linux/drivers/char/ipmi/ipmi_si_intf.c
<<
>>
Prefs
   1/*
   2 * ipmi_si.c
   3 *
   4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
   5 * BT).
   6 *
   7 * Author: MontaVista Software, Inc.
   8 *         Corey Minyard <minyard@mvista.com>
   9 *         source@mvista.com
  10 *
  11 * Copyright 2002 MontaVista Software Inc.
  12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
  13 *
  14 *  This program is free software; you can redistribute it and/or modify it
  15 *  under the terms of the GNU General Public License as published by the
  16 *  Free Software Foundation; either version 2 of the License, or (at your
  17 *  option) any later version.
  18 *
  19 *
  20 *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  21 *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  22 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  23 *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  24 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  25 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
  26 *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  27 *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  28 *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  29 *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30 *
  31 *  You should have received a copy of the GNU General Public License along
  32 *  with this program; if not, write to the Free Software Foundation, Inc.,
  33 *  675 Mass Ave, Cambridge, MA 02139, USA.
  34 */
  35
  36/*
  37 * This file holds the "policy" for the interface to the SMI state
  38 * machine.  It does the configuration, handles timers and interrupts,
  39 * and drives the real SMI state machine.
  40 */
  41
  42#include <linux/module.h>
  43#include <linux/moduleparam.h>
  44#include <linux/sched.h>
  45#include <linux/seq_file.h>
  46#include <linux/timer.h>
  47#include <linux/errno.h>
  48#include <linux/spinlock.h>
  49#include <linux/slab.h>
  50#include <linux/delay.h>
  51#include <linux/list.h>
  52#include <linux/pci.h>
  53#include <linux/ioport.h>
  54#include <linux/notifier.h>
  55#include <linux/mutex.h>
  56#include <linux/kthread.h>
  57#include <asm/irq.h>
  58#include <linux/interrupt.h>
  59#include <linux/rcupdate.h>
  60#include <linux/ipmi.h>
  61#include <linux/ipmi_smi.h>
  62#include <asm/io.h>
  63#include "ipmi_si_sm.h"
  64#include <linux/dmi.h>
  65#include <linux/string.h>
  66#include <linux/ctype.h>
  67#include <linux/pnp.h>
  68#include <linux/of_device.h>
  69#include <linux/of_platform.h>
  70#include <linux/of_address.h>
  71#include <linux/of_irq.h>
  72
  73#ifdef CONFIG_PARISC
  74#include <asm/hardware.h>       /* for register_parisc_driver() stuff */
  75#include <asm/parisc-device.h>
  76#endif
  77
  78#define PFX "ipmi_si: "
  79
  80/* Measure times between events in the driver. */
  81#undef DEBUG_TIMING
  82
  83/* Call every 10 ms. */
  84#define SI_TIMEOUT_TIME_USEC    10000
  85#define SI_USEC_PER_JIFFY       (1000000/HZ)
  86#define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
  87#define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
  88                                      short timeout */
  89
  90enum si_intf_state {
  91        SI_NORMAL,
  92        SI_GETTING_FLAGS,
  93        SI_GETTING_EVENTS,
  94        SI_CLEARING_FLAGS,
  95        SI_GETTING_MESSAGES,
  96        SI_CHECKING_ENABLES,
  97        SI_SETTING_ENABLES
  98        /* FIXME - add watchdog stuff. */
  99};
 100
 101/* Some BT-specific defines we need here. */
 102#define IPMI_BT_INTMASK_REG             2
 103#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
 104#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
 105
 106enum si_type {
 107    SI_KCS, SI_SMIC, SI_BT
 108};
 109static char *si_to_str[] = { "kcs", "smic", "bt" };
 110
 111#define DEVICE_NAME "ipmi_si"
 112
 113static struct platform_driver ipmi_driver;
 114
 115/*
 116 * Indexes into stats[] in smi_info below.
 117 */
 118enum si_stat_indexes {
 119        /*
 120         * Number of times the driver requested a timer while an operation
 121         * was in progress.
 122         */
 123        SI_STAT_short_timeouts = 0,
 124
 125        /*
 126         * Number of times the driver requested a timer while nothing was in
 127         * progress.
 128         */
 129        SI_STAT_long_timeouts,
 130
 131        /* Number of times the interface was idle while being polled. */
 132        SI_STAT_idles,
 133
 134        /* Number of interrupts the driver handled. */
 135        SI_STAT_interrupts,
 136
 137        /* Number of time the driver got an ATTN from the hardware. */
 138        SI_STAT_attentions,
 139
 140        /* Number of times the driver requested flags from the hardware. */
 141        SI_STAT_flag_fetches,
 142
 143        /* Number of times the hardware didn't follow the state machine. */
 144        SI_STAT_hosed_count,
 145
 146        /* Number of completed messages. */
 147        SI_STAT_complete_transactions,
 148
 149        /* Number of IPMI events received from the hardware. */
 150        SI_STAT_events,
 151
 152        /* Number of watchdog pretimeouts. */
 153        SI_STAT_watchdog_pretimeouts,
 154
 155        /* Number of asynchronous messages received. */
 156        SI_STAT_incoming_messages,
 157
 158
 159        /* This *must* remain last, add new values above this. */
 160        SI_NUM_STATS
 161};
 162
 163struct smi_info {
 164        int                    intf_num;
 165        ipmi_smi_t             intf;
 166        struct si_sm_data      *si_sm;
 167        struct si_sm_handlers  *handlers;
 168        enum si_type           si_type;
 169        spinlock_t             si_lock;
 170        struct ipmi_smi_msg    *waiting_msg;
 171        struct ipmi_smi_msg    *curr_msg;
 172        enum si_intf_state     si_state;
 173
 174        /*
 175         * Used to handle the various types of I/O that can occur with
 176         * IPMI
 177         */
 178        struct si_sm_io io;
 179        int (*io_setup)(struct smi_info *info);
 180        void (*io_cleanup)(struct smi_info *info);
 181        int (*irq_setup)(struct smi_info *info);
 182        void (*irq_cleanup)(struct smi_info *info);
 183        unsigned int io_size;
 184        enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
 185        void (*addr_source_cleanup)(struct smi_info *info);
 186        void *addr_source_data;
 187
 188        /*
 189         * Per-OEM handler, called from handle_flags().  Returns 1
 190         * when handle_flags() needs to be re-run or 0 indicating it
 191         * set si_state itself.
 192         */
 193        int (*oem_data_avail_handler)(struct smi_info *smi_info);
 194
 195        /*
 196         * Flags from the last GET_MSG_FLAGS command, used when an ATTN
 197         * is set to hold the flags until we are done handling everything
 198         * from the flags.
 199         */
 200#define RECEIVE_MSG_AVAIL       0x01
 201#define EVENT_MSG_BUFFER_FULL   0x02
 202#define WDT_PRE_TIMEOUT_INT     0x08
 203#define OEM0_DATA_AVAIL     0x20
 204#define OEM1_DATA_AVAIL     0x40
 205#define OEM2_DATA_AVAIL     0x80
 206#define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
 207                             OEM1_DATA_AVAIL | \
 208                             OEM2_DATA_AVAIL)
 209        unsigned char       msg_flags;
 210
 211        /* Does the BMC have an event buffer? */
 212        bool                has_event_buffer;
 213
 214        /*
 215         * If set to true, this will request events the next time the
 216         * state machine is idle.
 217         */
 218        atomic_t            req_events;
 219
 220        /*
 221         * If true, run the state machine to completion on every send
 222         * call.  Generally used after a panic to make sure stuff goes
 223         * out.
 224         */
 225        bool                run_to_completion;
 226
 227        /* The I/O port of an SI interface. */
 228        int                 port;
 229
 230        /*
 231         * The space between start addresses of the two ports.  For
 232         * instance, if the first port is 0xca2 and the spacing is 4, then
 233         * the second port is 0xca6.
 234         */
 235        unsigned int        spacing;
 236
 237        /* zero if no irq; */
 238        int                 irq;
 239
 240        /* The timer for this si. */
 241        struct timer_list   si_timer;
 242
 243        /* This flag is set, if the timer is running (timer_pending() isn't enough) */
 244        bool                timer_running;
 245
 246        /* The time (in jiffies) the last timeout occurred at. */
 247        unsigned long       last_timeout_jiffies;
 248
 249        /* Are we waiting for the events, pretimeouts, received msgs? */
 250        atomic_t            need_watch;
 251
 252        /*
 253         * The driver will disable interrupts when it gets into a
 254         * situation where it cannot handle messages due to lack of
 255         * memory.  Once that situation clears up, it will re-enable
 256         * interrupts.
 257         */
 258        bool interrupt_disabled;
 259
 260        /*
 261         * Does the BMC support events?
 262         */
 263        bool supports_event_msg_buff;
 264
 265        /*
 266         * Can we clear the global enables receive irq bit?
 267         */
 268        bool cannot_clear_recv_irq_bit;
 269
 270        /*
 271         * Did we get an attention that we did not handle?
 272         */
 273        bool got_attn;
 274
 275        /* From the get device id response... */
 276        struct ipmi_device_id device_id;
 277
 278        /* Driver model stuff. */
 279        struct device *dev;
 280        struct platform_device *pdev;
 281
 282        /*
 283         * True if we allocated the device, false if it came from
 284         * someplace else (like PCI).
 285         */
 286        bool dev_registered;
 287
 288        /* Slave address, could be reported from DMI. */
 289        unsigned char slave_addr;
 290
 291        /* Counters and things for the proc filesystem. */
 292        atomic_t stats[SI_NUM_STATS];
 293
 294        struct task_struct *thread;
 295
 296        struct list_head link;
 297        union ipmi_smi_info_union addr_info;
 298};
 299
 300#define smi_inc_stat(smi, stat) \
 301        atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
 302#define smi_get_stat(smi, stat) \
 303        ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
 304
 305#define SI_MAX_PARMS 4
 306
 307static int force_kipmid[SI_MAX_PARMS];
 308static int num_force_kipmid;
 309#ifdef CONFIG_PCI
 310static bool pci_registered;
 311#endif
 312#ifdef CONFIG_ACPI
 313static bool pnp_registered;
 314#endif
 315#ifdef CONFIG_PARISC
 316static bool parisc_registered;
 317#endif
 318
 319static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
 320static int num_max_busy_us;
 321
 322static bool unload_when_empty = true;
 323
 324static int add_smi(struct smi_info *smi);
 325static int try_smi_init(struct smi_info *smi);
 326static void cleanup_one_si(struct smi_info *to_clean);
 327static void cleanup_ipmi_si(void);
 328
 329#ifdef DEBUG_TIMING
 330void debug_timestamp(char *msg)
 331{
 332        struct timespec64 t;
 333
 334        getnstimeofday64(&t);
 335        pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
 336}
 337#else
 338#define debug_timestamp(x)
 339#endif
 340
 341static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
 342static int register_xaction_notifier(struct notifier_block *nb)
 343{
 344        return atomic_notifier_chain_register(&xaction_notifier_list, nb);
 345}
 346
 347static void deliver_recv_msg(struct smi_info *smi_info,
 348                             struct ipmi_smi_msg *msg)
 349{
 350        /* Deliver the message to the upper layer. */
 351        if (smi_info->intf)
 352                ipmi_smi_msg_received(smi_info->intf, msg);
 353        else
 354                ipmi_free_smi_msg(msg);
 355}
 356
 357static void return_hosed_msg(struct smi_info *smi_info, int cCode)
 358{
 359        struct ipmi_smi_msg *msg = smi_info->curr_msg;
 360
 361        if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
 362                cCode = IPMI_ERR_UNSPECIFIED;
 363        /* else use it as is */
 364
 365        /* Make it a response */
 366        msg->rsp[0] = msg->data[0] | 4;
 367        msg->rsp[1] = msg->data[1];
 368        msg->rsp[2] = cCode;
 369        msg->rsp_size = 3;
 370
 371        smi_info->curr_msg = NULL;
 372        deliver_recv_msg(smi_info, msg);
 373}
 374
 375static enum si_sm_result start_next_msg(struct smi_info *smi_info)
 376{
 377        int              rv;
 378
 379        if (!smi_info->waiting_msg) {
 380                smi_info->curr_msg = NULL;
 381                rv = SI_SM_IDLE;
 382        } else {
 383                int err;
 384
 385                smi_info->curr_msg = smi_info->waiting_msg;
 386                smi_info->waiting_msg = NULL;
 387                debug_timestamp("Start2");
 388                err = atomic_notifier_call_chain(&xaction_notifier_list,
 389                                0, smi_info);
 390                if (err & NOTIFY_STOP_MASK) {
 391                        rv = SI_SM_CALL_WITHOUT_DELAY;
 392                        goto out;
 393                }
 394                err = smi_info->handlers->start_transaction(
 395                        smi_info->si_sm,
 396                        smi_info->curr_msg->data,
 397                        smi_info->curr_msg->data_size);
 398                if (err)
 399                        return_hosed_msg(smi_info, err);
 400
 401                rv = SI_SM_CALL_WITHOUT_DELAY;
 402        }
 403 out:
 404        return rv;
 405}
 406
 407static void start_check_enables(struct smi_info *smi_info)
 408{
 409        unsigned char msg[2];
 410
 411        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 412        msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
 413
 414        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
 415        smi_info->si_state = SI_CHECKING_ENABLES;
 416}
 417
 418static void start_clear_flags(struct smi_info *smi_info)
 419{
 420        unsigned char msg[3];
 421
 422        /* Make sure the watchdog pre-timeout flag is not set at startup. */
 423        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 424        msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
 425        msg[2] = WDT_PRE_TIMEOUT_INT;
 426
 427        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
 428        smi_info->si_state = SI_CLEARING_FLAGS;
 429}
 430
 431static void start_getting_msg_queue(struct smi_info *smi_info)
 432{
 433        smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 434        smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
 435        smi_info->curr_msg->data_size = 2;
 436
 437        smi_info->handlers->start_transaction(
 438                smi_info->si_sm,
 439                smi_info->curr_msg->data,
 440                smi_info->curr_msg->data_size);
 441        smi_info->si_state = SI_GETTING_MESSAGES;
 442}
 443
 444static void start_getting_events(struct smi_info *smi_info)
 445{
 446        smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 447        smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
 448        smi_info->curr_msg->data_size = 2;
 449
 450        smi_info->handlers->start_transaction(
 451                smi_info->si_sm,
 452                smi_info->curr_msg->data,
 453                smi_info->curr_msg->data_size);
 454        smi_info->si_state = SI_GETTING_EVENTS;
 455}
 456
 457static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
 458{
 459        smi_info->last_timeout_jiffies = jiffies;
 460        mod_timer(&smi_info->si_timer, new_val);
 461        smi_info->timer_running = true;
 462}
 463
 464/*
 465 * When we have a situtaion where we run out of memory and cannot
 466 * allocate messages, we just leave them in the BMC and run the system
 467 * polled until we can allocate some memory.  Once we have some
 468 * memory, we will re-enable the interrupt.
 469 *
 470 * Note that we cannot just use disable_irq(), since the interrupt may
 471 * be shared.
 472 */
 473static inline bool disable_si_irq(struct smi_info *smi_info)
 474{
 475        if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
 476                smi_info->interrupt_disabled = true;
 477                start_check_enables(smi_info);
 478                return true;
 479        }
 480        return false;
 481}
 482
 483static inline bool enable_si_irq(struct smi_info *smi_info)
 484{
 485        if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
 486                smi_info->interrupt_disabled = false;
 487                start_check_enables(smi_info);
 488                return true;
 489        }
 490        return false;
 491}
 492
 493/*
 494 * Allocate a message.  If unable to allocate, start the interrupt
 495 * disable process and return NULL.  If able to allocate but
 496 * interrupts are disabled, free the message and return NULL after
 497 * starting the interrupt enable process.
 498 */
 499static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
 500{
 501        struct ipmi_smi_msg *msg;
 502
 503        msg = ipmi_alloc_smi_msg();
 504        if (!msg) {
 505                if (!disable_si_irq(smi_info))
 506                        smi_info->si_state = SI_NORMAL;
 507        } else if (enable_si_irq(smi_info)) {
 508                ipmi_free_smi_msg(msg);
 509                msg = NULL;
 510        }
 511        return msg;
 512}
 513
 514static void handle_flags(struct smi_info *smi_info)
 515{
 516 retry:
 517        if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
 518                /* Watchdog pre-timeout */
 519                smi_inc_stat(smi_info, watchdog_pretimeouts);
 520
 521                start_clear_flags(smi_info);
 522                smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
 523                if (smi_info->intf)
 524                        ipmi_smi_watchdog_pretimeout(smi_info->intf);
 525        } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
 526                /* Messages available. */
 527                smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
 528                if (!smi_info->curr_msg)
 529                        return;
 530
 531                start_getting_msg_queue(smi_info);
 532        } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
 533                /* Events available. */
 534                smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
 535                if (!smi_info->curr_msg)
 536                        return;
 537
 538                start_getting_events(smi_info);
 539        } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
 540                   smi_info->oem_data_avail_handler) {
 541                if (smi_info->oem_data_avail_handler(smi_info))
 542                        goto retry;
 543        } else
 544                smi_info->si_state = SI_NORMAL;
 545}
 546
 547/*
 548 * Global enables we care about.
 549 */
 550#define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
 551                             IPMI_BMC_EVT_MSG_INTR)
 552
 553static u8 current_global_enables(struct smi_info *smi_info, u8 base,
 554                                 bool *irq_on)
 555{
 556        u8 enables = 0;
 557
 558        if (smi_info->supports_event_msg_buff)
 559                enables |= IPMI_BMC_EVT_MSG_BUFF;
 560
 561        if ((smi_info->irq && !smi_info->interrupt_disabled) ||
 562            smi_info->cannot_clear_recv_irq_bit)
 563                enables |= IPMI_BMC_RCV_MSG_INTR;
 564
 565        if (smi_info->supports_event_msg_buff &&
 566            smi_info->irq && !smi_info->interrupt_disabled)
 567
 568                enables |= IPMI_BMC_EVT_MSG_INTR;
 569
 570        *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
 571
 572        return enables;
 573}
 574
 575static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
 576{
 577        u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
 578
 579        irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
 580
 581        if ((bool)irqstate == irq_on)
 582                return;
 583
 584        if (irq_on)
 585                smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
 586                                     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
 587        else
 588                smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
 589}
 590
 591static void handle_transaction_done(struct smi_info *smi_info)
 592{
 593        struct ipmi_smi_msg *msg;
 594
 595        debug_timestamp("Done");
 596        switch (smi_info->si_state) {
 597        case SI_NORMAL:
 598                if (!smi_info->curr_msg)
 599                        break;
 600
 601                smi_info->curr_msg->rsp_size
 602                        = smi_info->handlers->get_result(
 603                                smi_info->si_sm,
 604                                smi_info->curr_msg->rsp,
 605                                IPMI_MAX_MSG_LENGTH);
 606
 607                /*
 608                 * Do this here becase deliver_recv_msg() releases the
 609                 * lock, and a new message can be put in during the
 610                 * time the lock is released.
 611                 */
 612                msg = smi_info->curr_msg;
 613                smi_info->curr_msg = NULL;
 614                deliver_recv_msg(smi_info, msg);
 615                break;
 616
 617        case SI_GETTING_FLAGS:
 618        {
 619                unsigned char msg[4];
 620                unsigned int  len;
 621
 622                /* We got the flags from the SMI, now handle them. */
 623                len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 624                if (msg[2] != 0) {
 625                        /* Error fetching flags, just give up for now. */
 626                        smi_info->si_state = SI_NORMAL;
 627                } else if (len < 4) {
 628                        /*
 629                         * Hmm, no flags.  That's technically illegal, but
 630                         * don't use uninitialized data.
 631                         */
 632                        smi_info->si_state = SI_NORMAL;
 633                } else {
 634                        smi_info->msg_flags = msg[3];
 635                        handle_flags(smi_info);
 636                }
 637                break;
 638        }
 639
 640        case SI_CLEARING_FLAGS:
 641        {
 642                unsigned char msg[3];
 643
 644                /* We cleared the flags. */
 645                smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
 646                if (msg[2] != 0) {
 647                        /* Error clearing flags */
 648                        dev_warn(smi_info->dev,
 649                                 "Error clearing flags: %2.2x\n", msg[2]);
 650                }
 651                smi_info->si_state = SI_NORMAL;
 652                break;
 653        }
 654
 655        case SI_GETTING_EVENTS:
 656        {
 657                smi_info->curr_msg->rsp_size
 658                        = smi_info->handlers->get_result(
 659                                smi_info->si_sm,
 660                                smi_info->curr_msg->rsp,
 661                                IPMI_MAX_MSG_LENGTH);
 662
 663                /*
 664                 * Do this here becase deliver_recv_msg() releases the
 665                 * lock, and a new message can be put in during the
 666                 * time the lock is released.
 667                 */
 668                msg = smi_info->curr_msg;
 669                smi_info->curr_msg = NULL;
 670                if (msg->rsp[2] != 0) {
 671                        /* Error getting event, probably done. */
 672                        msg->done(msg);
 673
 674                        /* Take off the event flag. */
 675                        smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
 676                        handle_flags(smi_info);
 677                } else {
 678                        smi_inc_stat(smi_info, events);
 679
 680                        /*
 681                         * Do this before we deliver the message
 682                         * because delivering the message releases the
 683                         * lock and something else can mess with the
 684                         * state.
 685                         */
 686                        handle_flags(smi_info);
 687
 688                        deliver_recv_msg(smi_info, msg);
 689                }
 690                break;
 691        }
 692
 693        case SI_GETTING_MESSAGES:
 694        {
 695                smi_info->curr_msg->rsp_size
 696                        = smi_info->handlers->get_result(
 697                                smi_info->si_sm,
 698                                smi_info->curr_msg->rsp,
 699                                IPMI_MAX_MSG_LENGTH);
 700
 701                /*
 702                 * Do this here becase deliver_recv_msg() releases the
 703                 * lock, and a new message can be put in during the
 704                 * time the lock is released.
 705                 */
 706                msg = smi_info->curr_msg;
 707                smi_info->curr_msg = NULL;
 708                if (msg->rsp[2] != 0) {
 709                        /* Error getting event, probably done. */
 710                        msg->done(msg);
 711
 712                        /* Take off the msg flag. */
 713                        smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
 714                        handle_flags(smi_info);
 715                } else {
 716                        smi_inc_stat(smi_info, incoming_messages);
 717
 718                        /*
 719                         * Do this before we deliver the message
 720                         * because delivering the message releases the
 721                         * lock and something else can mess with the
 722                         * state.
 723                         */
 724                        handle_flags(smi_info);
 725
 726                        deliver_recv_msg(smi_info, msg);
 727                }
 728                break;
 729        }
 730
 731        case SI_CHECKING_ENABLES:
 732        {
 733                unsigned char msg[4];
 734                u8 enables;
 735                bool irq_on;
 736
 737                /* We got the flags from the SMI, now handle them. */
 738                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 739                if (msg[2] != 0) {
 740                        dev_warn(smi_info->dev,
 741                                 "Couldn't get irq info: %x.\n", msg[2]);
 742                        dev_warn(smi_info->dev,
 743                                 "Maybe ok, but ipmi might run very slowly.\n");
 744                        smi_info->si_state = SI_NORMAL;
 745                        break;
 746                }
 747                enables = current_global_enables(smi_info, 0, &irq_on);
 748                if (smi_info->si_type == SI_BT)
 749                        /* BT has its own interrupt enable bit. */
 750                        check_bt_irq(smi_info, irq_on);
 751                if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
 752                        /* Enables are not correct, fix them. */
 753                        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 754                        msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
 755                        msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
 756                        smi_info->handlers->start_transaction(
 757                                smi_info->si_sm, msg, 3);
 758                        smi_info->si_state = SI_SETTING_ENABLES;
 759                } else if (smi_info->supports_event_msg_buff) {
 760                        smi_info->curr_msg = ipmi_alloc_smi_msg();
 761                        if (!smi_info->curr_msg) {
 762                                smi_info->si_state = SI_NORMAL;
 763                                break;
 764                        }
 765                        start_getting_msg_queue(smi_info);
 766                } else {
 767                        smi_info->si_state = SI_NORMAL;
 768                }
 769                break;
 770        }
 771
 772        case SI_SETTING_ENABLES:
 773        {
 774                unsigned char msg[4];
 775
 776                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 777                if (msg[2] != 0)
 778                        dev_warn(smi_info->dev,
 779                                 "Could not set the global enables: 0x%x.\n",
 780                                 msg[2]);
 781
 782                if (smi_info->supports_event_msg_buff) {
 783                        smi_info->curr_msg = ipmi_alloc_smi_msg();
 784                        if (!smi_info->curr_msg) {
 785                                smi_info->si_state = SI_NORMAL;
 786                                break;
 787                        }
 788                        start_getting_msg_queue(smi_info);
 789                } else {
 790                        smi_info->si_state = SI_NORMAL;
 791                }
 792                break;
 793        }
 794        }
 795}
 796
 797/*
 798 * Called on timeouts and events.  Timeouts should pass the elapsed
 799 * time, interrupts should pass in zero.  Must be called with
 800 * si_lock held and interrupts disabled.
 801 */
 802static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
 803                                           int time)
 804{
 805        enum si_sm_result si_sm_result;
 806
 807 restart:
 808        /*
 809         * There used to be a loop here that waited a little while
 810         * (around 25us) before giving up.  That turned out to be
 811         * pointless, the minimum delays I was seeing were in the 300us
 812         * range, which is far too long to wait in an interrupt.  So
 813         * we just run until the state machine tells us something
 814         * happened or it needs a delay.
 815         */
 816        si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
 817        time = 0;
 818        while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
 819                si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 820
 821        if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
 822                smi_inc_stat(smi_info, complete_transactions);
 823
 824                handle_transaction_done(smi_info);
 825                si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 826        } else if (si_sm_result == SI_SM_HOSED) {
 827                smi_inc_stat(smi_info, hosed_count);
 828
 829                /*
 830                 * Do the before return_hosed_msg, because that
 831                 * releases the lock.
 832                 */
 833                smi_info->si_state = SI_NORMAL;
 834                if (smi_info->curr_msg != NULL) {
 835                        /*
 836                         * If we were handling a user message, format
 837                         * a response to send to the upper layer to
 838                         * tell it about the error.
 839                         */
 840                        return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
 841                }
 842                si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 843        }
 844
 845        /*
 846         * We prefer handling attn over new messages.  But don't do
 847         * this if there is not yet an upper layer to handle anything.
 848         */
 849        if (likely(smi_info->intf) &&
 850            (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
 851                unsigned char msg[2];
 852
 853                if (smi_info->si_state != SI_NORMAL) {
 854                        /*
 855                         * We got an ATTN, but we are doing something else.
 856                         * Handle the ATTN later.
 857                         */
 858                        smi_info->got_attn = true;
 859                } else {
 860                        smi_info->got_attn = false;
 861                        smi_inc_stat(smi_info, attentions);
 862
 863                        /*
 864                         * Got a attn, send down a get message flags to see
 865                         * what's causing it.  It would be better to handle
 866                         * this in the upper layer, but due to the way
 867                         * interrupts work with the SMI, that's not really
 868                         * possible.
 869                         */
 870                        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 871                        msg[1] = IPMI_GET_MSG_FLAGS_CMD;
 872
 873                        smi_info->handlers->start_transaction(
 874                                smi_info->si_sm, msg, 2);
 875                        smi_info->si_state = SI_GETTING_FLAGS;
 876                        goto restart;
 877                }
 878        }
 879
 880        /* If we are currently idle, try to start the next message. */
 881        if (si_sm_result == SI_SM_IDLE) {
 882                smi_inc_stat(smi_info, idles);
 883
 884                si_sm_result = start_next_msg(smi_info);
 885                if (si_sm_result != SI_SM_IDLE)
 886                        goto restart;
 887        }
 888
 889        if ((si_sm_result == SI_SM_IDLE)
 890            && (atomic_read(&smi_info->req_events))) {
 891                /*
 892                 * We are idle and the upper layer requested that I fetch
 893                 * events, so do so.
 894                 */
 895                atomic_set(&smi_info->req_events, 0);
 896
 897                /*
 898                 * Take this opportunity to check the interrupt and
 899                 * message enable state for the BMC.  The BMC can be
 900                 * asynchronously reset, and may thus get interrupts
 901                 * disable and messages disabled.
 902                 */
 903                if (smi_info->supports_event_msg_buff || smi_info->irq) {
 904                        start_check_enables(smi_info);
 905                } else {
 906                        smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
 907                        if (!smi_info->curr_msg)
 908                                goto out;
 909
 910                        start_getting_events(smi_info);
 911                }
 912                goto restart;
 913        }
 914 out:
 915        return si_sm_result;
 916}
 917
 918static void check_start_timer_thread(struct smi_info *smi_info)
 919{
 920        if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
 921                smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
 922
 923                if (smi_info->thread)
 924                        wake_up_process(smi_info->thread);
 925
 926                start_next_msg(smi_info);
 927                smi_event_handler(smi_info, 0);
 928        }
 929}
 930
 931static void sender(void                *send_info,
 932                   struct ipmi_smi_msg *msg)
 933{
 934        struct smi_info   *smi_info = send_info;
 935        enum si_sm_result result;
 936        unsigned long     flags;
 937
 938        debug_timestamp("Enqueue");
 939
 940        if (smi_info->run_to_completion) {
 941                /*
 942                 * If we are running to completion, start it and run
 943                 * transactions until everything is clear.
 944                 */
 945                smi_info->curr_msg = msg;
 946                smi_info->waiting_msg = NULL;
 947
 948                /*
 949                 * Run to completion means we are single-threaded, no
 950                 * need for locks.
 951                 */
 952
 953                result = smi_event_handler(smi_info, 0);
 954                while (result != SI_SM_IDLE) {
 955                        udelay(SI_SHORT_TIMEOUT_USEC);
 956                        result = smi_event_handler(smi_info,
 957                                                   SI_SHORT_TIMEOUT_USEC);
 958                }
 959                return;
 960        }
 961
 962        spin_lock_irqsave(&smi_info->si_lock, flags);
 963        /*
 964         * The following two lines don't need to be under the lock for
 965         * the lock's sake, but they do need SMP memory barriers to
 966         * avoid getting things out of order.  We are already claiming
 967         * the lock, anyway, so just do it under the lock to avoid the
 968         * ordering problem.
 969         */
 970        BUG_ON(smi_info->waiting_msg);
 971        smi_info->waiting_msg = msg;
 972        check_start_timer_thread(smi_info);
 973        spin_unlock_irqrestore(&smi_info->si_lock, flags);
 974}
 975
 976static void set_run_to_completion(void *send_info, bool i_run_to_completion)
 977{
 978        struct smi_info   *smi_info = send_info;
 979        enum si_sm_result result;
 980
 981        smi_info->run_to_completion = i_run_to_completion;
 982        if (i_run_to_completion) {
 983                result = smi_event_handler(smi_info, 0);
 984                while (result != SI_SM_IDLE) {
 985                        udelay(SI_SHORT_TIMEOUT_USEC);
 986                        result = smi_event_handler(smi_info,
 987                                                   SI_SHORT_TIMEOUT_USEC);
 988                }
 989        }
 990}
 991
 992/*
 993 * Use -1 in the nsec value of the busy waiting timespec to tell that
 994 * we are spinning in kipmid looking for something and not delaying
 995 * between checks
 996 */
 997static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
 998{
 999        ts->tv_nsec = -1;
1000}
1001static inline int ipmi_si_is_busy(struct timespec64 *ts)
1002{
1003        return ts->tv_nsec != -1;
1004}
1005
1006static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1007                                        const struct smi_info *smi_info,
1008                                        struct timespec64 *busy_until)
1009{
1010        unsigned int max_busy_us = 0;
1011
1012        if (smi_info->intf_num < num_max_busy_us)
1013                max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1014        if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1015                ipmi_si_set_not_busy(busy_until);
1016        else if (!ipmi_si_is_busy(busy_until)) {
1017                getnstimeofday64(busy_until);
1018                timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1019        } else {
1020                struct timespec64 now;
1021
1022                getnstimeofday64(&now);
1023                if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1024                        ipmi_si_set_not_busy(busy_until);
1025                        return 0;
1026                }
1027        }
1028        return 1;
1029}
1030
1031
1032/*
1033 * A busy-waiting loop for speeding up IPMI operation.
1034 *
1035 * Lousy hardware makes this hard.  This is only enabled for systems
1036 * that are not BT and do not have interrupts.  It starts spinning
1037 * when an operation is complete or until max_busy tells it to stop
1038 * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1039 * Documentation/IPMI.txt for details.
1040 */
1041static int ipmi_thread(void *data)
1042{
1043        struct smi_info *smi_info = data;
1044        unsigned long flags;
1045        enum si_sm_result smi_result;
1046        struct timespec64 busy_until;
1047
1048        ipmi_si_set_not_busy(&busy_until);
1049        set_user_nice(current, MAX_NICE);
1050        while (!kthread_should_stop()) {
1051                int busy_wait;
1052
1053                spin_lock_irqsave(&(smi_info->si_lock), flags);
1054                smi_result = smi_event_handler(smi_info, 0);
1055
1056                /*
1057                 * If the driver is doing something, there is a possible
1058                 * race with the timer.  If the timer handler see idle,
1059                 * and the thread here sees something else, the timer
1060                 * handler won't restart the timer even though it is
1061                 * required.  So start it here if necessary.
1062                 */
1063                if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1064                        smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1065
1066                spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1067                busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1068                                                  &busy_until);
1069                if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1070                        ; /* do nothing */
1071                else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1072                        schedule();
1073                else if (smi_result == SI_SM_IDLE) {
1074                        if (atomic_read(&smi_info->need_watch)) {
1075                                schedule_timeout_interruptible(100);
1076                        } else {
1077                                /* Wait to be woken up when we are needed. */
1078                                __set_current_state(TASK_INTERRUPTIBLE);
1079                                schedule();
1080                        }
1081                } else
1082                        schedule_timeout_interruptible(1);
1083        }
1084        return 0;
1085}
1086
1087
1088static void poll(void *send_info)
1089{
1090        struct smi_info *smi_info = send_info;
1091        unsigned long flags = 0;
1092        bool run_to_completion = smi_info->run_to_completion;
1093
1094        /*
1095         * Make sure there is some delay in the poll loop so we can
1096         * drive time forward and timeout things.
1097         */
1098        udelay(10);
1099        if (!run_to_completion)
1100                spin_lock_irqsave(&smi_info->si_lock, flags);
1101        smi_event_handler(smi_info, 10);
1102        if (!run_to_completion)
1103                spin_unlock_irqrestore(&smi_info->si_lock, flags);
1104}
1105
1106static void request_events(void *send_info)
1107{
1108        struct smi_info *smi_info = send_info;
1109
1110        if (!smi_info->has_event_buffer)
1111                return;
1112
1113        atomic_set(&smi_info->req_events, 1);
1114}
1115
1116static void set_need_watch(void *send_info, bool enable)
1117{
1118        struct smi_info *smi_info = send_info;
1119        unsigned long flags;
1120
1121        atomic_set(&smi_info->need_watch, enable);
1122        spin_lock_irqsave(&smi_info->si_lock, flags);
1123        check_start_timer_thread(smi_info);
1124        spin_unlock_irqrestore(&smi_info->si_lock, flags);
1125}
1126
1127static int initialized;
1128
1129static void smi_timeout(unsigned long data)
1130{
1131        struct smi_info   *smi_info = (struct smi_info *) data;
1132        enum si_sm_result smi_result;
1133        unsigned long     flags;
1134        unsigned long     jiffies_now;
1135        long              time_diff;
1136        long              timeout;
1137
1138        spin_lock_irqsave(&(smi_info->si_lock), flags);
1139        debug_timestamp("Timer");
1140
1141        jiffies_now = jiffies;
1142        time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1143                     * SI_USEC_PER_JIFFY);
1144        smi_result = smi_event_handler(smi_info, time_diff);
1145
1146        if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1147                /* Running with interrupts, only do long timeouts. */
1148                timeout = jiffies + SI_TIMEOUT_JIFFIES;
1149                smi_inc_stat(smi_info, long_timeouts);
1150                goto do_mod_timer;
1151        }
1152
1153        /*
1154         * If the state machine asks for a short delay, then shorten
1155         * the timer timeout.
1156         */
1157        if (smi_result == SI_SM_CALL_WITH_DELAY) {
1158                smi_inc_stat(smi_info, short_timeouts);
1159                timeout = jiffies + 1;
1160        } else {
1161                smi_inc_stat(smi_info, long_timeouts);
1162                timeout = jiffies + SI_TIMEOUT_JIFFIES;
1163        }
1164
1165 do_mod_timer:
1166        if (smi_result != SI_SM_IDLE)
1167                smi_mod_timer(smi_info, timeout);
1168        else
1169                smi_info->timer_running = false;
1170        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1171}
1172
1173static irqreturn_t si_irq_handler(int irq, void *data)
1174{
1175        struct smi_info *smi_info = data;
1176        unsigned long   flags;
1177
1178        spin_lock_irqsave(&(smi_info->si_lock), flags);
1179
1180        smi_inc_stat(smi_info, interrupts);
1181
1182        debug_timestamp("Interrupt");
1183
1184        smi_event_handler(smi_info, 0);
1185        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1186        return IRQ_HANDLED;
1187}
1188
1189static irqreturn_t si_bt_irq_handler(int irq, void *data)
1190{
1191        struct smi_info *smi_info = data;
1192        /* We need to clear the IRQ flag for the BT interface. */
1193        smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1194                             IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1195                             | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1196        return si_irq_handler(irq, data);
1197}
1198
1199static int smi_start_processing(void       *send_info,
1200                                ipmi_smi_t intf)
1201{
1202        struct smi_info *new_smi = send_info;
1203        int             enable = 0;
1204
1205        new_smi->intf = intf;
1206
1207        /* Try to claim any interrupts. */
1208        if (new_smi->irq_setup)
1209                new_smi->irq_setup(new_smi);
1210
1211        /* Set up the timer that drives the interface. */
1212        setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1213        smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1214
1215        /*
1216         * Check if the user forcefully enabled the daemon.
1217         */
1218        if (new_smi->intf_num < num_force_kipmid)
1219                enable = force_kipmid[new_smi->intf_num];
1220        /*
1221         * The BT interface is efficient enough to not need a thread,
1222         * and there is no need for a thread if we have interrupts.
1223         */
1224        else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1225                enable = 1;
1226
1227        if (enable) {
1228                new_smi->thread = kthread_run(ipmi_thread, new_smi,
1229                                              "kipmi%d", new_smi->intf_num);
1230                if (IS_ERR(new_smi->thread)) {
1231                        dev_notice(new_smi->dev, "Could not start"
1232                                   " kernel thread due to error %ld, only using"
1233                                   " timers to drive the interface\n",
1234                                   PTR_ERR(new_smi->thread));
1235                        new_smi->thread = NULL;
1236                }
1237        }
1238
1239        return 0;
1240}
1241
1242static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1243{
1244        struct smi_info *smi = send_info;
1245
1246        data->addr_src = smi->addr_source;
1247        data->dev = smi->dev;
1248        data->addr_info = smi->addr_info;
1249        get_device(smi->dev);
1250
1251        return 0;
1252}
1253
1254static void set_maintenance_mode(void *send_info, bool enable)
1255{
1256        struct smi_info   *smi_info = send_info;
1257
1258        if (!enable)
1259                atomic_set(&smi_info->req_events, 0);
1260}
1261
1262static struct ipmi_smi_handlers handlers = {
1263        .owner                  = THIS_MODULE,
1264        .start_processing       = smi_start_processing,
1265        .get_smi_info           = get_smi_info,
1266        .sender                 = sender,
1267        .request_events         = request_events,
1268        .set_need_watch         = set_need_watch,
1269        .set_maintenance_mode   = set_maintenance_mode,
1270        .set_run_to_completion  = set_run_to_completion,
1271        .poll                   = poll,
1272};
1273
1274/*
1275 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1276 * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1277 */
1278
1279static LIST_HEAD(smi_infos);
1280static DEFINE_MUTEX(smi_infos_lock);
1281static int smi_num; /* Used to sequence the SMIs */
1282
1283#define DEFAULT_REGSPACING      1
1284#define DEFAULT_REGSIZE         1
1285
1286#ifdef CONFIG_ACPI
1287static bool          si_tryacpi = 1;
1288#endif
1289#ifdef CONFIG_DMI
1290static bool          si_trydmi = 1;
1291#endif
1292static bool          si_tryplatform = 1;
1293#ifdef CONFIG_PCI
1294static bool          si_trypci = 1;
1295#endif
1296static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1297static char          *si_type[SI_MAX_PARMS];
1298#define MAX_SI_TYPE_STR 30
1299static char          si_type_str[MAX_SI_TYPE_STR];
1300static unsigned long addrs[SI_MAX_PARMS];
1301static unsigned int num_addrs;
1302static unsigned int  ports[SI_MAX_PARMS];
1303static unsigned int num_ports;
1304static int           irqs[SI_MAX_PARMS];
1305static unsigned int num_irqs;
1306static int           regspacings[SI_MAX_PARMS];
1307static unsigned int num_regspacings;
1308static int           regsizes[SI_MAX_PARMS];
1309static unsigned int num_regsizes;
1310static int           regshifts[SI_MAX_PARMS];
1311static unsigned int num_regshifts;
1312static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1313static unsigned int num_slave_addrs;
1314
1315#define IPMI_IO_ADDR_SPACE  0
1316#define IPMI_MEM_ADDR_SPACE 1
1317static char *addr_space_to_str[] = { "i/o", "mem" };
1318
1319static int hotmod_handler(const char *val, struct kernel_param *kp);
1320
1321module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1322MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1323                 " Documentation/IPMI.txt in the kernel sources for the"
1324                 " gory details.");
1325
1326#ifdef CONFIG_ACPI
1327module_param_named(tryacpi, si_tryacpi, bool, 0);
1328MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1329                 " default scan of the interfaces identified via ACPI");
1330#endif
1331#ifdef CONFIG_DMI
1332module_param_named(trydmi, si_trydmi, bool, 0);
1333MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1334                 " default scan of the interfaces identified via DMI");
1335#endif
1336module_param_named(tryplatform, si_tryplatform, bool, 0);
1337MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1338                 " default scan of the interfaces identified via platform"
1339                 " interfaces like openfirmware");
1340#ifdef CONFIG_PCI
1341module_param_named(trypci, si_trypci, bool, 0);
1342MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1343                 " default scan of the interfaces identified via pci");
1344#endif
1345module_param_named(trydefaults, si_trydefaults, bool, 0);
1346MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1347                 " default scan of the KCS and SMIC interface at the standard"
1348                 " address");
1349module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1350MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1351                 " interface separated by commas.  The types are 'kcs',"
1352                 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1353                 " the first interface to kcs and the second to bt");
1354module_param_array(addrs, ulong, &num_addrs, 0);
1355MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1356                 " addresses separated by commas.  Only use if an interface"
1357                 " is in memory.  Otherwise, set it to zero or leave"
1358                 " it blank.");
1359module_param_array(ports, uint, &num_ports, 0);
1360MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1361                 " addresses separated by commas.  Only use if an interface"
1362                 " is a port.  Otherwise, set it to zero or leave"
1363                 " it blank.");
1364module_param_array(irqs, int, &num_irqs, 0);
1365MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1366                 " addresses separated by commas.  Only use if an interface"
1367                 " has an interrupt.  Otherwise, set it to zero or leave"
1368                 " it blank.");
1369module_param_array(regspacings, int, &num_regspacings, 0);
1370MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1371                 " and each successive register used by the interface.  For"
1372                 " instance, if the start address is 0xca2 and the spacing"
1373                 " is 2, then the second address is at 0xca4.  Defaults"
1374                 " to 1.");
1375module_param_array(regsizes, int, &num_regsizes, 0);
1376MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1377                 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1378                 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1379                 " the 8-bit IPMI register has to be read from a larger"
1380                 " register.");
1381module_param_array(regshifts, int, &num_regshifts, 0);
1382MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1383                 " IPMI register, in bits.  For instance, if the data"
1384                 " is read from a 32-bit word and the IPMI data is in"
1385                 " bit 8-15, then the shift would be 8");
1386module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1387MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1388                 " the controller.  Normally this is 0x20, but can be"
1389                 " overridden by this parm.  This is an array indexed"
1390                 " by interface number.");
1391module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1392MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1393                 " disabled(0).  Normally the IPMI driver auto-detects"
1394                 " this, but the value may be overridden by this parm.");
1395module_param(unload_when_empty, bool, 0);
1396MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1397                 " specified or found, default is 1.  Setting to 0"
1398                 " is useful for hot add of devices using hotmod.");
1399module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1400MODULE_PARM_DESC(kipmid_max_busy_us,
1401                 "Max time (in microseconds) to busy-wait for IPMI data before"
1402                 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1403                 " if kipmid is using up a lot of CPU time.");
1404
1405
1406static void std_irq_cleanup(struct smi_info *info)
1407{
1408        if (info->si_type == SI_BT)
1409                /* Disable the interrupt in the BT interface. */
1410                info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1411        free_irq(info->irq, info);
1412}
1413
1414static int std_irq_setup(struct smi_info *info)
1415{
1416        int rv;
1417
1418        if (!info->irq)
1419                return 0;
1420
1421        if (info->si_type == SI_BT) {
1422                rv = request_irq(info->irq,
1423                                 si_bt_irq_handler,
1424                                 IRQF_SHARED,
1425                                 DEVICE_NAME,
1426                                 info);
1427                if (!rv)
1428                        /* Enable the interrupt in the BT interface. */
1429                        info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1430                                         IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1431        } else
1432                rv = request_irq(info->irq,
1433                                 si_irq_handler,
1434                                 IRQF_SHARED,
1435                                 DEVICE_NAME,
1436                                 info);
1437        if (rv) {
1438                dev_warn(info->dev, "%s unable to claim interrupt %d,"
1439                         " running polled\n",
1440                         DEVICE_NAME, info->irq);
1441                info->irq = 0;
1442        } else {
1443                info->irq_cleanup = std_irq_cleanup;
1444                dev_info(info->dev, "Using irq %d\n", info->irq);
1445        }
1446
1447        return rv;
1448}
1449
1450static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1451{
1452        unsigned int addr = io->addr_data;
1453
1454        return inb(addr + (offset * io->regspacing));
1455}
1456
1457static void port_outb(struct si_sm_io *io, unsigned int offset,
1458                      unsigned char b)
1459{
1460        unsigned int addr = io->addr_data;
1461
1462        outb(b, addr + (offset * io->regspacing));
1463}
1464
1465static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1466{
1467        unsigned int addr = io->addr_data;
1468
1469        return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1470}
1471
1472static void port_outw(struct si_sm_io *io, unsigned int offset,
1473                      unsigned char b)
1474{
1475        unsigned int addr = io->addr_data;
1476
1477        outw(b << io->regshift, addr + (offset * io->regspacing));
1478}
1479
1480static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1481{
1482        unsigned int addr = io->addr_data;
1483
1484        return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1485}
1486
1487static void port_outl(struct si_sm_io *io, unsigned int offset,
1488                      unsigned char b)
1489{
1490        unsigned int addr = io->addr_data;
1491
1492        outl(b << io->regshift, addr+(offset * io->regspacing));
1493}
1494
1495static void port_cleanup(struct smi_info *info)
1496{
1497        unsigned int addr = info->io.addr_data;
1498        int          idx;
1499
1500        if (addr) {
1501                for (idx = 0; idx < info->io_size; idx++)
1502                        release_region(addr + idx * info->io.regspacing,
1503                                       info->io.regsize);
1504        }
1505}
1506
1507static int port_setup(struct smi_info *info)
1508{
1509        unsigned int addr = info->io.addr_data;
1510        int          idx;
1511
1512        if (!addr)
1513                return -ENODEV;
1514
1515        info->io_cleanup = port_cleanup;
1516
1517        /*
1518         * Figure out the actual inb/inw/inl/etc routine to use based
1519         * upon the register size.
1520         */
1521        switch (info->io.regsize) {
1522        case 1:
1523                info->io.inputb = port_inb;
1524                info->io.outputb = port_outb;
1525                break;
1526        case 2:
1527                info->io.inputb = port_inw;
1528                info->io.outputb = port_outw;
1529                break;
1530        case 4:
1531                info->io.inputb = port_inl;
1532                info->io.outputb = port_outl;
1533                break;
1534        default:
1535                dev_warn(info->dev, "Invalid register size: %d\n",
1536                         info->io.regsize);
1537                return -EINVAL;
1538        }
1539
1540        /*
1541         * Some BIOSes reserve disjoint I/O regions in their ACPI
1542         * tables.  This causes problems when trying to register the
1543         * entire I/O region.  Therefore we must register each I/O
1544         * port separately.
1545         */
1546        for (idx = 0; idx < info->io_size; idx++) {
1547                if (request_region(addr + idx * info->io.regspacing,
1548                                   info->io.regsize, DEVICE_NAME) == NULL) {
1549                        /* Undo allocations */
1550                        while (idx--) {
1551                                release_region(addr + idx * info->io.regspacing,
1552                                               info->io.regsize);
1553                        }
1554                        return -EIO;
1555                }
1556        }
1557        return 0;
1558}
1559
1560static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1561{
1562        return readb((io->addr)+(offset * io->regspacing));
1563}
1564
1565static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1566                     unsigned char b)
1567{
1568        writeb(b, (io->addr)+(offset * io->regspacing));
1569}
1570
1571static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1572{
1573        return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1574                & 0xff;
1575}
1576
1577static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1578                     unsigned char b)
1579{
1580        writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1581}
1582
1583static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1584{
1585        return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1586                & 0xff;
1587}
1588
1589static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1590                     unsigned char b)
1591{
1592        writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1593}
1594
1595#ifdef readq
1596static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1597{
1598        return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1599                & 0xff;
1600}
1601
1602static void mem_outq(struct si_sm_io *io, unsigned int offset,
1603                     unsigned char b)
1604{
1605        writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1606}
1607#endif
1608
1609static void mem_cleanup(struct smi_info *info)
1610{
1611        unsigned long addr = info->io.addr_data;
1612        int           mapsize;
1613
1614        if (info->io.addr) {
1615                iounmap(info->io.addr);
1616
1617                mapsize = ((info->io_size * info->io.regspacing)
1618                           - (info->io.regspacing - info->io.regsize));
1619
1620                release_mem_region(addr, mapsize);
1621        }
1622}
1623
1624static int mem_setup(struct smi_info *info)
1625{
1626        unsigned long addr = info->io.addr_data;
1627        int           mapsize;
1628
1629        if (!addr)
1630                return -ENODEV;
1631
1632        info->io_cleanup = mem_cleanup;
1633
1634        /*
1635         * Figure out the actual readb/readw/readl/etc routine to use based
1636         * upon the register size.
1637         */
1638        switch (info->io.regsize) {
1639        case 1:
1640                info->io.inputb = intf_mem_inb;
1641                info->io.outputb = intf_mem_outb;
1642                break;
1643        case 2:
1644                info->io.inputb = intf_mem_inw;
1645                info->io.outputb = intf_mem_outw;
1646                break;
1647        case 4:
1648                info->io.inputb = intf_mem_inl;
1649                info->io.outputb = intf_mem_outl;
1650                break;
1651#ifdef readq
1652        case 8:
1653                info->io.inputb = mem_inq;
1654                info->io.outputb = mem_outq;
1655                break;
1656#endif
1657        default:
1658                dev_warn(info->dev, "Invalid register size: %d\n",
1659                         info->io.regsize);
1660                return -EINVAL;
1661        }
1662
1663        /*
1664         * Calculate the total amount of memory to claim.  This is an
1665         * unusual looking calculation, but it avoids claiming any
1666         * more memory than it has to.  It will claim everything
1667         * between the first address to the end of the last full
1668         * register.
1669         */
1670        mapsize = ((info->io_size * info->io.regspacing)
1671                   - (info->io.regspacing - info->io.regsize));
1672
1673        if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1674                return -EIO;
1675
1676        info->io.addr = ioremap(addr, mapsize);
1677        if (info->io.addr == NULL) {
1678                release_mem_region(addr, mapsize);
1679                return -EIO;
1680        }
1681        return 0;
1682}
1683
1684/*
1685 * Parms come in as <op1>[:op2[:op3...]].  ops are:
1686 *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1687 * Options are:
1688 *   rsp=<regspacing>
1689 *   rsi=<regsize>
1690 *   rsh=<regshift>
1691 *   irq=<irq>
1692 *   ipmb=<ipmb addr>
1693 */
1694enum hotmod_op { HM_ADD, HM_REMOVE };
1695struct hotmod_vals {
1696        char *name;
1697        int  val;
1698};
1699static struct hotmod_vals hotmod_ops[] = {
1700        { "add",        HM_ADD },
1701        { "remove",     HM_REMOVE },
1702        { NULL }
1703};
1704static struct hotmod_vals hotmod_si[] = {
1705        { "kcs",        SI_KCS },
1706        { "smic",       SI_SMIC },
1707        { "bt",         SI_BT },
1708        { NULL }
1709};
1710static struct hotmod_vals hotmod_as[] = {
1711        { "mem",        IPMI_MEM_ADDR_SPACE },
1712        { "i/o",        IPMI_IO_ADDR_SPACE },
1713        { NULL }
1714};
1715
1716static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1717{
1718        char *s;
1719        int  i;
1720
1721        s = strchr(*curr, ',');
1722        if (!s) {
1723                printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1724                return -EINVAL;
1725        }
1726        *s = '\0';
1727        s++;
1728        for (i = 0; v[i].name; i++) {
1729                if (strcmp(*curr, v[i].name) == 0) {
1730                        *val = v[i].val;
1731                        *curr = s;
1732                        return 0;
1733                }
1734        }
1735
1736        printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1737        return -EINVAL;
1738}
1739
1740static int check_hotmod_int_op(const char *curr, const char *option,
1741                               const char *name, int *val)
1742{
1743        char *n;
1744
1745        if (strcmp(curr, name) == 0) {
1746                if (!option) {
1747                        printk(KERN_WARNING PFX
1748                               "No option given for '%s'\n",
1749                               curr);
1750                        return -EINVAL;
1751                }
1752                *val = simple_strtoul(option, &n, 0);
1753                if ((*n != '\0') || (*option == '\0')) {
1754                        printk(KERN_WARNING PFX
1755                               "Bad option given for '%s'\n",
1756                               curr);
1757                        return -EINVAL;
1758                }
1759                return 1;
1760        }
1761        return 0;
1762}
1763
1764static struct smi_info *smi_info_alloc(void)
1765{
1766        struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1767
1768        if (info)
1769                spin_lock_init(&info->si_lock);
1770        return info;
1771}
1772
1773static int hotmod_handler(const char *val, struct kernel_param *kp)
1774{
1775        char *str = kstrdup(val, GFP_KERNEL);
1776        int  rv;
1777        char *next, *curr, *s, *n, *o;
1778        enum hotmod_op op;
1779        enum si_type si_type;
1780        int  addr_space;
1781        unsigned long addr;
1782        int regspacing;
1783        int regsize;
1784        int regshift;
1785        int irq;
1786        int ipmb;
1787        int ival;
1788        int len;
1789        struct smi_info *info;
1790
1791        if (!str)
1792                return -ENOMEM;
1793
1794        /* Kill any trailing spaces, as we can get a "\n" from echo. */
1795        len = strlen(str);
1796        ival = len - 1;
1797        while ((ival >= 0) && isspace(str[ival])) {
1798                str[ival] = '\0';
1799                ival--;
1800        }
1801
1802        for (curr = str; curr; curr = next) {
1803                regspacing = 1;
1804                regsize = 1;
1805                regshift = 0;
1806                irq = 0;
1807                ipmb = 0; /* Choose the default if not specified */
1808
1809                next = strchr(curr, ':');
1810                if (next) {
1811                        *next = '\0';
1812                        next++;
1813                }
1814
1815                rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1816                if (rv)
1817                        break;
1818                op = ival;
1819
1820                rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1821                if (rv)
1822                        break;
1823                si_type = ival;
1824
1825                rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1826                if (rv)
1827                        break;
1828
1829                s = strchr(curr, ',');
1830                if (s) {
1831                        *s = '\0';
1832                        s++;
1833                }
1834                addr = simple_strtoul(curr, &n, 0);
1835                if ((*n != '\0') || (*curr == '\0')) {
1836                        printk(KERN_WARNING PFX "Invalid hotmod address"
1837                               " '%s'\n", curr);
1838                        break;
1839                }
1840
1841                while (s) {
1842                        curr = s;
1843                        s = strchr(curr, ',');
1844                        if (s) {
1845                                *s = '\0';
1846                                s++;
1847                        }
1848                        o = strchr(curr, '=');
1849                        if (o) {
1850                                *o = '\0';
1851                                o++;
1852                        }
1853                        rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1854                        if (rv < 0)
1855                                goto out;
1856                        else if (rv)
1857                                continue;
1858                        rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1859                        if (rv < 0)
1860                                goto out;
1861                        else if (rv)
1862                                continue;
1863                        rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1864                        if (rv < 0)
1865                                goto out;
1866                        else if (rv)
1867                                continue;
1868                        rv = check_hotmod_int_op(curr, o, "irq", &irq);
1869                        if (rv < 0)
1870                                goto out;
1871                        else if (rv)
1872                                continue;
1873                        rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1874                        if (rv < 0)
1875                                goto out;
1876                        else if (rv)
1877                                continue;
1878
1879                        rv = -EINVAL;
1880                        printk(KERN_WARNING PFX
1881                               "Invalid hotmod option '%s'\n",
1882                               curr);
1883                        goto out;
1884                }
1885
1886                if (op == HM_ADD) {
1887                        info = smi_info_alloc();
1888                        if (!info) {
1889                                rv = -ENOMEM;
1890                                goto out;
1891                        }
1892
1893                        info->addr_source = SI_HOTMOD;
1894                        info->si_type = si_type;
1895                        info->io.addr_data = addr;
1896                        info->io.addr_type = addr_space;
1897                        if (addr_space == IPMI_MEM_ADDR_SPACE)
1898                                info->io_setup = mem_setup;
1899                        else
1900                                info->io_setup = port_setup;
1901
1902                        info->io.addr = NULL;
1903                        info->io.regspacing = regspacing;
1904                        if (!info->io.regspacing)
1905                                info->io.regspacing = DEFAULT_REGSPACING;
1906                        info->io.regsize = regsize;
1907                        if (!info->io.regsize)
1908                                info->io.regsize = DEFAULT_REGSPACING;
1909                        info->io.regshift = regshift;
1910                        info->irq = irq;
1911                        if (info->irq)
1912                                info->irq_setup = std_irq_setup;
1913                        info->slave_addr = ipmb;
1914
1915                        rv = add_smi(info);
1916                        if (rv) {
1917                                kfree(info);
1918                                goto out;
1919                        }
1920                        rv = try_smi_init(info);
1921                        if (rv) {
1922                                cleanup_one_si(info);
1923                                goto out;
1924                        }
1925                } else {
1926                        /* remove */
1927                        struct smi_info *e, *tmp_e;
1928
1929                        mutex_lock(&smi_infos_lock);
1930                        list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1931                                if (e->io.addr_type != addr_space)
1932                                        continue;
1933                                if (e->si_type != si_type)
1934                                        continue;
1935                                if (e->io.addr_data == addr)
1936                                        cleanup_one_si(e);
1937                        }
1938                        mutex_unlock(&smi_infos_lock);
1939                }
1940        }
1941        rv = len;
1942 out:
1943        kfree(str);
1944        return rv;
1945}
1946
1947static int hardcode_find_bmc(void)
1948{
1949        int ret = -ENODEV;
1950        int             i;
1951        struct smi_info *info;
1952
1953        for (i = 0; i < SI_MAX_PARMS; i++) {
1954                if (!ports[i] && !addrs[i])
1955                        continue;
1956
1957                info = smi_info_alloc();
1958                if (!info)
1959                        return -ENOMEM;
1960
1961                info->addr_source = SI_HARDCODED;
1962                printk(KERN_INFO PFX "probing via hardcoded address\n");
1963
1964                if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1965                        info->si_type = SI_KCS;
1966                } else if (strcmp(si_type[i], "smic") == 0) {
1967                        info->si_type = SI_SMIC;
1968                } else if (strcmp(si_type[i], "bt") == 0) {
1969                        info->si_type = SI_BT;
1970                } else {
1971                        printk(KERN_WARNING PFX "Interface type specified "
1972                               "for interface %d, was invalid: %s\n",
1973                               i, si_type[i]);
1974                        kfree(info);
1975                        continue;
1976                }
1977
1978                if (ports[i]) {
1979                        /* An I/O port */
1980                        info->io_setup = port_setup;
1981                        info->io.addr_data = ports[i];
1982                        info->io.addr_type = IPMI_IO_ADDR_SPACE;
1983                } else if (addrs[i]) {
1984                        /* A memory port */
1985                        info->io_setup = mem_setup;
1986                        info->io.addr_data = addrs[i];
1987                        info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1988                } else {
1989                        printk(KERN_WARNING PFX "Interface type specified "
1990                               "for interface %d, but port and address were "
1991                               "not set or set to zero.\n", i);
1992                        kfree(info);
1993                        continue;
1994                }
1995
1996                info->io.addr = NULL;
1997                info->io.regspacing = regspacings[i];
1998                if (!info->io.regspacing)
1999                        info->io.regspacing = DEFAULT_REGSPACING;
2000                info->io.regsize = regsizes[i];
2001                if (!info->io.regsize)
2002                        info->io.regsize = DEFAULT_REGSPACING;
2003                info->io.regshift = regshifts[i];
2004                info->irq = irqs[i];
2005                if (info->irq)
2006                        info->irq_setup = std_irq_setup;
2007                info->slave_addr = slave_addrs[i];
2008
2009                if (!add_smi(info)) {
2010                        if (try_smi_init(info))
2011                                cleanup_one_si(info);
2012                        ret = 0;
2013                } else {
2014                        kfree(info);
2015                }
2016        }
2017        return ret;
2018}
2019
2020#ifdef CONFIG_ACPI
2021
2022#include <linux/acpi.h>
2023
2024/*
2025 * Once we get an ACPI failure, we don't try any more, because we go
2026 * through the tables sequentially.  Once we don't find a table, there
2027 * are no more.
2028 */
2029static int acpi_failure;
2030
2031/* For GPE-type interrupts. */
2032static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2033        u32 gpe_number, void *context)
2034{
2035        struct smi_info *smi_info = context;
2036        unsigned long   flags;
2037
2038        spin_lock_irqsave(&(smi_info->si_lock), flags);
2039
2040        smi_inc_stat(smi_info, interrupts);
2041
2042        debug_timestamp("ACPI_GPE");
2043
2044        smi_event_handler(smi_info, 0);
2045        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2046
2047        return ACPI_INTERRUPT_HANDLED;
2048}
2049
2050static void acpi_gpe_irq_cleanup(struct smi_info *info)
2051{
2052        if (!info->irq)
2053                return;
2054
2055        acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2056}
2057
2058static int acpi_gpe_irq_setup(struct smi_info *info)
2059{
2060        acpi_status status;
2061
2062        if (!info->irq)
2063                return 0;
2064
2065        status = acpi_install_gpe_handler(NULL,
2066                                          info->irq,
2067                                          ACPI_GPE_LEVEL_TRIGGERED,
2068                                          &ipmi_acpi_gpe,
2069                                          info);
2070        if (status != AE_OK) {
2071                dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2072                         " running polled\n", DEVICE_NAME, info->irq);
2073                info->irq = 0;
2074                return -EINVAL;
2075        } else {
2076                info->irq_cleanup = acpi_gpe_irq_cleanup;
2077                dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2078                return 0;
2079        }
2080}
2081
2082/*
2083 * Defined at
2084 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2085 */
2086struct SPMITable {
2087        s8      Signature[4];
2088        u32     Length;
2089        u8      Revision;
2090        u8      Checksum;
2091        s8      OEMID[6];
2092        s8      OEMTableID[8];
2093        s8      OEMRevision[4];
2094        s8      CreatorID[4];
2095        s8      CreatorRevision[4];
2096        u8      InterfaceType;
2097        u8      IPMIlegacy;
2098        s16     SpecificationRevision;
2099
2100        /*
2101         * Bit 0 - SCI interrupt supported
2102         * Bit 1 - I/O APIC/SAPIC
2103         */
2104        u8      InterruptType;
2105
2106        /*
2107         * If bit 0 of InterruptType is set, then this is the SCI
2108         * interrupt in the GPEx_STS register.
2109         */
2110        u8      GPE;
2111
2112        s16     Reserved;
2113
2114        /*
2115         * If bit 1 of InterruptType is set, then this is the I/O
2116         * APIC/SAPIC interrupt.
2117         */
2118        u32     GlobalSystemInterrupt;
2119
2120        /* The actual register address. */
2121        struct acpi_generic_address addr;
2122
2123        u8      UID[4];
2124
2125        s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2126};
2127
2128static int try_init_spmi(struct SPMITable *spmi)
2129{
2130        struct smi_info  *info;
2131        int rv;
2132
2133        if (spmi->IPMIlegacy != 1) {
2134                printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2135                return -ENODEV;
2136        }
2137
2138        info = smi_info_alloc();
2139        if (!info) {
2140                printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2141                return -ENOMEM;
2142        }
2143
2144        info->addr_source = SI_SPMI;
2145        printk(KERN_INFO PFX "probing via SPMI\n");
2146
2147        /* Figure out the interface type. */
2148        switch (spmi->InterfaceType) {
2149        case 1: /* KCS */
2150                info->si_type = SI_KCS;
2151                break;
2152        case 2: /* SMIC */
2153                info->si_type = SI_SMIC;
2154                break;
2155        case 3: /* BT */
2156                info->si_type = SI_BT;
2157                break;
2158        case 4: /* SSIF, just ignore */
2159                kfree(info);
2160                return -EIO;
2161        default:
2162                printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2163                       spmi->InterfaceType);
2164                kfree(info);
2165                return -EIO;
2166        }
2167
2168        if (spmi->InterruptType & 1) {
2169                /* We've got a GPE interrupt. */
2170                info->irq = spmi->GPE;
2171                info->irq_setup = acpi_gpe_irq_setup;
2172        } else if (spmi->InterruptType & 2) {
2173                /* We've got an APIC/SAPIC interrupt. */
2174                info->irq = spmi->GlobalSystemInterrupt;
2175                info->irq_setup = std_irq_setup;
2176        } else {
2177                /* Use the default interrupt setting. */
2178                info->irq = 0;
2179                info->irq_setup = NULL;
2180        }
2181
2182        if (spmi->addr.bit_width) {
2183                /* A (hopefully) properly formed register bit width. */
2184                info->io.regspacing = spmi->addr.bit_width / 8;
2185        } else {
2186                info->io.regspacing = DEFAULT_REGSPACING;
2187        }
2188        info->io.regsize = info->io.regspacing;
2189        info->io.regshift = spmi->addr.bit_offset;
2190
2191        if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2192                info->io_setup = mem_setup;
2193                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2194        } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2195                info->io_setup = port_setup;
2196                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2197        } else {
2198                kfree(info);
2199                printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2200                return -EIO;
2201        }
2202        info->io.addr_data = spmi->addr.address;
2203
2204        pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2205                 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2206                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2207                 info->irq);
2208
2209        rv = add_smi(info);
2210        if (rv)
2211                kfree(info);
2212
2213        return rv;
2214}
2215
2216static void spmi_find_bmc(void)
2217{
2218        acpi_status      status;
2219        struct SPMITable *spmi;
2220        int              i;
2221
2222        if (acpi_disabled)
2223                return;
2224
2225        if (acpi_failure)
2226                return;
2227
2228        for (i = 0; ; i++) {
2229                status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2230                                        (struct acpi_table_header **)&spmi);
2231                if (status != AE_OK)
2232                        return;
2233
2234                try_init_spmi(spmi);
2235        }
2236}
2237
2238static int ipmi_pnp_probe(struct pnp_dev *dev,
2239                                    const struct pnp_device_id *dev_id)
2240{
2241        struct acpi_device *acpi_dev;
2242        struct smi_info *info;
2243        struct resource *res, *res_second;
2244        acpi_handle handle;
2245        acpi_status status;
2246        unsigned long long tmp;
2247        int rv;
2248
2249        acpi_dev = pnp_acpi_device(dev);
2250        if (!acpi_dev)
2251                return -ENODEV;
2252
2253        info = smi_info_alloc();
2254        if (!info)
2255                return -ENOMEM;
2256
2257        info->addr_source = SI_ACPI;
2258        printk(KERN_INFO PFX "probing via ACPI\n");
2259
2260        handle = acpi_dev->handle;
2261        info->addr_info.acpi_info.acpi_handle = handle;
2262
2263        /* _IFT tells us the interface type: KCS, BT, etc */
2264        status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2265        if (ACPI_FAILURE(status))
2266                goto err_free;
2267
2268        switch (tmp) {
2269        case 1:
2270                info->si_type = SI_KCS;
2271                break;
2272        case 2:
2273                info->si_type = SI_SMIC;
2274                break;
2275        case 3:
2276                info->si_type = SI_BT;
2277                break;
2278        case 4: /* SSIF, just ignore */
2279                goto err_free;
2280        default:
2281                dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2282                goto err_free;
2283        }
2284
2285        res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2286        if (res) {
2287                info->io_setup = port_setup;
2288                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2289        } else {
2290                res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2291                if (res) {
2292                        info->io_setup = mem_setup;
2293                        info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2294                }
2295        }
2296        if (!res) {
2297                dev_err(&dev->dev, "no I/O or memory address\n");
2298                goto err_free;
2299        }
2300        info->io.addr_data = res->start;
2301
2302        info->io.regspacing = DEFAULT_REGSPACING;
2303        res_second = pnp_get_resource(dev,
2304                               (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2305                                        IORESOURCE_IO : IORESOURCE_MEM,
2306                               1);
2307        if (res_second) {
2308                if (res_second->start > info->io.addr_data)
2309                        info->io.regspacing = res_second->start - info->io.addr_data;
2310        }
2311        info->io.regsize = DEFAULT_REGSPACING;
2312        info->io.regshift = 0;
2313
2314        /* If _GPE exists, use it; otherwise use standard interrupts */
2315        status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2316        if (ACPI_SUCCESS(status)) {
2317                info->irq = tmp;
2318                info->irq_setup = acpi_gpe_irq_setup;
2319        } else if (pnp_irq_valid(dev, 0)) {
2320                info->irq = pnp_irq(dev, 0);
2321                info->irq_setup = std_irq_setup;
2322        }
2323
2324        info->dev = &dev->dev;
2325        pnp_set_drvdata(dev, info);
2326
2327        dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2328                 res, info->io.regsize, info->io.regspacing,
2329                 info->irq);
2330
2331        rv = add_smi(info);
2332        if (rv)
2333                kfree(info);
2334
2335        return rv;
2336
2337err_free:
2338        kfree(info);
2339        return -EINVAL;
2340}
2341
2342static void ipmi_pnp_remove(struct pnp_dev *dev)
2343{
2344        struct smi_info *info = pnp_get_drvdata(dev);
2345
2346        cleanup_one_si(info);
2347}
2348
2349static const struct pnp_device_id pnp_dev_table[] = {
2350        {"IPI0001", 0},
2351        {"", 0},
2352};
2353
2354static struct pnp_driver ipmi_pnp_driver = {
2355        .name           = DEVICE_NAME,
2356        .probe          = ipmi_pnp_probe,
2357        .remove         = ipmi_pnp_remove,
2358        .id_table       = pnp_dev_table,
2359};
2360
2361MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2362#endif
2363
2364#ifdef CONFIG_DMI
2365struct dmi_ipmi_data {
2366        u8              type;
2367        u8              addr_space;
2368        unsigned long   base_addr;
2369        u8              irq;
2370        u8              offset;
2371        u8              slave_addr;
2372};
2373
2374static int decode_dmi(const struct dmi_header *dm,
2375                                struct dmi_ipmi_data *dmi)
2376{
2377        const u8        *data = (const u8 *)dm;
2378        unsigned long   base_addr;
2379        u8              reg_spacing;
2380        u8              len = dm->length;
2381
2382        dmi->type = data[4];
2383
2384        memcpy(&base_addr, data+8, sizeof(unsigned long));
2385        if (len >= 0x11) {
2386                if (base_addr & 1) {
2387                        /* I/O */
2388                        base_addr &= 0xFFFE;
2389                        dmi->addr_space = IPMI_IO_ADDR_SPACE;
2390                } else
2391                        /* Memory */
2392                        dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2393
2394                /* If bit 4 of byte 0x10 is set, then the lsb for the address
2395                   is odd. */
2396                dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2397
2398                dmi->irq = data[0x11];
2399
2400                /* The top two bits of byte 0x10 hold the register spacing. */
2401                reg_spacing = (data[0x10] & 0xC0) >> 6;
2402                switch (reg_spacing) {
2403                case 0x00: /* Byte boundaries */
2404                    dmi->offset = 1;
2405                    break;
2406                case 0x01: /* 32-bit boundaries */
2407                    dmi->offset = 4;
2408                    break;
2409                case 0x02: /* 16-byte boundaries */
2410                    dmi->offset = 16;
2411                    break;
2412                default:
2413                    /* Some other interface, just ignore it. */
2414                    return -EIO;
2415                }
2416        } else {
2417                /* Old DMI spec. */
2418                /*
2419                 * Note that technically, the lower bit of the base
2420                 * address should be 1 if the address is I/O and 0 if
2421                 * the address is in memory.  So many systems get that
2422                 * wrong (and all that I have seen are I/O) so we just
2423                 * ignore that bit and assume I/O.  Systems that use
2424                 * memory should use the newer spec, anyway.
2425                 */
2426                dmi->base_addr = base_addr & 0xfffe;
2427                dmi->addr_space = IPMI_IO_ADDR_SPACE;
2428                dmi->offset = 1;
2429        }
2430
2431        dmi->slave_addr = data[6];
2432
2433        return 0;
2434}
2435
2436static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2437{
2438        struct smi_info *info;
2439
2440        info = smi_info_alloc();
2441        if (!info) {
2442                printk(KERN_ERR PFX "Could not allocate SI data\n");
2443                return;
2444        }
2445
2446        info->addr_source = SI_SMBIOS;
2447        printk(KERN_INFO PFX "probing via SMBIOS\n");
2448
2449        switch (ipmi_data->type) {
2450        case 0x01: /* KCS */
2451                info->si_type = SI_KCS;
2452                break;
2453        case 0x02: /* SMIC */
2454                info->si_type = SI_SMIC;
2455                break;
2456        case 0x03: /* BT */
2457                info->si_type = SI_BT;
2458                break;
2459        default:
2460                kfree(info);
2461                return;
2462        }
2463
2464        switch (ipmi_data->addr_space) {
2465        case IPMI_MEM_ADDR_SPACE:
2466                info->io_setup = mem_setup;
2467                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2468                break;
2469
2470        case IPMI_IO_ADDR_SPACE:
2471                info->io_setup = port_setup;
2472                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2473                break;
2474
2475        default:
2476                kfree(info);
2477                printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2478                       ipmi_data->addr_space);
2479                return;
2480        }
2481        info->io.addr_data = ipmi_data->base_addr;
2482
2483        info->io.regspacing = ipmi_data->offset;
2484        if (!info->io.regspacing)
2485                info->io.regspacing = DEFAULT_REGSPACING;
2486        info->io.regsize = DEFAULT_REGSPACING;
2487        info->io.regshift = 0;
2488
2489        info->slave_addr = ipmi_data->slave_addr;
2490
2491        info->irq = ipmi_data->irq;
2492        if (info->irq)
2493                info->irq_setup = std_irq_setup;
2494
2495        pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2496                 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2497                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2498                 info->irq);
2499
2500        if (add_smi(info))
2501                kfree(info);
2502}
2503
2504static void dmi_find_bmc(void)
2505{
2506        const struct dmi_device *dev = NULL;
2507        struct dmi_ipmi_data data;
2508        int                  rv;
2509
2510        while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2511                memset(&data, 0, sizeof(data));
2512                rv = decode_dmi((const struct dmi_header *) dev->device_data,
2513                                &data);
2514                if (!rv)
2515                        try_init_dmi(&data);
2516        }
2517}
2518#endif /* CONFIG_DMI */
2519
2520#ifdef CONFIG_PCI
2521
2522#define PCI_ERMC_CLASSCODE              0x0C0700
2523#define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2524#define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2525#define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2526#define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2527#define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2528
2529#define PCI_HP_VENDOR_ID    0x103C
2530#define PCI_MMC_DEVICE_ID   0x121A
2531#define PCI_MMC_ADDR_CW     0x10
2532
2533static void ipmi_pci_cleanup(struct smi_info *info)
2534{
2535        struct pci_dev *pdev = info->addr_source_data;
2536
2537        pci_disable_device(pdev);
2538}
2539
2540static int ipmi_pci_probe_regspacing(struct smi_info *info)
2541{
2542        if (info->si_type == SI_KCS) {
2543                unsigned char   status;
2544                int             regspacing;
2545
2546                info->io.regsize = DEFAULT_REGSIZE;
2547                info->io.regshift = 0;
2548                info->io_size = 2;
2549                info->handlers = &kcs_smi_handlers;
2550
2551                /* detect 1, 4, 16byte spacing */
2552                for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2553                        info->io.regspacing = regspacing;
2554                        if (info->io_setup(info)) {
2555                                dev_err(info->dev,
2556                                        "Could not setup I/O space\n");
2557                                return DEFAULT_REGSPACING;
2558                        }
2559                        /* write invalid cmd */
2560                        info->io.outputb(&info->io, 1, 0x10);
2561                        /* read status back */
2562                        status = info->io.inputb(&info->io, 1);
2563                        info->io_cleanup(info);
2564                        if (status)
2565                                return regspacing;
2566                        regspacing *= 4;
2567                }
2568        }
2569        return DEFAULT_REGSPACING;
2570}
2571
2572static int ipmi_pci_probe(struct pci_dev *pdev,
2573                                    const struct pci_device_id *ent)
2574{
2575        int rv;
2576        int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2577        struct smi_info *info;
2578
2579        info = smi_info_alloc();
2580        if (!info)
2581                return -ENOMEM;
2582
2583        info->addr_source = SI_PCI;
2584        dev_info(&pdev->dev, "probing via PCI");
2585
2586        switch (class_type) {
2587        case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2588                info->si_type = SI_SMIC;
2589                break;
2590
2591        case PCI_ERMC_CLASSCODE_TYPE_KCS:
2592                info->si_type = SI_KCS;
2593                break;
2594
2595        case PCI_ERMC_CLASSCODE_TYPE_BT:
2596                info->si_type = SI_BT;
2597                break;
2598
2599        default:
2600                kfree(info);
2601                dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2602                return -ENOMEM;
2603        }
2604
2605        rv = pci_enable_device(pdev);
2606        if (rv) {
2607                dev_err(&pdev->dev, "couldn't enable PCI device\n");
2608                kfree(info);
2609                return rv;
2610        }
2611
2612        info->addr_source_cleanup = ipmi_pci_cleanup;
2613        info->addr_source_data = pdev;
2614
2615        if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2616                info->io_setup = port_setup;
2617                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2618        } else {
2619                info->io_setup = mem_setup;
2620                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2621        }
2622        info->io.addr_data = pci_resource_start(pdev, 0);
2623
2624        info->io.regspacing = ipmi_pci_probe_regspacing(info);
2625        info->io.regsize = DEFAULT_REGSIZE;
2626        info->io.regshift = 0;
2627
2628        info->irq = pdev->irq;
2629        if (info->irq)
2630                info->irq_setup = std_irq_setup;
2631
2632        info->dev = &pdev->dev;
2633        pci_set_drvdata(pdev, info);
2634
2635        dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2636                &pdev->resource[0], info->io.regsize, info->io.regspacing,
2637                info->irq);
2638
2639        rv = add_smi(info);
2640        if (rv) {
2641                kfree(info);
2642                pci_disable_device(pdev);
2643        }
2644
2645        return rv;
2646}
2647
2648static void ipmi_pci_remove(struct pci_dev *pdev)
2649{
2650        struct smi_info *info = pci_get_drvdata(pdev);
2651        cleanup_one_si(info);
2652        pci_disable_device(pdev);
2653}
2654
2655static struct pci_device_id ipmi_pci_devices[] = {
2656        { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2657        { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2658        { 0, }
2659};
2660MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2661
2662static struct pci_driver ipmi_pci_driver = {
2663        .name =         DEVICE_NAME,
2664        .id_table =     ipmi_pci_devices,
2665        .probe =        ipmi_pci_probe,
2666        .remove =       ipmi_pci_remove,
2667};
2668#endif /* CONFIG_PCI */
2669
2670static struct of_device_id ipmi_match[];
2671static int ipmi_probe(struct platform_device *dev)
2672{
2673#ifdef CONFIG_OF
2674        const struct of_device_id *match;
2675        struct smi_info *info;
2676        struct resource resource;
2677        const __be32 *regsize, *regspacing, *regshift;
2678        struct device_node *np = dev->dev.of_node;
2679        int ret;
2680        int proplen;
2681
2682        dev_info(&dev->dev, "probing via device tree\n");
2683
2684        match = of_match_device(ipmi_match, &dev->dev);
2685        if (!match)
2686                return -EINVAL;
2687
2688        if (!of_device_is_available(np))
2689                return -EINVAL;
2690
2691        ret = of_address_to_resource(np, 0, &resource);
2692        if (ret) {
2693                dev_warn(&dev->dev, PFX "invalid address from OF\n");
2694                return ret;
2695        }
2696
2697        regsize = of_get_property(np, "reg-size", &proplen);
2698        if (regsize && proplen != 4) {
2699                dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2700                return -EINVAL;
2701        }
2702
2703        regspacing = of_get_property(np, "reg-spacing", &proplen);
2704        if (regspacing && proplen != 4) {
2705                dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2706                return -EINVAL;
2707        }
2708
2709        regshift = of_get_property(np, "reg-shift", &proplen);
2710        if (regshift && proplen != 4) {
2711                dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2712                return -EINVAL;
2713        }
2714
2715        info = smi_info_alloc();
2716
2717        if (!info) {
2718                dev_err(&dev->dev,
2719                        "could not allocate memory for OF probe\n");
2720                return -ENOMEM;
2721        }
2722
2723        info->si_type           = (enum si_type) match->data;
2724        info->addr_source       = SI_DEVICETREE;
2725        info->irq_setup         = std_irq_setup;
2726
2727        if (resource.flags & IORESOURCE_IO) {
2728                info->io_setup          = port_setup;
2729                info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2730        } else {
2731                info->io_setup          = mem_setup;
2732                info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2733        }
2734
2735        info->io.addr_data      = resource.start;
2736
2737        info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2738        info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2739        info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2740
2741        info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2742        info->dev               = &dev->dev;
2743
2744        dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2745                info->io.addr_data, info->io.regsize, info->io.regspacing,
2746                info->irq);
2747
2748        dev_set_drvdata(&dev->dev, info);
2749
2750        ret = add_smi(info);
2751        if (ret) {
2752                kfree(info);
2753                return ret;
2754        }
2755#endif
2756        return 0;
2757}
2758
2759static int ipmi_remove(struct platform_device *dev)
2760{
2761#ifdef CONFIG_OF
2762        cleanup_one_si(dev_get_drvdata(&dev->dev));
2763#endif
2764        return 0;
2765}
2766
2767static struct of_device_id ipmi_match[] =
2768{
2769        { .type = "ipmi", .compatible = "ipmi-kcs",
2770          .data = (void *)(unsigned long) SI_KCS },
2771        { .type = "ipmi", .compatible = "ipmi-smic",
2772          .data = (void *)(unsigned long) SI_SMIC },
2773        { .type = "ipmi", .compatible = "ipmi-bt",
2774          .data = (void *)(unsigned long) SI_BT },
2775        {},
2776};
2777
2778static struct platform_driver ipmi_driver = {
2779        .driver = {
2780                .name = DEVICE_NAME,
2781                .of_match_table = ipmi_match,
2782        },
2783        .probe          = ipmi_probe,
2784        .remove         = ipmi_remove,
2785};
2786
2787#ifdef CONFIG_PARISC
2788static int ipmi_parisc_probe(struct parisc_device *dev)
2789{
2790        struct smi_info *info;
2791        int rv;
2792
2793        info = smi_info_alloc();
2794
2795        if (!info) {
2796                dev_err(&dev->dev,
2797                        "could not allocate memory for PARISC probe\n");
2798                return -ENOMEM;
2799        }
2800
2801        info->si_type           = SI_KCS;
2802        info->addr_source       = SI_DEVICETREE;
2803        info->io_setup          = mem_setup;
2804        info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2805        info->io.addr_data      = dev->hpa.start;
2806        info->io.regsize        = 1;
2807        info->io.regspacing     = 1;
2808        info->io.regshift       = 0;
2809        info->irq               = 0; /* no interrupt */
2810        info->irq_setup         = NULL;
2811        info->dev               = &dev->dev;
2812
2813        dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2814
2815        dev_set_drvdata(&dev->dev, info);
2816
2817        rv = add_smi(info);
2818        if (rv) {
2819                kfree(info);
2820                return rv;
2821        }
2822
2823        return 0;
2824}
2825
2826static int ipmi_parisc_remove(struct parisc_device *dev)
2827{
2828        cleanup_one_si(dev_get_drvdata(&dev->dev));
2829        return 0;
2830}
2831
2832static struct parisc_device_id ipmi_parisc_tbl[] = {
2833        { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2834        { 0, }
2835};
2836
2837static struct parisc_driver ipmi_parisc_driver = {
2838        .name =         "ipmi",
2839        .id_table =     ipmi_parisc_tbl,
2840        .probe =        ipmi_parisc_probe,
2841        .remove =       ipmi_parisc_remove,
2842};
2843#endif /* CONFIG_PARISC */
2844
2845static int wait_for_msg_done(struct smi_info *smi_info)
2846{
2847        enum si_sm_result     smi_result;
2848
2849        smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2850        for (;;) {
2851                if (smi_result == SI_SM_CALL_WITH_DELAY ||
2852                    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2853                        schedule_timeout_uninterruptible(1);
2854                        smi_result = smi_info->handlers->event(
2855                                smi_info->si_sm, jiffies_to_usecs(1));
2856                } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2857                        smi_result = smi_info->handlers->event(
2858                                smi_info->si_sm, 0);
2859                } else
2860                        break;
2861        }
2862        if (smi_result == SI_SM_HOSED)
2863                /*
2864                 * We couldn't get the state machine to run, so whatever's at
2865                 * the port is probably not an IPMI SMI interface.
2866                 */
2867                return -ENODEV;
2868
2869        return 0;
2870}
2871
2872static int try_get_dev_id(struct smi_info *smi_info)
2873{
2874        unsigned char         msg[2];
2875        unsigned char         *resp;
2876        unsigned long         resp_len;
2877        int                   rv = 0;
2878
2879        resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2880        if (!resp)
2881                return -ENOMEM;
2882
2883        /*
2884         * Do a Get Device ID command, since it comes back with some
2885         * useful info.
2886         */
2887        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2888        msg[1] = IPMI_GET_DEVICE_ID_CMD;
2889        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2890
2891        rv = wait_for_msg_done(smi_info);
2892        if (rv)
2893                goto out;
2894
2895        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2896                                                  resp, IPMI_MAX_MSG_LENGTH);
2897
2898        /* Check and record info from the get device id, in case we need it. */
2899        rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2900
2901 out:
2902        kfree(resp);
2903        return rv;
2904}
2905
2906/*
2907 * Some BMCs do not support clearing the receive irq bit in the global
2908 * enables (even if they don't support interrupts on the BMC).  Check
2909 * for this and handle it properly.
2910 */
2911static void check_clr_rcv_irq(struct smi_info *smi_info)
2912{
2913        unsigned char         msg[3];
2914        unsigned char         *resp;
2915        unsigned long         resp_len;
2916        int                   rv;
2917
2918        resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2919        if (!resp) {
2920                printk(KERN_WARNING PFX "Out of memory allocating response for"
2921                       " global enables command, cannot check recv irq bit"
2922                       " handling.\n");
2923                return;
2924        }
2925
2926        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2927        msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2928        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2929
2930        rv = wait_for_msg_done(smi_info);
2931        if (rv) {
2932                printk(KERN_WARNING PFX "Error getting response from get"
2933                       " global enables command, cannot check recv irq bit"
2934                       " handling.\n");
2935                goto out;
2936        }
2937
2938        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2939                                                  resp, IPMI_MAX_MSG_LENGTH);
2940
2941        if (resp_len < 4 ||
2942                        resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2943                        resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2944                        resp[2] != 0) {
2945                printk(KERN_WARNING PFX "Invalid return from get global"
2946                       " enables command, cannot check recv irq bit"
2947                       " handling.\n");
2948                rv = -EINVAL;
2949                goto out;
2950        }
2951
2952        if ((resp[3] & IPMI_BMC_RCV_MSG_INTR) == 0)
2953                /* Already clear, should work ok. */
2954                goto out;
2955
2956        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2957        msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2958        msg[2] = resp[3] & ~IPMI_BMC_RCV_MSG_INTR;
2959        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2960
2961        rv = wait_for_msg_done(smi_info);
2962        if (rv) {
2963                printk(KERN_WARNING PFX "Error getting response from set"
2964                       " global enables command, cannot check recv irq bit"
2965                       " handling.\n");
2966                goto out;
2967        }
2968
2969        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2970                                                  resp, IPMI_MAX_MSG_LENGTH);
2971
2972        if (resp_len < 3 ||
2973                        resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2974                        resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2975                printk(KERN_WARNING PFX "Invalid return from get global"
2976                       " enables command, cannot check recv irq bit"
2977                       " handling.\n");
2978                rv = -EINVAL;
2979                goto out;
2980        }
2981
2982        if (resp[2] != 0) {
2983                /*
2984                 * An error when setting the event buffer bit means
2985                 * clearing the bit is not supported.
2986                 */
2987                printk(KERN_WARNING PFX "The BMC does not support clearing"
2988                       " the recv irq bit, compensating, but the BMC needs to"
2989                       " be fixed.\n");
2990                smi_info->cannot_clear_recv_irq_bit = true;
2991        }
2992 out:
2993        kfree(resp);
2994}
2995
2996static int try_enable_event_buffer(struct smi_info *smi_info)
2997{
2998        unsigned char         msg[3];
2999        unsigned char         *resp;
3000        unsigned long         resp_len;
3001        int                   rv = 0;
3002
3003        resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3004        if (!resp)
3005                return -ENOMEM;
3006
3007        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3008        msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3009        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3010
3011        rv = wait_for_msg_done(smi_info);
3012        if (rv) {
3013                printk(KERN_WARNING PFX "Error getting response from get"
3014                       " global enables command, the event buffer is not"
3015                       " enabled.\n");
3016                goto out;
3017        }
3018
3019        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3020                                                  resp, IPMI_MAX_MSG_LENGTH);
3021
3022        if (resp_len < 4 ||
3023                        resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3024                        resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3025                        resp[2] != 0) {
3026                printk(KERN_WARNING PFX "Invalid return from get global"
3027                       " enables command, cannot enable the event buffer.\n");
3028                rv = -EINVAL;
3029                goto out;
3030        }
3031
3032        if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3033                /* buffer is already enabled, nothing to do. */
3034                smi_info->supports_event_msg_buff = true;
3035                goto out;
3036        }
3037
3038        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3039        msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3040        msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3041        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3042
3043        rv = wait_for_msg_done(smi_info);
3044        if (rv) {
3045                printk(KERN_WARNING PFX "Error getting response from set"
3046                       " global, enables command, the event buffer is not"
3047                       " enabled.\n");
3048                goto out;
3049        }
3050
3051        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3052                                                  resp, IPMI_MAX_MSG_LENGTH);
3053
3054        if (resp_len < 3 ||
3055                        resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3056                        resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3057                printk(KERN_WARNING PFX "Invalid return from get global,"
3058                       "enables command, not enable the event buffer.\n");
3059                rv = -EINVAL;
3060                goto out;
3061        }
3062
3063        if (resp[2] != 0)
3064                /*
3065                 * An error when setting the event buffer bit means
3066                 * that the event buffer is not supported.
3067                 */
3068                rv = -ENOENT;
3069        else
3070                smi_info->supports_event_msg_buff = true;
3071
3072 out:
3073        kfree(resp);
3074        return rv;
3075}
3076
3077static int smi_type_proc_show(struct seq_file *m, void *v)
3078{
3079        struct smi_info *smi = m->private;
3080
3081        seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3082
3083        return seq_has_overflowed(m);
3084}
3085
3086static int smi_type_proc_open(struct inode *inode, struct file *file)
3087{
3088        return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3089}
3090
3091static const struct file_operations smi_type_proc_ops = {
3092        .open           = smi_type_proc_open,
3093        .read           = seq_read,
3094        .llseek         = seq_lseek,
3095        .release        = single_release,
3096};
3097
3098static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3099{
3100        struct smi_info *smi = m->private;
3101
3102        seq_printf(m, "interrupts_enabled:    %d\n",
3103                       smi->irq && !smi->interrupt_disabled);
3104        seq_printf(m, "short_timeouts:        %u\n",
3105                       smi_get_stat(smi, short_timeouts));
3106        seq_printf(m, "long_timeouts:         %u\n",
3107                       smi_get_stat(smi, long_timeouts));
3108        seq_printf(m, "idles:                 %u\n",
3109                       smi_get_stat(smi, idles));
3110        seq_printf(m, "interrupts:            %u\n",
3111                       smi_get_stat(smi, interrupts));
3112        seq_printf(m, "attentions:            %u\n",
3113                       smi_get_stat(smi, attentions));
3114        seq_printf(m, "flag_fetches:          %u\n",
3115                       smi_get_stat(smi, flag_fetches));
3116        seq_printf(m, "hosed_count:           %u\n",
3117                       smi_get_stat(smi, hosed_count));
3118        seq_printf(m, "complete_transactions: %u\n",
3119                       smi_get_stat(smi, complete_transactions));
3120        seq_printf(m, "events:                %u\n",
3121                       smi_get_stat(smi, events));
3122        seq_printf(m, "watchdog_pretimeouts:  %u\n",
3123                       smi_get_stat(smi, watchdog_pretimeouts));
3124        seq_printf(m, "incoming_messages:     %u\n",
3125                       smi_get_stat(smi, incoming_messages));
3126        return 0;
3127}
3128
3129static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3130{
3131        return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3132}
3133
3134static const struct file_operations smi_si_stats_proc_ops = {
3135        .open           = smi_si_stats_proc_open,
3136        .read           = seq_read,
3137        .llseek         = seq_lseek,
3138        .release        = single_release,
3139};
3140
3141static int smi_params_proc_show(struct seq_file *m, void *v)
3142{
3143        struct smi_info *smi = m->private;
3144
3145        seq_printf(m,
3146                   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3147                   si_to_str[smi->si_type],
3148                   addr_space_to_str[smi->io.addr_type],
3149                   smi->io.addr_data,
3150                   smi->io.regspacing,
3151                   smi->io.regsize,
3152                   smi->io.regshift,
3153                   smi->irq,
3154                   smi->slave_addr);
3155
3156        return seq_has_overflowed(m);
3157}
3158
3159static int smi_params_proc_open(struct inode *inode, struct file *file)
3160{
3161        return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3162}
3163
3164static const struct file_operations smi_params_proc_ops = {
3165        .open           = smi_params_proc_open,
3166        .read           = seq_read,
3167        .llseek         = seq_lseek,
3168        .release        = single_release,
3169};
3170
3171/*
3172 * oem_data_avail_to_receive_msg_avail
3173 * @info - smi_info structure with msg_flags set
3174 *
3175 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3176 * Returns 1 indicating need to re-run handle_flags().
3177 */
3178static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3179{
3180        smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3181                               RECEIVE_MSG_AVAIL);
3182        return 1;
3183}
3184
3185/*
3186 * setup_dell_poweredge_oem_data_handler
3187 * @info - smi_info.device_id must be populated
3188 *
3189 * Systems that match, but have firmware version < 1.40 may assert
3190 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3191 * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3192 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3193 * as RECEIVE_MSG_AVAIL instead.
3194 *
3195 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3196 * assert the OEM[012] bits, and if it did, the driver would have to
3197 * change to handle that properly, we don't actually check for the
3198 * firmware version.
3199 * Device ID = 0x20                BMC on PowerEdge 8G servers
3200 * Device Revision = 0x80
3201 * Firmware Revision1 = 0x01       BMC version 1.40
3202 * Firmware Revision2 = 0x40       BCD encoded
3203 * IPMI Version = 0x51             IPMI 1.5
3204 * Manufacturer ID = A2 02 00      Dell IANA
3205 *
3206 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3207 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3208 *
3209 */
3210#define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3211#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3212#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3213#define DELL_IANA_MFR_ID 0x0002a2
3214static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3215{
3216        struct ipmi_device_id *id = &smi_info->device_id;
3217        if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3218                if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3219                    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3220                    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3221                        smi_info->oem_data_avail_handler =
3222                                oem_data_avail_to_receive_msg_avail;
3223                } else if (ipmi_version_major(id) < 1 ||
3224                           (ipmi_version_major(id) == 1 &&
3225                            ipmi_version_minor(id) < 5)) {
3226                        smi_info->oem_data_avail_handler =
3227                                oem_data_avail_to_receive_msg_avail;
3228                }
3229        }
3230}
3231
3232#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3233static void return_hosed_msg_badsize(struct smi_info *smi_info)
3234{
3235        struct ipmi_smi_msg *msg = smi_info->curr_msg;
3236
3237        /* Make it a response */
3238        msg->rsp[0] = msg->data[0] | 4;
3239        msg->rsp[1] = msg->data[1];
3240        msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3241        msg->rsp_size = 3;
3242        smi_info->curr_msg = NULL;
3243        deliver_recv_msg(smi_info, msg);
3244}
3245
3246/*
3247 * dell_poweredge_bt_xaction_handler
3248 * @info - smi_info.device_id must be populated
3249 *
3250 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3251 * not respond to a Get SDR command if the length of the data
3252 * requested is exactly 0x3A, which leads to command timeouts and no
3253 * data returned.  This intercepts such commands, and causes userspace
3254 * callers to try again with a different-sized buffer, which succeeds.
3255 */
3256
3257#define STORAGE_NETFN 0x0A
3258#define STORAGE_CMD_GET_SDR 0x23
3259static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3260                                             unsigned long unused,
3261                                             void *in)
3262{
3263        struct smi_info *smi_info = in;
3264        unsigned char *data = smi_info->curr_msg->data;
3265        unsigned int size   = smi_info->curr_msg->data_size;
3266        if (size >= 8 &&
3267            (data[0]>>2) == STORAGE_NETFN &&
3268            data[1] == STORAGE_CMD_GET_SDR &&
3269            data[7] == 0x3A) {
3270                return_hosed_msg_badsize(smi_info);
3271                return NOTIFY_STOP;
3272        }
3273        return NOTIFY_DONE;
3274}
3275
3276static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3277        .notifier_call  = dell_poweredge_bt_xaction_handler,
3278};
3279
3280/*
3281 * setup_dell_poweredge_bt_xaction_handler
3282 * @info - smi_info.device_id must be filled in already
3283 *
3284 * Fills in smi_info.device_id.start_transaction_pre_hook
3285 * when we know what function to use there.
3286 */
3287static void
3288setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3289{
3290        struct ipmi_device_id *id = &smi_info->device_id;
3291        if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3292            smi_info->si_type == SI_BT)
3293                register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3294}
3295
3296/*
3297 * setup_oem_data_handler
3298 * @info - smi_info.device_id must be filled in already
3299 *
3300 * Fills in smi_info.device_id.oem_data_available_handler
3301 * when we know what function to use there.
3302 */
3303
3304static void setup_oem_data_handler(struct smi_info *smi_info)
3305{
3306        setup_dell_poweredge_oem_data_handler(smi_info);
3307}
3308
3309static void setup_xaction_handlers(struct smi_info *smi_info)
3310{
3311        setup_dell_poweredge_bt_xaction_handler(smi_info);
3312}
3313
3314static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3315{
3316        if (smi_info->thread != NULL)
3317                kthread_stop(smi_info->thread);
3318        if (smi_info->timer_running)
3319                del_timer_sync(&smi_info->si_timer);
3320}
3321
3322static struct ipmi_default_vals
3323{
3324        int type;
3325        int port;
3326} ipmi_defaults[] =
3327{
3328        { .type = SI_KCS, .port = 0xca2 },
3329        { .type = SI_SMIC, .port = 0xca9 },
3330        { .type = SI_BT, .port = 0xe4 },
3331        { .port = 0 }
3332};
3333
3334static void default_find_bmc(void)
3335{
3336        struct smi_info *info;
3337        int             i;
3338
3339        for (i = 0; ; i++) {
3340                if (!ipmi_defaults[i].port)
3341                        break;
3342#ifdef CONFIG_PPC
3343                if (check_legacy_ioport(ipmi_defaults[i].port))
3344                        continue;
3345#endif
3346                info = smi_info_alloc();
3347                if (!info)
3348                        return;
3349
3350                info->addr_source = SI_DEFAULT;
3351
3352                info->si_type = ipmi_defaults[i].type;
3353                info->io_setup = port_setup;
3354                info->io.addr_data = ipmi_defaults[i].port;
3355                info->io.addr_type = IPMI_IO_ADDR_SPACE;
3356
3357                info->io.addr = NULL;
3358                info->io.regspacing = DEFAULT_REGSPACING;
3359                info->io.regsize = DEFAULT_REGSPACING;
3360                info->io.regshift = 0;
3361
3362                if (add_smi(info) == 0) {
3363                        if ((try_smi_init(info)) == 0) {
3364                                /* Found one... */
3365                                printk(KERN_INFO PFX "Found default %s"
3366                                " state machine at %s address 0x%lx\n",
3367                                si_to_str[info->si_type],
3368                                addr_space_to_str[info->io.addr_type],
3369                                info->io.addr_data);
3370                        } else
3371                                cleanup_one_si(info);
3372                } else {
3373                        kfree(info);
3374                }
3375        }
3376}
3377
3378static int is_new_interface(struct smi_info *info)
3379{
3380        struct smi_info *e;
3381
3382        list_for_each_entry(e, &smi_infos, link) {
3383                if (e->io.addr_type != info->io.addr_type)
3384                        continue;
3385                if (e->io.addr_data == info->io.addr_data)
3386                        return 0;
3387        }
3388
3389        return 1;
3390}
3391
3392static int add_smi(struct smi_info *new_smi)
3393{
3394        int rv = 0;
3395
3396        printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3397               ipmi_addr_src_to_str(new_smi->addr_source),
3398               si_to_str[new_smi->si_type]);
3399        mutex_lock(&smi_infos_lock);
3400        if (!is_new_interface(new_smi)) {
3401                printk(KERN_CONT " duplicate interface\n");
3402                rv = -EBUSY;
3403                goto out_err;
3404        }
3405
3406        printk(KERN_CONT "\n");
3407
3408        /* So we know not to free it unless we have allocated one. */
3409        new_smi->intf = NULL;
3410        new_smi->si_sm = NULL;
3411        new_smi->handlers = NULL;
3412
3413        list_add_tail(&new_smi->link, &smi_infos);
3414
3415out_err:
3416        mutex_unlock(&smi_infos_lock);
3417        return rv;
3418}
3419
3420static int try_smi_init(struct smi_info *new_smi)
3421{
3422        int rv = 0;
3423        int i;
3424
3425        printk(KERN_INFO PFX "Trying %s-specified %s state"
3426               " machine at %s address 0x%lx, slave address 0x%x,"
3427               " irq %d\n",
3428               ipmi_addr_src_to_str(new_smi->addr_source),
3429               si_to_str[new_smi->si_type],
3430               addr_space_to_str[new_smi->io.addr_type],
3431               new_smi->io.addr_data,
3432               new_smi->slave_addr, new_smi->irq);
3433
3434        switch (new_smi->si_type) {
3435        case SI_KCS:
3436                new_smi->handlers = &kcs_smi_handlers;
3437                break;
3438
3439        case SI_SMIC:
3440                new_smi->handlers = &smic_smi_handlers;
3441                break;
3442
3443        case SI_BT:
3444                new_smi->handlers = &bt_smi_handlers;
3445                break;
3446
3447        default:
3448                /* No support for anything else yet. */
3449                rv = -EIO;
3450                goto out_err;
3451        }
3452
3453        /* Allocate the state machine's data and initialize it. */
3454        new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3455        if (!new_smi->si_sm) {
3456                printk(KERN_ERR PFX
3457                       "Could not allocate state machine memory\n");
3458                rv = -ENOMEM;
3459                goto out_err;
3460        }
3461        new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3462                                                        &new_smi->io);
3463
3464        /* Now that we know the I/O size, we can set up the I/O. */
3465        rv = new_smi->io_setup(new_smi);
3466        if (rv) {
3467                printk(KERN_ERR PFX "Could not set up I/O space\n");
3468                goto out_err;
3469        }
3470
3471        /* Do low-level detection first. */
3472        if (new_smi->handlers->detect(new_smi->si_sm)) {
3473                if (new_smi->addr_source)
3474                        printk(KERN_INFO PFX "Interface detection failed\n");
3475                rv = -ENODEV;
3476                goto out_err;
3477        }
3478
3479        /*
3480         * Attempt a get device id command.  If it fails, we probably
3481         * don't have a BMC here.
3482         */
3483        rv = try_get_dev_id(new_smi);
3484        if (rv) {
3485                if (new_smi->addr_source)
3486                        printk(KERN_INFO PFX "There appears to be no BMC"
3487                               " at this location\n");
3488                goto out_err;
3489        }
3490
3491        check_clr_rcv_irq(new_smi);
3492
3493        setup_oem_data_handler(new_smi);
3494        setup_xaction_handlers(new_smi);
3495
3496        new_smi->waiting_msg = NULL;
3497        new_smi->curr_msg = NULL;
3498        atomic_set(&new_smi->req_events, 0);
3499        new_smi->run_to_completion = false;
3500        for (i = 0; i < SI_NUM_STATS; i++)
3501                atomic_set(&new_smi->stats[i], 0);
3502
3503        new_smi->interrupt_disabled = true;
3504        atomic_set(&new_smi->need_watch, 0);
3505        new_smi->intf_num = smi_num;
3506        smi_num++;
3507
3508        rv = try_enable_event_buffer(new_smi);
3509        if (rv == 0)
3510                new_smi->has_event_buffer = true;
3511
3512        /*
3513         * Start clearing the flags before we enable interrupts or the
3514         * timer to avoid racing with the timer.
3515         */
3516        start_clear_flags(new_smi);
3517
3518        /*
3519         * IRQ is defined to be set when non-zero.  req_events will
3520         * cause a global flags check that will enable interrupts.
3521         */
3522        if (new_smi->irq) {
3523                new_smi->interrupt_disabled = false;
3524                atomic_set(&new_smi->req_events, 1);
3525        }
3526
3527        if (!new_smi->dev) {
3528                /*
3529                 * If we don't already have a device from something
3530                 * else (like PCI), then register a new one.
3531                 */
3532                new_smi->pdev = platform_device_alloc("ipmi_si",
3533                                                      new_smi->intf_num);
3534                if (!new_smi->pdev) {
3535                        printk(KERN_ERR PFX
3536                               "Unable to allocate platform device\n");
3537                        goto out_err;
3538                }
3539                new_smi->dev = &new_smi->pdev->dev;
3540                new_smi->dev->driver = &ipmi_driver.driver;
3541
3542                rv = platform_device_add(new_smi->pdev);
3543                if (rv) {
3544                        printk(KERN_ERR PFX
3545                               "Unable to register system interface device:"
3546                               " %d\n",
3547                               rv);
3548                        goto out_err;
3549                }
3550                new_smi->dev_registered = true;
3551        }
3552
3553        rv = ipmi_register_smi(&handlers,
3554                               new_smi,
3555                               &new_smi->device_id,
3556                               new_smi->dev,
3557                               new_smi->slave_addr);
3558        if (rv) {
3559                dev_err(new_smi->dev, "Unable to register device: error %d\n",
3560                        rv);
3561                goto out_err_stop_timer;
3562        }
3563
3564        rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3565                                     &smi_type_proc_ops,
3566                                     new_smi);
3567        if (rv) {
3568                dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3569                goto out_err_stop_timer;
3570        }
3571
3572        rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3573                                     &smi_si_stats_proc_ops,
3574                                     new_smi);
3575        if (rv) {
3576                dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3577                goto out_err_stop_timer;
3578        }
3579
3580        rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3581                                     &smi_params_proc_ops,
3582                                     new_smi);
3583        if (rv) {
3584                dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3585                goto out_err_stop_timer;
3586        }
3587
3588        dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3589                 si_to_str[new_smi->si_type]);
3590
3591        return 0;
3592
3593 out_err_stop_timer:
3594        wait_for_timer_and_thread(new_smi);
3595
3596 out_err:
3597        new_smi->interrupt_disabled = true;
3598
3599        if (new_smi->intf) {
3600                ipmi_smi_t intf = new_smi->intf;
3601                new_smi->intf = NULL;
3602                ipmi_unregister_smi(intf);
3603        }
3604
3605        if (new_smi->irq_cleanup) {
3606                new_smi->irq_cleanup(new_smi);
3607                new_smi->irq_cleanup = NULL;
3608        }
3609
3610        /*
3611         * Wait until we know that we are out of any interrupt
3612         * handlers might have been running before we freed the
3613         * interrupt.
3614         */
3615        synchronize_sched();
3616
3617        if (new_smi->si_sm) {
3618                if (new_smi->handlers)
3619                        new_smi->handlers->cleanup(new_smi->si_sm);
3620                kfree(new_smi->si_sm);
3621                new_smi->si_sm = NULL;
3622        }
3623        if (new_smi->addr_source_cleanup) {
3624                new_smi->addr_source_cleanup(new_smi);
3625                new_smi->addr_source_cleanup = NULL;
3626        }
3627        if (new_smi->io_cleanup) {
3628                new_smi->io_cleanup(new_smi);
3629                new_smi->io_cleanup = NULL;
3630        }
3631
3632        if (new_smi->dev_registered) {
3633                platform_device_unregister(new_smi->pdev);
3634                new_smi->dev_registered = false;
3635        }
3636
3637        return rv;
3638}
3639
3640static int init_ipmi_si(void)
3641{
3642        int  i;
3643        char *str;
3644        int  rv;
3645        struct smi_info *e;
3646        enum ipmi_addr_src type = SI_INVALID;
3647
3648        if (initialized)
3649                return 0;
3650        initialized = 1;
3651
3652        if (si_tryplatform) {
3653                rv = platform_driver_register(&ipmi_driver);
3654                if (rv) {
3655                        printk(KERN_ERR PFX "Unable to register "
3656                               "driver: %d\n", rv);
3657                        return rv;
3658                }
3659        }
3660
3661        /* Parse out the si_type string into its components. */
3662        str = si_type_str;
3663        if (*str != '\0') {
3664                for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3665                        si_type[i] = str;
3666                        str = strchr(str, ',');
3667                        if (str) {
3668                                *str = '\0';
3669                                str++;
3670                        } else {
3671                                break;
3672                        }
3673                }
3674        }
3675
3676        printk(KERN_INFO "IPMI System Interface driver.\n");
3677
3678        /* If the user gave us a device, they presumably want us to use it */
3679        if (!hardcode_find_bmc())
3680                return 0;
3681
3682#ifdef CONFIG_PCI
3683        if (si_trypci) {
3684                rv = pci_register_driver(&ipmi_pci_driver);
3685                if (rv)
3686                        printk(KERN_ERR PFX "Unable to register "
3687                               "PCI driver: %d\n", rv);
3688                else
3689                        pci_registered = true;
3690        }
3691#endif
3692
3693#ifdef CONFIG_ACPI
3694        if (si_tryacpi) {
3695                pnp_register_driver(&ipmi_pnp_driver);
3696                pnp_registered = true;
3697        }
3698#endif
3699
3700#ifdef CONFIG_DMI
3701        if (si_trydmi)
3702                dmi_find_bmc();
3703#endif
3704
3705#ifdef CONFIG_ACPI
3706        if (si_tryacpi)
3707                spmi_find_bmc();
3708#endif
3709
3710#ifdef CONFIG_PARISC
3711        register_parisc_driver(&ipmi_parisc_driver);
3712        parisc_registered = true;
3713        /* poking PC IO addresses will crash machine, don't do it */
3714        si_trydefaults = 0;
3715#endif
3716
3717        /* We prefer devices with interrupts, but in the case of a machine
3718           with multiple BMCs we assume that there will be several instances
3719           of a given type so if we succeed in registering a type then also
3720           try to register everything else of the same type */
3721
3722        mutex_lock(&smi_infos_lock);
3723        list_for_each_entry(e, &smi_infos, link) {
3724                /* Try to register a device if it has an IRQ and we either
3725                   haven't successfully registered a device yet or this
3726                   device has the same type as one we successfully registered */
3727                if (e->irq && (!type || e->addr_source == type)) {
3728                        if (!try_smi_init(e)) {
3729                                type = e->addr_source;
3730                        }
3731                }
3732        }
3733
3734        /* type will only have been set if we successfully registered an si */
3735        if (type) {
3736                mutex_unlock(&smi_infos_lock);
3737                return 0;
3738        }
3739
3740        /* Fall back to the preferred device */
3741
3742        list_for_each_entry(e, &smi_infos, link) {
3743                if (!e->irq && (!type || e->addr_source == type)) {
3744                        if (!try_smi_init(e)) {
3745                                type = e->addr_source;
3746                        }
3747                }
3748        }
3749        mutex_unlock(&smi_infos_lock);
3750
3751        if (type)
3752                return 0;
3753
3754        if (si_trydefaults) {
3755                mutex_lock(&smi_infos_lock);
3756                if (list_empty(&smi_infos)) {
3757                        /* No BMC was found, try defaults. */
3758                        mutex_unlock(&smi_infos_lock);
3759                        default_find_bmc();
3760                } else
3761                        mutex_unlock(&smi_infos_lock);
3762        }
3763
3764        mutex_lock(&smi_infos_lock);
3765        if (unload_when_empty && list_empty(&smi_infos)) {
3766                mutex_unlock(&smi_infos_lock);
3767                cleanup_ipmi_si();
3768                printk(KERN_WARNING PFX
3769                       "Unable to find any System Interface(s)\n");
3770                return -ENODEV;
3771        } else {
3772                mutex_unlock(&smi_infos_lock);
3773                return 0;
3774        }
3775}
3776module_init(init_ipmi_si);
3777
3778static void cleanup_one_si(struct smi_info *to_clean)
3779{
3780        int           rv = 0;
3781
3782        if (!to_clean)
3783                return;
3784
3785        if (to_clean->intf) {
3786                ipmi_smi_t intf = to_clean->intf;
3787
3788                to_clean->intf = NULL;
3789                rv = ipmi_unregister_smi(intf);
3790                if (rv) {
3791                        pr_err(PFX "Unable to unregister device: errno=%d\n",
3792                               rv);
3793                }
3794        }
3795
3796        if (to_clean->dev)
3797                dev_set_drvdata(to_clean->dev, NULL);
3798
3799        list_del(&to_clean->link);
3800
3801        /*
3802         * Make sure that interrupts, the timer and the thread are
3803         * stopped and will not run again.
3804         */
3805        if (to_clean->irq_cleanup)
3806                to_clean->irq_cleanup(to_clean);
3807        wait_for_timer_and_thread(to_clean);
3808
3809        /*
3810         * Timeouts are stopped, now make sure the interrupts are off
3811         * in the BMC.  Note that timers and CPU interrupts are off,
3812         * so no need for locks.
3813         */
3814        while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3815                poll(to_clean);
3816                schedule_timeout_uninterruptible(1);
3817        }
3818        disable_si_irq(to_clean);
3819        while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3820                poll(to_clean);
3821                schedule_timeout_uninterruptible(1);
3822        }
3823
3824        if (to_clean->handlers)
3825                to_clean->handlers->cleanup(to_clean->si_sm);
3826
3827        kfree(to_clean->si_sm);
3828
3829        if (to_clean->addr_source_cleanup)
3830                to_clean->addr_source_cleanup(to_clean);
3831        if (to_clean->io_cleanup)
3832                to_clean->io_cleanup(to_clean);
3833
3834        if (to_clean->dev_registered)
3835                platform_device_unregister(to_clean->pdev);
3836
3837        kfree(to_clean);
3838}
3839
3840static void cleanup_ipmi_si(void)
3841{
3842        struct smi_info *e, *tmp_e;
3843
3844        if (!initialized)
3845                return;
3846
3847#ifdef CONFIG_PCI
3848        if (pci_registered)
3849                pci_unregister_driver(&ipmi_pci_driver);
3850#endif
3851#ifdef CONFIG_ACPI
3852        if (pnp_registered)
3853                pnp_unregister_driver(&ipmi_pnp_driver);
3854#endif
3855#ifdef CONFIG_PARISC
3856        if (parisc_registered)
3857                unregister_parisc_driver(&ipmi_parisc_driver);
3858#endif
3859
3860        platform_driver_unregister(&ipmi_driver);
3861
3862        mutex_lock(&smi_infos_lock);
3863        list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3864                cleanup_one_si(e);
3865        mutex_unlock(&smi_infos_lock);
3866}
3867module_exit(cleanup_ipmi_si);
3868
3869MODULE_LICENSE("GPL");
3870MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3871MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3872                   " system interfaces.");
3873