2128 * that comprises the image request, and the Linux request pointer
2129 * (if there is one).
2130 */
2131static struct rbd_img_request *rbd_img_request_create(
2132                                        struct rbd_device *rbd_dev,
2133                                        u64 offset, u64 length,
2134                                        enum obj_operation_type op_type,
2135                                        struct ceph_snap_context *snapc)
2136{
2137        struct rbd_img_request *img_request;
2138
2139        img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2140        if (!img_request)
2141                return NULL;
2142
2143        img_request->rq = NULL;
2144        img_request->rbd_dev = rbd_dev;
2145        img_request->offset = offset;
2146        img_request->length = length;
2147        img_request->flags = 0;
2148        if (op_type == OBJ_OP_DISCARD) {
2149                img_request_discard_set(img_request);
2150                img_request->snapc = snapc;
2151        } else if (op_type == OBJ_OP_WRITE) {
2152                img_request_write_set(img_request);
2153                img_request->snapc = snapc;
2154        } else {
2155                img_request->snap_id = rbd_dev->spec->snap_id;
2156        }
2157        if (rbd_dev_parent_get(rbd_dev))
2158                img_request_layered_set(img_request);
2159        spin_lock_init(&img_request->completion_lock);
2160        img_request->next_completion = 0;
2161        img_request->callback = NULL;
2162        img_request->result = 0;
2163        img_request->obj_request_count = 0;
2164        INIT_LIST_HEAD(&img_request->obj_requests);
2165        kref_init(&img_request->kref);
2166
2167        dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2168                obj_op_name(op_type), offset, length, img_request);
2169
2170        return img_request;
2171}
2172
2173static void rbd_img_request_destroy(struct kref *kref)
2174{
2175        struct rbd_img_request *img_request;
2176        struct rbd_obj_request *obj_request;
2177        struct rbd_obj_request *next_obj_request;
2178
2179        img_request = container_of(kref, struct rbd_img_request, kref);
2180
2181        dout("%s: img %p\n", __func__, img_request);
2182
2183        for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2184                rbd_img_obj_request_del(img_request, obj_request);
2185        rbd_assert(img_request->obj_request_count == 0);
2186
2187        if (img_request_layered_test(img_request)) {
2188                img_request_layered_clear(img_request);
2189                rbd_dev_parent_put(img_request->rbd_dev);
2190        }
2191
2192        if (img_request_write_test(img_request) ||
2193                img_request_discard_test(img_request))
2194                ceph_put_snap_context(img_request->snapc);
2195
2196        kmem_cache_free(rbd_img_request_cache, img_request);
2197}
2198
2199static struct rbd_img_request *rbd_parent_request_create(
2200                                        struct rbd_obj_request *obj_request,
2201                                        u64 img_offset, u64 length)
2202{
2203        struct rbd_img_request *parent_request;
2204        struct rbd_device *rbd_dev;
2205
2206        rbd_assert(obj_request->img_request);
2207        rbd_dev = obj_request->img_request->rbd_dev;
2208
2209        parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2210                                                length, OBJ_OP_READ, NULL);
2211        if (!parent_request)
2212                return NULL;
2213
2214        img_request_child_set(parent_request);
2215        rbd_obj_request_get(obj_request);
2216        parent_request->obj_request = obj_request;
2217
2218        return parent_request;
2219}
2220
2221static void rbd_parent_request_destroy(struct kref *kref)
2222{
2223        struct rbd_img_request *parent_request;
2224        struct rbd_obj_request *orig_request;
2225
2226        parent_request = container_of(kref, struct rbd_img_request, kref);
2227        orig_request = parent_request->obj_request;
2228
2229        parent_request->obj_request = NULL;
2230        rbd_obj_request_put(orig_request);
2231        img_request_child_clear(parent_request);
2232
2233        rbd_img_request_destroy(kref);
2234}
2235
2236static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2237{
2238        struct rbd_img_request *img_request;
2239        unsigned int xferred;
2240        int result;
2241        bool more;
2242
2243        rbd_assert(obj_request_img_data_test(obj_request));
2244        img_request = obj_request->img_request;
2245
2246        rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2247        xferred = (unsigned int)obj_request->xferred;
2248        result = obj_request->result;
2249        if (result) {
2250                struct rbd_device *rbd_dev = img_request->rbd_dev;
2251                enum obj_operation_type op_type;
2252
2253                if (img_request_discard_test(img_request))
2254                        op_type = OBJ_OP_DISCARD;
2255                else if (img_request_write_test(img_request))
2256                        op_type = OBJ_OP_WRITE;
2257                else
2258                        op_type = OBJ_OP_READ;
2259
2260                rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2261                        obj_op_name(op_type), obj_request->length,
2262                        obj_request->img_offset, obj_request->offset);
2263                rbd_warn(rbd_dev, "  result %d xferred %x",
2264                        result, xferred);
2265                if (!img_request->result)
2266                        img_request->result = result;
2267        }
2268
2269        /* Image object requests don't own their page array */
2270
2271        if (obj_request->type == OBJ_REQUEST_PAGES) {
2272                obj_request->pages = NULL;
2273                obj_request->page_count = 0;
2274        }
2275
2276        if (img_request_child_test(img_request)) {
2277                rbd_assert(img_request->obj_request != NULL);
2278                more = obj_request->which < img_request->obj_request_count - 1;
2279        } else {
2280                rbd_assert(img_request->rq != NULL);
2281
2282                more = blk_update_request(img_request->rq, result, xferred);
2283                if (!more)
2284                        __blk_mq_end_request(img_request->rq, result);
2285        }
2286
2287        return more;
2288}
2289
2290static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2291{
2292        struct rbd_img_request *img_request;
2293        u32 which = obj_request->which;
2294        bool more = true;
2295
2296        rbd_assert(obj_request_img_data_test(obj_request));
2297        img_request = obj_request->img_request;
2298
2299        dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2300        rbd_assert(img_request != NULL);
2301        rbd_assert(img_request->obj_request_count > 0);
2302        rbd_assert(which != BAD_WHICH);
2303        rbd_assert(which < img_request->obj_request_count);
2304
2305        spin_lock_irq(&img_request->completion_lock);
2306        if (which != img_request->next_completion)
2307                goto out;
2308
2309        for_each_obj_request_from(img_request, obj_request) {
2310                rbd_assert(more);
2311                rbd_assert(which < img_request->obj_request_count);
2312
2313                if (!obj_request_done_test(obj_request))
2314                        break;
2315                more = rbd_img_obj_end_request(obj_request);
2316                which++;
2317        }
2318
2319        rbd_assert(more ^ (which == img_request->obj_request_count));
2320        img_request->next_completion = which;
2321out:
2322        spin_unlock_irq(&img_request->completion_lock);
2323        rbd_img_request_put(img_request);
2324
2325        if (!more)
2326                rbd_img_request_complete(img_request);
2327}
2328
2329/*
2330 * Add individual osd ops to the given ceph_osd_request and prepare
2331 * them for submission. num_ops is the current number of
2332 * osd operations already to the object request.
2333 */
2334static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2335                                struct ceph_osd_request *osd_request,
2336                                enum obj_operation_type op_type,
2337                                unsigned int num_ops)
2338{
2339        struct rbd_img_request *img_request = obj_request->img_request;
2340        struct rbd_device *rbd_dev = img_request->rbd_dev;
2341        u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2342        u64 offset = obj_request->offset;
2343        u64 length = obj_request->length;
2344        u64 img_end;
2345        u16 opcode;
2346
2347        if (op_type == OBJ_OP_DISCARD) {
2348                if (!offset && length == object_size &&
2349                    (!img_request_layered_test(img_request) ||
2350                     !obj_request_overlaps_parent(obj_request))) {
2351                        opcode = CEPH_OSD_OP_DELETE;
2352                } else if ((offset + length == object_size)) {
2353                        opcode = CEPH_OSD_OP_TRUNCATE;
2354                } else {
2355                        down_read(&rbd_dev->header_rwsem);
2356                        img_end = rbd_dev->header.image_size;
2357                        up_read(&rbd_dev->header_rwsem);
2358
2359                        if (obj_request->img_offset + length == img_end)
2360                                opcode = CEPH_OSD_OP_TRUNCATE;
2361                        else
2362                                opcode = CEPH_OSD_OP_ZERO;
2363                }
2364        } else if (op_type == OBJ_OP_WRITE) {
2365                opcode = CEPH_OSD_OP_WRITE;
2366                osd_req_op_alloc_hint_init(osd_request, num_ops,
2367                                        object_size, object_size);
2368                num_ops++;
2369        } else {
2370                opcode = CEPH_OSD_OP_READ;
2371        }
2372
2373        if (opcode == CEPH_OSD_OP_DELETE)
2374                osd_req_op_init(osd_request, num_ops, opcode);
2375        else
2376                osd_req_op_extent_init(osd_request, num_ops, opcode,
2377                                       offset, length, 0, 0);
2378
2379        if (obj_request->type == OBJ_REQUEST_BIO)
2380                osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2381                                        obj_request->bio_list, length);
2382        else if (obj_request->type == OBJ_REQUEST_PAGES)
2383                osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2384                                        obj_request->pages, length,
2385                                        offset & ~PAGE_MASK, false, false);
2386
2387        /* Discards are also writes */
2388        if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2389                rbd_osd_req_format_write(obj_request);
2390        else
2391                rbd_osd_req_format_read(obj_request);
2392}
2393
2394/*
2395 * Split up an image request into one or more object requests, each
2396 * to a different object.  The "type" parameter indicates whether
2397 * "data_desc" is the pointer to the head of a list of bio
2398 * structures, or the base of a page array.  In either case this
2399 * function assumes data_desc describes memory sufficient to hold
2400 * all data described by the image request.
2401 */
2402static int rbd_img_request_fill(struct rbd_img_request *img_request,
2403                                        enum obj_request_type type,
2404                                        void *data_desc)
2405{
2406        struct rbd_device *rbd_dev = img_request->rbd_dev;
2407        struct rbd_obj_request *obj_request = NULL;
2408        struct rbd_obj_request *next_obj_request;
2409        struct bio *bio_list = NULL;
2410        unsigned int bio_offset = 0;
2411        struct page **pages = NULL;
2412        enum obj_operation_type op_type;
2413        u64 img_offset;
2414        u64 resid;
2415
2416        dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2417                (int)type, data_desc);
2418
2419        img_offset = img_request->offset;
2420        resid = img_request->length;
2421        rbd_assert(resid > 0);
2422        op_type = rbd_img_request_op_type(img_request);
2423
2424        if (type == OBJ_REQUEST_BIO) {
2425                bio_list = data_desc;
2426                rbd_assert(img_offset ==
2427                           bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2428        } else if (type == OBJ_REQUEST_PAGES) {
2429                pages = data_desc;
2430        }
2431
2432        while (resid) {
2433                struct ceph_osd_request *osd_req;
2434                const char *object_name;
2435                u64 offset;
2436                u64 length;
2437
2438                object_name = rbd_segment_name(rbd_dev, img_offset);
2439                if (!object_name)
2440                        goto out_unwind;
2441                offset = rbd_segment_offset(rbd_dev, img_offset);
2442                length = rbd_segment_length(rbd_dev, img_offset, resid);
2443                obj_request = rbd_obj_request_create(object_name,
2444                                                offset, length, type);
2445                /* object request has its own copy of the object name */
2446                rbd_segment_name_free(object_name);
2447                if (!obj_request)
2448                        goto out_unwind;
2449
2450                /*
2451                 * set obj_request->img_request before creating the
2452                 * osd_request so that it gets the right snapc
2453                 */
2454                rbd_img_obj_request_add(img_request, obj_request);
2455
2456                if (type == OBJ_REQUEST_BIO) {
2457                        unsigned int clone_size;
2458
2459                        rbd_assert(length <= (u64)UINT_MAX);
2460                        clone_size = (unsigned int)length;
2461                        obj_request->bio_list =
2462                                        bio_chain_clone_range(&bio_list,
2463                                                                &bio_offset,
2464                                                                clone_size,
2465                                                                GFP_ATOMIC);
2466                        if (!obj_request->bio_list)
2467                                goto out_unwind;
2468                } else if (type == OBJ_REQUEST_PAGES) {
2469                        unsigned int page_count;
2470
2471                        obj_request->pages = pages;
2472                        page_count = (u32)calc_pages_for(offset, length);
2473                        obj_request->page_count = page_count;
2474                        if ((offset + length) & ~PAGE_MASK)
2475                                page_count--;   /* more on last page */
2476                        pages += page_count;
2477                }
2478
2479                osd_req = rbd_osd_req_create(rbd_dev, op_type,
2480                                        (op_type == OBJ_OP_WRITE) ? 2 : 1,
2481                                        obj_request);
2482                if (!osd_req)
2483                        goto out_unwind;
2484
2485                obj_request->osd_req = osd_req;
2486                obj_request->callback = rbd_img_obj_callback;
2487                obj_request->img_offset = img_offset;
2488
2489                rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2490
2491                rbd_img_request_get(img_request);
2492
2493                img_offset += length;
2494                resid -= length;
2495        }
2496
2497        return 0;
2498
2499out_unwind:
2500        for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2501                rbd_img_obj_request_del(img_request, obj_request);
2502
2503        return -ENOMEM;
2504}
2505
2506static void
2507rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2508{
2509        struct rbd_img_request *img_request;
2510        struct rbd_device *rbd_dev;
2511        struct page **pages;
2512        u32 page_count;
2513
2514        rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2515                obj_request->type == OBJ_REQUEST_NODATA);
2516        rbd_assert(obj_request_img_data_test(obj_request));
2517        img_request = obj_request->img_request;
2518        rbd_assert(img_request);
2519
2520        rbd_dev = img_request->rbd_dev;
2521        rbd_assert(rbd_dev);
2522
2523        pages = obj_request->copyup_pages;
2524        rbd_assert(pages != NULL);
2525        obj_request->copyup_pages = NULL;
2526        page_count = obj_request->copyup_page_count;
2527        rbd_assert(page_count);
2528        obj_request->copyup_page_count = 0;
2529        ceph_release_page_vector(pages, page_count);
2530
2531        /*
2532         * We want the transfer count to reflect the size of the
2533         * original write request.  There is no such thing as a
2534         * successful short write, so if the request was successful
2535         * we can just set it to the originally-requested length.
2536         */
2537        if (!obj_request->result)
2538                obj_request->xferred = obj_request->length;
2539
2540        /* Finish up with the normal image object callback */
2541
2542        rbd_img_obj_callback(obj_request);
2543}
2544
2545static void
2546rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2547{
2548        struct rbd_obj_request *orig_request;
2549        struct ceph_osd_request *osd_req;
2550        struct ceph_osd_client *osdc;
2551        struct rbd_device *rbd_dev;
2552        struct page **pages;
2553        enum obj_operation_type op_type;
2554        u32 page_count;
2555        int img_result;
2556        u64 parent_length;
2557
2558        rbd_assert(img_request_child_test(img_request));
2559
2560        /* First get what we need from the image request */
2561
2562        pages = img_request->copyup_pages;
2563        rbd_assert(pages != NULL);
2564        img_request->copyup_pages = NULL;
2565        page_count = img_request->copyup_page_count;
2566        rbd_assert(page_count);
2567        img_request->copyup_page_count = 0;
2568
2569        orig_request = img_request->obj_request;
2570        rbd_assert(orig_request != NULL);
2571        rbd_assert(obj_request_type_valid(orig_request->type));
2572        img_result = img_request->result;
2573        parent_length = img_request->length;
2574        rbd_assert(parent_length == img_request->xferred);
2575        rbd_img_request_put(img_request);
2576
2577        rbd_assert(orig_request->img_request);
2578        rbd_dev = orig_request->img_request->rbd_dev;
2579        rbd_assert(rbd_dev);
2580
2581        /*
2582         * If the overlap has become 0 (most likely because the
2583         * image has been flattened) we need to free the pages
2584         * and re-submit the original write request.
2585         */
2586        if (!rbd_dev->parent_overlap) {
2587                struct ceph_osd_client *osdc;
2588
2589                ceph_release_page_vector(pages, page_count);
2590                osdc = &rbd_dev->rbd_client->client->osdc;
2591                img_result = rbd_obj_request_submit(osdc, orig_request);
2592                if (!img_result)
2593                        return;
2594        }
2595
2596        if (img_result)
2597                goto out_err;
2598
2599        /*
2600         * The original osd request is of no use to use any more.
2601         * We need a new one that can hold the three ops in a copyup
2602         * request.  Allocate the new copyup osd request for the
2603         * original request, and release the old one.
2604         */
2605        img_result = -ENOMEM;
2606        osd_req = rbd_osd_req_create_copyup(orig_request);
2607        if (!osd_req)
2608                goto out_err;
2609        rbd_osd_req_destroy(orig_request->osd_req);
2610        orig_request->osd_req = osd_req;
2611        orig_request->copyup_pages = pages;
2612        orig_request->copyup_page_count = page_count;
2613
2614        /* Initialize the copyup op */
2615
2616        osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2617        osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2618                                                false, false);
2619
2620        /* Add the other op(s) */
2621
2622        op_type = rbd_img_request_op_type(orig_request->img_request);
2623        rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2624
2625        /* All set, send it off. */
2626
2627        orig_request->callback = rbd_img_obj_copyup_callback;
2628        osdc = &rbd_dev->rbd_client->client->osdc;
2629        img_result = rbd_obj_request_submit(osdc, orig_request);
2630        if (!img_result)
2631                return;
2632out_err:
2633        /* Record the error code and complete the request */
2634
2635        orig_request->result = img_result;
2636        orig_request->xferred = 0;
2637        obj_request_done_set(orig_request);
2638        rbd_obj_request_complete(orig_request);
2639}
2640
2641/*
2642 * Read from the parent image the range of data that covers the
2643 * entire target of the given object request.  This is used for
2644 * satisfying a layered image write request when the target of an
2645 * object request from the image request does not exist.
2646 *
2647 * A page array big enough to hold the returned data is allocated
2648 * and supplied to rbd_img_request_fill() as the "data descriptor."
2649 * When the read completes, this page array will be transferred to
2650 * the original object request for the copyup operation.
2651 *
2652 * If an error occurs, record it as the result of the original
2653 * object request and mark it done so it gets completed.
2654 */
2655static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2656{
2657        struct rbd_img_request *img_request = NULL;
2658        struct rbd_img_request *parent_request = NULL;
2659        struct rbd_device *rbd_dev;
2660        u64 img_offset;
2661        u64 length;
2662        struct page **pages = NULL;
2663        u32 page_count;
2664        int result;
2665
2666        rbd_assert(obj_request_img_data_test(obj_request));
2667        rbd_assert(obj_request_type_valid(obj_request->type));
2668
2669        img_request = obj_request->img_request;
2670        rbd_assert(img_request != NULL);
2671        rbd_dev = img_request->rbd_dev;
2672        rbd_assert(rbd_dev->parent != NULL);
2673
2674        /*
2675         * Determine the byte range covered by the object in the
2676         * child image to which the original request was to be sent.
2677         */
2678        img_offset = obj_request->img_offset - obj_request->offset;
2679        length = (u64)1 << rbd_dev->header.obj_order;
2680
2681        /*
2682         * There is no defined parent data beyond the parent
2683         * overlap, so limit what we read at that boundary if
2684         * necessary.
2685         */
2686        if (img_offset + length > rbd_dev->parent_overlap) {
2687                rbd_assert(img_offset < rbd_dev->parent_overlap);
2688                length = rbd_dev->parent_overlap - img_offset;
2689        }
2690
2691        /*
2692         * Allocate a page array big enough to receive the data read
2693         * from the parent.
2694         */
2695        page_count = (u32)calc_pages_for(0, length);
2696        pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2697        if (IS_ERR(pages)) {
2698                result = PTR_ERR(pages);
2699                pages = NULL;
2700                goto out_err;
2701        }
2702
2703        result = -ENOMEM;
2704        parent_request = rbd_parent_request_create(obj_request,
2705                                                img_offset, length);
2706        if (!parent_request)
2707                goto out_err;
2708
2709        result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2710        if (result)
2711                goto out_err;
2712        parent_request->copyup_pages = pages;
2713        parent_request->copyup_page_count = page_count;
2714
2715        parent_request->callback = rbd_img_obj_parent_read_full_callback;
2716        result = rbd_img_request_submit(parent_request);
2717        if (!result)
2718                return 0;
2719
2720        parent_request->copyup_pages = NULL;
2721        parent_request->copyup_page_count = 0;
2722        parent_request->obj_request = NULL;
2723        rbd_obj_request_put(obj_request);
2724out_err:
2725        if (pages)
2726                ceph_release_page_vector(pages, page_count);
2727        if (parent_request)
2728                rbd_img_request_put(parent_request);
2729        obj_request->result = result;
2730        obj_request->xferred = 0;
2731        obj_request_done_set(obj_request);
2732
2733        return result;
2734}
2735
2736static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2737{
2738        struct rbd_obj_request *orig_request;
2739        struct rbd_device *rbd_dev;
2740        int result;
2741
2742        rbd_assert(!obj_request_img_data_test(obj_request));
2743
2744        /*
2745         * All we need from the object request is the original
2746         * request and the result of the STAT op.  Grab those, then
2747         * we're done with the request.
2748         */
2749        orig_request = obj_request->obj_request;
2750        obj_request->obj_request = NULL;
2751        rbd_obj_request_put(orig_request);
2752        rbd_assert(orig_request);
2753        rbd_assert(orig_request->img_request);
2754
2755        result = obj_request->result;
2756        obj_request->result = 0;
2757
2758        dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2759                obj_request, orig_request, result,
2760                obj_request->xferred, obj_request->length);
2761        rbd_obj_request_put(obj_request);
2762
2763        /*
2764         * If the overlap has become 0 (most likely because the
2765         * image has been flattened) we need to free the pages
2766         * and re-submit the original write request.
2767         */
2768        rbd_dev = orig_request->img_request->rbd_dev;
2769        if (!rbd_dev->parent_overlap) {
2770                struct ceph_osd_client *osdc;
2771
2772                osdc = &rbd_dev->rbd_client->client->osdc;
2773                result = rbd_obj_request_submit(osdc, orig_request);
2774                if (!result)
2775                        return;
2776        }
2777
2778        /*
2779         * Our only purpose here is to determine whether the object
2780         * exists, and we don't want to treat the non-existence as
2781         * an error.  If something else comes back, transfer the
2782         * error to the original request and complete it now.
2783         */
2784        if (!result) {
2785                obj_request_existence_set(orig_request, true);
2786        } else if (result == -ENOENT) {
2787                obj_request_existence_set(orig_request, false);
2788        } else if (result) {
2789                orig_request->result = result;
2790                goto out;
2791        }
2792
2793        /*
2794         * Resubmit the original request now that we have recorded
2795         * whether the target object exists.
2796         */
2797        orig_request->result = rbd_img_obj_request_submit(orig_request);
2798out:
2799        if (orig_request->result)
2800                rbd_obj_request_complete(orig_request);
2801}
2802
2803static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2804{
2805        struct rbd_obj_request *stat_request;
2806        struct rbd_device *rbd_dev;
2807        struct ceph_osd_client *osdc;
2808        struct page **pages = NULL;
2809        u32 page_count;
2810        size_t size;
2811        int ret;
2812
2813        /*
2814         * The response data for a STAT call consists of:
2815         *     le64 length;
2816         *     struct {
2817         *         le32 tv_sec;
2818         *         le32 tv_nsec;
2819         *     } mtime;
2820         */
2821        size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2822        page_count = (u32)calc_pages_for(0, size);
2823        pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2824        if (IS_ERR(pages))
2825                return PTR_ERR(pages);
2826
2827        ret = -ENOMEM;
2828        stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2829                                                        OBJ_REQUEST_PAGES);
2830        if (!stat_request)
2831                goto out;
2832
2833        rbd_obj_request_get(obj_request);
2834        stat_request->obj_request = obj_request;
2835        stat_request->pages = pages;
2836        stat_request->page_count = page_count;
2837
2838        rbd_assert(obj_request->img_request);
2839        rbd_dev = obj_request->img_request->rbd_dev;
2840        stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2841                                                   stat_request);
2842        if (!stat_request->osd_req)
2843                goto out;
2844        stat_request->callback = rbd_img_obj_exists_callback;
2845
2846        osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2847        osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2848                                        false, false);
2849        rbd_osd_req_format_read(stat_request);
2850
2851        osdc = &rbd_dev->rbd_client->client->osdc;
2852        ret = rbd_obj_request_submit(osdc, stat_request);
2853out:
2854        if (ret)
2855                rbd_obj_request_put(obj_request);
2856
2857        return ret;
2858}
2859
2860static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2861{
2862        struct rbd_img_request *img_request;
2863        struct rbd_device *rbd_dev;
2864
2865        rbd_assert(obj_request_img_data_test(obj_request));
2866
2867        img_request = obj_request->img_request;
2868        rbd_assert(img_request);
2869        rbd_dev = img_request->rbd_dev;
2870
2871        /* Reads */
2872        if (!img_request_write_test(img_request) &&
2873            !img_request_discard_test(img_request))
2874                return true;
2875
2876        /* Non-layered writes */
2877        if (!img_request_layered_test(img_request))
2878                return true;
2879
2880        /*
2881         * Layered writes outside of the parent overlap range don't
2882         * share any data with the parent.
2883         */
2884        if (!obj_request_overlaps_parent(obj_request))
2885                return true;
2886
2887        /*
2888         * Entire-object layered writes - we will overwrite whatever
2889         * parent data there is anyway.
2890         */
2891        if (!obj_request->offset &&
2892            obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2893                return true;
2894
2895        /*
2896         * If the object is known to already exist, its parent data has
2897         * already been copied.
2898         */
2899        if (obj_request_known_test(obj_request) &&
2900            obj_request_exists_test(obj_request))
2901                return true;
2902
2903        return false;
2904}
2905
2906static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2907{
2908        if (img_obj_request_simple(obj_request)) {
2909                struct rbd_device *rbd_dev;
2910                struct ceph_osd_client *osdc;
2911
2912                rbd_dev = obj_request->img_request->rbd_dev;
2913                osdc = &rbd_dev->rbd_client->client->osdc;
2914
2915                return rbd_obj_request_submit(osdc, obj_request);
2916        }
2917
2918        /*
2919         * It's a layered write.  The target object might exist but
2920         * we may not know that yet.  If we know it doesn't exist,
2921         * start by reading the data for the full target object from
2922         * the parent so we can use it for a copyup to the target.
2923         */
2924        if (obj_request_known_test(obj_request))
2925                return rbd_img_obj_parent_read_full(obj_request);
2926
2927        /* We don't know whether the target exists.  Go find out. */
2928
2929        return rbd_img_obj_exists_submit(obj_request);
2930}
2931
2932static int rbd_img_request_submit(struct rbd_img_request *img_request)
2933{
2934        struct rbd_obj_request *obj_request;
2935        struct rbd_obj_request *next_obj_request;
2936
2937        dout("%s: img %p\n", __func__, img_request);
2938        for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2939                int ret;
2940
2941                ret = rbd_img_obj_request_submit(obj_request);
2942                if (ret)
2943                        return ret;
2944        }
2945
2946        return 0;
2947}
2948
2949static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2950{
2951        struct rbd_obj_request *obj_request;
2952        struct rbd_device *rbd_dev;
2953        u64 obj_end;
2954        u64 img_xferred;
2955        int img_result;
2956
2957        rbd_assert(img_request_child_test(img_request));
2958
2959        /* First get what we need from the image request and release it */
2960
2961        obj_request = img_request->obj_request;
2962        img_xferred = img_request->xferred;
2963        img_result = img_request->result;
2964        rbd_img_request_put(img_request);
2965
2966        /*
2967         * If the overlap has become 0 (most likely because the
2968         * image has been flattened) we need to re-submit the
2969         * original request.
2970         */
2971        rbd_assert(obj_request);
2972        rbd_assert(obj_request->img_request);
2973        rbd_dev = obj_request->img_request->rbd_dev;
2974        if (!rbd_dev->parent_overlap) {
2975                struct ceph_osd_client *osdc;
2976
2977                osdc = &rbd_dev->rbd_client->client->osdc;
2978                img_result = rbd_obj_request_submit(osdc, obj_request);
2979                if (!img_result)
2980                        return;
2981        }
2982
2983        obj_request->result = img_result;
2984        if (obj_request->result)
2985                goto out;
2986
2987        /*
2988         * We need to zero anything beyond the parent overlap
2989         * boundary.  Since rbd_img_obj_request_read_callback()
2990         * will zero anything beyond the end of a short read, an
2991         * easy way to do this is to pretend the data from the
2992         * parent came up short--ending at the overlap boundary.
2993         */
2994        rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2995        obj_end = obj_request->img_offset + obj_request->length;
2996        if (obj_end > rbd_dev->parent_overlap) {
2997                u64 xferred = 0;
2998
2999                if (obj_request->img_offset < rbd_dev->parent_overlap)
3000                        xferred = rbd_dev->parent_overlap -
3001                                        obj_request->img_offset;
3002
3003                obj_request->xferred = min(img_xferred, xferred);
3004        } else {
3005                obj_request->xferred = img_xferred;
3006        }
3007out:
3008        rbd_img_obj_request_read_callback(obj_request);
3009        rbd_obj_request_complete(obj_request);
3010}
3011
3012static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3013{
3014        struct rbd_img_request *img_request;
3015        int result;
3016
3017        rbd_assert(obj_request_img_data_test(obj_request));
3018        rbd_assert(obj_request->img_request != NULL);
3019        rbd_assert(obj_request->result == (s32) -ENOENT);
3020        rbd_assert(obj_request_type_valid(obj_request->type));
3021
3022        /* rbd_read_finish(obj_request, obj_request->length); */
3023        img_request = rbd_parent_request_create(obj_request,
3024                                                obj_request->img_offset,
3025                                                obj_request->length);
3026        result = -ENOMEM;
3027        if (!img_request)
3028                goto out_err;
3029
3030        if (obj_request->type == OBJ_REQUEST_BIO)
3031                result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3032                                                obj_request->bio_list);
3033        else
3034                result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3035                                                obj_request->pages);
3036        if (result)
3037                goto out_err;
3038
3039        img_request->callback = rbd_img_parent_read_callback;
3040        result = rbd_img_request_submit(img_request);
3041        if (result)
3042                goto out_err;
3043
3044        return;
3045out_err:
3046        if (img_request)
3047                rbd_img_request_put(img_request);
3048        obj_request->result = result;
3049        obj_request->xferred = 0;
3050        obj_request_done_set(obj_request);
3051}
3052
3053static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3054{
3055        struct rbd_obj_request *obj_request;
3056        struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3057        int ret;
3058
3059        obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3060                                                        OBJ_REQUEST_NODATA);
3061        if (!obj_request)
3062                return -ENOMEM;
3063
3064        ret = -ENOMEM;
3065        obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3066                                                  obj_request);
3067        if (!obj_request->osd_req)
3068                goto out;
3069
3070        osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3071                                        notify_id, 0, 0);
3072        rbd_osd_req_format_read(obj_request);
3073
3074        ret = rbd_obj_request_submit(osdc, obj_request);
3075        if (ret)
3076                goto out;
3077        ret = rbd_obj_request_wait(obj_request);
3078out:
3079        rbd_obj_request_put(obj_request);
3080
3081        return ret;
3082}
3083
3084static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3085{
3086        struct rbd_device *rbd_dev = (struct rbd_device *)data;
3087        int ret;
3088
3089        if (!rbd_dev)
3090                return;
3091
3092        dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3093                rbd_dev->header_name, (unsigned long long)notify_id,
3094                (unsigned int)opcode);
3095
3096        /*
3097         * Until adequate refresh error handling is in place, there is
3098         * not much we can do here, except warn.
3099         *
3100         * See http://tracker.ceph.com/issues/5040
3101         */
3102        ret = rbd_dev_refresh(rbd_dev);
3103        if (ret)
3104                rbd_warn(rbd_dev, "refresh failed: %d", ret);
3105
3106        ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3107        if (ret)
3108                rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3109}
3110
3111/*
3112 * Send a (un)watch request and wait for the ack.  Return a request
3113 * with a ref held on success or error.
3114 */
3115static struct rbd_obj_request *rbd_obj_watch_request_helper(
3116                                                struct rbd_device *rbd_dev,
3117                                                bool watch)
3118{
3119        struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3120        struct rbd_obj_request *obj_request;
3121        int ret;
3122
3123        obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3124                                             OBJ_REQUEST_NODATA);
3125        if (!obj_request)
3126                return ERR_PTR(-ENOMEM);
3127
3128        obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3129                                                  obj_request);
3130        if (!obj_request->osd_req) {
3131                ret = -ENOMEM;
3132                goto out;
3133        }
3134
3135        osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3136                              rbd_dev->watch_event->cookie, 0, watch);
3137        rbd_osd_req_format_write(obj_request);
3138
3139        if (watch)
3140                ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3141
3142        ret = rbd_obj_request_submit(osdc, obj_request);
3143        if (ret)
3144                goto out;
3145
3146        ret = rbd_obj_request_wait(obj_request);
3147        if (ret)
3148                goto out;
3149
3150        ret = obj_request->result;
3151        if (ret) {
3152                if (watch)
3153                        rbd_obj_request_end(obj_request);
3154                goto out;
3155        }
3156
3157        return obj_request;
3158
3159out:
3160        rbd_obj_request_put(obj_request);
3161        return ERR_PTR(ret);
3162}
3163
3164/*
3165 * Initiate a watch request, synchronously.
3166 */
3167static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3168{
3169        struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3170        struct rbd_obj_request *obj_request;
3171        int ret;
3172
3173        rbd_assert(!rbd_dev->watch_event);
3174        rbd_assert(!rbd_dev->watch_request);
3175
3176        ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3177                                     &rbd_dev->watch_event);
3178        if (ret < 0)
3179                return ret;
3180
3181        obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3182        if (IS_ERR(obj_request)) {
3183                ceph_osdc_cancel_event(rbd_dev->watch_event);
3184                rbd_dev->watch_event = NULL;
3185                return PTR_ERR(obj_request);
3186        }
3187
3188        /*
3189         * A watch request is set to linger, so the underlying osd
3190         * request won't go away until we unregister it.  We retain
3191         * a pointer to the object request during that time (in
3192         * rbd_dev->watch_request), so we'll keep a reference to it.
3193         * We'll drop that reference after we've unregistered it in
3194         * rbd_dev_header_unwatch_sync().
3195         */
3196        rbd_dev->watch_request = obj_request;
3197
3198        return 0;
3199}
3200
3201/*
3202 * Tear down a watch request, synchronously.
3203 */
3204static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3205{
3206        struct rbd_obj_request *obj_request;
3207
3208        rbd_assert(rbd_dev->watch_event);
3209        rbd_assert(rbd_dev->watch_request);
3210
3211        rbd_obj_request_end(rbd_dev->watch_request);
3212        rbd_obj_request_put(rbd_dev->watch_request);
3213        rbd_dev->watch_request = NULL;
3214
3215        obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3216        if (!IS_ERR(obj_request))
3217                rbd_obj_request_put(obj_request);
3218        else
3219                rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3220                         PTR_ERR(obj_request));
3221
3222        ceph_osdc_cancel_event(rbd_dev->watch_event);
3223        rbd_dev->watch_event = NULL;
3224}
3225
3226/*
3227 * Synchronous osd object method call.  Returns the number of bytes
3228 * returned in the outbound buffer, or a negative error code.
3229 */
3230static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3231                             const char *object_name,
3232                             const char *class_name,
3233                             const char *method_name,
3234                             const void *outbound,
3235                             size_t outbound_size,
3236                             void *inbound,
3237                             size_t inbound_size)
3238{
3239        struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3240        struct rbd_obj_request *obj_request;
3241        struct page **pages;
3242        u32 page_count;
3243        int ret;
3244
3245        /*
3246         * Method calls are ultimately read operations.  The result
3247         * should placed into the inbound buffer provided.  They
3248         * also supply outbound data--parameters for the object
3249         * method.  Currently if this is present it will be a
3250         * snapshot id.
3251         */
3252        page_count = (u32)calc_pages_for(0, inbound_size);
3253        pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3254        if (IS_ERR(pages))
3255                return PTR_ERR(pages);
3256
3257        ret = -ENOMEM;
3258        obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3259                                                        OBJ_REQUEST_PAGES);
3260        if (!obj_request)
3261                goto out;
3262
3263        obj_request->pages = pages;
3264        obj_request->page_count = page_count;
3265
3266        obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3267                                                  obj_request);
3268        if (!obj_request->osd_req)
3269                goto out;
3270
3271        osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3272                                        class_name, method_name);
3273        if (outbound_size) {
3274                struct ceph_pagelist *pagelist;
3275
3276                pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3277                if (!pagelist)
3278                        goto out;
3279
3280                ceph_pagelist_init(pagelist);
3281                ceph_pagelist_append(pagelist, outbound, outbound_size);
3282                osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3283                                                pagelist);
3284        }
3285        osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3286                                        obj_request->pages, inbound_size,
3287                                        0, false, false);
3288        rbd_osd_req_format_read(obj_request);
3289
3290        ret = rbd_obj_request_submit(osdc, obj_request);
3291        if (ret)
3292                goto out;
3293        ret = rbd_obj_request_wait(obj_request);
3294        if (ret)
3295                goto out;
3296
3297        ret = obj_request->result;
3298        if (ret < 0)
3299                goto out;
3300
3301        rbd_assert(obj_request->xferred < (u64)INT_MAX);
3302        ret = (int)obj_request->xferred;
3303        ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3304out:
3305        if (obj_request)
3306                rbd_obj_request_put(obj_request);
3307        else
3308                ceph_release_page_vector(pages, page_count);
3309
3310        return ret;
3311}
3312
3313static void rbd_queue_workfn(struct work_struct *work)
3314{
3315        struct request *rq = blk_mq_rq_from_pdu(work);
3316        struct rbd_device *rbd_dev = rq->q->queuedata;
3317        struct rbd_img_request *img_request;
3318        struct ceph_snap_context *snapc = NULL;
3319        u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3320        u64 length = blk_rq_bytes(rq);
3321        enum obj_operation_type op_type;
3322        u64 mapping_size;
3323        int result;
3324
3325        if (rq->cmd_type != REQ_TYPE_FS) {
3326                dout("%s: non-fs request type %d\n", __func__,
3327                        (int) rq->cmd_type);
3328                result = -EIO;
3329                goto err;
3330        }
3331
3332        if (rq->cmd_flags & REQ_DISCARD)
3333                op_type = OBJ_OP_DISCARD;
3334        else if (rq->cmd_flags & REQ_WRITE)
3335                op_type = OBJ_OP_WRITE;
3336        else
3337                op_type = OBJ_OP_READ;
3338
3339        /* Ignore/skip any zero-length requests */
3340
3341        if (!length) {
3342                dout("%s: zero-length request\n", __func__);
3343                result = 0;
3344                goto err_rq;
3345        }
3346
3347        /* Only reads are allowed to a read-only device */
3348
3349        if (op_type != OBJ_OP_READ) {
3350                if (rbd_dev->mapping.read_only) {
3351                        result = -EROFS;
3352                        goto err_rq;
3353                }
3354                rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3355        }
3356
3357        /*
3358         * Quit early if the mapped snapshot no longer exists.  It's
3359         * still possible the snapshot will have disappeared by the
3360         * time our request arrives at the osd, but there's no sense in
3361         * sending it if we already know.
3362         */
3363        if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3364                dout("request for non-existent snapshot");
3365                rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3366                result = -ENXIO;
3367                goto err_rq;
3368        }
3369
3370        if (offset && length > U64_MAX - offset + 1) {
3371                rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3372                         length);
3373                result = -EINVAL;
3374                goto err_rq;    /* Shouldn't happen */
3375        }
3376
3377        blk_mq_start_request(rq);
3378
3379        down_read(&rbd_dev->header_rwsem);
3380        mapping_size = rbd_dev->mapping.size;
3381        if (op_type != OBJ_OP_READ) {
3382                snapc = rbd_dev->header.snapc;
3383                ceph_get_snap_context(snapc);
3384        }
3385        up_read(&rbd_dev->header_rwsem);
3386
3387        if (offset + length > mapping_size) {
3388                rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3389                         length, mapping_size);
3390                result = -EIO;
3391                goto err_rq;
3392        }
3393
3394        img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3395                                             snapc);
3396        if (!img_request) {
3397                result = -ENOMEM;
3398                goto err_rq;
3399        }
3400        img_request->rq = rq;
3401
3402        if (op_type == OBJ_OP_DISCARD)
3403                result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3404                                              NULL);
3405        else
3406                result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3407                                              rq->bio);
3408        if (result)
3409                goto err_img_request;
3410
3411        result = rbd_img_request_submit(img_request);
3412        if (result)
3413                goto err_img_request;
3414
3415        return;
3416
3417err_img_request:
3418        rbd_img_request_put(img_request);
3419err_rq:
3420        if (result)
3421                rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3422                         obj_op_name(op_type), length, offset, result);
3423        ceph_put_snap_context(snapc);
3424err:
3425        blk_mq_end_request(rq, result);
3426}
3427
3428static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3429                const struct blk_mq_queue_data *bd)
3430{
3431        struct request *rq = bd->rq;
3432        struct work_struct *work = blk_mq_rq_to_pdu(rq);
3433
3434        queue_work(rbd_wq, work);
3435        return BLK_MQ_RQ_QUEUE_OK;
3436}
3437
3438/*
3439 * a queue callback. Makes sure that we don't create a bio that spans across
3440 * multiple osd objects. One exception would be with a single page bios,
3441 * which we handle later at bio_chain_clone_range()
3442 */
3443static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3444                          struct bio_vec *bvec)
3445{
3446        struct rbd_device *rbd_dev = q->queuedata;
3447        sector_t sector_offset;
3448        sector_t sectors_per_obj;
3449        sector_t obj_sector_offset;
3450        int ret;
3451
3452        /*
3453         * Find how far into its rbd object the partition-relative
3454         * bio start sector is to offset relative to the enclosing
3455         * device.
3456         */
3457        sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3458        sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3459        obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3460
3461        /*
3462         * Compute the number of bytes from that offset to the end
3463         * of the object.  Account for what's already used by the bio.
3464         */
3465        ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3466        if (ret > bmd->bi_size)
3467                ret -= bmd->bi_size;
3468        else
3469                ret = 0;
3470
3471        /*
3472         * Don't send back more than was asked for.  And if the bio
3473         * was empty, let the whole thing through because:  "Note
3474         * that a block device *must* allow a single page to be
3475         * added to an empty bio."
3476         */
3477        rbd_assert(bvec->bv_len <= PAGE_SIZE);
3478        if (ret > (int) bvec->bv_len || !bmd->bi_size)
3479                ret = (int) bvec->bv_len;
3480
3481        return ret;
3482}
3483
3484static void rbd_free_disk(struct rbd_device *rbd_dev)
3485{
3486        struct gendisk *disk = rbd_dev->disk;
3487
3488        if (!disk)
3489                return;
3490
3491        rbd_dev->disk = NULL;
3492        if (disk->flags & GENHD_FL_UP) {
3493                del_gendisk(disk);
3494                if (disk->queue)
3495                        blk_cleanup_queue(disk->queue);
3496                blk_mq_free_tag_set(&rbd_dev->tag_set);
3497        }
3498        put_disk(disk);
3499}
3500
3501static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3502                                const char *object_name,
3503                                u64 offset, u64 length, void *buf)
3504
3505{
3506        struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3507        struct rbd_obj_request *obj_request;
3508        struct page **pages = NULL;
3509        u32 page_count;
3510        size_t size;
3511        int ret;
3512
3513        page_count = (u32) calc_pages_for(offset, length);
3514        pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3515        if (IS_ERR(pages))
3516                return PTR_ERR(pages);
3517
3518        ret = -ENOMEM;
3519        obj_request = rbd_obj_request_create(object_name, offset, length,
3520                                                        OBJ_REQUEST_PAGES);
3521        if (!obj_request)
3522                goto out;
3523
3524        obj_request->pages = pages;
3525        obj_request->page_count = page_count;
3526
3527        obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3528                                                  obj_request);
3529        if (!obj_request->osd_req)
3530                goto out;
3531
3532        osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3533                                        offset, length, 0, 0);
3534        osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3535                                        obj_request->pages,
3536                                        obj_request->length,
3537                                        obj_request->offset & ~PAGE_MASK,
3538                                        false, false);
3539        rbd_osd_req_format_read(obj_request);
3540
3541        ret = rbd_obj_request_submit(osdc, obj_request);
3542        if (ret)
3543                goto out;
3544        ret = rbd_obj_request_wait(obj_request);
3545        if (ret)
3546                goto out;
3547
3548        ret = obj_request->result;
3549        if (ret < 0)
3550                goto out;
3551
3552        rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3553        size = (size_t) obj_request->xferred;
3554        ceph_copy_from_page_vector(pages, buf, 0, size);
3555        rbd_assert(size <= (size_t)INT_MAX);
3556        ret = (int)size;
3557out:
3558        if (obj_request)
3559                rbd_obj_request_put(obj_request);
3560        else
3561                ceph_release_page_vector(pages, page_count);
3562
3563        return ret;
3564}
3565
3566/*
3567 * Read the complete header for the given rbd device.  On successful
3568 * return, the rbd_dev->header field will contain up-to-date
3569 * information about the image.
3570 */
3571static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3572{
3573        struct rbd_image_header_ondisk *ondisk = NULL;
3574        u32 snap_count = 0;
3575        u64 names_size = 0;
3576        u32 want_count;
3577        int ret;
3578
3579        /*
3580         * The complete header will include an array of its 64-bit
3581         * snapshot ids, followed by the names of those snapshots as
3582         * a contiguous block of NUL-terminated strings.  Note that
3583         * the number of snapshots could change by the time we read
3584         * it in, in which case we re-read it.
3585         */
3586        do {
3587                size_t size;
3588
3589                kfree(ondisk);
3590
3591                size = sizeof (*ondisk);
3592                size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3593                size += names_size;
3594                ondisk = kmalloc(size, GFP_KERNEL);
3595                if (!ondisk)
3596                        return -ENOMEM;
3597
3598                ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3599                                       0, size, ondisk);
3600                if (ret < 0)
3601                        goto out;
3602                if ((size_t)ret < size) {
3603                        ret = -ENXIO;
3604                        rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3605                                size, ret);
3606                        goto out;
3607                }
3608                if (!rbd_dev_ondisk_valid(ondisk)) {
3609                        ret = -ENXIO;
3610                        rbd_warn(rbd_dev, "invalid header");
3611                        goto out;
3612                }
3613
3614                names_size = le64_to_cpu(ondisk->snap_names_len);
3615                want_count = snap_count;
3616                snap_count = le32_to_cpu(ondisk->snap_count);
3617        } while (snap_count != want_count);
3618
3619        ret = rbd_header_from_disk(rbd_dev, ondisk);
3620out:
3621        kfree(ondisk);
3622
3623        return ret;
3624}
3625
3626/*
3627 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3628 * has disappeared from the (just updated) snapshot context.
3629 */
3630static void rbd_exists_validate(struct rbd_device *rbd_dev)
3631{
3632        u64 snap_id;
3633
3634        if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3635                return;
3636
3637        snap_id = rbd_dev->spec->snap_id;
3638        if (snap_id == CEPH_NOSNAP)
3639                return;
3640
3641        if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3642                clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3643}
3644
3645static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3646{
3647        sector_t size;
3648        bool removing;
3649
3650        /*
3651         * Don't hold the lock while doing disk operations,
3652         * or lock ordering will conflict with the bdev mutex via:
3653         * rbd_add() -> blkdev_get() -> rbd_open()
3654         */
3655        spin_lock_irq(&rbd_dev->lock);
3656        removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3657        spin_unlock_irq(&rbd_dev->lock);
3658        /*
3659         * If the device is being removed, rbd_dev->disk has
3660         * been destroyed, so don't try to update its size
3661         */
3662        if (!removing) {
3663                size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3664                dout("setting size to %llu sectors", (unsigned long long)size);
3665                set_capacity(rbd_dev->disk, size);
3666                revalidate_disk(rbd_dev->disk);
3667        }
3668}
3669
3670static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3671{
3672        u64 mapping_size;
3673        int ret;
3674
3675        down_write(&rbd_dev->header_rwsem);
3676        mapping_size = rbd_dev->mapping.size;
3677
3678        ret = rbd_dev_header_info(rbd_dev);
3679        if (ret)
3680                goto out;
3681
3682        /*
3683         * If there is a parent, see if it has disappeared due to the
3684         * mapped image getting flattened.
3685         */
3686        if (rbd_dev->parent) {
3687                ret = rbd_dev_v2_parent_info(rbd_dev);
3688                if (ret)
3689                        goto out;
3690        }
3691
3692        if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3693                rbd_dev->mapping.size = rbd_dev->header.image_size;
3694        } else {
3695                /* validate mapped snapshot's EXISTS flag */
3696                rbd_exists_validate(rbd_dev);
3697        }
3698
3699out:
3700        up_write(&rbd_dev->header_rwsem);
3701        if (!ret && mapping_size != rbd_dev->mapping.size)
3702                rbd_dev_update_size(rbd_dev);
3703
3704        return ret;
3705}
3706
3707static int rbd_init_request(void *data, struct request *rq,
3708                unsigned int hctx_idx, unsigned int request_idx,
3709                unsigned int numa_node)
3710{
3711        struct work_struct *work = blk_mq_rq_to_pdu(rq);
3712
3713        INIT_WORK(work, rbd_queue_workfn);
3714        return 0;
3715}
3716
3717static struct blk_mq_ops rbd_mq_ops = {
3718        .queue_rq       = rbd_queue_rq,
3719        .map_queue      = blk_mq_map_queue,
3720        .init_request   = rbd_init_request,
3721};
3722
3723static int rbd_init_disk(struct rbd_device *rbd_dev)
3724{
3725        struct gendisk *disk;
3726        struct request_queue *q;
3727        u64 segment_size;
3728        int err;
3729
3730        /* create gendisk info */
3731        disk = alloc_disk(single_major ?
3732                          (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3733                          RBD_MINORS_PER_MAJOR);
3734        if (!disk)
3735                return -ENOMEM;
3736
3737        snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3738                 rbd_dev->dev_id);
3739        disk->major = rbd_dev->major;
3740        disk->first_minor = rbd_dev->minor;
3741        if (single_major)
3742                disk->flags |= GENHD_FL_EXT_DEVT;
3743        disk->fops = &rbd_bd_ops;
3744        disk->private_data = rbd_dev;
3745
3746        memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3747        rbd_dev->tag_set.ops = &rbd_mq_ops;
3748        rbd_dev->tag_set.queue_depth = BLKDEV_MAX_RQ;
3749        rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3750        rbd_dev->tag_set.flags =
3751                BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3752        rbd_dev->tag_set.nr_hw_queues = 1;
3753        rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3754
3755        err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3756        if (err)
3757                goto out_disk;
3758
3759        q = blk_mq_init_queue(&rbd_dev->tag_set);
3760        if (IS_ERR(q)) {
3761                err = PTR_ERR(q);
3762                goto out_tag_set;
3763        }
3764
3765        /* We use the default size, but let's be explicit about it. */
3766        blk_queue_physical_block_size(q, SECTOR_SIZE);
3767
3768        /* set io sizes to object size */
3769        segment_size = rbd_obj_bytes(&rbd_dev->header);
3770        blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3771        blk_queue_max_segment_size(q, segment_size);
3772        blk_queue_io_min(q, segment_size);
3773        blk_queue_io_opt(q, segment_size);
3774
3775        /* enable the discard support */
3776        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3777        q->limits.discard_granularity = segment_size;
3778        q->limits.discard_alignment = segment_size;
3779        q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3780        q->limits.discard_zeroes_data = 1;
3781
3782        blk_queue_merge_bvec(q, rbd_merge_bvec);
3783        disk->queue = q;
3784
3785        q->queuedata = rbd_dev;
3786
3787        rbd_dev->disk = disk;
3788
3789        return 0;
3790out_tag_set:
3791        blk_mq_free_tag_set(&rbd_dev->tag_set);
3792out_disk:
3793        put_disk(disk);
3794        return err;
3795}
3796
3797/*
3798  sysfs
3799*/
3800
3801static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3802{
3803        return container_of(dev, struct rbd_device, dev);
3804}
3805
3806static ssize_t rbd_size_show(struct device *dev,
3807                             struct device_attribute *attr, char *buf)
3808{
3809        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3810
3811        return sprintf(buf, "%llu\n",
3812                (unsigned long long)rbd_dev->mapping.size);
3813}
3814
3815/*
3816 * Note this shows the features for whatever's mapped, which is not
3817 * necessarily the base image.
3818 */
3819static ssize_t rbd_features_show(struct device *dev,
3820                             struct device_attribute *attr, char *buf)
3821{
3822        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3823
3824        return sprintf(buf, "0x%016llx\n",
3825                        (unsigned long long)rbd_dev->mapping.features);
3826}
3827
3828static ssize_t rbd_major_show(struct device *dev,
3829                              struct device_attribute *attr, char *buf)
3830{
3831        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3832
3833        if (rbd_dev->major)
3834                return sprintf(buf, "%d\n", rbd_dev->major);
3835
3836        return sprintf(buf, "(none)\n");
3837}
3838
3839static ssize_t rbd_minor_show(struct device *dev,
3840                              struct device_attribute *attr, char *buf)
3841{
3842        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3843
3844        return sprintf(buf, "%d\n", rbd_dev->minor);
3845}
3846
3847static ssize_t rbd_client_id_show(struct device *dev,
3848                                  struct device_attribute *attr, char *buf)
3849{
3850        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3851
3852        return sprintf(buf, "client%lld\n",
3853                        ceph_client_id(rbd_dev->rbd_client->client));
3854}
3855
3856static ssize_t rbd_pool_show(struct device *dev,
3857                             struct device_attribute *attr, char *buf)
3858{
3859        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3860
3861        return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3862}
3863
3864static ssize_t rbd_pool_id_show(struct device *dev,
3865                             struct device_attribute *attr, char *buf)
3866{
3867        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3868
3869        return sprintf(buf, "%llu\n",
3870                        (unsigned long long) rbd_dev->spec->pool_id);
3871}
3872
3873static ssize_t rbd_name_show(struct device *dev,
3874                             struct device_attribute *attr, char *buf)
3875{
3876        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3877
3878        if (rbd_dev->spec->image_name)
3879                return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3880
3881        return sprintf(buf, "(unknown)\n");
3882}
3883
3884static ssize_t rbd_image_id_show(struct device *dev,
3885                             struct device_attribute *attr, char *buf)
3886{
3887        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3888
3889        return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3890}
3891
3892/*
3893 * Shows the name of the currently-mapped snapshot (or
3894 * RBD_SNAP_HEAD_NAME for the base image).
3895 */
3896static ssize_t rbd_snap_show(struct device *dev,
3897                             struct device_attribute *attr,
3898                             char *buf)
3899{
3900        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3901
3902        return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3903}
3904
3905/*
3906 * For a v2 image, shows the chain of parent images, separated by empty
3907 * lines.  For v1 images or if there is no parent, shows "(no parent
3908 * image)".
3909 */
3910static ssize_t rbd_parent_show(struct device *dev,
3911                               struct device_attribute *attr,
3912                               char *buf)
3913{
3914        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3915        ssize_t count = 0;
3916
3917        if (!rbd_dev->parent)
3918                return sprintf(buf, "(no parent image)\n");
3919
3920        for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3921                struct rbd_spec *spec = rbd_dev->parent_spec;
3922
3923                count += sprintf(&buf[count], "%s"
3924                            "pool_id %llu\npool_name %s\n"
3925                            "image_id %s\nimage_name %s\n"
3926                            "snap_id %llu\nsnap_name %s\n"
3927                            "overlap %llu\n",
3928                            !count ? "" : "\n", /* first? */
3929                            spec->pool_id, spec->pool_name,
3930                            spec->image_id, spec->image_name ?: "(unknown)",
3931                            spec->snap_id, spec->snap_name,
3932                            rbd_dev->parent_overlap);
3933        }
3934
3935        return count;
3936}
3937
3938static ssize_t rbd_image_refresh(struct device *dev,
3939                                 struct device_attribute *attr,
3940                                 const char *buf,
3941                                 size_t size)
3942{
3943        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3944        int ret;
3945
3946        ret = rbd_dev_refresh(rbd_dev);
3947        if (ret)
3948                return ret;
3949
3950        return size;
3951}
3952
3953static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3954static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3955static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3956static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3957static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3958static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3959static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3960static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3961static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3962static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3963static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3964static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3965
3966static struct attribute *rbd_attrs[] = {
3967        &dev_attr_size.attr,
3968        &dev_attr_features.attr,
3969        &dev_attr_major.attr,
3970        &dev_attr_minor.attr,
3971        &dev_attr_client_id.attr,
3972        &dev_attr_pool.attr,
3973        &dev_attr_pool_id.attr,
3974        &dev_attr_name.attr,
3975        &dev_attr_image_id.attr,
3976        &dev_attr_current_snap.attr,
3977        &dev_attr_parent.attr,
3978        &dev_attr_refresh.attr,
3979        NULL
3980};
3981
3982static struct attribute_group rbd_attr_group = {
3983        .attrs = rbd_attrs,
3984};
3985
3986static const struct attribute_group *rbd_attr_groups[] = {
3987        &rbd_attr_group,
3988        NULL
3989};
3990
3991static void rbd_sysfs_dev_release(struct device *dev)
3992{
3993}
3994
3995static struct device_type rbd_device_type = {
3996        .name           = "rbd",
3997        .groups         = rbd_attr_groups,
3998        .release        = rbd_sysfs_dev_release,
3999};
4000
4001static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4002{
4003        kref_get(&spec->kref);
4004
4005        return spec;
4006}
4007
4008static void rbd_spec_free(struct kref *kref);
4009static void rbd_spec_put(struct rbd_spec *spec)
4010{
4011        if (spec)
4012                kref_put(&spec->kref, rbd_spec_free);
4013}
4014
4015static struct rbd_spec *rbd_spec_alloc(void)
4016{
4017        struct rbd_spec *spec;
4018
4019        spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4020        if (!spec)
4021                return NULL;
4022
4023        spec->pool_id = CEPH_NOPOOL;
4024        spec->snap_id = CEPH_NOSNAP;
4025        kref_init(&spec->kref);
4026
4027        return spec;
4028}
4029
4030static void rbd_spec_free(struct kref *kref)
4031{
4032        struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4033
4034        kfree(spec->pool_name);
4035        kfree(spec->image_id);
4036        kfree(spec->image_name);
4037        kfree(spec->snap_name);
4038        kfree(spec);
4039}
4040
4041static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4042                                struct rbd_spec *spec)
4043{
4044        struct rbd_device *rbd_dev;
4045
4046        rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4047        if (!rbd_dev)
4048                return NULL;
4049
4050        spin_lock_init(&rbd_dev->lock);
4051        rbd_dev->flags = 0;
4052        atomic_set(&rbd_dev->parent_ref, 0);
4053        INIT_LIST_HEAD(&rbd_dev->node);
4054        init_rwsem(&rbd_dev->header_rwsem);
4055
4056        rbd_dev->spec = spec;
4057        rbd_dev->rbd_client = rbdc;
4058
4059        /* Initialize the layout used for all rbd requests */
4060
4061        rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4062        rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4063        rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4064        rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4065
4066        return rbd_dev;
4067}
4068
4069static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4070{
4071        rbd_put_client(rbd_dev->rbd_client);
4072        rbd_spec_put(rbd_dev->spec);
4073        kfree(rbd_dev);
4074}
4075
4076/*
4077 * Get the size and object order for an image snapshot, or if
4078 * snap_id is CEPH_NOSNAP, gets this information for the base
4079 * image.
4080 */
4081static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4082                                u8 *order, u64 *snap_size)
4083{
4084        __le64 snapid = cpu_to_le64(snap_id);
4085        int ret;
4086        struct {
4087                u8 order;
4088                __le64 size;
4089        } __attribute__ ((packed)) size_buf = { 0 };
4090
4091        ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4092                                "rbd", "get_size",
4093                                &snapid, sizeof (snapid),
4094                                &size_buf, sizeof (size_buf));
4095        dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4096        if (ret < 0)
4097                return ret;
4098        if (ret < sizeof (size_buf))
4099                return -ERANGE;
4100
4101        if (order) {
4102                *order = size_buf.order;
4103                dout("  order %u", (unsigned int)*order);
4104        }
4105        *snap_size = le64_to_cpu(size_buf.size);
4106
4107        dout("  snap_id 0x%016llx snap_size = %llu\n",
4108                (unsigned long long)snap_id,
4109                (unsigned long long)*snap_size);
4110
4111        return 0;
4112}
4113
4114static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4115{
4116        return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4117                                        &rbd_dev->header.obj_order,
4118                                        &rbd_dev->header.image_size);
4119}
4120
4121static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4122{
4123        void *reply_buf;
4124        int ret;
4125        void *p;
4126
4127        reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4128        if (!reply_buf)
4129                return -ENOMEM;
4130
4131        ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4132                                "rbd", "get_object_prefix", NULL, 0,
4133                                reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4134        dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4135        if (ret < 0)
4136                goto out;
4137
4138        p = reply_buf;
4139        rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4140                                                p + ret, NULL, GFP_NOIO);
4141        ret = 0;
4142
4143        if (IS_ERR(rbd_dev->header.object_prefix)) {
4144                ret = PTR_ERR(rbd_dev->header.object_prefix);
4145                rbd_dev->header.object_prefix = NULL;
4146        } else {
4147                dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4148        }
4149out:
4150        kfree(reply_buf);
4151
4152        return ret;
4153}
4154
4155static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4156                u64 *snap_features)
4157{
4158        __le64 snapid = cpu_to_le64(snap_id);
4159        struct {
4160                __le64 features;
4161                __le64 incompat;
4162        } __attribute__ ((packed)) features_buf = { 0 };
4163        u64 incompat;
4164        int ret;
4165
4166        ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4167                                "rbd", "get_features",
4168                                &snapid, sizeof (snapid),
4169                                &features_buf, sizeof (features_buf));
4170        dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4171        if (ret < 0)
4172                return ret;
4173        if (ret < sizeof (features_buf))
4174                return -ERANGE;
4175
4176        incompat = le64_to_cpu(features_buf.incompat);
4177        if (incompat & ~RBD_FEATURES_SUPPORTED)
4178                return -ENXIO;
4179
4180        *snap_features = le64_to_cpu(features_buf.features);
4181
4182        dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4183                (unsigned long long)snap_id,
4184                (unsigned long long)*snap_features,
4185                (unsigned long long)le64_to_cpu(features_buf.incompat));
4186
4187        return 0;
4188}
4189
4190static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4191{
4192        return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4193                                                &rbd_dev->header.features);
4194}
4195
4196static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4197{
4198        struct rbd_spec *parent_spec;
4199        size_t size;
4200        void *reply_buf = NULL;
4201        __le64 snapid;
4202        void *p;
4203        void *end;
4204        u64 pool_id;
4205        char *image_id;
4206        u64 snap_id;
4207        u64 overlap;
4208        int ret;
4209
4210        parent_spec = rbd_spec_alloc();
4211        if (!parent_spec)
4212                return -ENOMEM;
4213
4214        size = sizeof (__le64) +                                /* pool_id */
4215                sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4216                sizeof (__le64) +                               /* snap_id */
4217                sizeof (__le64);                                /* overlap */
4218        reply_buf = kmalloc(size, GFP_KERNEL);
4219        if (!reply_buf) {
4220                ret = -ENOMEM;
4221                goto out_err;
4222        }
4223
4224        snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4225        ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4226                                "rbd", "get_parent",
4227                                &snapid, sizeof (snapid),
4228                                reply_buf, size);
4229        dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4230        if (ret < 0)
4231                goto out_err;
4232
4233        p = reply_buf;
4234        end = reply_buf + ret;
4235        ret = -ERANGE;
4236        ceph_decode_64_safe(&p, end, pool_id, out_err);
4237        if (pool_id == CEPH_NOPOOL) {
4238                /*
4239                 * Either the parent never existed, or we have
4240                 * record of it but the image got flattened so it no
4241                 * longer has a parent.  When the parent of a
4242                 * layered image disappears we immediately set the
4243                 * overlap to 0.  The effect of this is that all new
4244                 * requests will be treated as if the image had no
4245                 * parent.
4246                 */
4247                if (rbd_dev->parent_overlap) {
4248                        rbd_dev->parent_overlap = 0;
4249                        rbd_dev_parent_put(rbd_dev);
4250                        pr_info("%s: clone image has been flattened\n",
4251                                rbd_dev->disk->disk_name);
4252                }
4253
4254                goto out;       /* No parent?  No problem. */
4255        }
4256
4257        /* The ceph file layout needs to fit pool id in 32 bits */
4258
4259        ret = -EIO;
4260        if (pool_id > (u64)U32_MAX) {
4261                rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4262                        (unsigned long long)pool_id, U32_MAX);
4263                goto out_err;
4264        }
4265
4266        image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4267        if (IS_ERR(image_id)) {
4268                ret = PTR_ERR(image_id);
4269                goto out_err;
4270        }
4271        ceph_decode_64_safe(&p, end, snap_id, out_err);
4272        ceph_decode_64_safe(&p, end, overlap, out_err);
4273
4274        /*
4275         * The parent won't change (except when the clone is
4276         * flattened, already handled that).  So we only need to
4277         * record the parent spec we have not already done so.
4278         */
4279        if (!rbd_dev->parent_spec) {
4280                parent_spec->pool_id = pool_id;
4281                parent_spec->image_id = image_id;
4282                parent_spec->snap_id = snap_id;
4283                rbd_dev->parent_spec = parent_spec;
4284                parent_spec = NULL;     /* rbd_dev now owns this */
4285        } else {
4286                kfree(image_id);
4287        }
4288
4289        /*
4290         * We always update the parent overlap.  If it's zero we issue
4291         * a warning, as we will proceed as if there was no parent.
4292         */
4293        if (!overlap) {
4294                if (parent_spec) {
4295                        /* refresh, careful to warn just once */
4296                        if (rbd_dev->parent_overlap)
4297                                rbd_warn(rbd_dev,
4298                                    "clone now standalone (overlap became 0)");
4299                } else {
4300                        /* initial probe */
4301                        rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4302                }
4303        }
4304        rbd_dev->parent_overlap = overlap;
4305
4306out:
4307        ret = 0;
4308out_err:
4309        kfree(reply_buf);
4310        rbd_spec_put(parent_spec);
4311
4312        return ret;
4313}
4314
4315static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4316{
4317        struct {
4318                __le64 stripe_unit;
4319                __le64 stripe_count;
4320        } __attribute__ ((packed)) striping_info_buf = { 0 };
4321        size_t size = sizeof (striping_info_buf);
4322        void *p;
4323        u64 obj_size;
4324        u64 stripe_unit;
4325        u64 stripe_count;
4326        int ret;
4327
4328        ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4329                                "rbd", "get_stripe_unit_count", NULL, 0,
4330                                (char *)&striping_info_buf, size);
4331        dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4332        if (ret < 0)
4333                return ret;
4334        if (ret < size)
4335                return -ERANGE;
4336
4337        /*
4338         * We don't actually support the "fancy striping" feature
4339         * (STRIPINGV2) yet, but if the striping sizes are the
4340         * defaults the behavior is the same as before.  So find
4341         * out, and only fail if the image has non-default values.
4342         */
4343        ret = -EINVAL;
4344        obj_size = (u64)1 << rbd_dev->header.obj_order;
4345        p = &striping_info_buf;
4346        stripe_unit = ceph_decode_64(&p);
4347        if (stripe_unit != obj_size) {
4348                rbd_warn(rbd_dev, "unsupported stripe unit "
4349                                "(got %llu want %llu)",
4350                                stripe_unit, obj_size);
4351                return -EINVAL;
4352        }
4353        stripe_count = ceph_decode_64(&p);
4354        if (stripe_count != 1) {
4355                rbd_warn(rbd_dev, "unsupported stripe count "
4356                                "(got %llu want 1)", stripe_count);
4357                return -EINVAL;
4358        }
4359        rbd_dev->header.stripe_unit = stripe_unit;
4360        rbd_dev->header.stripe_count = stripe_count;
4361
4362        return 0;
4363}
4364
4365static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4366{
4367        size_t image_id_size;
4368        char *image_id;
4369        void *p;
4370        void *end;
4371        size_t size;
4372        void *reply_buf = NULL;
4373        size_t len = 0;
4374        char *image_name = NULL;
4375        int ret;
4376
4377        rbd_assert(!rbd_dev->spec->image_name);
4378
4379        len = strlen(rbd_dev->spec->image_id);
4380        image_id_size = sizeof (__le32) + len;
4381        image_id = kmalloc(image_id_size, GFP_KERNEL);
4382        if (!image_id)
4383                return NULL;
4384
4385        p = image_id;
4386        end = image_id + image_id_size;
4387        ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4388
4389        size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4390        reply_buf = kmalloc(size, GFP_KERNEL);
4391        if (!reply_buf)
4392                goto out;
4393
4394        ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4395                                "rbd", "dir_get_name",
4396                                image_id, image_id_size,
4397                                reply_buf, size);
4398        if (ret < 0)
4399                goto out;
4400        p = reply_buf;
4401        end = reply_buf + ret;
4402
4403        image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4404        if (IS_ERR(image_name))
4405                image_name = NULL;
4406        else
4407                dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4408out:
4409        kfree(reply_buf);
4410        kfree(image_id);
4411
4412        return image_name;
4413}
4414
4415static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4416{
4417        struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4418        const char *snap_name;
4419        u32 which = 0;
4420
4421        /* Skip over names until we find the one we are looking for */
4422
4423        snap_name = rbd_dev->header.snap_names;
4424        while (which < snapc->num_snaps) {
4425                if (!strcmp(name, snap_name))
4426                        return snapc->snaps[which];
4427                snap_name += strlen(snap_name) + 1;
4428                which++;
4429        }
4430        return CEPH_NOSNAP;
4431}
4432
4433static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4434{
4435        struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4436        u32 which;
4437        bool found = false;
4438        u64 snap_id;
4439
4440        for (which = 0; !found && which < snapc->num_snaps; which++) {
4441                const char *snap_name;
4442
4443                snap_id = snapc->snaps[which];
4444                snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4445                if (IS_ERR(snap_name)) {
4446                        /* ignore no-longer existing snapshots */
4447                        if (PTR_ERR(snap_name) == -ENOENT)
4448                                continue;
4449                        else
4450                                break;
4451                }
4452                found = !strcmp(name, snap_name);
4453                kfree(snap_name);
4454        }
4455        return found ? snap_id : CEPH_NOSNAP;
4456}
4457
4458/*
4459 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4460 * no snapshot by that name is found, or if an error occurs.
4461 */
4462static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4463{
4464        if (rbd_dev->image_format == 1)
4465                return rbd_v1_snap_id_by_name(rbd_dev, name);
4466
4467        return rbd_v2_snap_id_by_name(rbd_dev, name);
4468}
4469
4470/*
4471 * An image being mapped will have everything but the snap id.
4472 */
4473static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4474{
4475        struct rbd_spec *spec = rbd_dev->spec;
4476
4477        rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4478        rbd_assert(spec->image_id && spec->image_name);
4479        rbd_assert(spec->snap_name);
4480
4481        if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4482                u64 snap_id;
4483
4484                snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4485                if (snap_id == CEPH_NOSNAP)
4486                        return -ENOENT;
4487
4488                spec->snap_id = snap_id;
4489        } else {
4490                spec->snap_id = CEPH_NOSNAP;
4491        }
4492
4493        return 0;
4494}
4495
4496/*
4497 * A parent image will have all ids but none of the names.
4498 *
4499 * All names in an rbd spec are dynamically allocated.  It's OK if we
4500 * can't figure out the name for an image id.
4501 */
4502static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4503{
4504        struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4505        struct rbd_spec *spec = rbd_dev->spec;
4506        const char *pool_name;
4507        const char *image_name;
4508        const char *snap_name;
4509        int ret;
4510
4511        rbd_assert(spec->pool_id != CEPH_NOPOOL);
4512        rbd_assert(spec->image_id);
4513        rbd_assert(spec->snap_id != CEPH_NOSNAP);
4514
4515        /* Get the pool name; we have to make our own copy of this */
4516
4517        pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4518        if (!pool_name) {
4519                rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4520                return -EIO;
4521        }
4522        pool_name = kstrdup(pool_name, GFP_KERNEL);
4523        if (!pool_name)
4524                return -ENOMEM;
4525
4526        /* Fetch the image name; tolerate failure here */
4527
4528        image_name = rbd_dev_image_name(rbd_dev);
4529        if (!image_name)
4530                rbd_warn(rbd_dev, "unable to get image name");
4531
4532        /* Fetch the snapshot name */
4533
4534        snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4535        if (IS_ERR(snap_name)) {
4536                ret = PTR_ERR(snap_name);
4537                goto out_err;
4538        }
4539
4540        spec->pool_name = pool_name;
4541        spec->image_name = image_name;
4542        spec->snap_name = snap_name;
4543
4544        return 0;
4545
4546out_err:
4547        kfree(image_name);
4548        kfree(pool_name);
4549        return ret;
4550}
4551
4552static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4553{
4554        size_t size;
4555        int ret;
4556        void *reply_buf;
4557        void *p;
4558        void *end;
4559        u64 seq;
4560        u32 snap_count;
4561        struct ceph_snap_context *snapc;
4562        u32 i;
4563
4564        /*
4565         * We'll need room for the seq value (maximum snapshot id),
4566         * snapshot count, and array of that many snapshot ids.
4567         * For now we have a fixed upper limit on the number we're
4568         * prepared to receive.
4569         */
4570        size = sizeof (__le64) + sizeof (__le32) +
4571                        RBD_MAX_SNAP_COUNT * sizeof (__le64);
4572        reply_buf = kzalloc(size, GFP_KERNEL);
4573        if (!reply_buf)
4574                return -ENOMEM;
4575
4576        ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4577                                "rbd", "get_snapcontext", NULL, 0,
4578                                reply_buf, size);
4579        dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4580        if (ret < 0)
4581                goto out;
4582
4583        p = reply_buf;
4584        end = reply_buf + ret;
4585        ret = -ERANGE;
4586        ceph_decode_64_safe(&p, end, seq, out);
4587        ceph_decode_32_safe(&p, end, snap_count, out);
4588
4589        /*
4590         * Make sure the reported number of snapshot ids wouldn't go
4591         * beyond the end of our buffer.  But before checking that,
4592         * make sure the computed size of the snapshot context we
4593         * allocate is representable in a size_t.
4594         */
4595        if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4596                                 / sizeof (u64)) {
4597                ret = -EINVAL;
4598                goto out;
4599        }
4600        if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4601                goto out;
4602        ret = 0;
4603
4604        snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4605        if (!snapc) {
4606                ret = -ENOMEM;
4607                goto out;
4608        }
4609        snapc->seq = seq;
4610        for (i = 0; i < snap_count; i++)
4611                snapc->snaps[i] = ceph_decode_64(&p);
4612
4613        ceph_put_snap_context(rbd_dev->header.snapc);
4614        rbd_dev->header.snapc = snapc;
4615
4616        dout("  snap context seq = %llu, snap_count = %u\n",
4617                (unsigned long long)seq, (unsigned int)snap_count);
4618out:
4619        kfree(reply_buf);
4620
4621        return ret;
4622}
4623
4624static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4625                                        u64 snap_id)
4626{
4627        size_t size;
4628        void *reply_buf;
4629        __le64 snapid;
4630        int ret;
4631        void *p;
4632        void *end;
4633        char *snap_name;
4634
4635        size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4636        reply_buf = kmalloc(size, GFP_KERNEL);
4637        if (!reply_buf)
4638                return ERR_PTR(-ENOMEM);
4639
4640        snapid = cpu_to_le64(snap_id);
4641        ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4642                                "rbd", "get_snapshot_name",
4643                                &snapid, sizeof (snapid),
4644                                reply_buf, size);
4645        dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4646        if (ret < 0) {
4647                snap_name = ERR_PTR(ret);
4648                goto out;
4649        }
4650
4651        p = reply_buf;
4652        end = reply_buf + ret;
4653        snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4654        if (IS_ERR(snap_name))
4655                goto out;
4656
4657        dout("  snap_id 0x%016llx snap_name = %s\n",
4658                (unsigned long long)snap_id, snap_name);
4659out:
4660        kfree(reply_buf);
4661
4662        return snap_name;
4663}
4664
4665static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4666{
4667        bool first_time = rbd_dev->header.object_prefix == NULL;
4668        int ret;
4669
4670        ret = rbd_dev_v2_image_size(rbd_dev);
4671        if (ret)
4672                return ret;
4673
4674        if (first_time) {
4675                ret = rbd_dev_v2_header_onetime(rbd_dev);
4676                if (ret)
4677                        return ret;
4678        }
4679
4680        ret = rbd_dev_v2_snap_context(rbd_dev);
4681        dout("rbd_dev_v2_snap_context returned %d\n", ret);
4682
4683        return ret;
4684}
4685
4686static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4687{
4688        rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4689
4690        if (rbd_dev->image_format == 1)
4691                return rbd_dev_v1_header_info(rbd_dev);
4692
4693        return rbd_dev_v2_header_info(rbd_dev);
4694}
4695
4696static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4697{
4698        struct device *dev;
4699        int ret;
4700
4701        dev = &rbd_dev->dev;
4702        dev->bus = &rbd_bus_type;
4703        dev->type = &rbd_device_type;
4704        dev->parent = &rbd_root_dev;
4705        dev->release = rbd_dev_device_release;
4706        dev_set_name(dev, "%d", rbd_dev->dev_id);
4707        ret = device_register(dev);
4708
4709        return ret;
4710}
4711
4712static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4713{
4714        device_unregister(&rbd_dev->dev);
4715}
4716
4717/*
4718 * Get a unique rbd identifier for the given new rbd_dev, and add
4719 * the rbd_dev to the global list.
4720 */
4721static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4722{
4723        int new_dev_id;
4724
4725        new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4726                                    0, minor_to_rbd_dev_id(1 << MINORBITS),
4727                                    GFP_KERNEL);
4728        if (new_dev_id < 0)
4729                return new_dev_id;
4730
4731        rbd_dev->dev_id = new_dev_id;
4732
4733        spin_lock(&rbd_dev_list_lock);
4734        list_add_tail(&rbd_dev->node, &rbd_dev_list);
4735        spin_unlock(&rbd_dev_list_lock);
4736
4737        dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4738
4739        return 0;
4740}
4741
4742/*
4743 * Remove an rbd_dev from the global list, and record that its
4744 * identifier is no longer in use.
4745 */
4746static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4747{
4748        spin_lock(&rbd_dev_list_lock);
4749        list_del_init(&rbd_dev->node);
4750        spin_unlock(&rbd_dev_list_lock);
4751
4752        ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4753
4754        dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4755}
4756
4757/*
4758 * Skips over white space at *buf, and updates *buf to point to the
4759 * first found non-space character (if any). Returns the length of
4760 * the token (string of non-white space characters) found.  Note
4761 * that *buf must be terminated with '\0'.
4762 */
4763static inline size_t next_token(const char **buf)
4764{
4765        /*
4766        * These are the characters that produce nonzero for
4767        * isspace() in the "C" and "POSIX" locales.
4768        */
4769        const char *spaces = " \f\n\r\t\v";
4770
4771        *buf += strspn(*buf, spaces);   /* Find start of token */
4772
4773        return strcspn(*buf, spaces);   /* Return token length */
4774}
4775
4776/*
4777 * Finds the next token in *buf, dynamically allocates a buffer big
4778 * enough to hold a copy of it, and copies the token into the new
4779 * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4780 * that a duplicate buffer is created even for a zero-length token.
4781 *
4782 * Returns a pointer to the newly-allocated duplicate, or a null
4783 * pointer if memory for the duplicate was not available.  If
4784 * the lenp argument is a non-null pointer, the length of the token
4785 * (not including the '\0') is returned in *lenp.
4786 *
4787 * If successful, the *buf pointer will be updated to point beyond
4788 * the end of the found token.
4789 *
4790 * Note: uses GFP_KERNEL for allocation.
4791 */
4792static inline char *dup_token(const char **buf, size_t *lenp)
4793{
4794        char *dup;
4795        size_t len;
4796
4797        len = next_token(buf);
4798        dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4799        if (!dup)
4800                return NULL;
4801        *(dup + len) = '\0';
4802        *buf += len;
4803
4804        if (lenp)
4805                *lenp = len;
4806
4807        return dup;
4808}
4809
4810/*
4811 * Parse the options provided for an "rbd add" (i.e., rbd image
4812 * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4813 * and the data written is passed here via a NUL-terminated buffer.
4814 * Returns 0 if successful or an error code otherwise.
4815 *
4816 * The information extracted from these options is recorded in
4817 * the other parameters which return dynamically-allocated
4818 * structures:
4819 *  ceph_opts
4820 *      The address of a pointer that will refer to a ceph options
4821 *      structure.  Caller must release the returned pointer using
4822 *      ceph_destroy_options() when it is no longer needed.
4823 *  rbd_opts
4824 *      Address of an rbd options pointer.  Fully initialized by
4825 *      this function; caller must release with kfree().
4826 *  spec
4827 *      Address of an rbd image specification pointer.  Fully
4828 *      initialized by this function based on parsed options.
4829 *      Caller must release with rbd_spec_put().
4830 *
4831 * The options passed take this form:
4832 *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4833 * where:
4834 *  <mon_addrs>
4835 *      A comma-separated list of one or more monitor addresses.
4836 *      A monitor address is an ip address, optionally followed
4837 *      by a port number (separated by a colon).
4838 *        I.e.:  ip1[:port1][,ip2[:port2]...]
4839 *  <options>
4840 *      A comma-separated list of ceph and/or rbd options.
4841 *  <pool_name>
4842 *      The name of the rados pool containing the rbd image.
4843 *  <image_name>
4844 *      The name of the image in that pool to map.
4845 *  <snap_id>
4846 *      An optional snapshot id.  If provided, the mapping will
4847 *      present data from the image at the time that snapshot was
4848 *      created.  The image head is used if no snapshot id is
4849 *      provided.  Snapshot mappings are always read-only.
4850 */
4851static int rbd_add_parse_args(const char *buf,
4852                                struct ceph_options **ceph_opts,
4853                                struct rbd_options **opts,
4854                                struct rbd_spec **rbd_spec)
4855{
4856        size_t len;
4857        char *options;
4858        const char *mon_addrs;
4859        char *snap_name;
4860        size_t mon_addrs_size;
4861        struct rbd_spec *spec = NULL;
4862        struct rbd_options *rbd_opts = NULL;
4863        struct ceph_options *copts;
4864        int ret;
4865
4866        /* The first four tokens are required */
4867
4868        len = next_token(&buf);
4869        if (!len) {
4870                rbd_warn(NULL, "no monitor address(es) provided");
4871                return -EINVAL;
4872        }
4873        mon_addrs = buf;
4874        mon_addrs_size = len + 1;
4875        buf += len;
4876
4877        ret = -EINVAL;
4878        options = dup_token(&buf, NULL);
4879        if (!options)
4880                return -ENOMEM;
4881        if (!*options) {
4882                rbd_warn(NULL, "no options provided");
4883                goto out_err;
4884        }
4885
4886        spec = rbd_spec_alloc();
4887        if (!spec)
4888                goto out_mem;
4889
4890        spec->pool_name = dup_token(&buf, NULL);
4891        if (!spec->pool_name)
4892                goto out_mem;
4893        if (!*spec->pool_name) {
4894                rbd_warn(NULL, "no pool name provided");
4895                goto out_err;
4896        }
4897
4898        spec->image_name = dup_token(&buf, NULL);
4899        if (!spec->image_name)
4900                goto out_mem;
4901        if (!*spec->image_name) {
4902                rbd_warn(NULL, "no image name provided");
4903                goto out_err;
4904        }
4905
4906        /*
4907         * Snapshot name is optional; default is to use "-"
4908         * (indicating the head/no snapshot).
4909         */
4910        len = next_token(&buf);
4911        if (!len) {
4912                buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4913                len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4914        } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4915                ret = -ENAMETOOLONG;
4916                goto out_err;
4917        }
4918        snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4919        if (!snap_name)
4920                goto out_mem;
4921        *(snap_name + len) = '\0';
4922        spec->snap_name = snap_name;
4923
4924        /* Initialize all rbd options to the defaults */
4925
4926        rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4927        if (!rbd_opts)
4928                goto out_mem;
4929
4930        rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4931
4932        copts = ceph_parse_options(options, mon_addrs,
4933                                        mon_addrs + mon_addrs_size - 1,
4934                                        parse_rbd_opts_token, rbd_opts);
4935        if (IS_ERR(copts)) {
4936                ret = PTR_ERR(copts);
4937                goto out_err;
4938        }
4939        kfree(options);
4940
4941        *ceph_opts = copts;
4942        *opts = rbd_opts;
4943        *rbd_spec = spec;
4944
4945        return 0;
4946out_mem:
4947        ret = -ENOMEM;
4948out_err:
4949        kfree(rbd_opts);
4950        rbd_spec_put(spec);
4951        kfree(options);
4952
4953        return ret;
4954}
4955
4956/*
4957 * Return pool id (>= 0) or a negative error code.
4958 */
4959static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4960{
4961        u64 newest_epoch;
4962        unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4963        int tries = 0;
4964        int ret;
4965
4966again:
4967        ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4968        if (ret == -ENOENT && tries++ < 1) {
4969                ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4970                                               &newest_epoch);
4971                if (ret < 0)
4972                        return ret;
4973
4974                if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4975                        ceph_monc_request_next_osdmap(&rbdc->client->monc);
4976                        (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4977                                                     newest_epoch, timeout);
4978                        goto again;
4979                } else {
4980                        /* the osdmap we have is new enough */
4981                        return -ENOENT;
4982                }
4983        }
4984
4985        return ret;
4986}
4987
4988/*
4989 * An rbd format 2 image has a unique identifier, distinct from the
4990 * name given to it by the user.  Internally, that identifier is
4991 * what's used to specify the names of objects related to the image.
4992 *
4993 * A special "rbd id" object is used to map an rbd image name to its
4994 * id.  If that object doesn't exist, then there is no v2 rbd image
4995 * with the supplied name.
4996 *
4997 * This function will record the given rbd_dev's image_id field if
4998 * it can be determined, and in that case will return 0.  If any
4999 * errors occur a negative errno will be returned and the rbd_dev's
5000 * image_id field will be unchanged (and should be NULL).
5001 */
5002static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5003{
5004        int ret;
5005        size_t size;
5006        char *object_name;
5007        void *response;
5008        char *image_id;
5009
5010        /*
5011         * When probing a parent image, the image id is already
5012         * known (and the image name likely is not).  There's no
5013         * need to fetch the image id again in this case.  We
5014         * do still need to set the image format though.
5015         */
5016        if (rbd_dev->spec->image_id) {
5017                rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5018
5019                return 0;
5020        }
5021
5022        /*
5023         * First, see if the format 2 image id file exists, and if
5024         * so, get the image's persistent id from it.
5025         */
5026        size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5027        object_name = kmalloc(size, GFP_NOIO);
5028        if (!object_name)
5029                return -ENOMEM;
5030        sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5031        dout("rbd id object name is %s\n", object_name);
5032
5033        /* Response will be an encoded string, which includes a length */
5034
5035        size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5036        response = kzalloc(size, GFP_NOIO);
5037        if (!response) {
5038                ret = -ENOMEM;
5039                goto out;
5040        }
5041
5042        /* If it doesn't exist we'll assume it's a format 1 image */
5043
5044        ret = rbd_obj_method_sync(rbd_dev, object_name,
5045                                "rbd", "get_id", NULL, 0,
5046                                response, RBD_IMAGE_ID_LEN_MAX);
5047        dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5048        if (ret == -ENOENT) {
5049                image_id = kstrdup("", GFP_KERNEL);
5050                ret = image_id ? 0 : -ENOMEM;
5051                if (!ret)
5052                        rbd_dev->image_format = 1;
5053        } else if (ret >= 0) {
5054                void *p = response;
5055
5056                image_id = ceph_extract_encoded_string(&p, p + ret,
5057                                                NULL, GFP_NOIO);
5058                ret = PTR_ERR_OR_ZERO(image_id);
5059                if (!ret)
5060                        rbd_dev->image_format = 2;
5061        }
5062
5063        if (!ret) {
5064                rbd_dev->spec->image_id = image_id;
5065                dout("image_id is %s\n", image_id);
5066        }
5067out:
5068        kfree(response);
5069        kfree(object_name);
5070
5071        return ret;
5072}
5073
5074/*
5075 * Undo whatever state changes are made by v1 or v2 header info
5076 * call.
5077 */
5078static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5079{
5080        struct rbd_image_header *header;
5081
5082        rbd_dev_parent_put(rbd_dev);
5083
5084        /* Free dynamic fields from the header, then zero it out */
5085
5086        header = &rbd_dev->header;
5087        ceph_put_snap_context(header->snapc);
5088        kfree(header->snap_sizes);
5089        kfree(header->snap_names);
5090        kfree(header->object_prefix);
5091        memset(header, 0, sizeof (*header));
5092}
5093
5094static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5095{
5096        int ret;
5097
5098        ret = rbd_dev_v2_object_prefix(rbd_dev);
5099        if (ret)
5100                goto out_err;
5101
5102        /*
5103         * Get the and check features for the image.  Currently the
5104         * features are assumed to never change.
5105         */
5106        ret = rbd_dev_v2_features(rbd_dev);
5107        if (ret)
5108                goto out_err;
5109
5110        /* If the image supports fancy striping, get its parameters */
5111
5112        if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5113                ret = rbd_dev_v2_striping_info(rbd_dev);
5114                if (ret < 0)
5115                        goto out_err;
5116        }
5117        /* No support for crypto and compression type format 2 images */
5118
5119        return 0;
5120out_err:
5121        rbd_dev->header.features = 0;
5122        kfree(rbd_dev->header.object_prefix);
5123        rbd_dev->header.object_prefix = NULL;
5124
5125        return ret;
5126}
5127
5128static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5129{
5130        struct rbd_device *parent = NULL;
5131        struct rbd_spec *parent_spec;
5132        struct rbd_client *rbdc;
5133        int ret;
5134
5135        if (!rbd_dev->parent_spec)
5136                return 0;
5137        /*
5138         * We need to pass a reference to the client and the parent
5139         * spec when creating the parent rbd_dev.  Images related by
5140         * parent/child relationships always share both.
5141         */
5142        parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5143        rbdc = __rbd_get_client(rbd_dev->rbd_client);
5144
5145        ret = -ENOMEM;
5146        parent = rbd_dev_create(rbdc, parent_spec);
5147        if (!parent)
5148                goto out_err;
5149
5150        ret = rbd_dev_image_probe(parent, false);
5151        if (ret < 0)
5152                goto out_err;
5153        rbd_dev->parent = parent;
5154        atomic_set(&rbd_dev->parent_ref, 1);
5155
5156        return 0;
5157out_err:
5158        if (parent) {
5159                rbd_dev_unparent(rbd_dev);
5160                kfree(rbd_dev->header_name);
5161                rbd_dev_destroy(parent);
5162        } else {
5163                rbd_put_client(rbdc);
5164                rbd_spec_put(parent_spec);
5165        }
5166
5167        return ret;
5168}
5169
5170static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5171{
5172        int ret;
5173
5174        /* Get an id and fill in device name. */
5175
5176        ret = rbd_dev_id_get(rbd_dev);
5177        if (ret)
5178                return ret;
5179
5180        BUILD_BUG_ON(DEV_NAME_LEN
5181                        < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5182        sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5183
5184        /* Record our major and minor device numbers. */
5185
5186        if (!single_major) {
5187                ret = register_blkdev(0, rbd_dev->name);
5188                if (ret < 0)
5189                        goto err_out_id;
5190
5191                rbd_dev->major = ret;
5192                rbd_dev->minor = 0;
5193        } else {
5194                rbd_dev->major = rbd_major;
5195                rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5196        }
5197
5198        /* Set up the blkdev mapping. */
5199
5200        ret = rbd_init_disk(rbd_dev);
5201        if (ret)
5202                goto err_out_blkdev;
5203
5204        ret = rbd_dev_mapping_set(rbd_dev);
5205        if (ret)
5206                goto err_out_disk;
5207
5208        set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5209        set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5210
5211        ret = rbd_bus_add_dev(rbd_dev);
5212        if (ret)
5213                goto err_out_mapping;
5214
5215        /* Everything's ready.  Announce the disk to the world. */
5216
5217        set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5218        add_disk(rbd_dev->disk);
5219
5220        pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5221                (unsigned long long) rbd_dev->mapping.size);
5222
5223        return ret;
5224
5225err_out_mapping:
5226        rbd_dev_mapping_clear(rbd_dev);
5227err_out_disk:
5228        rbd_free_disk(rbd_dev);
5229err_out_blkdev:
5230        if (!single_major)
5231                unregister_blkdev(rbd_dev->major, rbd_dev->name);
5232err_out_id:
5233        rbd_dev_id_put(rbd_dev);
5234        rbd_dev_mapping_clear(rbd_dev);
5235
5236        return ret;
5237}
5238
5239static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5240{
5241        struct rbd_spec *spec = rbd_dev->spec;
5242        size_t size;
5243
5244        /* Record the header object name for this rbd image. */
5245
5246        rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5247
5248        if (rbd_dev->image_format == 1)
5249                size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5250        else
5251                size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5252
5253        rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5254        if (!rbd_dev->header_name)
5255                return -ENOMEM;
5256
5257        if (rbd_dev->image_format == 1)
5258                sprintf(rbd_dev->header_name, "%s%s",
5259                        spec->image_name, RBD_SUFFIX);
5260        else
5261                sprintf(rbd_dev->header_name, "%s%s",
5262                        RBD_HEADER_PREFIX, spec->image_id);
5263        return 0;
5264}
5265
5266static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5267{
5268        rbd_dev_unprobe(rbd_dev);
5269        kfree(rbd_dev->header_name);
5270        rbd_dev->header_name = NULL;
5271        rbd_dev->image_format = 0;
5272        kfree(rbd_dev->spec->image_id);
5273        rbd_dev->spec->image_id = NULL;
5274
5275        rbd_dev_destroy(rbd_dev);
5276}
5277
5278/*
5279 * Probe for the existence of the header object for the given rbd
5280 * device.  If this image is the one being mapped (i.e., not a
5281 * parent), initiate a watch on its header object before using that
5282 * object to get detailed information about the rbd image.
5283 */
5284static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5285{
5286        int ret;
5287
5288        /*
5289         * Get the id from the image id object.  Unless there's an
5290         * error, rbd_dev->spec->image_id will be filled in with
5291         * a dynamically-allocated string, and rbd_dev->image_format
5292         * will be set to either 1 or 2.
5293         */
5294        ret = rbd_dev_image_id(rbd_dev);
5295        if (ret)
5296                return ret;
5297
5298        ret = rbd_dev_header_name(rbd_dev);
5299        if (ret)
5300                goto err_out_format;
5301
5302        if (mapping) {
5303                ret = rbd_dev_header_watch_sync(rbd_dev);
5304                if (ret)
5305                        goto out_header_name;
5306        }
5307
5308        ret = rbd_dev_header_info(rbd_dev);
5309        if (ret)
5310                goto err_out_watch;
5311
5312        /*
5313         * If this image is the one being mapped, we have pool name and
5314         * id, image name and id, and snap name - need to fill snap id.
5315         * Otherwise this is a parent image, identified by pool, image
5316         * and snap ids - need to fill in names for those ids.
5317         */
5318        if (mapping)
5319                ret = rbd_spec_fill_snap_id(rbd_dev);
5320        else
5321                ret = rbd_spec_fill_names(rbd_dev);
5322        if (ret)
5323                goto err_out_probe;
5324
5325        if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5326                ret = rbd_dev_v2_parent_info(rbd_dev);
5327                if (ret)
5328                        goto err_out_probe;
5329
5330                /*
5331                 * Need to warn users if this image is the one being
5332                 * mapped and has a parent.
5333                 */
5334                if (mapping && rbd_dev->parent_spec)
5335                        rbd_warn(rbd_dev,
5336                                 "WARNING: kernel layering is EXPERIMENTAL!");
5337        }
5338
5339        ret = rbd_dev_probe_parent(rbd_dev);
5340        if (ret)
5341                goto err_out_probe;
5342
5343        dout("discovered format %u image, header name is %s\n",
5344                rbd_dev->image_format, rbd_dev->header_name);
5345        return 0;
5346
5347err_out_probe:
5348        rbd_dev_unprobe(rbd_dev);
5349err_out_watch:
5350        if (mapping)
5351                rbd_dev_header_unwatch_sync(rbd_dev);
5352out_header_name:
5353        kfree(rbd_dev->header_name);
5354        rbd_dev->header_name = NULL;
5355err_out_format:
5356        rbd_dev->image_format = 0;
5357        kfree(rbd_dev->spec->image_id);
5358        rbd_dev->spec->image_id = NULL;
5359        return ret;
5360}
5361
5362static ssize_t do_rbd_add(struct bus_type *bus,
5363                          const char *buf,
5364                          size_t count)
5365{
5366        struct rbd_device *rbd_dev = NULL;
5367        struct ceph_options *ceph_opts = NULL;
5368        struct rbd_options *rbd_opts = NULL;
5369        struct rbd_spec *spec = NULL;
5370        struct rbd_client *rbdc;
5371        bool read_only;
5372        int rc = -ENOMEM;
5373
5374        if (!try_module_get(THIS_MODULE))
5375                return -ENODEV;
5376
5377        /* parse add command */
5378        rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5379        if (rc < 0)
5380                goto err_out_module;
5381        read_only = rbd_opts->read_only;
5382        kfree(rbd_opts);
5383        rbd_opts = NULL;        /* done with this */
5384
5385        rbdc = rbd_get_client(ceph_opts);
5386        if (IS_ERR(rbdc)) {
5387                rc = PTR_ERR(rbdc);
5388                goto err_out_args;
5389        }
5390
5391        /* pick the pool */
5392        rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5393        if (rc < 0)
5394                goto err_out_client;
5395        spec->pool_id = (u64)rc;
5396
5397        /* The ceph file layout needs to fit pool id in 32 bits */
5398
5399        if (spec->pool_id > (u64)U32_MAX) {
5400                rbd_warn(NULL, "pool id too large (%llu > %u)",
5401                                (unsigned long long)spec->pool_id, U32_MAX);
5402                rc = -EIO;
5403                goto err_out_client;
5404        }
5405
5406        rbd_dev = rbd_dev_create(rbdc, spec);
5407        if (!rbd_dev)
5408                goto err_out_client;
5409        rbdc = NULL;            /* rbd_dev now owns this */
5410        spec = NULL;            /* rbd_dev now owns this */
5411
5412        rc = rbd_dev_image_probe(rbd_dev, true);
5413        if (rc < 0)
5414                goto err_out_rbd_dev;
5415
5416        /* If we are mapping a snapshot it must be marked read-only */
5417
5418        if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5419                read_only = true;
5420        rbd_dev->mapping.read_only = read_only;
5421
5422        rc = rbd_dev_device_setup(rbd_dev);
5423        if (rc) {
5424                /*
5425                 * rbd_dev_header_unwatch_sync() can't be moved into
5426                 * rbd_dev_image_release() without refactoring, see
5427                 * commit 1f3ef78861ac.
5428                 */
5429                rbd_dev_header_unwatch_sync(rbd_dev);
5430                rbd_dev_image_release(rbd_dev);
5431                goto err_out_module;
5432        }
5433
5434        return count;
5435
5436err_out_rbd_dev:
5437        rbd_dev_destroy(rbd_dev);
5438err_out_client:
5439        rbd_put_client(rbdc);
5440err_out_args:
5441        rbd_spec_put(spec);
5442err_out_module:
5443        module_put(THIS_MODULE);
5444
5445        dout("Error adding device %s\n", buf);
5446
5447        return (ssize_t)rc;
5448}
5449
5450static ssize_t rbd_add(struct bus_type *bus,
5451                       const char *buf,
5452                       size_t count)
5453{
5454        if (single_major)
5455                return -EINVAL;
5456
5457        return do_rbd_add(bus, buf, count);
5458}
5459
5460static ssize_t rbd_add_single_major(struct bus_type *bus,
5461                                    const char *buf,
5462                                    size_t count)
5463{
5464        return do_rbd_add(bus, buf, count);
5465}
5466
5467static void rbd_dev_device_release(struct device *dev)
5468{
5469        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5470
5471        rbd_free_disk(rbd_dev);
5472        clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5473        rbd_dev_mapping_clear(rbd_dev);
5474        if (!single_major)
5475                unregister_blkdev(rbd_dev->major, rbd_dev->name);
5476        rbd_dev_id_put(rbd_dev);
5477        rbd_dev_mapping_clear(rbd_dev);
5478}
5479
5480static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5481{
5482        while (rbd_dev->parent) {
5483                struct rbd_device *first = rbd_dev;
5484                struct rbd_device *second = first->parent;
5485                struct rbd_device *third;
5486
5487                /*
5488                 * Follow to the parent with no grandparent and
5489                 * remove it.
5490                 */
5491                while (second && (third = second->parent)) {
5492                        first = second;
5493                        second = third;
5494                }
5495                rbd_assert(second);
5496                rbd_dev_image_release(second);
5497                first->parent = NULL;
5498                first->parent_overlap = 0;
5499
5500                rbd_assert(first->parent_spec);
5501                rbd_spec_put(first->parent_spec);
5502                first->parent_spec = NULL;
5503        }
5504}
5505
5506static ssize_t do_rbd_remove(struct bus_type *bus,
5507                             const char *buf,
5508                             size_t count)
5509{
5510        struct rbd_device *rbd_dev = NULL;
5511        struct list_head *tmp;
5512        int dev_id;
5513        unsigned long ul;
5514        bool already = false;
5515        int ret;
5516
5517        ret = kstrtoul(buf, 10, &ul);
5518        if (ret)
5519                return ret;
5520
5521        /* convert to int; abort if we lost anything in the conversion */
5522        dev_id = (int)ul;
5523        if (dev_id != ul)
5524                return -EINVAL;
5525
5526        ret = -ENOENT;
5527        spin_lock(&rbd_dev_list_lock);
5528        list_for_each(tmp, &rbd_dev_list) {
5529                rbd_dev = list_entry(tmp, struct rbd_device, node);
5530                if (rbd_dev->dev_id == dev_id) {
5531                        ret = 0;
5532                        break;
5533                }
5534        }
5535        if (!ret) {
5536                spin_lock_irq(&rbd_dev->lock);
5537                if (rbd_dev->open_count)
5538                        ret = -EBUSY;
5539                else
5540                        already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5541                                                        &rbd_dev->flags);
5542                spin_unlock_irq(&rbd_dev->lock);
5543        }
5544        spin_unlock(&rbd_dev_list_lock);
5545        if (ret < 0 || already)
5546                return ret;
5547
5548        rbd_dev_header_unwatch_sync(rbd_dev);
5549        /*
5550         * flush remaining watch callbacks - these must be complete
5551         * before the osd_client is shutdown
5552         */
5553        dout("%s: flushing notifies", __func__);
5554        ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5555
5556        /*
5557         * Don't free anything from rbd_dev->disk until after all
5558         * notifies are completely processed. Otherwise
5559         * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5560         * in a potential use after free of rbd_dev->disk or rbd_dev.
5561         */
5562        rbd_bus_del_dev(rbd_dev);
5563        rbd_dev_image_release(rbd_dev);
5564        module_put(THIS_MODULE);
5565
5566        return count;
5567}
5568
5569static ssize_t rbd_remove(struct bus_type *bus,
5570                          const char *buf,
5571                          size_t count)
5572{
5573        if (single_major)
5574                return -EINVAL;
5575
5576        return do_rbd_remove(bus, buf, count);
5577}
5578
5579static ssize_t rbd_remove_single_major(struct bus_type *bus,
5580                                       const char *buf,
5581                                       size_t count)
5582{
5583        return do_rbd_remove(bus, buf, count);
5584}
5585
5586/*
5587 * create control files in sysfs
5588 * /sys/bus/rbd/...
5589 */
5590static int rbd_sysfs_init(void)
5591{
5592        int ret;
5593
5594        ret = device_register(&rbd_root_dev);
5595        if (ret < 0)
5596                return ret;
5597
5598        ret = bus_register(&rbd_bus_type);
5599        if (ret < 0)
5600                device_unregister(&rbd_root_dev);
5601
5602        return ret;
5603}
5604
5605static void rbd_sysfs_cleanup(void)
5606{
5607        bus_unregister(&rbd_bus_type);
5608        device_unregister(&rbd_root_dev);
5609}
5610
5611static int rbd_slab_init(void)
5612{
5613        rbd_assert(!rbd_img_request_cache);
5614        rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5615                                        sizeof (struct rbd_img_request),
5616                                        __alignof__(struct rbd_img_request),
5617                                        0, NULL);
5618        if (!rbd_img_request_cache)
5619                return -ENOMEM;
5620
5621        rbd_assert(!rbd_obj_request_cache);
5622        rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5623                                        sizeof (struct rbd_obj_request),
5624                                        __alignof__(struct rbd_obj_request),
5625                                        0, NULL);
5626        if (!rbd_obj_request_cache)
5627                goto out_err;
5628
5629        rbd_assert(!rbd_segment_name_cache);
5630        rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5631                                        CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5632        if (rbd_segment_name_cache)
5633                return 0;
5634out_err:
5635        if (rbd_obj_request_cache) {
5636                kmem_cache_destroy(rbd_obj_request_cache);
5637                rbd_obj_request_cache = NULL;
5638        }
5639
5640        kmem_cache_destroy(rbd_img_request_cache);
5641        rbd_img_request_cache = NULL;
5642
5643        return -ENOMEM;
5644}
5645
5646static void rbd_slab_exit(void)
5647{
5648        rbd_assert(rbd_segment_name_cache);
5649        kmem_cache_destroy(rbd_segment_name_cache);
5650        rbd_segment_name_cache = NULL;
5651
5652        rbd_assert(rbd_obj_request_cache);
5653        kmem_cache_destroy(rbd_obj_request_cache);
5654        rbd_obj_request_cache = NULL;
5655
5656        rbd_assert(rbd_img_request_cache);
5657        kmem_cache_destroy(rbd_img_request_cache);
5658        rbd_img_request_cache = NULL;
5659}
5660
5661static int __init rbd_init(void)
5662{
5663        int rc;
5664
5665        if (!libceph_compatible(NULL)) {
5666                rbd_warn(NULL, "libceph incompatibility (quitting)");
5667                return -EINVAL;
5668        }
5669
5670        rc = rbd_slab_init();
5671        if (rc)
5672                return rc;
5673
5674        /*
5675         * The number of active work items is limited by the number of
5676         * rbd devices, so leave @max_active at default.
5677         */
5678        rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5679        if (!rbd_wq) {
5680                rc = -ENOMEM;
5681                goto err_out_slab;
5682        }
5683
5684        if (single_major) {
5685                rbd_major = register_blkdev(0, RBD_DRV_NAME);
5686                if (rbd_major < 0) {
5687                        rc = rbd_major;
5688                        goto err_out_wq;
5689                }
5690        }
5691
5692        rc = rbd_sysfs_init();
5693        if (rc)
5694                goto err_out_blkdev;
5695
5696        if (single_major)
5697                pr_info("loaded (major %d)\n", rbd_major);
5698        else
5699                pr_info("loaded\n");
5700
5701        return 0;
5702
5703err_out_blkdev:
5704        if (single_major)
5705                unregister_blkdev(rbd_major, RBD_DRV_NAME);
5706err_out_wq:
5707        destroy_workqueue(rbd_wq);
5708err_out_slab:
5709        rbd_slab_exit();
5710        return rc;
5711}
5712
5713static void __exit rbd_exit(void)
5714{
5715        ida_destroy(&rbd_dev_id_ida);
5716        rbd_sysfs_cleanup();
5717        if (single_major)
5718                unregister_blkdev(rbd_major, RBD_DRV_NAME);
5719        destroy_workqueue(rbd_wq);
5720        rbd_slab_exit();
5721}
5722
5723module_init(rbd_init);
5724module_exit(rbd_exit);
5725
5726MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5727MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5728MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5729/* following authorship retained from original osdblk.c */
5730MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5731
5732MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5733MODULE_LICENSE("GPL");
5734