linux/drivers/dma/amba-pl08x.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006 ARM Ltd.
   3 * Copyright (c) 2010 ST-Ericsson SA
   4 *
   5 * Author: Peter Pearse <peter.pearse@arm.com>
   6 * Author: Linus Walleij <linus.walleij@stericsson.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms of the GNU General Public License as published by the Free
  10 * Software Foundation; either version 2 of the License, or (at your option)
  11 * any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful, but WITHOUT
  14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  16 * more details.
  17 *
  18 * You should have received a copy of the GNU General Public License along with
  19 * this program; if not, write to the Free Software Foundation, Inc., 59
  20 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  21 *
  22 * The full GNU General Public License is in this distribution in the file
  23 * called COPYING.
  24 *
  25 * Documentation: ARM DDI 0196G == PL080
  26 * Documentation: ARM DDI 0218E == PL081
  27 * Documentation: S3C6410 User's Manual == PL080S
  28 *
  29 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  30 * channel.
  31 *
  32 * The PL080 has 8 channels available for simultaneous use, and the PL081
  33 * has only two channels. So on these DMA controllers the number of channels
  34 * and the number of incoming DMA signals are two totally different things.
  35 * It is usually not possible to theoretically handle all physical signals,
  36 * so a multiplexing scheme with possible denial of use is necessary.
  37 *
  38 * The PL080 has a dual bus master, PL081 has a single master.
  39 *
  40 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
  41 * It differs in following aspects:
  42 * - CH_CONFIG register at different offset,
  43 * - separate CH_CONTROL2 register for transfer size,
  44 * - bigger maximum transfer size,
  45 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
  46 * - no support for peripheral flow control.
  47 *
  48 * Memory to peripheral transfer may be visualized as
  49 *      Get data from memory to DMAC
  50 *      Until no data left
  51 *              On burst request from peripheral
  52 *                      Destination burst from DMAC to peripheral
  53 *                      Clear burst request
  54 *      Raise terminal count interrupt
  55 *
  56 * For peripherals with a FIFO:
  57 * Source      burst size == half the depth of the peripheral FIFO
  58 * Destination burst size == the depth of the peripheral FIFO
  59 *
  60 * (Bursts are irrelevant for mem to mem transfers - there are no burst
  61 * signals, the DMA controller will simply facilitate its AHB master.)
  62 *
  63 * ASSUMES default (little) endianness for DMA transfers
  64 *
  65 * The PL08x has two flow control settings:
  66 *  - DMAC flow control: the transfer size defines the number of transfers
  67 *    which occur for the current LLI entry, and the DMAC raises TC at the
  68 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
  69 *    to both the BREQ and SREQ signals (contrary to documented),
  70 *    transferring data if either is active.  The LBREQ and LSREQ signals
  71 *    are ignored.
  72 *
  73 *  - Peripheral flow control: the transfer size is ignored (and should be
  74 *    zero).  The data is transferred from the current LLI entry, until
  75 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
  76 *    will then move to the next LLI entry. Unsupported by PL080S.
  77 */
  78#include <linux/amba/bus.h>
  79#include <linux/amba/pl08x.h>
  80#include <linux/debugfs.h>
  81#include <linux/delay.h>
  82#include <linux/device.h>
  83#include <linux/dmaengine.h>
  84#include <linux/dmapool.h>
  85#include <linux/dma-mapping.h>
  86#include <linux/export.h>
  87#include <linux/init.h>
  88#include <linux/interrupt.h>
  89#include <linux/module.h>
  90#include <linux/pm_runtime.h>
  91#include <linux/seq_file.h>
  92#include <linux/slab.h>
  93#include <linux/amba/pl080.h>
  94
  95#include "dmaengine.h"
  96#include "virt-dma.h"
  97
  98#define DRIVER_NAME     "pl08xdmac"
  99
 100#define PL80X_DMA_BUSWIDTHS \
 101        BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
 102        BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 103        BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
 104        BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
 105
 106static struct amba_driver pl08x_amba_driver;
 107struct pl08x_driver_data;
 108
 109/**
 110 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
 111 * @channels: the number of channels available in this variant
 112 * @dualmaster: whether this version supports dual AHB masters or not.
 113 * @nomadik: whether the channels have Nomadik security extension bits
 114 *      that need to be checked for permission before use and some registers are
 115 *      missing
 116 * @pl080s: whether this version is a PL080S, which has separate register and
 117 *      LLI word for transfer size.
 118 */
 119struct vendor_data {
 120        u8 config_offset;
 121        u8 channels;
 122        bool dualmaster;
 123        bool nomadik;
 124        bool pl080s;
 125        u32 max_transfer_size;
 126};
 127
 128/**
 129 * struct pl08x_bus_data - information of source or destination
 130 * busses for a transfer
 131 * @addr: current address
 132 * @maxwidth: the maximum width of a transfer on this bus
 133 * @buswidth: the width of this bus in bytes: 1, 2 or 4
 134 */
 135struct pl08x_bus_data {
 136        dma_addr_t addr;
 137        u8 maxwidth;
 138        u8 buswidth;
 139};
 140
 141#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
 142
 143/**
 144 * struct pl08x_phy_chan - holder for the physical channels
 145 * @id: physical index to this channel
 146 * @lock: a lock to use when altering an instance of this struct
 147 * @serving: the virtual channel currently being served by this physical
 148 * channel
 149 * @locked: channel unavailable for the system, e.g. dedicated to secure
 150 * world
 151 */
 152struct pl08x_phy_chan {
 153        unsigned int id;
 154        void __iomem *base;
 155        void __iomem *reg_config;
 156        spinlock_t lock;
 157        struct pl08x_dma_chan *serving;
 158        bool locked;
 159};
 160
 161/**
 162 * struct pl08x_sg - structure containing data per sg
 163 * @src_addr: src address of sg
 164 * @dst_addr: dst address of sg
 165 * @len: transfer len in bytes
 166 * @node: node for txd's dsg_list
 167 */
 168struct pl08x_sg {
 169        dma_addr_t src_addr;
 170        dma_addr_t dst_addr;
 171        size_t len;
 172        struct list_head node;
 173};
 174
 175/**
 176 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
 177 * @vd: virtual DMA descriptor
 178 * @dsg_list: list of children sg's
 179 * @llis_bus: DMA memory address (physical) start for the LLIs
 180 * @llis_va: virtual memory address start for the LLIs
 181 * @cctl: control reg values for current txd
 182 * @ccfg: config reg values for current txd
 183 * @done: this marks completed descriptors, which should not have their
 184 *   mux released.
 185 * @cyclic: indicate cyclic transfers
 186 */
 187struct pl08x_txd {
 188        struct virt_dma_desc vd;
 189        struct list_head dsg_list;
 190        dma_addr_t llis_bus;
 191        u32 *llis_va;
 192        /* Default cctl value for LLIs */
 193        u32 cctl;
 194        /*
 195         * Settings to be put into the physical channel when we
 196         * trigger this txd.  Other registers are in llis_va[0].
 197         */
 198        u32 ccfg;
 199        bool done;
 200        bool cyclic;
 201};
 202
 203/**
 204 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
 205 * states
 206 * @PL08X_CHAN_IDLE: the channel is idle
 207 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
 208 * channel and is running a transfer on it
 209 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
 210 * channel, but the transfer is currently paused
 211 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
 212 * channel to become available (only pertains to memcpy channels)
 213 */
 214enum pl08x_dma_chan_state {
 215        PL08X_CHAN_IDLE,
 216        PL08X_CHAN_RUNNING,
 217        PL08X_CHAN_PAUSED,
 218        PL08X_CHAN_WAITING,
 219};
 220
 221/**
 222 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
 223 * @vc: wrappped virtual channel
 224 * @phychan: the physical channel utilized by this channel, if there is one
 225 * @name: name of channel
 226 * @cd: channel platform data
 227 * @runtime_addr: address for RX/TX according to the runtime config
 228 * @at: active transaction on this channel
 229 * @lock: a lock for this channel data
 230 * @host: a pointer to the host (internal use)
 231 * @state: whether the channel is idle, paused, running etc
 232 * @slave: whether this channel is a device (slave) or for memcpy
 233 * @signal: the physical DMA request signal which this channel is using
 234 * @mux_use: count of descriptors using this DMA request signal setting
 235 */
 236struct pl08x_dma_chan {
 237        struct virt_dma_chan vc;
 238        struct pl08x_phy_chan *phychan;
 239        const char *name;
 240        const struct pl08x_channel_data *cd;
 241        struct dma_slave_config cfg;
 242        struct pl08x_txd *at;
 243        struct pl08x_driver_data *host;
 244        enum pl08x_dma_chan_state state;
 245        bool slave;
 246        int signal;
 247        unsigned mux_use;
 248};
 249
 250/**
 251 * struct pl08x_driver_data - the local state holder for the PL08x
 252 * @slave: slave engine for this instance
 253 * @memcpy: memcpy engine for this instance
 254 * @base: virtual memory base (remapped) for the PL08x
 255 * @adev: the corresponding AMBA (PrimeCell) bus entry
 256 * @vd: vendor data for this PL08x variant
 257 * @pd: platform data passed in from the platform/machine
 258 * @phy_chans: array of data for the physical channels
 259 * @pool: a pool for the LLI descriptors
 260 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 261 * fetches
 262 * @mem_buses: set to indicate memory transfers on AHB2.
 263 * @lock: a spinlock for this struct
 264 */
 265struct pl08x_driver_data {
 266        struct dma_device slave;
 267        struct dma_device memcpy;
 268        void __iomem *base;
 269        struct amba_device *adev;
 270        const struct vendor_data *vd;
 271        struct pl08x_platform_data *pd;
 272        struct pl08x_phy_chan *phy_chans;
 273        struct dma_pool *pool;
 274        u8 lli_buses;
 275        u8 mem_buses;
 276        u8 lli_words;
 277};
 278
 279/*
 280 * PL08X specific defines
 281 */
 282
 283/* The order of words in an LLI. */
 284#define PL080_LLI_SRC           0
 285#define PL080_LLI_DST           1
 286#define PL080_LLI_LLI           2
 287#define PL080_LLI_CCTL          3
 288#define PL080S_LLI_CCTL2        4
 289
 290/* Total words in an LLI. */
 291#define PL080_LLI_WORDS         4
 292#define PL080S_LLI_WORDS        8
 293
 294/*
 295 * Number of LLIs in each LLI buffer allocated for one transfer
 296 * (maximum times we call dma_pool_alloc on this pool without freeing)
 297 */
 298#define MAX_NUM_TSFR_LLIS       512
 299#define PL08X_ALIGN             8
 300
 301static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
 302{
 303        return container_of(chan, struct pl08x_dma_chan, vc.chan);
 304}
 305
 306static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
 307{
 308        return container_of(tx, struct pl08x_txd, vd.tx);
 309}
 310
 311/*
 312 * Mux handling.
 313 *
 314 * This gives us the DMA request input to the PL08x primecell which the
 315 * peripheral described by the channel data will be routed to, possibly
 316 * via a board/SoC specific external MUX.  One important point to note
 317 * here is that this does not depend on the physical channel.
 318 */
 319static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
 320{
 321        const struct pl08x_platform_data *pd = plchan->host->pd;
 322        int ret;
 323
 324        if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
 325                ret = pd->get_xfer_signal(plchan->cd);
 326                if (ret < 0) {
 327                        plchan->mux_use = 0;
 328                        return ret;
 329                }
 330
 331                plchan->signal = ret;
 332        }
 333        return 0;
 334}
 335
 336static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
 337{
 338        const struct pl08x_platform_data *pd = plchan->host->pd;
 339
 340        if (plchan->signal >= 0) {
 341                WARN_ON(plchan->mux_use == 0);
 342
 343                if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
 344                        pd->put_xfer_signal(plchan->cd, plchan->signal);
 345                        plchan->signal = -1;
 346                }
 347        }
 348}
 349
 350/*
 351 * Physical channel handling
 352 */
 353
 354/* Whether a certain channel is busy or not */
 355static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
 356{
 357        unsigned int val;
 358
 359        val = readl(ch->reg_config);
 360        return val & PL080_CONFIG_ACTIVE;
 361}
 362
 363static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
 364                struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
 365{
 366        if (pl08x->vd->pl080s)
 367                dev_vdbg(&pl08x->adev->dev,
 368                        "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 369                        "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
 370                        phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 371                        lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
 372                        lli[PL080S_LLI_CCTL2], ccfg);
 373        else
 374                dev_vdbg(&pl08x->adev->dev,
 375                        "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 376                        "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
 377                        phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 378                        lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
 379
 380        writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
 381        writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
 382        writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
 383        writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
 384
 385        if (pl08x->vd->pl080s)
 386                writel_relaxed(lli[PL080S_LLI_CCTL2],
 387                                phychan->base + PL080S_CH_CONTROL2);
 388
 389        writel(ccfg, phychan->reg_config);
 390}
 391
 392/*
 393 * Set the initial DMA register values i.e. those for the first LLI
 394 * The next LLI pointer and the configuration interrupt bit have
 395 * been set when the LLIs were constructed.  Poke them into the hardware
 396 * and start the transfer.
 397 */
 398static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
 399{
 400        struct pl08x_driver_data *pl08x = plchan->host;
 401        struct pl08x_phy_chan *phychan = plchan->phychan;
 402        struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
 403        struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
 404        u32 val;
 405
 406        list_del(&txd->vd.node);
 407
 408        plchan->at = txd;
 409
 410        /* Wait for channel inactive */
 411        while (pl08x_phy_channel_busy(phychan))
 412                cpu_relax();
 413
 414        pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
 415
 416        /* Enable the DMA channel */
 417        /* Do not access config register until channel shows as disabled */
 418        while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
 419                cpu_relax();
 420
 421        /* Do not access config register until channel shows as inactive */
 422        val = readl(phychan->reg_config);
 423        while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
 424                val = readl(phychan->reg_config);
 425
 426        writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
 427}
 428
 429/*
 430 * Pause the channel by setting the HALT bit.
 431 *
 432 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 433 * the FIFO can only drain if the peripheral is still requesting data.
 434 * (note: this can still timeout if the DMAC FIFO never drains of data.)
 435 *
 436 * For P->M transfers, disable the peripheral first to stop it filling
 437 * the DMAC FIFO, and then pause the DMAC.
 438 */
 439static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
 440{
 441        u32 val;
 442        int timeout;
 443
 444        /* Set the HALT bit and wait for the FIFO to drain */
 445        val = readl(ch->reg_config);
 446        val |= PL080_CONFIG_HALT;
 447        writel(val, ch->reg_config);
 448
 449        /* Wait for channel inactive */
 450        for (timeout = 1000; timeout; timeout--) {
 451                if (!pl08x_phy_channel_busy(ch))
 452                        break;
 453                udelay(1);
 454        }
 455        if (pl08x_phy_channel_busy(ch))
 456                pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
 457}
 458
 459static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
 460{
 461        u32 val;
 462
 463        /* Clear the HALT bit */
 464        val = readl(ch->reg_config);
 465        val &= ~PL080_CONFIG_HALT;
 466        writel(val, ch->reg_config);
 467}
 468
 469/*
 470 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 471 * clears any pending interrupt status.  This should not be used for
 472 * an on-going transfer, but as a method of shutting down a channel
 473 * (eg, when it's no longer used) or terminating a transfer.
 474 */
 475static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
 476        struct pl08x_phy_chan *ch)
 477{
 478        u32 val = readl(ch->reg_config);
 479
 480        val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
 481                 PL080_CONFIG_TC_IRQ_MASK);
 482
 483        writel(val, ch->reg_config);
 484
 485        writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
 486        writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
 487}
 488
 489static inline u32 get_bytes_in_cctl(u32 cctl)
 490{
 491        /* The source width defines the number of bytes */
 492        u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
 493
 494        cctl &= PL080_CONTROL_SWIDTH_MASK;
 495
 496        switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
 497        case PL080_WIDTH_8BIT:
 498                break;
 499        case PL080_WIDTH_16BIT:
 500                bytes *= 2;
 501                break;
 502        case PL080_WIDTH_32BIT:
 503                bytes *= 4;
 504                break;
 505        }
 506        return bytes;
 507}
 508
 509static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
 510{
 511        /* The source width defines the number of bytes */
 512        u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
 513
 514        cctl &= PL080_CONTROL_SWIDTH_MASK;
 515
 516        switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
 517        case PL080_WIDTH_8BIT:
 518                break;
 519        case PL080_WIDTH_16BIT:
 520                bytes *= 2;
 521                break;
 522        case PL080_WIDTH_32BIT:
 523                bytes *= 4;
 524                break;
 525        }
 526        return bytes;
 527}
 528
 529/* The channel should be paused when calling this */
 530static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
 531{
 532        struct pl08x_driver_data *pl08x = plchan->host;
 533        const u32 *llis_va, *llis_va_limit;
 534        struct pl08x_phy_chan *ch;
 535        dma_addr_t llis_bus;
 536        struct pl08x_txd *txd;
 537        u32 llis_max_words;
 538        size_t bytes;
 539        u32 clli;
 540
 541        ch = plchan->phychan;
 542        txd = plchan->at;
 543
 544        if (!ch || !txd)
 545                return 0;
 546
 547        /*
 548         * Follow the LLIs to get the number of remaining
 549         * bytes in the currently active transaction.
 550         */
 551        clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
 552
 553        /* First get the remaining bytes in the active transfer */
 554        if (pl08x->vd->pl080s)
 555                bytes = get_bytes_in_cctl_pl080s(
 556                                readl(ch->base + PL080_CH_CONTROL),
 557                                readl(ch->base + PL080S_CH_CONTROL2));
 558        else
 559                bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
 560
 561        if (!clli)
 562                return bytes;
 563
 564        llis_va = txd->llis_va;
 565        llis_bus = txd->llis_bus;
 566
 567        llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
 568        BUG_ON(clli < llis_bus || clli >= llis_bus +
 569                                                sizeof(u32) * llis_max_words);
 570
 571        /*
 572         * Locate the next LLI - as this is an array,
 573         * it's simple maths to find.
 574         */
 575        llis_va += (clli - llis_bus) / sizeof(u32);
 576
 577        llis_va_limit = llis_va + llis_max_words;
 578
 579        for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
 580                if (pl08x->vd->pl080s)
 581                        bytes += get_bytes_in_cctl_pl080s(
 582                                                llis_va[PL080_LLI_CCTL],
 583                                                llis_va[PL080S_LLI_CCTL2]);
 584                else
 585                        bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
 586
 587                /*
 588                 * A LLI pointer going backward terminates the LLI list
 589                 */
 590                if (llis_va[PL080_LLI_LLI] <= clli)
 591                        break;
 592        }
 593
 594        return bytes;
 595}
 596
 597/*
 598 * Allocate a physical channel for a virtual channel
 599 *
 600 * Try to locate a physical channel to be used for this transfer. If all
 601 * are taken return NULL and the requester will have to cope by using
 602 * some fallback PIO mode or retrying later.
 603 */
 604static struct pl08x_phy_chan *
 605pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
 606                      struct pl08x_dma_chan *virt_chan)
 607{
 608        struct pl08x_phy_chan *ch = NULL;
 609        unsigned long flags;
 610        int i;
 611
 612        for (i = 0; i < pl08x->vd->channels; i++) {
 613                ch = &pl08x->phy_chans[i];
 614
 615                spin_lock_irqsave(&ch->lock, flags);
 616
 617                if (!ch->locked && !ch->serving) {
 618                        ch->serving = virt_chan;
 619                        spin_unlock_irqrestore(&ch->lock, flags);
 620                        break;
 621                }
 622
 623                spin_unlock_irqrestore(&ch->lock, flags);
 624        }
 625
 626        if (i == pl08x->vd->channels) {
 627                /* No physical channel available, cope with it */
 628                return NULL;
 629        }
 630
 631        return ch;
 632}
 633
 634/* Mark the physical channel as free.  Note, this write is atomic. */
 635static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
 636                                         struct pl08x_phy_chan *ch)
 637{
 638        ch->serving = NULL;
 639}
 640
 641/*
 642 * Try to allocate a physical channel.  When successful, assign it to
 643 * this virtual channel, and initiate the next descriptor.  The
 644 * virtual channel lock must be held at this point.
 645 */
 646static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
 647{
 648        struct pl08x_driver_data *pl08x = plchan->host;
 649        struct pl08x_phy_chan *ch;
 650
 651        ch = pl08x_get_phy_channel(pl08x, plchan);
 652        if (!ch) {
 653                dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
 654                plchan->state = PL08X_CHAN_WAITING;
 655                return;
 656        }
 657
 658        dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
 659                ch->id, plchan->name);
 660
 661        plchan->phychan = ch;
 662        plchan->state = PL08X_CHAN_RUNNING;
 663        pl08x_start_next_txd(plchan);
 664}
 665
 666static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
 667        struct pl08x_dma_chan *plchan)
 668{
 669        struct pl08x_driver_data *pl08x = plchan->host;
 670
 671        dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
 672                ch->id, plchan->name);
 673
 674        /*
 675         * We do this without taking the lock; we're really only concerned
 676         * about whether this pointer is NULL or not, and we're guaranteed
 677         * that this will only be called when it _already_ is non-NULL.
 678         */
 679        ch->serving = plchan;
 680        plchan->phychan = ch;
 681        plchan->state = PL08X_CHAN_RUNNING;
 682        pl08x_start_next_txd(plchan);
 683}
 684
 685/*
 686 * Free a physical DMA channel, potentially reallocating it to another
 687 * virtual channel if we have any pending.
 688 */
 689static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
 690{
 691        struct pl08x_driver_data *pl08x = plchan->host;
 692        struct pl08x_dma_chan *p, *next;
 693
 694 retry:
 695        next = NULL;
 696
 697        /* Find a waiting virtual channel for the next transfer. */
 698        list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
 699                if (p->state == PL08X_CHAN_WAITING) {
 700                        next = p;
 701                        break;
 702                }
 703
 704        if (!next) {
 705                list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
 706                        if (p->state == PL08X_CHAN_WAITING) {
 707                                next = p;
 708                                break;
 709                        }
 710        }
 711
 712        /* Ensure that the physical channel is stopped */
 713        pl08x_terminate_phy_chan(pl08x, plchan->phychan);
 714
 715        if (next) {
 716                bool success;
 717
 718                /*
 719                 * Eww.  We know this isn't going to deadlock
 720                 * but lockdep probably doesn't.
 721                 */
 722                spin_lock(&next->vc.lock);
 723                /* Re-check the state now that we have the lock */
 724                success = next->state == PL08X_CHAN_WAITING;
 725                if (success)
 726                        pl08x_phy_reassign_start(plchan->phychan, next);
 727                spin_unlock(&next->vc.lock);
 728
 729                /* If the state changed, try to find another channel */
 730                if (!success)
 731                        goto retry;
 732        } else {
 733                /* No more jobs, so free up the physical channel */
 734                pl08x_put_phy_channel(pl08x, plchan->phychan);
 735        }
 736
 737        plchan->phychan = NULL;
 738        plchan->state = PL08X_CHAN_IDLE;
 739}
 740
 741/*
 742 * LLI handling
 743 */
 744
 745static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
 746{
 747        switch (coded) {
 748        case PL080_WIDTH_8BIT:
 749                return 1;
 750        case PL080_WIDTH_16BIT:
 751                return 2;
 752        case PL080_WIDTH_32BIT:
 753                return 4;
 754        default:
 755                break;
 756        }
 757        BUG();
 758        return 0;
 759}
 760
 761static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
 762                                  size_t tsize)
 763{
 764        u32 retbits = cctl;
 765
 766        /* Remove all src, dst and transfer size bits */
 767        retbits &= ~PL080_CONTROL_DWIDTH_MASK;
 768        retbits &= ~PL080_CONTROL_SWIDTH_MASK;
 769        retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
 770
 771        /* Then set the bits according to the parameters */
 772        switch (srcwidth) {
 773        case 1:
 774                retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
 775                break;
 776        case 2:
 777                retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
 778                break;
 779        case 4:
 780                retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
 781                break;
 782        default:
 783                BUG();
 784                break;
 785        }
 786
 787        switch (dstwidth) {
 788        case 1:
 789                retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
 790                break;
 791        case 2:
 792                retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
 793                break;
 794        case 4:
 795                retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
 796                break;
 797        default:
 798                BUG();
 799                break;
 800        }
 801
 802        tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
 803        retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
 804        return retbits;
 805}
 806
 807struct pl08x_lli_build_data {
 808        struct pl08x_txd *txd;
 809        struct pl08x_bus_data srcbus;
 810        struct pl08x_bus_data dstbus;
 811        size_t remainder;
 812        u32 lli_bus;
 813};
 814
 815/*
 816 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
 817 * victim in case src & dest are not similarly aligned. i.e. If after aligning
 818 * masters address with width requirements of transfer (by sending few byte by
 819 * byte data), slave is still not aligned, then its width will be reduced to
 820 * BYTE.
 821 * - prefers the destination bus if both available
 822 * - prefers bus with fixed address (i.e. peripheral)
 823 */
 824static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
 825        struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
 826{
 827        if (!(cctl & PL080_CONTROL_DST_INCR)) {
 828                *mbus = &bd->dstbus;
 829                *sbus = &bd->srcbus;
 830        } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
 831                *mbus = &bd->srcbus;
 832                *sbus = &bd->dstbus;
 833        } else {
 834                if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
 835                        *mbus = &bd->dstbus;
 836                        *sbus = &bd->srcbus;
 837                } else {
 838                        *mbus = &bd->srcbus;
 839                        *sbus = &bd->dstbus;
 840                }
 841        }
 842}
 843
 844/*
 845 * Fills in one LLI for a certain transfer descriptor and advance the counter
 846 */
 847static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
 848                                    struct pl08x_lli_build_data *bd,
 849                                    int num_llis, int len, u32 cctl, u32 cctl2)
 850{
 851        u32 offset = num_llis * pl08x->lli_words;
 852        u32 *llis_va = bd->txd->llis_va + offset;
 853        dma_addr_t llis_bus = bd->txd->llis_bus;
 854
 855        BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
 856
 857        /* Advance the offset to next LLI. */
 858        offset += pl08x->lli_words;
 859
 860        llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
 861        llis_va[PL080_LLI_DST] = bd->dstbus.addr;
 862        llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
 863        llis_va[PL080_LLI_LLI] |= bd->lli_bus;
 864        llis_va[PL080_LLI_CCTL] = cctl;
 865        if (pl08x->vd->pl080s)
 866                llis_va[PL080S_LLI_CCTL2] = cctl2;
 867
 868        if (cctl & PL080_CONTROL_SRC_INCR)
 869                bd->srcbus.addr += len;
 870        if (cctl & PL080_CONTROL_DST_INCR)
 871                bd->dstbus.addr += len;
 872
 873        BUG_ON(bd->remainder < len);
 874
 875        bd->remainder -= len;
 876}
 877
 878static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
 879                        struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
 880                        int num_llis, size_t *total_bytes)
 881{
 882        *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
 883        pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
 884        (*total_bytes) += len;
 885}
 886
 887#ifdef VERBOSE_DEBUG
 888static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
 889                           const u32 *llis_va, int num_llis)
 890{
 891        int i;
 892
 893        if (pl08x->vd->pl080s) {
 894                dev_vdbg(&pl08x->adev->dev,
 895                        "%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
 896                        "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
 897                for (i = 0; i < num_llis; i++) {
 898                        dev_vdbg(&pl08x->adev->dev,
 899                                "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
 900                                i, llis_va, llis_va[PL080_LLI_SRC],
 901                                llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
 902                                llis_va[PL080_LLI_CCTL],
 903                                llis_va[PL080S_LLI_CCTL2]);
 904                        llis_va += pl08x->lli_words;
 905                }
 906        } else {
 907                dev_vdbg(&pl08x->adev->dev,
 908                        "%-3s %-9s  %-10s %-10s %-10s %s\n",
 909                        "lli", "", "csrc", "cdst", "clli", "cctl");
 910                for (i = 0; i < num_llis; i++) {
 911                        dev_vdbg(&pl08x->adev->dev,
 912                                "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
 913                                i, llis_va, llis_va[PL080_LLI_SRC],
 914                                llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
 915                                llis_va[PL080_LLI_CCTL]);
 916                        llis_va += pl08x->lli_words;
 917                }
 918        }
 919}
 920#else
 921static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
 922                                  const u32 *llis_va, int num_llis) {}
 923#endif
 924
 925/*
 926 * This fills in the table of LLIs for the transfer descriptor
 927 * Note that we assume we never have to change the burst sizes
 928 * Return 0 for error
 929 */
 930static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
 931                              struct pl08x_txd *txd)
 932{
 933        struct pl08x_bus_data *mbus, *sbus;
 934        struct pl08x_lli_build_data bd;
 935        int num_llis = 0;
 936        u32 cctl, early_bytes = 0;
 937        size_t max_bytes_per_lli, total_bytes;
 938        u32 *llis_va, *last_lli;
 939        struct pl08x_sg *dsg;
 940
 941        txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
 942        if (!txd->llis_va) {
 943                dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
 944                return 0;
 945        }
 946
 947        bd.txd = txd;
 948        bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
 949        cctl = txd->cctl;
 950
 951        /* Find maximum width of the source bus */
 952        bd.srcbus.maxwidth =
 953                pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
 954                                       PL080_CONTROL_SWIDTH_SHIFT);
 955
 956        /* Find maximum width of the destination bus */
 957        bd.dstbus.maxwidth =
 958                pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
 959                                       PL080_CONTROL_DWIDTH_SHIFT);
 960
 961        list_for_each_entry(dsg, &txd->dsg_list, node) {
 962                total_bytes = 0;
 963                cctl = txd->cctl;
 964
 965                bd.srcbus.addr = dsg->src_addr;
 966                bd.dstbus.addr = dsg->dst_addr;
 967                bd.remainder = dsg->len;
 968                bd.srcbus.buswidth = bd.srcbus.maxwidth;
 969                bd.dstbus.buswidth = bd.dstbus.maxwidth;
 970
 971                pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
 972
 973                dev_vdbg(&pl08x->adev->dev,
 974                        "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
 975                        (u64)bd.srcbus.addr,
 976                        cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
 977                        bd.srcbus.buswidth,
 978                        (u64)bd.dstbus.addr,
 979                        cctl & PL080_CONTROL_DST_INCR ? "+" : "",
 980                        bd.dstbus.buswidth,
 981                        bd.remainder);
 982                dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
 983                        mbus == &bd.srcbus ? "src" : "dst",
 984                        sbus == &bd.srcbus ? "src" : "dst");
 985
 986                /*
 987                 * Zero length is only allowed if all these requirements are
 988                 * met:
 989                 * - flow controller is peripheral.
 990                 * - src.addr is aligned to src.width
 991                 * - dst.addr is aligned to dst.width
 992                 *
 993                 * sg_len == 1 should be true, as there can be two cases here:
 994                 *
 995                 * - Memory addresses are contiguous and are not scattered.
 996                 *   Here, Only one sg will be passed by user driver, with
 997                 *   memory address and zero length. We pass this to controller
 998                 *   and after the transfer it will receive the last burst
 999                 *   request from peripheral and so transfer finishes.
1000                 *
1001                 * - Memory addresses are scattered and are not contiguous.
1002                 *   Here, Obviously as DMA controller doesn't know when a lli's
1003                 *   transfer gets over, it can't load next lli. So in this
1004                 *   case, there has to be an assumption that only one lli is
1005                 *   supported. Thus, we can't have scattered addresses.
1006                 */
1007                if (!bd.remainder) {
1008                        u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1009                                PL080_CONFIG_FLOW_CONTROL_SHIFT;
1010                        if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1011                                        (fc <= PL080_FLOW_SRC2DST_SRC))) {
1012                                dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1013                                        __func__);
1014                                return 0;
1015                        }
1016
1017                        if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1018                                !IS_BUS_ALIGNED(&bd.dstbus)) {
1019                                dev_err(&pl08x->adev->dev,
1020                                        "%s src & dst address must be aligned to src"
1021                                        " & dst width if peripheral is flow controller",
1022                                        __func__);
1023                                return 0;
1024                        }
1025
1026                        cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1027                                        bd.dstbus.buswidth, 0);
1028                        pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1029                                        0, cctl, 0);
1030                        break;
1031                }
1032
1033                /*
1034                 * Send byte by byte for following cases
1035                 * - Less than a bus width available
1036                 * - until master bus is aligned
1037                 */
1038                if (bd.remainder < mbus->buswidth)
1039                        early_bytes = bd.remainder;
1040                else if (!IS_BUS_ALIGNED(mbus)) {
1041                        early_bytes = mbus->buswidth -
1042                                (mbus->addr & (mbus->buswidth - 1));
1043                        if ((bd.remainder - early_bytes) < mbus->buswidth)
1044                                early_bytes = bd.remainder;
1045                }
1046
1047                if (early_bytes) {
1048                        dev_vdbg(&pl08x->adev->dev,
1049                                "%s byte width LLIs (remain 0x%08zx)\n",
1050                                __func__, bd.remainder);
1051                        prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1052                                num_llis++, &total_bytes);
1053                }
1054
1055                if (bd.remainder) {
1056                        /*
1057                         * Master now aligned
1058                         * - if slave is not then we must set its width down
1059                         */
1060                        if (!IS_BUS_ALIGNED(sbus)) {
1061                                dev_dbg(&pl08x->adev->dev,
1062                                        "%s set down bus width to one byte\n",
1063                                        __func__);
1064
1065                                sbus->buswidth = 1;
1066                        }
1067
1068                        /*
1069                         * Bytes transferred = tsize * src width, not
1070                         * MIN(buswidths)
1071                         */
1072                        max_bytes_per_lli = bd.srcbus.buswidth *
1073                                                pl08x->vd->max_transfer_size;
1074                        dev_vdbg(&pl08x->adev->dev,
1075                                "%s max bytes per lli = %zu\n",
1076                                __func__, max_bytes_per_lli);
1077
1078                        /*
1079                         * Make largest possible LLIs until less than one bus
1080                         * width left
1081                         */
1082                        while (bd.remainder > (mbus->buswidth - 1)) {
1083                                size_t lli_len, tsize, width;
1084
1085                                /*
1086                                 * If enough left try to send max possible,
1087                                 * otherwise try to send the remainder
1088                                 */
1089                                lli_len = min(bd.remainder, max_bytes_per_lli);
1090
1091                                /*
1092                                 * Check against maximum bus alignment:
1093                                 * Calculate actual transfer size in relation to
1094                                 * bus width an get a maximum remainder of the
1095                                 * highest bus width - 1
1096                                 */
1097                                width = max(mbus->buswidth, sbus->buswidth);
1098                                lli_len = (lli_len / width) * width;
1099                                tsize = lli_len / bd.srcbus.buswidth;
1100
1101                                dev_vdbg(&pl08x->adev->dev,
1102                                        "%s fill lli with single lli chunk of "
1103                                        "size 0x%08zx (remainder 0x%08zx)\n",
1104                                        __func__, lli_len, bd.remainder);
1105
1106                                cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1107                                        bd.dstbus.buswidth, tsize);
1108                                pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1109                                                lli_len, cctl, tsize);
1110                                total_bytes += lli_len;
1111                        }
1112
1113                        /*
1114                         * Send any odd bytes
1115                         */
1116                        if (bd.remainder) {
1117                                dev_vdbg(&pl08x->adev->dev,
1118                                        "%s align with boundary, send odd bytes (remain %zu)\n",
1119                                        __func__, bd.remainder);
1120                                prep_byte_width_lli(pl08x, &bd, &cctl,
1121                                        bd.remainder, num_llis++, &total_bytes);
1122                        }
1123                }
1124
1125                if (total_bytes != dsg->len) {
1126                        dev_err(&pl08x->adev->dev,
1127                                "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1128                                __func__, total_bytes, dsg->len);
1129                        return 0;
1130                }
1131
1132                if (num_llis >= MAX_NUM_TSFR_LLIS) {
1133                        dev_err(&pl08x->adev->dev,
1134                                "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1135                                __func__, MAX_NUM_TSFR_LLIS);
1136                        return 0;
1137                }
1138        }
1139
1140        llis_va = txd->llis_va;
1141        last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1142
1143        if (txd->cyclic) {
1144                /* Link back to the first LLI. */
1145                last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1146        } else {
1147                /* The final LLI terminates the LLI. */
1148                last_lli[PL080_LLI_LLI] = 0;
1149                /* The final LLI element shall also fire an interrupt. */
1150                last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1151        }
1152
1153        pl08x_dump_lli(pl08x, llis_va, num_llis);
1154
1155        return num_llis;
1156}
1157
1158static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1159                           struct pl08x_txd *txd)
1160{
1161        struct pl08x_sg *dsg, *_dsg;
1162
1163        if (txd->llis_va)
1164                dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1165
1166        list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1167                list_del(&dsg->node);
1168                kfree(dsg);
1169        }
1170
1171        kfree(txd);
1172}
1173
1174static void pl08x_desc_free(struct virt_dma_desc *vd)
1175{
1176        struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1177        struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1178
1179        dma_descriptor_unmap(&vd->tx);
1180        if (!txd->done)
1181                pl08x_release_mux(plchan);
1182
1183        pl08x_free_txd(plchan->host, txd);
1184}
1185
1186static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1187                                struct pl08x_dma_chan *plchan)
1188{
1189        LIST_HEAD(head);
1190
1191        vchan_get_all_descriptors(&plchan->vc, &head);
1192        vchan_dma_desc_free_list(&plchan->vc, &head);
1193}
1194
1195/*
1196 * The DMA ENGINE API
1197 */
1198static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1199{
1200        return 0;
1201}
1202
1203static void pl08x_free_chan_resources(struct dma_chan *chan)
1204{
1205        /* Ensure all queued descriptors are freed */
1206        vchan_free_chan_resources(to_virt_chan(chan));
1207}
1208
1209static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1210                struct dma_chan *chan, unsigned long flags)
1211{
1212        struct dma_async_tx_descriptor *retval = NULL;
1213
1214        return retval;
1215}
1216
1217/*
1218 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1219 * If slaves are relying on interrupts to signal completion this function
1220 * must not be called with interrupts disabled.
1221 */
1222static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1223                dma_cookie_t cookie, struct dma_tx_state *txstate)
1224{
1225        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1226        struct virt_dma_desc *vd;
1227        unsigned long flags;
1228        enum dma_status ret;
1229        size_t bytes = 0;
1230
1231        ret = dma_cookie_status(chan, cookie, txstate);
1232        if (ret == DMA_COMPLETE)
1233                return ret;
1234
1235        /*
1236         * There's no point calculating the residue if there's
1237         * no txstate to store the value.
1238         */
1239        if (!txstate) {
1240                if (plchan->state == PL08X_CHAN_PAUSED)
1241                        ret = DMA_PAUSED;
1242                return ret;
1243        }
1244
1245        spin_lock_irqsave(&plchan->vc.lock, flags);
1246        ret = dma_cookie_status(chan, cookie, txstate);
1247        if (ret != DMA_COMPLETE) {
1248                vd = vchan_find_desc(&plchan->vc, cookie);
1249                if (vd) {
1250                        /* On the issued list, so hasn't been processed yet */
1251                        struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1252                        struct pl08x_sg *dsg;
1253
1254                        list_for_each_entry(dsg, &txd->dsg_list, node)
1255                                bytes += dsg->len;
1256                } else {
1257                        bytes = pl08x_getbytes_chan(plchan);
1258                }
1259        }
1260        spin_unlock_irqrestore(&plchan->vc.lock, flags);
1261
1262        /*
1263         * This cookie not complete yet
1264         * Get number of bytes left in the active transactions and queue
1265         */
1266        dma_set_residue(txstate, bytes);
1267
1268        if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1269                ret = DMA_PAUSED;
1270
1271        /* Whether waiting or running, we're in progress */
1272        return ret;
1273}
1274
1275/* PrimeCell DMA extension */
1276struct burst_table {
1277        u32 burstwords;
1278        u32 reg;
1279};
1280
1281static const struct burst_table burst_sizes[] = {
1282        {
1283                .burstwords = 256,
1284                .reg = PL080_BSIZE_256,
1285        },
1286        {
1287                .burstwords = 128,
1288                .reg = PL080_BSIZE_128,
1289        },
1290        {
1291                .burstwords = 64,
1292                .reg = PL080_BSIZE_64,
1293        },
1294        {
1295                .burstwords = 32,
1296                .reg = PL080_BSIZE_32,
1297        },
1298        {
1299                .burstwords = 16,
1300                .reg = PL080_BSIZE_16,
1301        },
1302        {
1303                .burstwords = 8,
1304                .reg = PL080_BSIZE_8,
1305        },
1306        {
1307                .burstwords = 4,
1308                .reg = PL080_BSIZE_4,
1309        },
1310        {
1311                .burstwords = 0,
1312                .reg = PL080_BSIZE_1,
1313        },
1314};
1315
1316/*
1317 * Given the source and destination available bus masks, select which
1318 * will be routed to each port.  We try to have source and destination
1319 * on separate ports, but always respect the allowable settings.
1320 */
1321static u32 pl08x_select_bus(u8 src, u8 dst)
1322{
1323        u32 cctl = 0;
1324
1325        if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1326                cctl |= PL080_CONTROL_DST_AHB2;
1327        if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1328                cctl |= PL080_CONTROL_SRC_AHB2;
1329
1330        return cctl;
1331}
1332
1333static u32 pl08x_cctl(u32 cctl)
1334{
1335        cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1336                  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1337                  PL080_CONTROL_PROT_MASK);
1338
1339        /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1340        return cctl | PL080_CONTROL_PROT_SYS;
1341}
1342
1343static u32 pl08x_width(enum dma_slave_buswidth width)
1344{
1345        switch (width) {
1346        case DMA_SLAVE_BUSWIDTH_1_BYTE:
1347                return PL080_WIDTH_8BIT;
1348        case DMA_SLAVE_BUSWIDTH_2_BYTES:
1349                return PL080_WIDTH_16BIT;
1350        case DMA_SLAVE_BUSWIDTH_4_BYTES:
1351                return PL080_WIDTH_32BIT;
1352        default:
1353                return ~0;
1354        }
1355}
1356
1357static u32 pl08x_burst(u32 maxburst)
1358{
1359        int i;
1360
1361        for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1362                if (burst_sizes[i].burstwords <= maxburst)
1363                        break;
1364
1365        return burst_sizes[i].reg;
1366}
1367
1368static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1369        enum dma_slave_buswidth addr_width, u32 maxburst)
1370{
1371        u32 width, burst, cctl = 0;
1372
1373        width = pl08x_width(addr_width);
1374        if (width == ~0)
1375                return ~0;
1376
1377        cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1378        cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1379
1380        /*
1381         * If this channel will only request single transfers, set this
1382         * down to ONE element.  Also select one element if no maxburst
1383         * is specified.
1384         */
1385        if (plchan->cd->single)
1386                maxburst = 1;
1387
1388        burst = pl08x_burst(maxburst);
1389        cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1390        cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1391
1392        return pl08x_cctl(cctl);
1393}
1394
1395/*
1396 * Slave transactions callback to the slave device to allow
1397 * synchronization of slave DMA signals with the DMAC enable
1398 */
1399static void pl08x_issue_pending(struct dma_chan *chan)
1400{
1401        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1402        unsigned long flags;
1403
1404        spin_lock_irqsave(&plchan->vc.lock, flags);
1405        if (vchan_issue_pending(&plchan->vc)) {
1406                if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1407                        pl08x_phy_alloc_and_start(plchan);
1408        }
1409        spin_unlock_irqrestore(&plchan->vc.lock, flags);
1410}
1411
1412static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1413{
1414        struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1415
1416        if (txd) {
1417                INIT_LIST_HEAD(&txd->dsg_list);
1418
1419                /* Always enable error and terminal interrupts */
1420                txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1421                            PL080_CONFIG_TC_IRQ_MASK;
1422        }
1423        return txd;
1424}
1425
1426/*
1427 * Initialize a descriptor to be used by memcpy submit
1428 */
1429static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1430                struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1431                size_t len, unsigned long flags)
1432{
1433        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1434        struct pl08x_driver_data *pl08x = plchan->host;
1435        struct pl08x_txd *txd;
1436        struct pl08x_sg *dsg;
1437        int ret;
1438
1439        txd = pl08x_get_txd(plchan);
1440        if (!txd) {
1441                dev_err(&pl08x->adev->dev,
1442                        "%s no memory for descriptor\n", __func__);
1443                return NULL;
1444        }
1445
1446        dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1447        if (!dsg) {
1448                pl08x_free_txd(pl08x, txd);
1449                dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1450                                __func__);
1451                return NULL;
1452        }
1453        list_add_tail(&dsg->node, &txd->dsg_list);
1454
1455        dsg->src_addr = src;
1456        dsg->dst_addr = dest;
1457        dsg->len = len;
1458
1459        /* Set platform data for m2m */
1460        txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1461        txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1462                        ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1463
1464        /* Both to be incremented or the code will break */
1465        txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1466
1467        if (pl08x->vd->dualmaster)
1468                txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1469                                              pl08x->mem_buses);
1470
1471        ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1472        if (!ret) {
1473                pl08x_free_txd(pl08x, txd);
1474                return NULL;
1475        }
1476
1477        return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1478}
1479
1480static struct pl08x_txd *pl08x_init_txd(
1481                struct dma_chan *chan,
1482                enum dma_transfer_direction direction,
1483                dma_addr_t *slave_addr)
1484{
1485        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1486        struct pl08x_driver_data *pl08x = plchan->host;
1487        struct pl08x_txd *txd;
1488        enum dma_slave_buswidth addr_width;
1489        int ret, tmp;
1490        u8 src_buses, dst_buses;
1491        u32 maxburst, cctl;
1492
1493        txd = pl08x_get_txd(plchan);
1494        if (!txd) {
1495                dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1496                return NULL;
1497        }
1498
1499        /*
1500         * Set up addresses, the PrimeCell configured address
1501         * will take precedence since this may configure the
1502         * channel target address dynamically at runtime.
1503         */
1504        if (direction == DMA_MEM_TO_DEV) {
1505                cctl = PL080_CONTROL_SRC_INCR;
1506                *slave_addr = plchan->cfg.dst_addr;
1507                addr_width = plchan->cfg.dst_addr_width;
1508                maxburst = plchan->cfg.dst_maxburst;
1509                src_buses = pl08x->mem_buses;
1510                dst_buses = plchan->cd->periph_buses;
1511        } else if (direction == DMA_DEV_TO_MEM) {
1512                cctl = PL080_CONTROL_DST_INCR;
1513                *slave_addr = plchan->cfg.src_addr;
1514                addr_width = plchan->cfg.src_addr_width;
1515                maxburst = plchan->cfg.src_maxburst;
1516                src_buses = plchan->cd->periph_buses;
1517                dst_buses = pl08x->mem_buses;
1518        } else {
1519                pl08x_free_txd(pl08x, txd);
1520                dev_err(&pl08x->adev->dev,
1521                        "%s direction unsupported\n", __func__);
1522                return NULL;
1523        }
1524
1525        cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1526        if (cctl == ~0) {
1527                pl08x_free_txd(pl08x, txd);
1528                dev_err(&pl08x->adev->dev,
1529                        "DMA slave configuration botched?\n");
1530                return NULL;
1531        }
1532
1533        txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1534
1535        if (plchan->cfg.device_fc)
1536                tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1537                        PL080_FLOW_PER2MEM_PER;
1538        else
1539                tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1540                        PL080_FLOW_PER2MEM;
1541
1542        txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1543
1544        ret = pl08x_request_mux(plchan);
1545        if (ret < 0) {
1546                pl08x_free_txd(pl08x, txd);
1547                dev_dbg(&pl08x->adev->dev,
1548                        "unable to mux for transfer on %s due to platform restrictions\n",
1549                        plchan->name);
1550                return NULL;
1551        }
1552
1553        dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1554                 plchan->signal, plchan->name);
1555
1556        /* Assign the flow control signal to this channel */
1557        if (direction == DMA_MEM_TO_DEV)
1558                txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1559        else
1560                txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1561
1562        return txd;
1563}
1564
1565static int pl08x_tx_add_sg(struct pl08x_txd *txd,
1566                           enum dma_transfer_direction direction,
1567                           dma_addr_t slave_addr,
1568                           dma_addr_t buf_addr,
1569                           unsigned int len)
1570{
1571        struct pl08x_sg *dsg;
1572
1573        dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1574        if (!dsg)
1575                return -ENOMEM;
1576
1577        list_add_tail(&dsg->node, &txd->dsg_list);
1578
1579        dsg->len = len;
1580        if (direction == DMA_MEM_TO_DEV) {
1581                dsg->src_addr = buf_addr;
1582                dsg->dst_addr = slave_addr;
1583        } else {
1584                dsg->src_addr = slave_addr;
1585                dsg->dst_addr = buf_addr;
1586        }
1587
1588        return 0;
1589}
1590
1591static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1592                struct dma_chan *chan, struct scatterlist *sgl,
1593                unsigned int sg_len, enum dma_transfer_direction direction,
1594                unsigned long flags, void *context)
1595{
1596        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1597        struct pl08x_driver_data *pl08x = plchan->host;
1598        struct pl08x_txd *txd;
1599        struct scatterlist *sg;
1600        int ret, tmp;
1601        dma_addr_t slave_addr;
1602
1603        dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1604                        __func__, sg_dma_len(sgl), plchan->name);
1605
1606        txd = pl08x_init_txd(chan, direction, &slave_addr);
1607        if (!txd)
1608                return NULL;
1609
1610        for_each_sg(sgl, sg, sg_len, tmp) {
1611                ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1612                                      sg_dma_address(sg),
1613                                      sg_dma_len(sg));
1614                if (ret) {
1615                        pl08x_release_mux(plchan);
1616                        pl08x_free_txd(pl08x, txd);
1617                        dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1618                                        __func__);
1619                        return NULL;
1620                }
1621        }
1622
1623        ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1624        if (!ret) {
1625                pl08x_release_mux(plchan);
1626                pl08x_free_txd(pl08x, txd);
1627                return NULL;
1628        }
1629
1630        return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1631}
1632
1633static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
1634                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1635                size_t period_len, enum dma_transfer_direction direction,
1636                unsigned long flags)
1637{
1638        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1639        struct pl08x_driver_data *pl08x = plchan->host;
1640        struct pl08x_txd *txd;
1641        int ret, tmp;
1642        dma_addr_t slave_addr;
1643
1644        dev_dbg(&pl08x->adev->dev,
1645                "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
1646                __func__, period_len, buf_len,
1647                direction == DMA_MEM_TO_DEV ? "to" : "from",
1648                plchan->name);
1649
1650        txd = pl08x_init_txd(chan, direction, &slave_addr);
1651        if (!txd)
1652                return NULL;
1653
1654        txd->cyclic = true;
1655        txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
1656        for (tmp = 0; tmp < buf_len; tmp += period_len) {
1657                ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1658                                      buf_addr + tmp, period_len);
1659                if (ret) {
1660                        pl08x_release_mux(plchan);
1661                        pl08x_free_txd(pl08x, txd);
1662                        return NULL;
1663                }
1664        }
1665
1666        ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1667        if (!ret) {
1668                pl08x_release_mux(plchan);
1669                pl08x_free_txd(pl08x, txd);
1670                return NULL;
1671        }
1672
1673        return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1674}
1675
1676static int pl08x_config(struct dma_chan *chan,
1677                        struct dma_slave_config *config)
1678{
1679        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1680        struct pl08x_driver_data *pl08x = plchan->host;
1681
1682        if (!plchan->slave)
1683                return -EINVAL;
1684
1685        /* Reject definitely invalid configurations */
1686        if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1687            config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1688                return -EINVAL;
1689
1690        if (config->device_fc && pl08x->vd->pl080s) {
1691                dev_err(&pl08x->adev->dev,
1692                        "%s: PL080S does not support peripheral flow control\n",
1693                        __func__);
1694                return -EINVAL;
1695        }
1696
1697        plchan->cfg = *config;
1698
1699        return 0;
1700}
1701
1702static int pl08x_terminate_all(struct dma_chan *chan)
1703{
1704        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1705        struct pl08x_driver_data *pl08x = plchan->host;
1706        unsigned long flags;
1707
1708        spin_lock_irqsave(&plchan->vc.lock, flags);
1709        if (!plchan->phychan && !plchan->at) {
1710                spin_unlock_irqrestore(&plchan->vc.lock, flags);
1711                return 0;
1712        }
1713
1714        plchan->state = PL08X_CHAN_IDLE;
1715
1716        if (plchan->phychan) {
1717                /*
1718                 * Mark physical channel as free and free any slave
1719                 * signal
1720                 */
1721                pl08x_phy_free(plchan);
1722        }
1723        /* Dequeue jobs and free LLIs */
1724        if (plchan->at) {
1725                pl08x_desc_free(&plchan->at->vd);
1726                plchan->at = NULL;
1727        }
1728        /* Dequeue jobs not yet fired as well */
1729        pl08x_free_txd_list(pl08x, plchan);
1730
1731        spin_unlock_irqrestore(&plchan->vc.lock, flags);
1732
1733        return 0;
1734}
1735
1736static int pl08x_pause(struct dma_chan *chan)
1737{
1738        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1739        unsigned long flags;
1740
1741        /*
1742         * Anything succeeds on channels with no physical allocation and
1743         * no queued transfers.
1744         */
1745        spin_lock_irqsave(&plchan->vc.lock, flags);
1746        if (!plchan->phychan && !plchan->at) {
1747                spin_unlock_irqrestore(&plchan->vc.lock, flags);
1748                return 0;
1749        }
1750
1751        pl08x_pause_phy_chan(plchan->phychan);
1752        plchan->state = PL08X_CHAN_PAUSED;
1753
1754        spin_unlock_irqrestore(&plchan->vc.lock, flags);
1755
1756        return 0;
1757}
1758
1759static int pl08x_resume(struct dma_chan *chan)
1760{
1761        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1762        unsigned long flags;
1763
1764        /*
1765         * Anything succeeds on channels with no physical allocation and
1766         * no queued transfers.
1767         */
1768        spin_lock_irqsave(&plchan->vc.lock, flags);
1769        if (!plchan->phychan && !plchan->at) {
1770                spin_unlock_irqrestore(&plchan->vc.lock, flags);
1771                return 0;
1772        }
1773
1774        pl08x_resume_phy_chan(plchan->phychan);
1775        plchan->state = PL08X_CHAN_RUNNING;
1776
1777        spin_unlock_irqrestore(&plchan->vc.lock, flags);
1778
1779        return 0;
1780}
1781
1782bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1783{
1784        struct pl08x_dma_chan *plchan;
1785        char *name = chan_id;
1786
1787        /* Reject channels for devices not bound to this driver */
1788        if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1789                return false;
1790
1791        plchan = to_pl08x_chan(chan);
1792
1793        /* Check that the channel is not taken! */
1794        if (!strcmp(plchan->name, name))
1795                return true;
1796
1797        return false;
1798}
1799EXPORT_SYMBOL_GPL(pl08x_filter_id);
1800
1801/*
1802 * Just check that the device is there and active
1803 * TODO: turn this bit on/off depending on the number of physical channels
1804 * actually used, if it is zero... well shut it off. That will save some
1805 * power. Cut the clock at the same time.
1806 */
1807static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1808{
1809        /* The Nomadik variant does not have the config register */
1810        if (pl08x->vd->nomadik)
1811                return;
1812        writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1813}
1814
1815static irqreturn_t pl08x_irq(int irq, void *dev)
1816{
1817        struct pl08x_driver_data *pl08x = dev;
1818        u32 mask = 0, err, tc, i;
1819
1820        /* check & clear - ERR & TC interrupts */
1821        err = readl(pl08x->base + PL080_ERR_STATUS);
1822        if (err) {
1823                dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1824                        __func__, err);
1825                writel(err, pl08x->base + PL080_ERR_CLEAR);
1826        }
1827        tc = readl(pl08x->base + PL080_TC_STATUS);
1828        if (tc)
1829                writel(tc, pl08x->base + PL080_TC_CLEAR);
1830
1831        if (!err && !tc)
1832                return IRQ_NONE;
1833
1834        for (i = 0; i < pl08x->vd->channels; i++) {
1835                if (((1 << i) & err) || ((1 << i) & tc)) {
1836                        /* Locate physical channel */
1837                        struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1838                        struct pl08x_dma_chan *plchan = phychan->serving;
1839                        struct pl08x_txd *tx;
1840
1841                        if (!plchan) {
1842                                dev_err(&pl08x->adev->dev,
1843                                        "%s Error TC interrupt on unused channel: 0x%08x\n",
1844                                        __func__, i);
1845                                continue;
1846                        }
1847
1848                        spin_lock(&plchan->vc.lock);
1849                        tx = plchan->at;
1850                        if (tx && tx->cyclic) {
1851                                vchan_cyclic_callback(&tx->vd);
1852                        } else if (tx) {
1853                                plchan->at = NULL;
1854                                /*
1855                                 * This descriptor is done, release its mux
1856                                 * reservation.
1857                                 */
1858                                pl08x_release_mux(plchan);
1859                                tx->done = true;
1860                                vchan_cookie_complete(&tx->vd);
1861
1862                                /*
1863                                 * And start the next descriptor (if any),
1864                                 * otherwise free this channel.
1865                                 */
1866                                if (vchan_next_desc(&plchan->vc))
1867                                        pl08x_start_next_txd(plchan);
1868                                else
1869                                        pl08x_phy_free(plchan);
1870                        }
1871                        spin_unlock(&plchan->vc.lock);
1872
1873                        mask |= (1 << i);
1874                }
1875        }
1876
1877        return mask ? IRQ_HANDLED : IRQ_NONE;
1878}
1879
1880static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1881{
1882        chan->slave = true;
1883        chan->name = chan->cd->bus_id;
1884        chan->cfg.src_addr = chan->cd->addr;
1885        chan->cfg.dst_addr = chan->cd->addr;
1886}
1887
1888/*
1889 * Initialise the DMAC memcpy/slave channels.
1890 * Make a local wrapper to hold required data
1891 */
1892static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1893                struct dma_device *dmadev, unsigned int channels, bool slave)
1894{
1895        struct pl08x_dma_chan *chan;
1896        int i;
1897
1898        INIT_LIST_HEAD(&dmadev->channels);
1899
1900        /*
1901         * Register as many many memcpy as we have physical channels,
1902         * we won't always be able to use all but the code will have
1903         * to cope with that situation.
1904         */
1905        for (i = 0; i < channels; i++) {
1906                chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1907                if (!chan) {
1908                        dev_err(&pl08x->adev->dev,
1909                                "%s no memory for channel\n", __func__);
1910                        return -ENOMEM;
1911                }
1912
1913                chan->host = pl08x;
1914                chan->state = PL08X_CHAN_IDLE;
1915                chan->signal = -1;
1916
1917                if (slave) {
1918                        chan->cd = &pl08x->pd->slave_channels[i];
1919                        pl08x_dma_slave_init(chan);
1920                } else {
1921                        chan->cd = &pl08x->pd->memcpy_channel;
1922                        chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1923                        if (!chan->name) {
1924                                kfree(chan);
1925                                return -ENOMEM;
1926                        }
1927                }
1928                dev_dbg(&pl08x->adev->dev,
1929                         "initialize virtual channel \"%s\"\n",
1930                         chan->name);
1931
1932                chan->vc.desc_free = pl08x_desc_free;
1933                vchan_init(&chan->vc, dmadev);
1934        }
1935        dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1936                 i, slave ? "slave" : "memcpy");
1937        return i;
1938}
1939
1940static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1941{
1942        struct pl08x_dma_chan *chan = NULL;
1943        struct pl08x_dma_chan *next;
1944
1945        list_for_each_entry_safe(chan,
1946                                 next, &dmadev->channels, vc.chan.device_node) {
1947                list_del(&chan->vc.chan.device_node);
1948                kfree(chan);
1949        }
1950}
1951
1952#ifdef CONFIG_DEBUG_FS
1953static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1954{
1955        switch (state) {
1956        case PL08X_CHAN_IDLE:
1957                return "idle";
1958        case PL08X_CHAN_RUNNING:
1959                return "running";
1960        case PL08X_CHAN_PAUSED:
1961                return "paused";
1962        case PL08X_CHAN_WAITING:
1963                return "waiting";
1964        default:
1965                break;
1966        }
1967        return "UNKNOWN STATE";
1968}
1969
1970static int pl08x_debugfs_show(struct seq_file *s, void *data)
1971{
1972        struct pl08x_driver_data *pl08x = s->private;
1973        struct pl08x_dma_chan *chan;
1974        struct pl08x_phy_chan *ch;
1975        unsigned long flags;
1976        int i;
1977
1978        seq_printf(s, "PL08x physical channels:\n");
1979        seq_printf(s, "CHANNEL:\tUSER:\n");
1980        seq_printf(s, "--------\t-----\n");
1981        for (i = 0; i < pl08x->vd->channels; i++) {
1982                struct pl08x_dma_chan *virt_chan;
1983
1984                ch = &pl08x->phy_chans[i];
1985
1986                spin_lock_irqsave(&ch->lock, flags);
1987                virt_chan = ch->serving;
1988
1989                seq_printf(s, "%d\t\t%s%s\n",
1990                           ch->id,
1991                           virt_chan ? virt_chan->name : "(none)",
1992                           ch->locked ? " LOCKED" : "");
1993
1994                spin_unlock_irqrestore(&ch->lock, flags);
1995        }
1996
1997        seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1998        seq_printf(s, "CHANNEL:\tSTATE:\n");
1999        seq_printf(s, "--------\t------\n");
2000        list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2001                seq_printf(s, "%s\t\t%s\n", chan->name,
2002                           pl08x_state_str(chan->state));
2003        }
2004
2005        seq_printf(s, "\nPL08x virtual slave channels:\n");
2006        seq_printf(s, "CHANNEL:\tSTATE:\n");
2007        seq_printf(s, "--------\t------\n");
2008        list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2009                seq_printf(s, "%s\t\t%s\n", chan->name,
2010                           pl08x_state_str(chan->state));
2011        }
2012
2013        return 0;
2014}
2015
2016static int pl08x_debugfs_open(struct inode *inode, struct file *file)
2017{
2018        return single_open(file, pl08x_debugfs_show, inode->i_private);
2019}
2020
2021static const struct file_operations pl08x_debugfs_operations = {
2022        .open           = pl08x_debugfs_open,
2023        .read           = seq_read,
2024        .llseek         = seq_lseek,
2025        .release        = single_release,
2026};
2027
2028static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2029{
2030        /* Expose a simple debugfs interface to view all clocks */
2031        (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2032                        S_IFREG | S_IRUGO, NULL, pl08x,
2033                        &pl08x_debugfs_operations);
2034}
2035
2036#else
2037static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2038{
2039}
2040#endif
2041
2042static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2043{
2044        struct pl08x_driver_data *pl08x;
2045        const struct vendor_data *vd = id->data;
2046        u32 tsfr_size;
2047        int ret = 0;
2048        int i;
2049
2050        ret = amba_request_regions(adev, NULL);
2051        if (ret)
2052                return ret;
2053
2054        /* Ensure that we can do DMA */
2055        ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2056        if (ret)
2057                goto out_no_pl08x;
2058
2059        /* Create the driver state holder */
2060        pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2061        if (!pl08x) {
2062                ret = -ENOMEM;
2063                goto out_no_pl08x;
2064        }
2065
2066        /* Initialize memcpy engine */
2067        dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2068        pl08x->memcpy.dev = &adev->dev;
2069        pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
2070        pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2071        pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2072        pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2073        pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2074        pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2075        pl08x->memcpy.device_config = pl08x_config;
2076        pl08x->memcpy.device_pause = pl08x_pause;
2077        pl08x->memcpy.device_resume = pl08x_resume;
2078        pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2079        pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2080        pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2081        pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2082        pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2083
2084        /* Initialize slave engine */
2085        dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2086        dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2087        pl08x->slave.dev = &adev->dev;
2088        pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
2089        pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2090        pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2091        pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2092        pl08x->slave.device_issue_pending = pl08x_issue_pending;
2093        pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2094        pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2095        pl08x->slave.device_config = pl08x_config;
2096        pl08x->slave.device_pause = pl08x_pause;
2097        pl08x->slave.device_resume = pl08x_resume;
2098        pl08x->slave.device_terminate_all = pl08x_terminate_all;
2099        pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2100        pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2101        pl08x->slave.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2102        pl08x->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2103
2104        /* Get the platform data */
2105        pl08x->pd = dev_get_platdata(&adev->dev);
2106        if (!pl08x->pd) {
2107                dev_err(&adev->dev, "no platform data supplied\n");
2108                ret = -EINVAL;
2109                goto out_no_platdata;
2110        }
2111
2112        /* Assign useful pointers to the driver state */
2113        pl08x->adev = adev;
2114        pl08x->vd = vd;
2115
2116        /* By default, AHB1 only.  If dualmaster, from platform */
2117        pl08x->lli_buses = PL08X_AHB1;
2118        pl08x->mem_buses = PL08X_AHB1;
2119        if (pl08x->vd->dualmaster) {
2120                pl08x->lli_buses = pl08x->pd->lli_buses;
2121                pl08x->mem_buses = pl08x->pd->mem_buses;
2122        }
2123
2124        if (vd->pl080s)
2125                pl08x->lli_words = PL080S_LLI_WORDS;
2126        else
2127                pl08x->lli_words = PL080_LLI_WORDS;
2128        tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2129
2130        /* A DMA memory pool for LLIs, align on 1-byte boundary */
2131        pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2132                                                tsfr_size, PL08X_ALIGN, 0);
2133        if (!pl08x->pool) {
2134                ret = -ENOMEM;
2135                goto out_no_lli_pool;
2136        }
2137
2138        pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2139        if (!pl08x->base) {
2140                ret = -ENOMEM;
2141                goto out_no_ioremap;
2142        }
2143
2144        /* Turn on the PL08x */
2145        pl08x_ensure_on(pl08x);
2146
2147        /* Attach the interrupt handler */
2148        writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2149        writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2150
2151        ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2152        if (ret) {
2153                dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2154                        __func__, adev->irq[0]);
2155                goto out_no_irq;
2156        }
2157
2158        /* Initialize physical channels */
2159        pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2160                        GFP_KERNEL);
2161        if (!pl08x->phy_chans) {
2162                dev_err(&adev->dev, "%s failed to allocate "
2163                        "physical channel holders\n",
2164                        __func__);
2165                ret = -ENOMEM;
2166                goto out_no_phychans;
2167        }
2168
2169        for (i = 0; i < vd->channels; i++) {
2170                struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2171
2172                ch->id = i;
2173                ch->base = pl08x->base + PL080_Cx_BASE(i);
2174                ch->reg_config = ch->base + vd->config_offset;
2175                spin_lock_init(&ch->lock);
2176
2177                /*
2178                 * Nomadik variants can have channels that are locked
2179                 * down for the secure world only. Lock up these channels
2180                 * by perpetually serving a dummy virtual channel.
2181                 */
2182                if (vd->nomadik) {
2183                        u32 val;
2184
2185                        val = readl(ch->reg_config);
2186                        if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2187                                dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2188                                ch->locked = true;
2189                        }
2190                }
2191
2192                dev_dbg(&adev->dev, "physical channel %d is %s\n",
2193                        i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2194        }
2195
2196        /* Register as many memcpy channels as there are physical channels */
2197        ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2198                                              pl08x->vd->channels, false);
2199        if (ret <= 0) {
2200                dev_warn(&pl08x->adev->dev,
2201                         "%s failed to enumerate memcpy channels - %d\n",
2202                         __func__, ret);
2203                goto out_no_memcpy;
2204        }
2205
2206        /* Register slave channels */
2207        ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2208                        pl08x->pd->num_slave_channels, true);
2209        if (ret < 0) {
2210                dev_warn(&pl08x->adev->dev,
2211                        "%s failed to enumerate slave channels - %d\n",
2212                                __func__, ret);
2213                goto out_no_slave;
2214        }
2215
2216        ret = dma_async_device_register(&pl08x->memcpy);
2217        if (ret) {
2218                dev_warn(&pl08x->adev->dev,
2219                        "%s failed to register memcpy as an async device - %d\n",
2220                        __func__, ret);
2221                goto out_no_memcpy_reg;
2222        }
2223
2224        ret = dma_async_device_register(&pl08x->slave);
2225        if (ret) {
2226                dev_warn(&pl08x->adev->dev,
2227                        "%s failed to register slave as an async device - %d\n",
2228                        __func__, ret);
2229                goto out_no_slave_reg;
2230        }
2231
2232        amba_set_drvdata(adev, pl08x);
2233        init_pl08x_debugfs(pl08x);
2234        dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2235                 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2236                 (unsigned long long)adev->res.start, adev->irq[0]);
2237
2238        return 0;
2239
2240out_no_slave_reg:
2241        dma_async_device_unregister(&pl08x->memcpy);
2242out_no_memcpy_reg:
2243        pl08x_free_virtual_channels(&pl08x->slave);
2244out_no_slave:
2245        pl08x_free_virtual_channels(&pl08x->memcpy);
2246out_no_memcpy:
2247        kfree(pl08x->phy_chans);
2248out_no_phychans:
2249        free_irq(adev->irq[0], pl08x);
2250out_no_irq:
2251        iounmap(pl08x->base);
2252out_no_ioremap:
2253        dma_pool_destroy(pl08x->pool);
2254out_no_lli_pool:
2255out_no_platdata:
2256        kfree(pl08x);
2257out_no_pl08x:
2258        amba_release_regions(adev);
2259        return ret;
2260}
2261
2262/* PL080 has 8 channels and the PL080 have just 2 */
2263static struct vendor_data vendor_pl080 = {
2264        .config_offset = PL080_CH_CONFIG,
2265        .channels = 8,
2266        .dualmaster = true,
2267        .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2268};
2269
2270static struct vendor_data vendor_nomadik = {
2271        .config_offset = PL080_CH_CONFIG,
2272        .channels = 8,
2273        .dualmaster = true,
2274        .nomadik = true,
2275        .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2276};
2277
2278static struct vendor_data vendor_pl080s = {
2279        .config_offset = PL080S_CH_CONFIG,
2280        .channels = 8,
2281        .pl080s = true,
2282        .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2283};
2284
2285static struct vendor_data vendor_pl081 = {
2286        .config_offset = PL080_CH_CONFIG,
2287        .channels = 2,
2288        .dualmaster = false,
2289        .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2290};
2291
2292static struct amba_id pl08x_ids[] = {
2293        /* Samsung PL080S variant */
2294        {
2295                .id     = 0x0a141080,
2296                .mask   = 0xffffffff,
2297                .data   = &vendor_pl080s,
2298        },
2299        /* PL080 */
2300        {
2301                .id     = 0x00041080,
2302                .mask   = 0x000fffff,
2303                .data   = &vendor_pl080,
2304        },
2305        /* PL081 */
2306        {
2307                .id     = 0x00041081,
2308                .mask   = 0x000fffff,
2309                .data   = &vendor_pl081,
2310        },
2311        /* Nomadik 8815 PL080 variant */
2312        {
2313                .id     = 0x00280080,
2314                .mask   = 0x00ffffff,
2315                .data   = &vendor_nomadik,
2316        },
2317        { 0, 0 },
2318};
2319
2320MODULE_DEVICE_TABLE(amba, pl08x_ids);
2321
2322static struct amba_driver pl08x_amba_driver = {
2323        .drv.name       = DRIVER_NAME,
2324        .id_table       = pl08x_ids,
2325        .probe          = pl08x_probe,
2326};
2327
2328static int __init pl08x_init(void)
2329{
2330        int retval;
2331        retval = amba_driver_register(&pl08x_amba_driver);
2332        if (retval)
2333                printk(KERN_WARNING DRIVER_NAME
2334                       "failed to register as an AMBA device (%d)\n",
2335                       retval);
2336        return retval;
2337}
2338subsys_initcall(pl08x_init);
2339