linux/drivers/dma/ste_dma40.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) Ericsson AB 2007-2008
   3 * Copyright (C) ST-Ericsson SA 2008-2010
   4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
   5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
   6 * License terms: GNU General Public License (GPL) version 2
   7 */
   8
   9#include <linux/dma-mapping.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/export.h>
  13#include <linux/dmaengine.h>
  14#include <linux/platform_device.h>
  15#include <linux/clk.h>
  16#include <linux/delay.h>
  17#include <linux/log2.h>
  18#include <linux/pm.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/err.h>
  21#include <linux/of.h>
  22#include <linux/of_dma.h>
  23#include <linux/amba/bus.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/platform_data/dma-ste-dma40.h>
  26
  27#include "dmaengine.h"
  28#include "ste_dma40_ll.h"
  29
  30#define D40_NAME "dma40"
  31
  32#define D40_PHY_CHAN -1
  33
  34/* For masking out/in 2 bit channel positions */
  35#define D40_CHAN_POS(chan)  (2 * (chan / 2))
  36#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  37
  38/* Maximum iterations taken before giving up suspending a channel */
  39#define D40_SUSPEND_MAX_IT 500
  40
  41/* Milliseconds */
  42#define DMA40_AUTOSUSPEND_DELAY 100
  43
  44/* Hardware requirement on LCLA alignment */
  45#define LCLA_ALIGNMENT 0x40000
  46
  47/* Max number of links per event group */
  48#define D40_LCLA_LINK_PER_EVENT_GRP 128
  49#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  50
  51/* Max number of logical channels per physical channel */
  52#define D40_MAX_LOG_CHAN_PER_PHY 32
  53
  54/* Attempts before giving up to trying to get pages that are aligned */
  55#define MAX_LCLA_ALLOC_ATTEMPTS 256
  56
  57/* Bit markings for allocation map */
  58#define D40_ALLOC_FREE          BIT(31)
  59#define D40_ALLOC_PHY           BIT(30)
  60#define D40_ALLOC_LOG_FREE      0
  61
  62#define D40_MEMCPY_MAX_CHANS    8
  63
  64/* Reserved event lines for memcpy only. */
  65#define DB8500_DMA_MEMCPY_EV_0  51
  66#define DB8500_DMA_MEMCPY_EV_1  56
  67#define DB8500_DMA_MEMCPY_EV_2  57
  68#define DB8500_DMA_MEMCPY_EV_3  58
  69#define DB8500_DMA_MEMCPY_EV_4  59
  70#define DB8500_DMA_MEMCPY_EV_5  60
  71
  72static int dma40_memcpy_channels[] = {
  73        DB8500_DMA_MEMCPY_EV_0,
  74        DB8500_DMA_MEMCPY_EV_1,
  75        DB8500_DMA_MEMCPY_EV_2,
  76        DB8500_DMA_MEMCPY_EV_3,
  77        DB8500_DMA_MEMCPY_EV_4,
  78        DB8500_DMA_MEMCPY_EV_5,
  79};
  80
  81/* Default configuration for physcial memcpy */
  82static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
  83        .mode = STEDMA40_MODE_PHYSICAL,
  84        .dir = DMA_MEM_TO_MEM,
  85
  86        .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  87        .src_info.psize = STEDMA40_PSIZE_PHY_1,
  88        .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  89
  90        .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  91        .dst_info.psize = STEDMA40_PSIZE_PHY_1,
  92        .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  93};
  94
  95/* Default configuration for logical memcpy */
  96static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
  97        .mode = STEDMA40_MODE_LOGICAL,
  98        .dir = DMA_MEM_TO_MEM,
  99
 100        .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 101        .src_info.psize = STEDMA40_PSIZE_LOG_1,
 102        .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 103
 104        .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 105        .dst_info.psize = STEDMA40_PSIZE_LOG_1,
 106        .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 107};
 108
 109/**
 110 * enum 40_command - The different commands and/or statuses.
 111 *
 112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 116 */
 117enum d40_command {
 118        D40_DMA_STOP            = 0,
 119        D40_DMA_RUN             = 1,
 120        D40_DMA_SUSPEND_REQ     = 2,
 121        D40_DMA_SUSPENDED       = 3
 122};
 123
 124/*
 125 * enum d40_events - The different Event Enables for the event lines.
 126 *
 127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 130 * @D40_ROUND_EVENTLINE: Status check for event line.
 131 */
 132
 133enum d40_events {
 134        D40_DEACTIVATE_EVENTLINE        = 0,
 135        D40_ACTIVATE_EVENTLINE          = 1,
 136        D40_SUSPEND_REQ_EVENTLINE       = 2,
 137        D40_ROUND_EVENTLINE             = 3
 138};
 139
 140/*
 141 * These are the registers that has to be saved and later restored
 142 * when the DMA hw is powered off.
 143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 144 */
 145static u32 d40_backup_regs[] = {
 146        D40_DREG_LCPA,
 147        D40_DREG_LCLA,
 148        D40_DREG_PRMSE,
 149        D40_DREG_PRMSO,
 150        D40_DREG_PRMOE,
 151        D40_DREG_PRMOO,
 152};
 153
 154#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
 155
 156/*
 157 * since 9540 and 8540 has the same HW revision
 158 * use v4a for 9540 or ealier
 159 * use v4b for 8540 or later
 160 * HW revision:
 161 * DB8500ed has revision 0
 162 * DB8500v1 has revision 2
 163 * DB8500v2 has revision 3
 164 * AP9540v1 has revision 4
 165 * DB8540v1 has revision 4
 166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 167 */
 168static u32 d40_backup_regs_v4a[] = {
 169        D40_DREG_PSEG1,
 170        D40_DREG_PSEG2,
 171        D40_DREG_PSEG3,
 172        D40_DREG_PSEG4,
 173        D40_DREG_PCEG1,
 174        D40_DREG_PCEG2,
 175        D40_DREG_PCEG3,
 176        D40_DREG_PCEG4,
 177        D40_DREG_RSEG1,
 178        D40_DREG_RSEG2,
 179        D40_DREG_RSEG3,
 180        D40_DREG_RSEG4,
 181        D40_DREG_RCEG1,
 182        D40_DREG_RCEG2,
 183        D40_DREG_RCEG3,
 184        D40_DREG_RCEG4,
 185};
 186
 187#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
 188
 189static u32 d40_backup_regs_v4b[] = {
 190        D40_DREG_CPSEG1,
 191        D40_DREG_CPSEG2,
 192        D40_DREG_CPSEG3,
 193        D40_DREG_CPSEG4,
 194        D40_DREG_CPSEG5,
 195        D40_DREG_CPCEG1,
 196        D40_DREG_CPCEG2,
 197        D40_DREG_CPCEG3,
 198        D40_DREG_CPCEG4,
 199        D40_DREG_CPCEG5,
 200        D40_DREG_CRSEG1,
 201        D40_DREG_CRSEG2,
 202        D40_DREG_CRSEG3,
 203        D40_DREG_CRSEG4,
 204        D40_DREG_CRSEG5,
 205        D40_DREG_CRCEG1,
 206        D40_DREG_CRCEG2,
 207        D40_DREG_CRCEG3,
 208        D40_DREG_CRCEG4,
 209        D40_DREG_CRCEG5,
 210};
 211
 212#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
 213
 214static u32 d40_backup_regs_chan[] = {
 215        D40_CHAN_REG_SSCFG,
 216        D40_CHAN_REG_SSELT,
 217        D40_CHAN_REG_SSPTR,
 218        D40_CHAN_REG_SSLNK,
 219        D40_CHAN_REG_SDCFG,
 220        D40_CHAN_REG_SDELT,
 221        D40_CHAN_REG_SDPTR,
 222        D40_CHAN_REG_SDLNK,
 223};
 224
 225#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
 226                             BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
 227
 228/**
 229 * struct d40_interrupt_lookup - lookup table for interrupt handler
 230 *
 231 * @src: Interrupt mask register.
 232 * @clr: Interrupt clear register.
 233 * @is_error: true if this is an error interrupt.
 234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 236 */
 237struct d40_interrupt_lookup {
 238        u32 src;
 239        u32 clr;
 240        bool is_error;
 241        int offset;
 242};
 243
 244
 245static struct d40_interrupt_lookup il_v4a[] = {
 246        {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
 247        {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
 248        {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
 249        {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
 250        {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
 251        {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
 252        {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
 253        {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
 254        {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
 255        {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
 256};
 257
 258static struct d40_interrupt_lookup il_v4b[] = {
 259        {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
 260        {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
 261        {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
 262        {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
 263        {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
 264        {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
 265        {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
 266        {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
 267        {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
 268        {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
 269        {D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
 270        {D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
 271};
 272
 273/**
 274 * struct d40_reg_val - simple lookup struct
 275 *
 276 * @reg: The register.
 277 * @val: The value that belongs to the register in reg.
 278 */
 279struct d40_reg_val {
 280        unsigned int reg;
 281        unsigned int val;
 282};
 283
 284static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
 285        /* Clock every part of the DMA block from start */
 286        { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 287
 288        /* Interrupts on all logical channels */
 289        { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
 290        { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
 291        { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
 292        { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
 293        { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
 294        { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
 295        { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
 296        { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
 297        { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
 298        { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
 299        { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
 300        { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
 301};
 302static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
 303        /* Clock every part of the DMA block from start */
 304        { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 305
 306        /* Interrupts on all logical channels */
 307        { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
 308        { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
 309        { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
 310        { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
 311        { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
 312        { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
 313        { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
 314        { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
 315        { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
 316        { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
 317        { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
 318        { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
 319        { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
 320        { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
 321        { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
 322};
 323
 324/**
 325 * struct d40_lli_pool - Structure for keeping LLIs in memory
 326 *
 327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 329 * pre_alloc_lli is used.
 330 * @dma_addr: DMA address, if mapped
 331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 333 * one buffer to one buffer.
 334 */
 335struct d40_lli_pool {
 336        void    *base;
 337        int      size;
 338        dma_addr_t      dma_addr;
 339        /* Space for dst and src, plus an extra for padding */
 340        u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
 341};
 342
 343/**
 344 * struct d40_desc - A descriptor is one DMA job.
 345 *
 346 * @lli_phy: LLI settings for physical channel. Both src and dst=
 347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 348 * lli_len equals one.
 349 * @lli_log: Same as above but for logical channels.
 350 * @lli_pool: The pool with two entries pre-allocated.
 351 * @lli_len: Number of llis of current descriptor.
 352 * @lli_current: Number of transferred llis.
 353 * @lcla_alloc: Number of LCLA entries allocated.
 354 * @txd: DMA engine struct. Used for among other things for communication
 355 * during a transfer.
 356 * @node: List entry.
 357 * @is_in_client_list: true if the client owns this descriptor.
 358 * @cyclic: true if this is a cyclic job
 359 *
 360 * This descriptor is used for both logical and physical transfers.
 361 */
 362struct d40_desc {
 363        /* LLI physical */
 364        struct d40_phy_lli_bidir         lli_phy;
 365        /* LLI logical */
 366        struct d40_log_lli_bidir         lli_log;
 367
 368        struct d40_lli_pool              lli_pool;
 369        int                              lli_len;
 370        int                              lli_current;
 371        int                              lcla_alloc;
 372
 373        struct dma_async_tx_descriptor   txd;
 374        struct list_head                 node;
 375
 376        bool                             is_in_client_list;
 377        bool                             cyclic;
 378};
 379
 380/**
 381 * struct d40_lcla_pool - LCLA pool settings and data.
 382 *
 383 * @base: The virtual address of LCLA. 18 bit aligned.
 384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 385 * This pointer is only there for clean-up on error.
 386 * @pages: The number of pages needed for all physical channels.
 387 * Only used later for clean-up on error
 388 * @lock: Lock to protect the content in this struct.
 389 * @alloc_map: big map over which LCLA entry is own by which job.
 390 */
 391struct d40_lcla_pool {
 392        void            *base;
 393        dma_addr_t      dma_addr;
 394        void            *base_unaligned;
 395        int              pages;
 396        spinlock_t       lock;
 397        struct d40_desc **alloc_map;
 398};
 399
 400/**
 401 * struct d40_phy_res - struct for handling eventlines mapped to physical
 402 * channels.
 403 *
 404 * @lock: A lock protection this entity.
 405 * @reserved: True if used by secure world or otherwise.
 406 * @num: The physical channel number of this entity.
 407 * @allocated_src: Bit mapped to show which src event line's are mapped to
 408 * this physical channel. Can also be free or physically allocated.
 409 * @allocated_dst: Same as for src but is dst.
 410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
 411 * event line number.
 412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
 413 */
 414struct d40_phy_res {
 415        spinlock_t lock;
 416        bool       reserved;
 417        int        num;
 418        u32        allocated_src;
 419        u32        allocated_dst;
 420        bool       use_soft_lli;
 421};
 422
 423struct d40_base;
 424
 425/**
 426 * struct d40_chan - Struct that describes a channel.
 427 *
 428 * @lock: A spinlock to protect this struct.
 429 * @log_num: The logical number, if any of this channel.
 430 * @pending_tx: The number of pending transfers. Used between interrupt handler
 431 * and tasklet.
 432 * @busy: Set to true when transfer is ongoing on this channel.
 433 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 434 * point is NULL, then the channel is not allocated.
 435 * @chan: DMA engine handle.
 436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 437 * transfer and call client callback.
 438 * @client: Cliented owned descriptor list.
 439 * @pending_queue: Submitted jobs, to be issued by issue_pending()
 440 * @active: Active descriptor.
 441 * @done: Completed jobs
 442 * @queue: Queued jobs.
 443 * @prepare_queue: Prepared jobs.
 444 * @dma_cfg: The client configuration of this dma channel.
 445 * @configured: whether the dma_cfg configuration is valid
 446 * @base: Pointer to the device instance struct.
 447 * @src_def_cfg: Default cfg register setting for src.
 448 * @dst_def_cfg: Default cfg register setting for dst.
 449 * @log_def: Default logical channel settings.
 450 * @lcpa: Pointer to dst and src lcpa settings.
 451 * @runtime_addr: runtime configured address.
 452 * @runtime_direction: runtime configured direction.
 453 *
 454 * This struct can either "be" a logical or a physical channel.
 455 */
 456struct d40_chan {
 457        spinlock_t                       lock;
 458        int                              log_num;
 459        int                              pending_tx;
 460        bool                             busy;
 461        struct d40_phy_res              *phy_chan;
 462        struct dma_chan                  chan;
 463        struct tasklet_struct            tasklet;
 464        struct list_head                 client;
 465        struct list_head                 pending_queue;
 466        struct list_head                 active;
 467        struct list_head                 done;
 468        struct list_head                 queue;
 469        struct list_head                 prepare_queue;
 470        struct stedma40_chan_cfg         dma_cfg;
 471        bool                             configured;
 472        struct d40_base                 *base;
 473        /* Default register configurations */
 474        u32                              src_def_cfg;
 475        u32                              dst_def_cfg;
 476        struct d40_def_lcsp              log_def;
 477        struct d40_log_lli_full         *lcpa;
 478        /* Runtime reconfiguration */
 479        dma_addr_t                      runtime_addr;
 480        enum dma_transfer_direction     runtime_direction;
 481};
 482
 483/**
 484 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 485 * controller
 486 *
 487 * @backup: the pointer to the registers address array for backup
 488 * @backup_size: the size of the registers address array for backup
 489 * @realtime_en: the realtime enable register
 490 * @realtime_clear: the realtime clear register
 491 * @high_prio_en: the high priority enable register
 492 * @high_prio_clear: the high priority clear register
 493 * @interrupt_en: the interrupt enable register
 494 * @interrupt_clear: the interrupt clear register
 495 * @il: the pointer to struct d40_interrupt_lookup
 496 * @il_size: the size of d40_interrupt_lookup array
 497 * @init_reg: the pointer to the struct d40_reg_val
 498 * @init_reg_size: the size of d40_reg_val array
 499 */
 500struct d40_gen_dmac {
 501        u32                             *backup;
 502        u32                              backup_size;
 503        u32                              realtime_en;
 504        u32                              realtime_clear;
 505        u32                              high_prio_en;
 506        u32                              high_prio_clear;
 507        u32                              interrupt_en;
 508        u32                              interrupt_clear;
 509        struct d40_interrupt_lookup     *il;
 510        u32                              il_size;
 511        struct d40_reg_val              *init_reg;
 512        u32                              init_reg_size;
 513};
 514
 515/**
 516 * struct d40_base - The big global struct, one for each probe'd instance.
 517 *
 518 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 519 * @execmd_lock: Lock for execute command usage since several channels share
 520 * the same physical register.
 521 * @dev: The device structure.
 522 * @virtbase: The virtual base address of the DMA's register.
 523 * @rev: silicon revision detected.
 524 * @clk: Pointer to the DMA clock structure.
 525 * @phy_start: Physical memory start of the DMA registers.
 526 * @phy_size: Size of the DMA register map.
 527 * @irq: The IRQ number.
 528 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 529 * transfers).
 530 * @num_phy_chans: The number of physical channels. Read from HW. This
 531 * is the number of available channels for this driver, not counting "Secure
 532 * mode" allocated physical channels.
 533 * @num_log_chans: The number of logical channels. Calculated from
 534 * num_phy_chans.
 535 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 536 * @dma_slave: dma_device channels that can do only do slave transfers.
 537 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 538 * @phy_chans: Room for all possible physical channels in system.
 539 * @log_chans: Room for all possible logical channels in system.
 540 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 541 * to log_chans entries.
 542 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 543 * to phy_chans entries.
 544 * @plat_data: Pointer to provided platform_data which is the driver
 545 * configuration.
 546 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
 547 * @phy_res: Vector containing all physical channels.
 548 * @lcla_pool: lcla pool settings and data.
 549 * @lcpa_base: The virtual mapped address of LCPA.
 550 * @phy_lcpa: The physical address of the LCPA.
 551 * @lcpa_size: The size of the LCPA area.
 552 * @desc_slab: cache for descriptors.
 553 * @reg_val_backup: Here the values of some hardware registers are stored
 554 * before the DMA is powered off. They are restored when the power is back on.
 555 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 556 * later
 557 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 558 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 559 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 560 * DMA controller
 561 */
 562struct d40_base {
 563        spinlock_t                       interrupt_lock;
 564        spinlock_t                       execmd_lock;
 565        struct device                    *dev;
 566        void __iomem                     *virtbase;
 567        u8                                rev:4;
 568        struct clk                       *clk;
 569        phys_addr_t                       phy_start;
 570        resource_size_t                   phy_size;
 571        int                               irq;
 572        int                               num_memcpy_chans;
 573        int                               num_phy_chans;
 574        int                               num_log_chans;
 575        struct device_dma_parameters      dma_parms;
 576        struct dma_device                 dma_both;
 577        struct dma_device                 dma_slave;
 578        struct dma_device                 dma_memcpy;
 579        struct d40_chan                  *phy_chans;
 580        struct d40_chan                  *log_chans;
 581        struct d40_chan                 **lookup_log_chans;
 582        struct d40_chan                 **lookup_phy_chans;
 583        struct stedma40_platform_data    *plat_data;
 584        struct regulator                 *lcpa_regulator;
 585        /* Physical half channels */
 586        struct d40_phy_res               *phy_res;
 587        struct d40_lcla_pool              lcla_pool;
 588        void                             *lcpa_base;
 589        dma_addr_t                        phy_lcpa;
 590        resource_size_t                   lcpa_size;
 591        struct kmem_cache                *desc_slab;
 592        u32                               reg_val_backup[BACKUP_REGS_SZ];
 593        u32                               reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
 594        u32                              *reg_val_backup_chan;
 595        u16                               gcc_pwr_off_mask;
 596        struct d40_gen_dmac               gen_dmac;
 597};
 598
 599static struct device *chan2dev(struct d40_chan *d40c)
 600{
 601        return &d40c->chan.dev->device;
 602}
 603
 604static bool chan_is_physical(struct d40_chan *chan)
 605{
 606        return chan->log_num == D40_PHY_CHAN;
 607}
 608
 609static bool chan_is_logical(struct d40_chan *chan)
 610{
 611        return !chan_is_physical(chan);
 612}
 613
 614static void __iomem *chan_base(struct d40_chan *chan)
 615{
 616        return chan->base->virtbase + D40_DREG_PCBASE +
 617               chan->phy_chan->num * D40_DREG_PCDELTA;
 618}
 619
 620#define d40_err(dev, format, arg...)            \
 621        dev_err(dev, "[%s] " format, __func__, ## arg)
 622
 623#define chan_err(d40c, format, arg...)          \
 624        d40_err(chan2dev(d40c), format, ## arg)
 625
 626static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
 627                              int lli_len)
 628{
 629        bool is_log = chan_is_logical(d40c);
 630        u32 align;
 631        void *base;
 632
 633        if (is_log)
 634                align = sizeof(struct d40_log_lli);
 635        else
 636                align = sizeof(struct d40_phy_lli);
 637
 638        if (lli_len == 1) {
 639                base = d40d->lli_pool.pre_alloc_lli;
 640                d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
 641                d40d->lli_pool.base = NULL;
 642        } else {
 643                d40d->lli_pool.size = lli_len * 2 * align;
 644
 645                base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
 646                d40d->lli_pool.base = base;
 647
 648                if (d40d->lli_pool.base == NULL)
 649                        return -ENOMEM;
 650        }
 651
 652        if (is_log) {
 653                d40d->lli_log.src = PTR_ALIGN(base, align);
 654                d40d->lli_log.dst = d40d->lli_log.src + lli_len;
 655
 656                d40d->lli_pool.dma_addr = 0;
 657        } else {
 658                d40d->lli_phy.src = PTR_ALIGN(base, align);
 659                d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
 660
 661                d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
 662                                                         d40d->lli_phy.src,
 663                                                         d40d->lli_pool.size,
 664                                                         DMA_TO_DEVICE);
 665
 666                if (dma_mapping_error(d40c->base->dev,
 667                                      d40d->lli_pool.dma_addr)) {
 668                        kfree(d40d->lli_pool.base);
 669                        d40d->lli_pool.base = NULL;
 670                        d40d->lli_pool.dma_addr = 0;
 671                        return -ENOMEM;
 672                }
 673        }
 674
 675        return 0;
 676}
 677
 678static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
 679{
 680        if (d40d->lli_pool.dma_addr)
 681                dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
 682                                 d40d->lli_pool.size, DMA_TO_DEVICE);
 683
 684        kfree(d40d->lli_pool.base);
 685        d40d->lli_pool.base = NULL;
 686        d40d->lli_pool.size = 0;
 687        d40d->lli_log.src = NULL;
 688        d40d->lli_log.dst = NULL;
 689        d40d->lli_phy.src = NULL;
 690        d40d->lli_phy.dst = NULL;
 691}
 692
 693static int d40_lcla_alloc_one(struct d40_chan *d40c,
 694                              struct d40_desc *d40d)
 695{
 696        unsigned long flags;
 697        int i;
 698        int ret = -EINVAL;
 699
 700        spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 701
 702        /*
 703         * Allocate both src and dst at the same time, therefore the half
 704         * start on 1 since 0 can't be used since zero is used as end marker.
 705         */
 706        for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 707                int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 708
 709                if (!d40c->base->lcla_pool.alloc_map[idx]) {
 710                        d40c->base->lcla_pool.alloc_map[idx] = d40d;
 711                        d40d->lcla_alloc++;
 712                        ret = i;
 713                        break;
 714                }
 715        }
 716
 717        spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 718
 719        return ret;
 720}
 721
 722static int d40_lcla_free_all(struct d40_chan *d40c,
 723                             struct d40_desc *d40d)
 724{
 725        unsigned long flags;
 726        int i;
 727        int ret = -EINVAL;
 728
 729        if (chan_is_physical(d40c))
 730                return 0;
 731
 732        spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 733
 734        for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 735                int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 736
 737                if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
 738                        d40c->base->lcla_pool.alloc_map[idx] = NULL;
 739                        d40d->lcla_alloc--;
 740                        if (d40d->lcla_alloc == 0) {
 741                                ret = 0;
 742                                break;
 743                        }
 744                }
 745        }
 746
 747        spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 748
 749        return ret;
 750
 751}
 752
 753static void d40_desc_remove(struct d40_desc *d40d)
 754{
 755        list_del(&d40d->node);
 756}
 757
 758static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
 759{
 760        struct d40_desc *desc = NULL;
 761
 762        if (!list_empty(&d40c->client)) {
 763                struct d40_desc *d;
 764                struct d40_desc *_d;
 765
 766                list_for_each_entry_safe(d, _d, &d40c->client, node) {
 767                        if (async_tx_test_ack(&d->txd)) {
 768                                d40_desc_remove(d);
 769                                desc = d;
 770                                memset(desc, 0, sizeof(*desc));
 771                                break;
 772                        }
 773                }
 774        }
 775
 776        if (!desc)
 777                desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
 778
 779        if (desc)
 780                INIT_LIST_HEAD(&desc->node);
 781
 782        return desc;
 783}
 784
 785static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
 786{
 787
 788        d40_pool_lli_free(d40c, d40d);
 789        d40_lcla_free_all(d40c, d40d);
 790        kmem_cache_free(d40c->base->desc_slab, d40d);
 791}
 792
 793static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
 794{
 795        list_add_tail(&desc->node, &d40c->active);
 796}
 797
 798static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
 799{
 800        struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
 801        struct d40_phy_lli *lli_src = desc->lli_phy.src;
 802        void __iomem *base = chan_base(chan);
 803
 804        writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
 805        writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
 806        writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
 807        writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
 808
 809        writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
 810        writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
 811        writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
 812        writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
 813}
 814
 815static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
 816{
 817        list_add_tail(&desc->node, &d40c->done);
 818}
 819
 820static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
 821{
 822        struct d40_lcla_pool *pool = &chan->base->lcla_pool;
 823        struct d40_log_lli_bidir *lli = &desc->lli_log;
 824        int lli_current = desc->lli_current;
 825        int lli_len = desc->lli_len;
 826        bool cyclic = desc->cyclic;
 827        int curr_lcla = -EINVAL;
 828        int first_lcla = 0;
 829        bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
 830        bool linkback;
 831
 832        /*
 833         * We may have partially running cyclic transfers, in case we did't get
 834         * enough LCLA entries.
 835         */
 836        linkback = cyclic && lli_current == 0;
 837
 838        /*
 839         * For linkback, we need one LCLA even with only one link, because we
 840         * can't link back to the one in LCPA space
 841         */
 842        if (linkback || (lli_len - lli_current > 1)) {
 843                /*
 844                 * If the channel is expected to use only soft_lli don't
 845                 * allocate a lcla. This is to avoid a HW issue that exists
 846                 * in some controller during a peripheral to memory transfer
 847                 * that uses linked lists.
 848                 */
 849                if (!(chan->phy_chan->use_soft_lli &&
 850                        chan->dma_cfg.dir == DMA_DEV_TO_MEM))
 851                        curr_lcla = d40_lcla_alloc_one(chan, desc);
 852
 853                first_lcla = curr_lcla;
 854        }
 855
 856        /*
 857         * For linkback, we normally load the LCPA in the loop since we need to
 858         * link it to the second LCLA and not the first.  However, if we
 859         * couldn't even get a first LCLA, then we have to run in LCPA and
 860         * reload manually.
 861         */
 862        if (!linkback || curr_lcla == -EINVAL) {
 863                unsigned int flags = 0;
 864
 865                if (curr_lcla == -EINVAL)
 866                        flags |= LLI_TERM_INT;
 867
 868                d40_log_lli_lcpa_write(chan->lcpa,
 869                                       &lli->dst[lli_current],
 870                                       &lli->src[lli_current],
 871                                       curr_lcla,
 872                                       flags);
 873                lli_current++;
 874        }
 875
 876        if (curr_lcla < 0)
 877                goto out;
 878
 879        for (; lli_current < lli_len; lli_current++) {
 880                unsigned int lcla_offset = chan->phy_chan->num * 1024 +
 881                                           8 * curr_lcla * 2;
 882                struct d40_log_lli *lcla = pool->base + lcla_offset;
 883                unsigned int flags = 0;
 884                int next_lcla;
 885
 886                if (lli_current + 1 < lli_len)
 887                        next_lcla = d40_lcla_alloc_one(chan, desc);
 888                else
 889                        next_lcla = linkback ? first_lcla : -EINVAL;
 890
 891                if (cyclic || next_lcla == -EINVAL)
 892                        flags |= LLI_TERM_INT;
 893
 894                if (linkback && curr_lcla == first_lcla) {
 895                        /* First link goes in both LCPA and LCLA */
 896                        d40_log_lli_lcpa_write(chan->lcpa,
 897                                               &lli->dst[lli_current],
 898                                               &lli->src[lli_current],
 899                                               next_lcla, flags);
 900                }
 901
 902                /*
 903                 * One unused LCLA in the cyclic case if the very first
 904                 * next_lcla fails...
 905                 */
 906                d40_log_lli_lcla_write(lcla,
 907                                       &lli->dst[lli_current],
 908                                       &lli->src[lli_current],
 909                                       next_lcla, flags);
 910
 911                /*
 912                 * Cache maintenance is not needed if lcla is
 913                 * mapped in esram
 914                 */
 915                if (!use_esram_lcla) {
 916                        dma_sync_single_range_for_device(chan->base->dev,
 917                                                pool->dma_addr, lcla_offset,
 918                                                2 * sizeof(struct d40_log_lli),
 919                                                DMA_TO_DEVICE);
 920                }
 921                curr_lcla = next_lcla;
 922
 923                if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
 924                        lli_current++;
 925                        break;
 926                }
 927        }
 928
 929out:
 930        desc->lli_current = lli_current;
 931}
 932
 933static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
 934{
 935        if (chan_is_physical(d40c)) {
 936                d40_phy_lli_load(d40c, d40d);
 937                d40d->lli_current = d40d->lli_len;
 938        } else
 939                d40_log_lli_to_lcxa(d40c, d40d);
 940}
 941
 942static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
 943{
 944        struct d40_desc *d;
 945
 946        if (list_empty(&d40c->active))
 947                return NULL;
 948
 949        d = list_first_entry(&d40c->active,
 950                             struct d40_desc,
 951                             node);
 952        return d;
 953}
 954
 955/* remove desc from current queue and add it to the pending_queue */
 956static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
 957{
 958        d40_desc_remove(desc);
 959        desc->is_in_client_list = false;
 960        list_add_tail(&desc->node, &d40c->pending_queue);
 961}
 962
 963static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
 964{
 965        struct d40_desc *d;
 966
 967        if (list_empty(&d40c->pending_queue))
 968                return NULL;
 969
 970        d = list_first_entry(&d40c->pending_queue,
 971                             struct d40_desc,
 972                             node);
 973        return d;
 974}
 975
 976static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
 977{
 978        struct d40_desc *d;
 979
 980        if (list_empty(&d40c->queue))
 981                return NULL;
 982
 983        d = list_first_entry(&d40c->queue,
 984                             struct d40_desc,
 985                             node);
 986        return d;
 987}
 988
 989static struct d40_desc *d40_first_done(struct d40_chan *d40c)
 990{
 991        if (list_empty(&d40c->done))
 992                return NULL;
 993
 994        return list_first_entry(&d40c->done, struct d40_desc, node);
 995}
 996
 997static int d40_psize_2_burst_size(bool is_log, int psize)
 998{
 999        if (is_log) {
1000                if (psize == STEDMA40_PSIZE_LOG_1)
1001                        return 1;
1002        } else {
1003                if (psize == STEDMA40_PSIZE_PHY_1)
1004                        return 1;
1005        }
1006
1007        return 2 << psize;
1008}
1009
1010/*
1011 * The dma only supports transmitting packages up to
1012 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1013 *
1014 * Calculate the total number of dma elements required to send the entire sg list.
1015 */
1016static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1017{
1018        int dmalen;
1019        u32 max_w = max(data_width1, data_width2);
1020        u32 min_w = min(data_width1, data_width2);
1021        u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1022
1023        if (seg_max > STEDMA40_MAX_SEG_SIZE)
1024                seg_max -= max_w;
1025
1026        if (!IS_ALIGNED(size, max_w))
1027                return -EINVAL;
1028
1029        if (size <= seg_max)
1030                dmalen = 1;
1031        else {
1032                dmalen = size / seg_max;
1033                if (dmalen * seg_max < size)
1034                        dmalen++;
1035        }
1036        return dmalen;
1037}
1038
1039static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1040                           u32 data_width1, u32 data_width2)
1041{
1042        struct scatterlist *sg;
1043        int i;
1044        int len = 0;
1045        int ret;
1046
1047        for_each_sg(sgl, sg, sg_len, i) {
1048                ret = d40_size_2_dmalen(sg_dma_len(sg),
1049                                        data_width1, data_width2);
1050                if (ret < 0)
1051                        return ret;
1052                len += ret;
1053        }
1054        return len;
1055}
1056
1057static int __d40_execute_command_phy(struct d40_chan *d40c,
1058                                     enum d40_command command)
1059{
1060        u32 status;
1061        int i;
1062        void __iomem *active_reg;
1063        int ret = 0;
1064        unsigned long flags;
1065        u32 wmask;
1066
1067        if (command == D40_DMA_STOP) {
1068                ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1069                if (ret)
1070                        return ret;
1071        }
1072
1073        spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1074
1075        if (d40c->phy_chan->num % 2 == 0)
1076                active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1077        else
1078                active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1079
1080        if (command == D40_DMA_SUSPEND_REQ) {
1081                status = (readl(active_reg) &
1082                          D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1083                        D40_CHAN_POS(d40c->phy_chan->num);
1084
1085                if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1086                        goto done;
1087        }
1088
1089        wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1090        writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1091               active_reg);
1092
1093        if (command == D40_DMA_SUSPEND_REQ) {
1094
1095                for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1096                        status = (readl(active_reg) &
1097                                  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1098                                D40_CHAN_POS(d40c->phy_chan->num);
1099
1100                        cpu_relax();
1101                        /*
1102                         * Reduce the number of bus accesses while
1103                         * waiting for the DMA to suspend.
1104                         */
1105                        udelay(3);
1106
1107                        if (status == D40_DMA_STOP ||
1108                            status == D40_DMA_SUSPENDED)
1109                                break;
1110                }
1111
1112                if (i == D40_SUSPEND_MAX_IT) {
1113                        chan_err(d40c,
1114                                "unable to suspend the chl %d (log: %d) status %x\n",
1115                                d40c->phy_chan->num, d40c->log_num,
1116                                status);
1117                        dump_stack();
1118                        ret = -EBUSY;
1119                }
1120
1121        }
1122done:
1123        spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1124        return ret;
1125}
1126
1127static void d40_term_all(struct d40_chan *d40c)
1128{
1129        struct d40_desc *d40d;
1130        struct d40_desc *_d;
1131
1132        /* Release completed descriptors */
1133        while ((d40d = d40_first_done(d40c))) {
1134                d40_desc_remove(d40d);
1135                d40_desc_free(d40c, d40d);
1136        }
1137
1138        /* Release active descriptors */
1139        while ((d40d = d40_first_active_get(d40c))) {
1140                d40_desc_remove(d40d);
1141                d40_desc_free(d40c, d40d);
1142        }
1143
1144        /* Release queued descriptors waiting for transfer */
1145        while ((d40d = d40_first_queued(d40c))) {
1146                d40_desc_remove(d40d);
1147                d40_desc_free(d40c, d40d);
1148        }
1149
1150        /* Release pending descriptors */
1151        while ((d40d = d40_first_pending(d40c))) {
1152                d40_desc_remove(d40d);
1153                d40_desc_free(d40c, d40d);
1154        }
1155
1156        /* Release client owned descriptors */
1157        if (!list_empty(&d40c->client))
1158                list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1159                        d40_desc_remove(d40d);
1160                        d40_desc_free(d40c, d40d);
1161                }
1162
1163        /* Release descriptors in prepare queue */
1164        if (!list_empty(&d40c->prepare_queue))
1165                list_for_each_entry_safe(d40d, _d,
1166                                         &d40c->prepare_queue, node) {
1167                        d40_desc_remove(d40d);
1168                        d40_desc_free(d40c, d40d);
1169                }
1170
1171        d40c->pending_tx = 0;
1172}
1173
1174static void __d40_config_set_event(struct d40_chan *d40c,
1175                                   enum d40_events event_type, u32 event,
1176                                   int reg)
1177{
1178        void __iomem *addr = chan_base(d40c) + reg;
1179        int tries;
1180        u32 status;
1181
1182        switch (event_type) {
1183
1184        case D40_DEACTIVATE_EVENTLINE:
1185
1186                writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1187                       | ~D40_EVENTLINE_MASK(event), addr);
1188                break;
1189
1190        case D40_SUSPEND_REQ_EVENTLINE:
1191                status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1192                          D40_EVENTLINE_POS(event);
1193
1194                if (status == D40_DEACTIVATE_EVENTLINE ||
1195                    status == D40_SUSPEND_REQ_EVENTLINE)
1196                        break;
1197
1198                writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1199                       | ~D40_EVENTLINE_MASK(event), addr);
1200
1201                for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1202
1203                        status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1204                                  D40_EVENTLINE_POS(event);
1205
1206                        cpu_relax();
1207                        /*
1208                         * Reduce the number of bus accesses while
1209                         * waiting for the DMA to suspend.
1210                         */
1211                        udelay(3);
1212
1213                        if (status == D40_DEACTIVATE_EVENTLINE)
1214                                break;
1215                }
1216
1217                if (tries == D40_SUSPEND_MAX_IT) {
1218                        chan_err(d40c,
1219                                "unable to stop the event_line chl %d (log: %d)"
1220                                "status %x\n", d40c->phy_chan->num,
1221                                 d40c->log_num, status);
1222                }
1223                break;
1224
1225        case D40_ACTIVATE_EVENTLINE:
1226        /*
1227         * The hardware sometimes doesn't register the enable when src and dst
1228         * event lines are active on the same logical channel.  Retry to ensure
1229         * it does.  Usually only one retry is sufficient.
1230         */
1231                tries = 100;
1232                while (--tries) {
1233                        writel((D40_ACTIVATE_EVENTLINE <<
1234                                D40_EVENTLINE_POS(event)) |
1235                                ~D40_EVENTLINE_MASK(event), addr);
1236
1237                        if (readl(addr) & D40_EVENTLINE_MASK(event))
1238                                break;
1239                }
1240
1241                if (tries != 99)
1242                        dev_dbg(chan2dev(d40c),
1243                                "[%s] workaround enable S%cLNK (%d tries)\n",
1244                                __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1245                                100 - tries);
1246
1247                WARN_ON(!tries);
1248                break;
1249
1250        case D40_ROUND_EVENTLINE:
1251                BUG();
1252                break;
1253
1254        }
1255}
1256
1257static void d40_config_set_event(struct d40_chan *d40c,
1258                                 enum d40_events event_type)
1259{
1260        u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1261
1262        /* Enable event line connected to device (or memcpy) */
1263        if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1264            (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1265                __d40_config_set_event(d40c, event_type, event,
1266                                       D40_CHAN_REG_SSLNK);
1267
1268        if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1269                __d40_config_set_event(d40c, event_type, event,
1270                                       D40_CHAN_REG_SDLNK);
1271}
1272
1273static u32 d40_chan_has_events(struct d40_chan *d40c)
1274{
1275        void __iomem *chanbase = chan_base(d40c);
1276        u32 val;
1277
1278        val = readl(chanbase + D40_CHAN_REG_SSLNK);
1279        val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1280
1281        return val;
1282}
1283
1284static int
1285__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1286{
1287        unsigned long flags;
1288        int ret = 0;
1289        u32 active_status;
1290        void __iomem *active_reg;
1291
1292        if (d40c->phy_chan->num % 2 == 0)
1293                active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1294        else
1295                active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1296
1297
1298        spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1299
1300        switch (command) {
1301        case D40_DMA_STOP:
1302        case D40_DMA_SUSPEND_REQ:
1303
1304                active_status = (readl(active_reg) &
1305                                 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1306                                 D40_CHAN_POS(d40c->phy_chan->num);
1307
1308                if (active_status == D40_DMA_RUN)
1309                        d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1310                else
1311                        d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1312
1313                if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1314                        ret = __d40_execute_command_phy(d40c, command);
1315
1316                break;
1317
1318        case D40_DMA_RUN:
1319
1320                d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1321                ret = __d40_execute_command_phy(d40c, command);
1322                break;
1323
1324        case D40_DMA_SUSPENDED:
1325                BUG();
1326                break;
1327        }
1328
1329        spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1330        return ret;
1331}
1332
1333static int d40_channel_execute_command(struct d40_chan *d40c,
1334                                       enum d40_command command)
1335{
1336        if (chan_is_logical(d40c))
1337                return __d40_execute_command_log(d40c, command);
1338        else
1339                return __d40_execute_command_phy(d40c, command);
1340}
1341
1342static u32 d40_get_prmo(struct d40_chan *d40c)
1343{
1344        static const unsigned int phy_map[] = {
1345                [STEDMA40_PCHAN_BASIC_MODE]
1346                        = D40_DREG_PRMO_PCHAN_BASIC,
1347                [STEDMA40_PCHAN_MODULO_MODE]
1348                        = D40_DREG_PRMO_PCHAN_MODULO,
1349                [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1350                        = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1351        };
1352        static const unsigned int log_map[] = {
1353                [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1354                        = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1355                [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1356                        = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1357                [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1358                        = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1359        };
1360
1361        if (chan_is_physical(d40c))
1362                return phy_map[d40c->dma_cfg.mode_opt];
1363        else
1364                return log_map[d40c->dma_cfg.mode_opt];
1365}
1366
1367static void d40_config_write(struct d40_chan *d40c)
1368{
1369        u32 addr_base;
1370        u32 var;
1371
1372        /* Odd addresses are even addresses + 4 */
1373        addr_base = (d40c->phy_chan->num % 2) * 4;
1374        /* Setup channel mode to logical or physical */
1375        var = ((u32)(chan_is_logical(d40c)) + 1) <<
1376                D40_CHAN_POS(d40c->phy_chan->num);
1377        writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1378
1379        /* Setup operational mode option register */
1380        var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1381
1382        writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1383
1384        if (chan_is_logical(d40c)) {
1385                int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1386                           & D40_SREG_ELEM_LOG_LIDX_MASK;
1387                void __iomem *chanbase = chan_base(d40c);
1388
1389                /* Set default config for CFG reg */
1390                writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1391                writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1392
1393                /* Set LIDX for lcla */
1394                writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1395                writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1396
1397                /* Clear LNK which will be used by d40_chan_has_events() */
1398                writel(0, chanbase + D40_CHAN_REG_SSLNK);
1399                writel(0, chanbase + D40_CHAN_REG_SDLNK);
1400        }
1401}
1402
1403static u32 d40_residue(struct d40_chan *d40c)
1404{
1405        u32 num_elt;
1406
1407        if (chan_is_logical(d40c))
1408                num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1409                        >> D40_MEM_LCSP2_ECNT_POS;
1410        else {
1411                u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1412                num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1413                          >> D40_SREG_ELEM_PHY_ECNT_POS;
1414        }
1415
1416        return num_elt * d40c->dma_cfg.dst_info.data_width;
1417}
1418
1419static bool d40_tx_is_linked(struct d40_chan *d40c)
1420{
1421        bool is_link;
1422
1423        if (chan_is_logical(d40c))
1424                is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1425        else
1426                is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1427                          & D40_SREG_LNK_PHYS_LNK_MASK;
1428
1429        return is_link;
1430}
1431
1432static int d40_pause(struct dma_chan *chan)
1433{
1434        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1435        int res = 0;
1436        unsigned long flags;
1437
1438        if (d40c->phy_chan == NULL) {
1439                chan_err(d40c, "Channel is not allocated!\n");
1440                return -EINVAL;
1441        }
1442
1443        if (!d40c->busy)
1444                return 0;
1445
1446        spin_lock_irqsave(&d40c->lock, flags);
1447        pm_runtime_get_sync(d40c->base->dev);
1448
1449        res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1450
1451        pm_runtime_mark_last_busy(d40c->base->dev);
1452        pm_runtime_put_autosuspend(d40c->base->dev);
1453        spin_unlock_irqrestore(&d40c->lock, flags);
1454        return res;
1455}
1456
1457static int d40_resume(struct dma_chan *chan)
1458{
1459        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1460        int res = 0;
1461        unsigned long flags;
1462
1463        if (d40c->phy_chan == NULL) {
1464                chan_err(d40c, "Channel is not allocated!\n");
1465                return -EINVAL;
1466        }
1467
1468        if (!d40c->busy)
1469                return 0;
1470
1471        spin_lock_irqsave(&d40c->lock, flags);
1472        pm_runtime_get_sync(d40c->base->dev);
1473
1474        /* If bytes left to transfer or linked tx resume job */
1475        if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1476                res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1477
1478        pm_runtime_mark_last_busy(d40c->base->dev);
1479        pm_runtime_put_autosuspend(d40c->base->dev);
1480        spin_unlock_irqrestore(&d40c->lock, flags);
1481        return res;
1482}
1483
1484static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1485{
1486        struct d40_chan *d40c = container_of(tx->chan,
1487                                             struct d40_chan,
1488                                             chan);
1489        struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1490        unsigned long flags;
1491        dma_cookie_t cookie;
1492
1493        spin_lock_irqsave(&d40c->lock, flags);
1494        cookie = dma_cookie_assign(tx);
1495        d40_desc_queue(d40c, d40d);
1496        spin_unlock_irqrestore(&d40c->lock, flags);
1497
1498        return cookie;
1499}
1500
1501static int d40_start(struct d40_chan *d40c)
1502{
1503        return d40_channel_execute_command(d40c, D40_DMA_RUN);
1504}
1505
1506static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1507{
1508        struct d40_desc *d40d;
1509        int err;
1510
1511        /* Start queued jobs, if any */
1512        d40d = d40_first_queued(d40c);
1513
1514        if (d40d != NULL) {
1515                if (!d40c->busy) {
1516                        d40c->busy = true;
1517                        pm_runtime_get_sync(d40c->base->dev);
1518                }
1519
1520                /* Remove from queue */
1521                d40_desc_remove(d40d);
1522
1523                /* Add to active queue */
1524                d40_desc_submit(d40c, d40d);
1525
1526                /* Initiate DMA job */
1527                d40_desc_load(d40c, d40d);
1528
1529                /* Start dma job */
1530                err = d40_start(d40c);
1531
1532                if (err)
1533                        return NULL;
1534        }
1535
1536        return d40d;
1537}
1538
1539/* called from interrupt context */
1540static void dma_tc_handle(struct d40_chan *d40c)
1541{
1542        struct d40_desc *d40d;
1543
1544        /* Get first active entry from list */
1545        d40d = d40_first_active_get(d40c);
1546
1547        if (d40d == NULL)
1548                return;
1549
1550        if (d40d->cyclic) {
1551                /*
1552                 * If this was a paritially loaded list, we need to reloaded
1553                 * it, and only when the list is completed.  We need to check
1554                 * for done because the interrupt will hit for every link, and
1555                 * not just the last one.
1556                 */
1557                if (d40d->lli_current < d40d->lli_len
1558                    && !d40_tx_is_linked(d40c)
1559                    && !d40_residue(d40c)) {
1560                        d40_lcla_free_all(d40c, d40d);
1561                        d40_desc_load(d40c, d40d);
1562                        (void) d40_start(d40c);
1563
1564                        if (d40d->lli_current == d40d->lli_len)
1565                                d40d->lli_current = 0;
1566                }
1567        } else {
1568                d40_lcla_free_all(d40c, d40d);
1569
1570                if (d40d->lli_current < d40d->lli_len) {
1571                        d40_desc_load(d40c, d40d);
1572                        /* Start dma job */
1573                        (void) d40_start(d40c);
1574                        return;
1575                }
1576
1577                if (d40_queue_start(d40c) == NULL) {
1578                        d40c->busy = false;
1579
1580                        pm_runtime_mark_last_busy(d40c->base->dev);
1581                        pm_runtime_put_autosuspend(d40c->base->dev);
1582                }
1583
1584                d40_desc_remove(d40d);
1585                d40_desc_done(d40c, d40d);
1586        }
1587
1588        d40c->pending_tx++;
1589        tasklet_schedule(&d40c->tasklet);
1590
1591}
1592
1593static void dma_tasklet(unsigned long data)
1594{
1595        struct d40_chan *d40c = (struct d40_chan *) data;
1596        struct d40_desc *d40d;
1597        unsigned long flags;
1598        bool callback_active;
1599        dma_async_tx_callback callback;
1600        void *callback_param;
1601
1602        spin_lock_irqsave(&d40c->lock, flags);
1603
1604        /* Get first entry from the done list */
1605        d40d = d40_first_done(d40c);
1606        if (d40d == NULL) {
1607                /* Check if we have reached here for cyclic job */
1608                d40d = d40_first_active_get(d40c);
1609                if (d40d == NULL || !d40d->cyclic)
1610                        goto err;
1611        }
1612
1613        if (!d40d->cyclic)
1614                dma_cookie_complete(&d40d->txd);
1615
1616        /*
1617         * If terminating a channel pending_tx is set to zero.
1618         * This prevents any finished active jobs to return to the client.
1619         */
1620        if (d40c->pending_tx == 0) {
1621                spin_unlock_irqrestore(&d40c->lock, flags);
1622                return;
1623        }
1624
1625        /* Callback to client */
1626        callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1627        callback = d40d->txd.callback;
1628        callback_param = d40d->txd.callback_param;
1629
1630        if (!d40d->cyclic) {
1631                if (async_tx_test_ack(&d40d->txd)) {
1632                        d40_desc_remove(d40d);
1633                        d40_desc_free(d40c, d40d);
1634                } else if (!d40d->is_in_client_list) {
1635                        d40_desc_remove(d40d);
1636                        d40_lcla_free_all(d40c, d40d);
1637                        list_add_tail(&d40d->node, &d40c->client);
1638                        d40d->is_in_client_list = true;
1639                }
1640        }
1641
1642        d40c->pending_tx--;
1643
1644        if (d40c->pending_tx)
1645                tasklet_schedule(&d40c->tasklet);
1646
1647        spin_unlock_irqrestore(&d40c->lock, flags);
1648
1649        if (callback_active && callback)
1650                callback(callback_param);
1651
1652        return;
1653
1654err:
1655        /* Rescue manouver if receiving double interrupts */
1656        if (d40c->pending_tx > 0)
1657                d40c->pending_tx--;
1658        spin_unlock_irqrestore(&d40c->lock, flags);
1659}
1660
1661static irqreturn_t d40_handle_interrupt(int irq, void *data)
1662{
1663        int i;
1664        u32 idx;
1665        u32 row;
1666        long chan = -1;
1667        struct d40_chan *d40c;
1668        unsigned long flags;
1669        struct d40_base *base = data;
1670        u32 regs[base->gen_dmac.il_size];
1671        struct d40_interrupt_lookup *il = base->gen_dmac.il;
1672        u32 il_size = base->gen_dmac.il_size;
1673
1674        spin_lock_irqsave(&base->interrupt_lock, flags);
1675
1676        /* Read interrupt status of both logical and physical channels */
1677        for (i = 0; i < il_size; i++)
1678                regs[i] = readl(base->virtbase + il[i].src);
1679
1680        for (;;) {
1681
1682                chan = find_next_bit((unsigned long *)regs,
1683                                     BITS_PER_LONG * il_size, chan + 1);
1684
1685                /* No more set bits found? */
1686                if (chan == BITS_PER_LONG * il_size)
1687                        break;
1688
1689                row = chan / BITS_PER_LONG;
1690                idx = chan & (BITS_PER_LONG - 1);
1691
1692                if (il[row].offset == D40_PHY_CHAN)
1693                        d40c = base->lookup_phy_chans[idx];
1694                else
1695                        d40c = base->lookup_log_chans[il[row].offset + idx];
1696
1697                if (!d40c) {
1698                        /*
1699                         * No error because this can happen if something else
1700                         * in the system is using the channel.
1701                         */
1702                        continue;
1703                }
1704
1705                /* ACK interrupt */
1706                writel(BIT(idx), base->virtbase + il[row].clr);
1707
1708                spin_lock(&d40c->lock);
1709
1710                if (!il[row].is_error)
1711                        dma_tc_handle(d40c);
1712                else
1713                        d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1714                                chan, il[row].offset, idx);
1715
1716                spin_unlock(&d40c->lock);
1717        }
1718
1719        spin_unlock_irqrestore(&base->interrupt_lock, flags);
1720
1721        return IRQ_HANDLED;
1722}
1723
1724static int d40_validate_conf(struct d40_chan *d40c,
1725                             struct stedma40_chan_cfg *conf)
1726{
1727        int res = 0;
1728        bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1729
1730        if (!conf->dir) {
1731                chan_err(d40c, "Invalid direction.\n");
1732                res = -EINVAL;
1733        }
1734
1735        if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1736            (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1737            (conf->dev_type < 0)) {
1738                chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1739                res = -EINVAL;
1740        }
1741
1742        if (conf->dir == DMA_DEV_TO_DEV) {
1743                /*
1744                 * DMAC HW supports it. Will be added to this driver,
1745                 * in case any dma client requires it.
1746                 */
1747                chan_err(d40c, "periph to periph not supported\n");
1748                res = -EINVAL;
1749        }
1750
1751        if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1752            conf->src_info.data_width !=
1753            d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1754            conf->dst_info.data_width) {
1755                /*
1756                 * The DMAC hardware only supports
1757                 * src (burst x width) == dst (burst x width)
1758                 */
1759
1760                chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1761                res = -EINVAL;
1762        }
1763
1764        return res;
1765}
1766
1767static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1768                               bool is_src, int log_event_line, bool is_log,
1769                               bool *first_user)
1770{
1771        unsigned long flags;
1772        spin_lock_irqsave(&phy->lock, flags);
1773
1774        *first_user = ((phy->allocated_src | phy->allocated_dst)
1775                        == D40_ALLOC_FREE);
1776
1777        if (!is_log) {
1778                /* Physical interrupts are masked per physical full channel */
1779                if (phy->allocated_src == D40_ALLOC_FREE &&
1780                    phy->allocated_dst == D40_ALLOC_FREE) {
1781                        phy->allocated_dst = D40_ALLOC_PHY;
1782                        phy->allocated_src = D40_ALLOC_PHY;
1783                        goto found;
1784                } else
1785                        goto not_found;
1786        }
1787
1788        /* Logical channel */
1789        if (is_src) {
1790                if (phy->allocated_src == D40_ALLOC_PHY)
1791                        goto not_found;
1792
1793                if (phy->allocated_src == D40_ALLOC_FREE)
1794                        phy->allocated_src = D40_ALLOC_LOG_FREE;
1795
1796                if (!(phy->allocated_src & BIT(log_event_line))) {
1797                        phy->allocated_src |= BIT(log_event_line);
1798                        goto found;
1799                } else
1800                        goto not_found;
1801        } else {
1802                if (phy->allocated_dst == D40_ALLOC_PHY)
1803                        goto not_found;
1804
1805                if (phy->allocated_dst == D40_ALLOC_FREE)
1806                        phy->allocated_dst = D40_ALLOC_LOG_FREE;
1807
1808                if (!(phy->allocated_dst & BIT(log_event_line))) {
1809                        phy->allocated_dst |= BIT(log_event_line);
1810                        goto found;
1811                } else
1812                        goto not_found;
1813        }
1814
1815not_found:
1816        spin_unlock_irqrestore(&phy->lock, flags);
1817        return false;
1818found:
1819        spin_unlock_irqrestore(&phy->lock, flags);
1820        return true;
1821}
1822
1823static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1824                               int log_event_line)
1825{
1826        unsigned long flags;
1827        bool is_free = false;
1828
1829        spin_lock_irqsave(&phy->lock, flags);
1830        if (!log_event_line) {
1831                phy->allocated_dst = D40_ALLOC_FREE;
1832                phy->allocated_src = D40_ALLOC_FREE;
1833                is_free = true;
1834                goto out;
1835        }
1836
1837        /* Logical channel */
1838        if (is_src) {
1839                phy->allocated_src &= ~BIT(log_event_line);
1840                if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1841                        phy->allocated_src = D40_ALLOC_FREE;
1842        } else {
1843                phy->allocated_dst &= ~BIT(log_event_line);
1844                if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1845                        phy->allocated_dst = D40_ALLOC_FREE;
1846        }
1847
1848        is_free = ((phy->allocated_src | phy->allocated_dst) ==
1849                   D40_ALLOC_FREE);
1850
1851out:
1852        spin_unlock_irqrestore(&phy->lock, flags);
1853
1854        return is_free;
1855}
1856
1857static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1858{
1859        int dev_type = d40c->dma_cfg.dev_type;
1860        int event_group;
1861        int event_line;
1862        struct d40_phy_res *phys;
1863        int i;
1864        int j;
1865        int log_num;
1866        int num_phy_chans;
1867        bool is_src;
1868        bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1869
1870        phys = d40c->base->phy_res;
1871        num_phy_chans = d40c->base->num_phy_chans;
1872
1873        if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1874                log_num = 2 * dev_type;
1875                is_src = true;
1876        } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1877                   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1878                /* dst event lines are used for logical memcpy */
1879                log_num = 2 * dev_type + 1;
1880                is_src = false;
1881        } else
1882                return -EINVAL;
1883
1884        event_group = D40_TYPE_TO_GROUP(dev_type);
1885        event_line = D40_TYPE_TO_EVENT(dev_type);
1886
1887        if (!is_log) {
1888                if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1889                        /* Find physical half channel */
1890                        if (d40c->dma_cfg.use_fixed_channel) {
1891                                i = d40c->dma_cfg.phy_channel;
1892                                if (d40_alloc_mask_set(&phys[i], is_src,
1893                                                       0, is_log,
1894                                                       first_phy_user))
1895                                        goto found_phy;
1896                        } else {
1897                                for (i = 0; i < num_phy_chans; i++) {
1898                                        if (d40_alloc_mask_set(&phys[i], is_src,
1899                                                       0, is_log,
1900                                                       first_phy_user))
1901                                                goto found_phy;
1902                                }
1903                        }
1904                } else
1905                        for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1906                                int phy_num = j  + event_group * 2;
1907                                for (i = phy_num; i < phy_num + 2; i++) {
1908                                        if (d40_alloc_mask_set(&phys[i],
1909                                                               is_src,
1910                                                               0,
1911                                                               is_log,
1912                                                               first_phy_user))
1913                                                goto found_phy;
1914                                }
1915                        }
1916                return -EINVAL;
1917found_phy:
1918                d40c->phy_chan = &phys[i];
1919                d40c->log_num = D40_PHY_CHAN;
1920                goto out;
1921        }
1922        if (dev_type == -1)
1923                return -EINVAL;
1924
1925        /* Find logical channel */
1926        for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1927                int phy_num = j + event_group * 2;
1928
1929                if (d40c->dma_cfg.use_fixed_channel) {
1930                        i = d40c->dma_cfg.phy_channel;
1931
1932                        if ((i != phy_num) && (i != phy_num + 1)) {
1933                                dev_err(chan2dev(d40c),
1934                                        "invalid fixed phy channel %d\n", i);
1935                                return -EINVAL;
1936                        }
1937
1938                        if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1939                                               is_log, first_phy_user))
1940                                goto found_log;
1941
1942                        dev_err(chan2dev(d40c),
1943                                "could not allocate fixed phy channel %d\n", i);
1944                        return -EINVAL;
1945                }
1946
1947                /*
1948                 * Spread logical channels across all available physical rather
1949                 * than pack every logical channel at the first available phy
1950                 * channels.
1951                 */
1952                if (is_src) {
1953                        for (i = phy_num; i < phy_num + 2; i++) {
1954                                if (d40_alloc_mask_set(&phys[i], is_src,
1955                                                       event_line, is_log,
1956                                                       first_phy_user))
1957                                        goto found_log;
1958                        }
1959                } else {
1960                        for (i = phy_num + 1; i >= phy_num; i--) {
1961                                if (d40_alloc_mask_set(&phys[i], is_src,
1962                                                       event_line, is_log,
1963                                                       first_phy_user))
1964                                        goto found_log;
1965                        }
1966                }
1967        }
1968        return -EINVAL;
1969
1970found_log:
1971        d40c->phy_chan = &phys[i];
1972        d40c->log_num = log_num;
1973out:
1974
1975        if (is_log)
1976                d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1977        else
1978                d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1979
1980        return 0;
1981
1982}
1983
1984static int d40_config_memcpy(struct d40_chan *d40c)
1985{
1986        dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1987
1988        if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1989                d40c->dma_cfg = dma40_memcpy_conf_log;
1990                d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1991
1992                d40_log_cfg(&d40c->dma_cfg,
1993                            &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1994
1995        } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1996                   dma_has_cap(DMA_SLAVE, cap)) {
1997                d40c->dma_cfg = dma40_memcpy_conf_phy;
1998
1999                /* Generate interrrupt at end of transfer or relink. */
2000                d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
2001
2002                /* Generate interrupt on error. */
2003                d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2004                d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2005
2006        } else {
2007                chan_err(d40c, "No memcpy\n");
2008                return -EINVAL;
2009        }
2010
2011        return 0;
2012}
2013
2014static int d40_free_dma(struct d40_chan *d40c)
2015{
2016
2017        int res = 0;
2018        u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2019        struct d40_phy_res *phy = d40c->phy_chan;
2020        bool is_src;
2021
2022        /* Terminate all queued and active transfers */
2023        d40_term_all(d40c);
2024
2025        if (phy == NULL) {
2026                chan_err(d40c, "phy == null\n");
2027                return -EINVAL;
2028        }
2029
2030        if (phy->allocated_src == D40_ALLOC_FREE &&
2031            phy->allocated_dst == D40_ALLOC_FREE) {
2032                chan_err(d40c, "channel already free\n");
2033                return -EINVAL;
2034        }
2035
2036        if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2037            d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2038                is_src = false;
2039        else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2040                is_src = true;
2041        else {
2042                chan_err(d40c, "Unknown direction\n");
2043                return -EINVAL;
2044        }
2045
2046        pm_runtime_get_sync(d40c->base->dev);
2047        res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2048        if (res) {
2049                chan_err(d40c, "stop failed\n");
2050                goto out;
2051        }
2052
2053        d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2054
2055        if (chan_is_logical(d40c))
2056                d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2057        else
2058                d40c->base->lookup_phy_chans[phy->num] = NULL;
2059
2060        if (d40c->busy) {
2061                pm_runtime_mark_last_busy(d40c->base->dev);
2062                pm_runtime_put_autosuspend(d40c->base->dev);
2063        }
2064
2065        d40c->busy = false;
2066        d40c->phy_chan = NULL;
2067        d40c->configured = false;
2068out:
2069
2070        pm_runtime_mark_last_busy(d40c->base->dev);
2071        pm_runtime_put_autosuspend(d40c->base->dev);
2072        return res;
2073}
2074
2075static bool d40_is_paused(struct d40_chan *d40c)
2076{
2077        void __iomem *chanbase = chan_base(d40c);
2078        bool is_paused = false;
2079        unsigned long flags;
2080        void __iomem *active_reg;
2081        u32 status;
2082        u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2083
2084        spin_lock_irqsave(&d40c->lock, flags);
2085
2086        if (chan_is_physical(d40c)) {
2087                if (d40c->phy_chan->num % 2 == 0)
2088                        active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2089                else
2090                        active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2091
2092                status = (readl(active_reg) &
2093                          D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2094                        D40_CHAN_POS(d40c->phy_chan->num);
2095                if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2096                        is_paused = true;
2097
2098                goto _exit;
2099        }
2100
2101        if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2102            d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2103                status = readl(chanbase + D40_CHAN_REG_SDLNK);
2104        } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2105                status = readl(chanbase + D40_CHAN_REG_SSLNK);
2106        } else {
2107                chan_err(d40c, "Unknown direction\n");
2108                goto _exit;
2109        }
2110
2111        status = (status & D40_EVENTLINE_MASK(event)) >>
2112                D40_EVENTLINE_POS(event);
2113
2114        if (status != D40_DMA_RUN)
2115                is_paused = true;
2116_exit:
2117        spin_unlock_irqrestore(&d40c->lock, flags);
2118        return is_paused;
2119
2120}
2121
2122static u32 stedma40_residue(struct dma_chan *chan)
2123{
2124        struct d40_chan *d40c =
2125                container_of(chan, struct d40_chan, chan);
2126        u32 bytes_left;
2127        unsigned long flags;
2128
2129        spin_lock_irqsave(&d40c->lock, flags);
2130        bytes_left = d40_residue(d40c);
2131        spin_unlock_irqrestore(&d40c->lock, flags);
2132
2133        return bytes_left;
2134}
2135
2136static int
2137d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2138                struct scatterlist *sg_src, struct scatterlist *sg_dst,
2139                unsigned int sg_len, dma_addr_t src_dev_addr,
2140                dma_addr_t dst_dev_addr)
2141{
2142        struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2143        struct stedma40_half_channel_info *src_info = &cfg->src_info;
2144        struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2145        int ret;
2146
2147        ret = d40_log_sg_to_lli(sg_src, sg_len,
2148                                src_dev_addr,
2149                                desc->lli_log.src,
2150                                chan->log_def.lcsp1,
2151                                src_info->data_width,
2152                                dst_info->data_width);
2153
2154        ret = d40_log_sg_to_lli(sg_dst, sg_len,
2155                                dst_dev_addr,
2156                                desc->lli_log.dst,
2157                                chan->log_def.lcsp3,
2158                                dst_info->data_width,
2159                                src_info->data_width);
2160
2161        return ret < 0 ? ret : 0;
2162}
2163
2164static int
2165d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2166                struct scatterlist *sg_src, struct scatterlist *sg_dst,
2167                unsigned int sg_len, dma_addr_t src_dev_addr,
2168                dma_addr_t dst_dev_addr)
2169{
2170        struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2171        struct stedma40_half_channel_info *src_info = &cfg->src_info;
2172        struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2173        unsigned long flags = 0;
2174        int ret;
2175
2176        if (desc->cyclic)
2177                flags |= LLI_CYCLIC | LLI_TERM_INT;
2178
2179        ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2180                                desc->lli_phy.src,
2181                                virt_to_phys(desc->lli_phy.src),
2182                                chan->src_def_cfg,
2183                                src_info, dst_info, flags);
2184
2185        ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2186                                desc->lli_phy.dst,
2187                                virt_to_phys(desc->lli_phy.dst),
2188                                chan->dst_def_cfg,
2189                                dst_info, src_info, flags);
2190
2191        dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2192                                   desc->lli_pool.size, DMA_TO_DEVICE);
2193
2194        return ret < 0 ? ret : 0;
2195}
2196
2197static struct d40_desc *
2198d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2199              unsigned int sg_len, unsigned long dma_flags)
2200{
2201        struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2202        struct d40_desc *desc;
2203        int ret;
2204
2205        desc = d40_desc_get(chan);
2206        if (!desc)
2207                return NULL;
2208
2209        desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2210                                        cfg->dst_info.data_width);
2211        if (desc->lli_len < 0) {
2212                chan_err(chan, "Unaligned size\n");
2213                goto err;
2214        }
2215
2216        ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2217        if (ret < 0) {
2218                chan_err(chan, "Could not allocate lli\n");
2219                goto err;
2220        }
2221
2222        desc->lli_current = 0;
2223        desc->txd.flags = dma_flags;
2224        desc->txd.tx_submit = d40_tx_submit;
2225
2226        dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2227
2228        return desc;
2229
2230err:
2231        d40_desc_free(chan, desc);
2232        return NULL;
2233}
2234
2235static struct dma_async_tx_descriptor *
2236d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2237            struct scatterlist *sg_dst, unsigned int sg_len,
2238            enum dma_transfer_direction direction, unsigned long dma_flags)
2239{
2240        struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2241        dma_addr_t src_dev_addr = 0;
2242        dma_addr_t dst_dev_addr = 0;
2243        struct d40_desc *desc;
2244        unsigned long flags;
2245        int ret;
2246
2247        if (!chan->phy_chan) {
2248                chan_err(chan, "Cannot prepare unallocated channel\n");
2249                return NULL;
2250        }
2251
2252        spin_lock_irqsave(&chan->lock, flags);
2253
2254        desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2255        if (desc == NULL)
2256                goto err;
2257
2258        if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2259                desc->cyclic = true;
2260
2261        if (direction == DMA_DEV_TO_MEM)
2262                src_dev_addr = chan->runtime_addr;
2263        else if (direction == DMA_MEM_TO_DEV)
2264                dst_dev_addr = chan->runtime_addr;
2265
2266        if (chan_is_logical(chan))
2267                ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2268                                      sg_len, src_dev_addr, dst_dev_addr);
2269        else
2270                ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2271                                      sg_len, src_dev_addr, dst_dev_addr);
2272
2273        if (ret) {
2274                chan_err(chan, "Failed to prepare %s sg job: %d\n",
2275                         chan_is_logical(chan) ? "log" : "phy", ret);
2276                goto err;
2277        }
2278
2279        /*
2280         * add descriptor to the prepare queue in order to be able
2281         * to free them later in terminate_all
2282         */
2283        list_add_tail(&desc->node, &chan->prepare_queue);
2284
2285        spin_unlock_irqrestore(&chan->lock, flags);
2286
2287        return &desc->txd;
2288
2289err:
2290        if (desc)
2291                d40_desc_free(chan, desc);
2292        spin_unlock_irqrestore(&chan->lock, flags);
2293        return NULL;
2294}
2295
2296bool stedma40_filter(struct dma_chan *chan, void *data)
2297{
2298        struct stedma40_chan_cfg *info = data;
2299        struct d40_chan *d40c =
2300                container_of(chan, struct d40_chan, chan);
2301        int err;
2302
2303        if (data) {
2304                err = d40_validate_conf(d40c, info);
2305                if (!err)
2306                        d40c->dma_cfg = *info;
2307        } else
2308                err = d40_config_memcpy(d40c);
2309
2310        if (!err)
2311                d40c->configured = true;
2312
2313        return err == 0;
2314}
2315EXPORT_SYMBOL(stedma40_filter);
2316
2317static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2318{
2319        bool realtime = d40c->dma_cfg.realtime;
2320        bool highprio = d40c->dma_cfg.high_priority;
2321        u32 rtreg;
2322        u32 event = D40_TYPE_TO_EVENT(dev_type);
2323        u32 group = D40_TYPE_TO_GROUP(dev_type);
2324        u32 bit = BIT(event);
2325        u32 prioreg;
2326        struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2327
2328        rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2329        /*
2330         * Due to a hardware bug, in some cases a logical channel triggered by
2331         * a high priority destination event line can generate extra packet
2332         * transactions.
2333         *
2334         * The workaround is to not set the high priority level for the
2335         * destination event lines that trigger logical channels.
2336         */
2337        if (!src && chan_is_logical(d40c))
2338                highprio = false;
2339
2340        prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2341
2342        /* Destination event lines are stored in the upper halfword */
2343        if (!src)
2344                bit <<= 16;
2345
2346        writel(bit, d40c->base->virtbase + prioreg + group * 4);
2347        writel(bit, d40c->base->virtbase + rtreg + group * 4);
2348}
2349
2350static void d40_set_prio_realtime(struct d40_chan *d40c)
2351{
2352        if (d40c->base->rev < 3)
2353                return;
2354
2355        if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2356            (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2357                __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2358
2359        if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2360            (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2361                __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2362}
2363
2364#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2365#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2366#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2367#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2368#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2369
2370static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2371                                  struct of_dma *ofdma)
2372{
2373        struct stedma40_chan_cfg cfg;
2374        dma_cap_mask_t cap;
2375        u32 flags;
2376
2377        memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2378
2379        dma_cap_zero(cap);
2380        dma_cap_set(DMA_SLAVE, cap);
2381
2382        cfg.dev_type = dma_spec->args[0];
2383        flags = dma_spec->args[2];
2384
2385        switch (D40_DT_FLAGS_MODE(flags)) {
2386        case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2387        case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2388        }
2389
2390        switch (D40_DT_FLAGS_DIR(flags)) {
2391        case 0:
2392                cfg.dir = DMA_MEM_TO_DEV;
2393                cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2394                break;
2395        case 1:
2396                cfg.dir = DMA_DEV_TO_MEM;
2397                cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2398                break;
2399        }
2400
2401        if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2402                cfg.phy_channel = dma_spec->args[1];
2403                cfg.use_fixed_channel = true;
2404        }
2405
2406        if (D40_DT_FLAGS_HIGH_PRIO(flags))
2407                cfg.high_priority = true;
2408
2409        return dma_request_channel(cap, stedma40_filter, &cfg);
2410}
2411
2412/* DMA ENGINE functions */
2413static int d40_alloc_chan_resources(struct dma_chan *chan)
2414{
2415        int err;
2416        unsigned long flags;
2417        struct d40_chan *d40c =
2418                container_of(chan, struct d40_chan, chan);
2419        bool is_free_phy;
2420        spin_lock_irqsave(&d40c->lock, flags);
2421
2422        dma_cookie_init(chan);
2423
2424        /* If no dma configuration is set use default configuration (memcpy) */
2425        if (!d40c->configured) {
2426                err = d40_config_memcpy(d40c);
2427                if (err) {
2428                        chan_err(d40c, "Failed to configure memcpy channel\n");
2429                        goto fail;
2430                }
2431        }
2432
2433        err = d40_allocate_channel(d40c, &is_free_phy);
2434        if (err) {
2435                chan_err(d40c, "Failed to allocate channel\n");
2436                d40c->configured = false;
2437                goto fail;
2438        }
2439
2440        pm_runtime_get_sync(d40c->base->dev);
2441
2442        d40_set_prio_realtime(d40c);
2443
2444        if (chan_is_logical(d40c)) {
2445                if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2446                        d40c->lcpa = d40c->base->lcpa_base +
2447                                d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2448                else
2449                        d40c->lcpa = d40c->base->lcpa_base +
2450                                d40c->dma_cfg.dev_type *
2451                                D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2452
2453                /* Unmask the Global Interrupt Mask. */
2454                d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2455                d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2456        }
2457
2458        dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2459                 chan_is_logical(d40c) ? "logical" : "physical",
2460                 d40c->phy_chan->num,
2461                 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2462
2463
2464        /*
2465         * Only write channel configuration to the DMA if the physical
2466         * resource is free. In case of multiple logical channels
2467         * on the same physical resource, only the first write is necessary.
2468         */
2469        if (is_free_phy)
2470                d40_config_write(d40c);
2471fail:
2472        pm_runtime_mark_last_busy(d40c->base->dev);
2473        pm_runtime_put_autosuspend(d40c->base->dev);
2474        spin_unlock_irqrestore(&d40c->lock, flags);
2475        return err;
2476}
2477
2478static void d40_free_chan_resources(struct dma_chan *chan)
2479{
2480        struct d40_chan *d40c =
2481                container_of(chan, struct d40_chan, chan);
2482        int err;
2483        unsigned long flags;
2484
2485        if (d40c->phy_chan == NULL) {
2486                chan_err(d40c, "Cannot free unallocated channel\n");
2487                return;
2488        }
2489
2490        spin_lock_irqsave(&d40c->lock, flags);
2491
2492        err = d40_free_dma(d40c);
2493
2494        if (err)
2495                chan_err(d40c, "Failed to free channel\n");
2496        spin_unlock_irqrestore(&d40c->lock, flags);
2497}
2498
2499static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2500                                                       dma_addr_t dst,
2501                                                       dma_addr_t src,
2502                                                       size_t size,
2503                                                       unsigned long dma_flags)
2504{
2505        struct scatterlist dst_sg;
2506        struct scatterlist src_sg;
2507
2508        sg_init_table(&dst_sg, 1);
2509        sg_init_table(&src_sg, 1);
2510
2511        sg_dma_address(&dst_sg) = dst;
2512        sg_dma_address(&src_sg) = src;
2513
2514        sg_dma_len(&dst_sg) = size;
2515        sg_dma_len(&src_sg) = size;
2516
2517        return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2518}
2519
2520static struct dma_async_tx_descriptor *
2521d40_prep_memcpy_sg(struct dma_chan *chan,
2522                   struct scatterlist *dst_sg, unsigned int dst_nents,
2523                   struct scatterlist *src_sg, unsigned int src_nents,
2524                   unsigned long dma_flags)
2525{
2526        if (dst_nents != src_nents)
2527                return NULL;
2528
2529        return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2530}
2531
2532static struct dma_async_tx_descriptor *
2533d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2534                  unsigned int sg_len, enum dma_transfer_direction direction,
2535                  unsigned long dma_flags, void *context)
2536{
2537        if (!is_slave_direction(direction))
2538                return NULL;
2539
2540        return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2541}
2542
2543static struct dma_async_tx_descriptor *
2544dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2545                     size_t buf_len, size_t period_len,
2546                     enum dma_transfer_direction direction, unsigned long flags)
2547{
2548        unsigned int periods = buf_len / period_len;
2549        struct dma_async_tx_descriptor *txd;
2550        struct scatterlist *sg;
2551        int i;
2552
2553        sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2554        if (!sg)
2555                return NULL;
2556
2557        for (i = 0; i < periods; i++) {
2558                sg_dma_address(&sg[i]) = dma_addr;
2559                sg_dma_len(&sg[i]) = period_len;
2560                dma_addr += period_len;
2561        }
2562
2563        sg[periods].offset = 0;
2564        sg_dma_len(&sg[periods]) = 0;
2565        sg[periods].page_link =
2566                ((unsigned long)sg | 0x01) & ~0x02;
2567
2568        txd = d40_prep_sg(chan, sg, sg, periods, direction,
2569                          DMA_PREP_INTERRUPT);
2570
2571        kfree(sg);
2572
2573        return txd;
2574}
2575
2576static enum dma_status d40_tx_status(struct dma_chan *chan,
2577                                     dma_cookie_t cookie,
2578                                     struct dma_tx_state *txstate)
2579{
2580        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2581        enum dma_status ret;
2582
2583        if (d40c->phy_chan == NULL) {
2584                chan_err(d40c, "Cannot read status of unallocated channel\n");
2585                return -EINVAL;
2586        }
2587
2588        ret = dma_cookie_status(chan, cookie, txstate);
2589        if (ret != DMA_COMPLETE)
2590                dma_set_residue(txstate, stedma40_residue(chan));
2591
2592        if (d40_is_paused(d40c))
2593                ret = DMA_PAUSED;
2594
2595        return ret;
2596}
2597
2598static void d40_issue_pending(struct dma_chan *chan)
2599{
2600        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2601        unsigned long flags;
2602
2603        if (d40c->phy_chan == NULL) {
2604                chan_err(d40c, "Channel is not allocated!\n");
2605                return;
2606        }
2607
2608        spin_lock_irqsave(&d40c->lock, flags);
2609
2610        list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2611
2612        /* Busy means that queued jobs are already being processed */
2613        if (!d40c->busy)
2614                (void) d40_queue_start(d40c);
2615
2616        spin_unlock_irqrestore(&d40c->lock, flags);
2617}
2618
2619static int d40_terminate_all(struct dma_chan *chan)
2620{
2621        unsigned long flags;
2622        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2623        int ret;
2624
2625        if (d40c->phy_chan == NULL) {
2626                chan_err(d40c, "Channel is not allocated!\n");
2627                return -EINVAL;
2628        }
2629
2630        spin_lock_irqsave(&d40c->lock, flags);
2631
2632        pm_runtime_get_sync(d40c->base->dev);
2633        ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2634        if (ret)
2635                chan_err(d40c, "Failed to stop channel\n");
2636
2637        d40_term_all(d40c);
2638        pm_runtime_mark_last_busy(d40c->base->dev);
2639        pm_runtime_put_autosuspend(d40c->base->dev);
2640        if (d40c->busy) {
2641                pm_runtime_mark_last_busy(d40c->base->dev);
2642                pm_runtime_put_autosuspend(d40c->base->dev);
2643        }
2644        d40c->busy = false;
2645
2646        spin_unlock_irqrestore(&d40c->lock, flags);
2647        return 0;
2648}
2649
2650static int
2651dma40_config_to_halfchannel(struct d40_chan *d40c,
2652                            struct stedma40_half_channel_info *info,
2653                            u32 maxburst)
2654{
2655        int psize;
2656
2657        if (chan_is_logical(d40c)) {
2658                if (maxburst >= 16)
2659                        psize = STEDMA40_PSIZE_LOG_16;
2660                else if (maxburst >= 8)
2661                        psize = STEDMA40_PSIZE_LOG_8;
2662                else if (maxburst >= 4)
2663                        psize = STEDMA40_PSIZE_LOG_4;
2664                else
2665                        psize = STEDMA40_PSIZE_LOG_1;
2666        } else {
2667                if (maxburst >= 16)
2668                        psize = STEDMA40_PSIZE_PHY_16;
2669                else if (maxburst >= 8)
2670                        psize = STEDMA40_PSIZE_PHY_8;
2671                else if (maxburst >= 4)
2672                        psize = STEDMA40_PSIZE_PHY_4;
2673                else
2674                        psize = STEDMA40_PSIZE_PHY_1;
2675        }
2676
2677        info->psize = psize;
2678        info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2679
2680        return 0;
2681}
2682
2683/* Runtime reconfiguration extension */
2684static int d40_set_runtime_config(struct dma_chan *chan,
2685                                  struct dma_slave_config *config)
2686{
2687        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2688        struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2689        enum dma_slave_buswidth src_addr_width, dst_addr_width;
2690        dma_addr_t config_addr;
2691        u32 src_maxburst, dst_maxburst;
2692        int ret;
2693
2694        if (d40c->phy_chan == NULL) {
2695                chan_err(d40c, "Channel is not allocated!\n");
2696                return -EINVAL;
2697        }
2698
2699        src_addr_width = config->src_addr_width;
2700        src_maxburst = config->src_maxburst;
2701        dst_addr_width = config->dst_addr_width;
2702        dst_maxburst = config->dst_maxburst;
2703
2704        if (config->direction == DMA_DEV_TO_MEM) {
2705                config_addr = config->src_addr;
2706
2707                if (cfg->dir != DMA_DEV_TO_MEM)
2708                        dev_dbg(d40c->base->dev,
2709                                "channel was not configured for peripheral "
2710                                "to memory transfer (%d) overriding\n",
2711                                cfg->dir);
2712                cfg->dir = DMA_DEV_TO_MEM;
2713
2714                /* Configure the memory side */
2715                if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2716                        dst_addr_width = src_addr_width;
2717                if (dst_maxburst == 0)
2718                        dst_maxburst = src_maxburst;
2719
2720        } else if (config->direction == DMA_MEM_TO_DEV) {
2721                config_addr = config->dst_addr;
2722
2723                if (cfg->dir != DMA_MEM_TO_DEV)
2724                        dev_dbg(d40c->base->dev,
2725                                "channel was not configured for memory "
2726                                "to peripheral transfer (%d) overriding\n",
2727                                cfg->dir);
2728                cfg->dir = DMA_MEM_TO_DEV;
2729
2730                /* Configure the memory side */
2731                if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2732                        src_addr_width = dst_addr_width;
2733                if (src_maxburst == 0)
2734                        src_maxburst = dst_maxburst;
2735        } else {
2736                dev_err(d40c->base->dev,
2737                        "unrecognized channel direction %d\n",
2738                        config->direction);
2739                return -EINVAL;
2740        }
2741
2742        if (config_addr <= 0) {
2743                dev_err(d40c->base->dev, "no address supplied\n");
2744                return -EINVAL;
2745        }
2746
2747        if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2748                dev_err(d40c->base->dev,
2749                        "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2750                        src_maxburst,
2751                        src_addr_width,
2752                        dst_maxburst,
2753                        dst_addr_width);
2754                return -EINVAL;
2755        }
2756
2757        if (src_maxburst > 16) {
2758                src_maxburst = 16;
2759                dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2760        } else if (dst_maxburst > 16) {
2761                dst_maxburst = 16;
2762                src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2763        }
2764
2765        /* Only valid widths are; 1, 2, 4 and 8. */
2766        if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2767            src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2768            dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2769            dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2770            !is_power_of_2(src_addr_width) ||
2771            !is_power_of_2(dst_addr_width))
2772                return -EINVAL;
2773
2774        cfg->src_info.data_width = src_addr_width;
2775        cfg->dst_info.data_width = dst_addr_width;
2776
2777        ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2778                                          src_maxburst);
2779        if (ret)
2780                return ret;
2781
2782        ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2783                                          dst_maxburst);
2784        if (ret)
2785                return ret;
2786
2787        /* Fill in register values */
2788        if (chan_is_logical(d40c))
2789                d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2790        else
2791                d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2792
2793        /* These settings will take precedence later */
2794        d40c->runtime_addr = config_addr;
2795        d40c->runtime_direction = config->direction;
2796        dev_dbg(d40c->base->dev,
2797                "configured channel %s for %s, data width %d/%d, "
2798                "maxburst %d/%d elements, LE, no flow control\n",
2799                dma_chan_name(chan),
2800                (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2801                src_addr_width, dst_addr_width,
2802                src_maxburst, dst_maxburst);
2803
2804        return 0;
2805}
2806
2807/* Initialization functions */
2808
2809static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2810                                 struct d40_chan *chans, int offset,
2811                                 int num_chans)
2812{
2813        int i = 0;
2814        struct d40_chan *d40c;
2815
2816        INIT_LIST_HEAD(&dma->channels);
2817
2818        for (i = offset; i < offset + num_chans; i++) {
2819                d40c = &chans[i];
2820                d40c->base = base;
2821                d40c->chan.device = dma;
2822
2823                spin_lock_init(&d40c->lock);
2824
2825                d40c->log_num = D40_PHY_CHAN;
2826
2827                INIT_LIST_HEAD(&d40c->done);
2828                INIT_LIST_HEAD(&d40c->active);
2829                INIT_LIST_HEAD(&d40c->queue);
2830                INIT_LIST_HEAD(&d40c->pending_queue);
2831                INIT_LIST_HEAD(&d40c->client);
2832                INIT_LIST_HEAD(&d40c->prepare_queue);
2833
2834                tasklet_init(&d40c->tasklet, dma_tasklet,
2835                             (unsigned long) d40c);
2836
2837                list_add_tail(&d40c->chan.device_node,
2838                              &dma->channels);
2839        }
2840}
2841
2842static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2843{
2844        if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2845                dev->device_prep_slave_sg = d40_prep_slave_sg;
2846
2847        if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2848                dev->device_prep_dma_memcpy = d40_prep_memcpy;
2849
2850                /*
2851                 * This controller can only access address at even
2852                 * 32bit boundaries, i.e. 2^2
2853                 */
2854                dev->copy_align = 2;
2855        }
2856
2857        if (dma_has_cap(DMA_SG, dev->cap_mask))
2858                dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2859
2860        if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2861                dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2862
2863        dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2864        dev->device_free_chan_resources = d40_free_chan_resources;
2865        dev->device_issue_pending = d40_issue_pending;
2866        dev->device_tx_status = d40_tx_status;
2867        dev->device_config = d40_set_runtime_config;
2868        dev->device_pause = d40_pause;
2869        dev->device_resume = d40_resume;
2870        dev->device_terminate_all = d40_terminate_all;
2871        dev->dev = base->dev;
2872}
2873
2874static int __init d40_dmaengine_init(struct d40_base *base,
2875                                     int num_reserved_chans)
2876{
2877        int err ;
2878
2879        d40_chan_init(base, &base->dma_slave, base->log_chans,
2880                      0, base->num_log_chans);
2881
2882        dma_cap_zero(base->dma_slave.cap_mask);
2883        dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2884        dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2885
2886        d40_ops_init(base, &base->dma_slave);
2887
2888        err = dma_async_device_register(&base->dma_slave);
2889
2890        if (err) {
2891                d40_err(base->dev, "Failed to register slave channels\n");
2892                goto failure1;
2893        }
2894
2895        d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2896                      base->num_log_chans, base->num_memcpy_chans);
2897
2898        dma_cap_zero(base->dma_memcpy.cap_mask);
2899        dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2900        dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2901
2902        d40_ops_init(base, &base->dma_memcpy);
2903
2904        err = dma_async_device_register(&base->dma_memcpy);
2905
2906        if (err) {
2907                d40_err(base->dev,
2908                        "Failed to regsiter memcpy only channels\n");
2909                goto failure2;
2910        }
2911
2912        d40_chan_init(base, &base->dma_both, base->phy_chans,
2913                      0, num_reserved_chans);
2914
2915        dma_cap_zero(base->dma_both.cap_mask);
2916        dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2917        dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2918        dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2919        dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2920
2921        d40_ops_init(base, &base->dma_both);
2922        err = dma_async_device_register(&base->dma_both);
2923
2924        if (err) {
2925                d40_err(base->dev,
2926                        "Failed to register logical and physical capable channels\n");
2927                goto failure3;
2928        }
2929        return 0;
2930failure3:
2931        dma_async_device_unregister(&base->dma_memcpy);
2932failure2:
2933        dma_async_device_unregister(&base->dma_slave);
2934failure1:
2935        return err;
2936}
2937
2938/* Suspend resume functionality */
2939#ifdef CONFIG_PM_SLEEP
2940static int dma40_suspend(struct device *dev)
2941{
2942        struct platform_device *pdev = to_platform_device(dev);
2943        struct d40_base *base = platform_get_drvdata(pdev);
2944        int ret;
2945
2946        ret = pm_runtime_force_suspend(dev);
2947        if (ret)
2948                return ret;
2949
2950        if (base->lcpa_regulator)
2951                ret = regulator_disable(base->lcpa_regulator);
2952        return ret;
2953}
2954
2955static int dma40_resume(struct device *dev)
2956{
2957        struct platform_device *pdev = to_platform_device(dev);
2958        struct d40_base *base = platform_get_drvdata(pdev);
2959        int ret = 0;
2960
2961        if (base->lcpa_regulator) {
2962                ret = regulator_enable(base->lcpa_regulator);
2963                if (ret)
2964                        return ret;
2965        }
2966
2967        return pm_runtime_force_resume(dev);
2968}
2969#endif
2970
2971#ifdef CONFIG_PM
2972static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2973                         u32 *regaddr, int num, bool save)
2974{
2975        int i;
2976
2977        for (i = 0; i < num; i++) {
2978                void __iomem *addr = baseaddr + regaddr[i];
2979
2980                if (save)
2981                        backup[i] = readl_relaxed(addr);
2982                else
2983                        writel_relaxed(backup[i], addr);
2984        }
2985}
2986
2987static void d40_save_restore_registers(struct d40_base *base, bool save)
2988{
2989        int i;
2990
2991        /* Save/Restore channel specific registers */
2992        for (i = 0; i < base->num_phy_chans; i++) {
2993                void __iomem *addr;
2994                int idx;
2995
2996                if (base->phy_res[i].reserved)
2997                        continue;
2998
2999                addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
3000                idx = i * ARRAY_SIZE(d40_backup_regs_chan);
3001
3002                dma40_backup(addr, &base->reg_val_backup_chan[idx],
3003                             d40_backup_regs_chan,
3004                             ARRAY_SIZE(d40_backup_regs_chan),
3005                             save);
3006        }
3007
3008        /* Save/Restore global registers */
3009        dma40_backup(base->virtbase, base->reg_val_backup,
3010                     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
3011                     save);
3012
3013        /* Save/Restore registers only existing on dma40 v3 and later */
3014        if (base->gen_dmac.backup)
3015                dma40_backup(base->virtbase, base->reg_val_backup_v4,
3016                             base->gen_dmac.backup,
3017                        base->gen_dmac.backup_size,
3018                        save);
3019}
3020
3021static int dma40_runtime_suspend(struct device *dev)
3022{
3023        struct platform_device *pdev = to_platform_device(dev);
3024        struct d40_base *base = platform_get_drvdata(pdev);
3025
3026        d40_save_restore_registers(base, true);
3027
3028        /* Don't disable/enable clocks for v1 due to HW bugs */
3029        if (base->rev != 1)
3030                writel_relaxed(base->gcc_pwr_off_mask,
3031                               base->virtbase + D40_DREG_GCC);
3032
3033        return 0;
3034}
3035
3036static int dma40_runtime_resume(struct device *dev)
3037{
3038        struct platform_device *pdev = to_platform_device(dev);
3039        struct d40_base *base = platform_get_drvdata(pdev);
3040
3041        d40_save_restore_registers(base, false);
3042
3043        writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3044                       base->virtbase + D40_DREG_GCC);
3045        return 0;
3046}
3047#endif
3048
3049static const struct dev_pm_ops dma40_pm_ops = {
3050        SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3051        SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3052                                dma40_runtime_resume,
3053                                NULL)
3054};
3055
3056/* Initialization functions. */
3057
3058static int __init d40_phy_res_init(struct d40_base *base)
3059{
3060        int i;
3061        int num_phy_chans_avail = 0;
3062        u32 val[2];
3063        int odd_even_bit = -2;
3064        int gcc = D40_DREG_GCC_ENA;
3065
3066        val[0] = readl(base->virtbase + D40_DREG_PRSME);
3067        val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3068
3069        for (i = 0; i < base->num_phy_chans; i++) {
3070                base->phy_res[i].num = i;
3071                odd_even_bit += 2 * ((i % 2) == 0);
3072                if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3073                        /* Mark security only channels as occupied */
3074                        base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3075                        base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3076                        base->phy_res[i].reserved = true;
3077                        gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3078                                                       D40_DREG_GCC_SRC);
3079                        gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3080                                                       D40_DREG_GCC_DST);
3081
3082
3083                } else {
3084                        base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3085                        base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3086                        base->phy_res[i].reserved = false;
3087                        num_phy_chans_avail++;
3088                }
3089                spin_lock_init(&base->phy_res[i].lock);
3090        }
3091
3092        /* Mark disabled channels as occupied */
3093        for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3094                int chan = base->plat_data->disabled_channels[i];
3095
3096                base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3097                base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3098                base->phy_res[chan].reserved = true;
3099                gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3100                                               D40_DREG_GCC_SRC);
3101                gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3102                                               D40_DREG_GCC_DST);
3103                num_phy_chans_avail--;
3104        }
3105
3106        /* Mark soft_lli channels */
3107        for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3108                int chan = base->plat_data->soft_lli_chans[i];
3109
3110                base->phy_res[chan].use_soft_lli = true;
3111        }
3112
3113        dev_info(base->dev, "%d of %d physical DMA channels available\n",
3114                 num_phy_chans_avail, base->num_phy_chans);
3115
3116        /* Verify settings extended vs standard */
3117        val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3118
3119        for (i = 0; i < base->num_phy_chans; i++) {
3120
3121                if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3122                    (val[0] & 0x3) != 1)
3123                        dev_info(base->dev,
3124                                 "[%s] INFO: channel %d is misconfigured (%d)\n",
3125                                 __func__, i, val[0] & 0x3);
3126
3127                val[0] = val[0] >> 2;
3128        }
3129
3130        /*
3131         * To keep things simple, Enable all clocks initially.
3132         * The clocks will get managed later post channel allocation.
3133         * The clocks for the event lines on which reserved channels exists
3134         * are not managed here.
3135         */
3136        writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3137        base->gcc_pwr_off_mask = gcc;
3138
3139        return num_phy_chans_avail;
3140}
3141
3142static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3143{
3144        struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3145        struct clk *clk = NULL;
3146        void __iomem *virtbase = NULL;
3147        struct resource *res = NULL;
3148        struct d40_base *base = NULL;
3149        int num_log_chans = 0;
3150        int num_phy_chans;
3151        int num_memcpy_chans;
3152        int clk_ret = -EINVAL;
3153        int i;
3154        u32 pid;
3155        u32 cid;
3156        u8 rev;
3157
3158        clk = clk_get(&pdev->dev, NULL);
3159        if (IS_ERR(clk)) {
3160                d40_err(&pdev->dev, "No matching clock found\n");
3161                goto failure;
3162        }
3163
3164        clk_ret = clk_prepare_enable(clk);
3165        if (clk_ret) {
3166                d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3167                goto failure;
3168        }
3169
3170        /* Get IO for DMAC base address */
3171        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3172        if (!res)
3173                goto failure;
3174
3175        if (request_mem_region(res->start, resource_size(res),
3176                               D40_NAME " I/O base") == NULL)
3177                goto failure;
3178
3179        virtbase = ioremap(res->start, resource_size(res));
3180        if (!virtbase)
3181                goto failure;
3182
3183        /* This is just a regular AMBA PrimeCell ID actually */
3184        for (pid = 0, i = 0; i < 4; i++)
3185                pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3186                        & 255) << (i * 8);
3187        for (cid = 0, i = 0; i < 4; i++)
3188                cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3189                        & 255) << (i * 8);
3190
3191        if (cid != AMBA_CID) {
3192                d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3193                goto failure;
3194        }
3195        if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3196                d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3197                        AMBA_MANF_BITS(pid),
3198                        AMBA_VENDOR_ST);
3199                goto failure;
3200        }
3201        /*
3202         * HW revision:
3203         * DB8500ed has revision 0
3204         * ? has revision 1
3205         * DB8500v1 has revision 2
3206         * DB8500v2 has revision 3
3207         * AP9540v1 has revision 4
3208         * DB8540v1 has revision 4
3209         */
3210        rev = AMBA_REV_BITS(pid);
3211        if (rev < 2) {
3212                d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3213                goto failure;
3214        }
3215
3216        /* The number of physical channels on this HW */
3217        if (plat_data->num_of_phy_chans)
3218                num_phy_chans = plat_data->num_of_phy_chans;
3219        else
3220                num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3221
3222        /* The number of channels used for memcpy */
3223        if (plat_data->num_of_memcpy_chans)
3224                num_memcpy_chans = plat_data->num_of_memcpy_chans;
3225        else
3226                num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3227
3228        num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3229
3230        dev_info(&pdev->dev,
3231                 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3232                 rev, &res->start, num_phy_chans, num_log_chans);
3233
3234        base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3235                       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3236                       sizeof(struct d40_chan), GFP_KERNEL);
3237
3238        if (base == NULL) {
3239                d40_err(&pdev->dev, "Out of memory\n");
3240                goto failure;
3241        }
3242
3243        base->rev = rev;
3244        base->clk = clk;
3245        base->num_memcpy_chans = num_memcpy_chans;
3246        base->num_phy_chans = num_phy_chans;
3247        base->num_log_chans = num_log_chans;
3248        base->phy_start = res->start;
3249        base->phy_size = resource_size(res);
3250        base->virtbase = virtbase;
3251        base->plat_data = plat_data;
3252        base->dev = &pdev->dev;
3253        base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3254        base->log_chans = &base->phy_chans[num_phy_chans];
3255
3256        if (base->plat_data->num_of_phy_chans == 14) {
3257                base->gen_dmac.backup = d40_backup_regs_v4b;
3258                base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3259                base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3260                base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3261                base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3262                base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3263                base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3264                base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3265                base->gen_dmac.il = il_v4b;
3266                base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3267                base->gen_dmac.init_reg = dma_init_reg_v4b;
3268                base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3269        } else {
3270                if (base->rev >= 3) {
3271                        base->gen_dmac.backup = d40_backup_regs_v4a;
3272                        base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3273                }
3274                base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3275                base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3276                base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3277                base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3278                base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3279                base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3280                base->gen_dmac.il = il_v4a;
3281                base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3282                base->gen_dmac.init_reg = dma_init_reg_v4a;
3283                base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3284        }
3285
3286        base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
3287                                GFP_KERNEL);
3288        if (!base->phy_res)
3289                goto failure;
3290
3291        base->lookup_phy_chans = kzalloc(num_phy_chans *
3292                                         sizeof(struct d40_chan *),
3293                                         GFP_KERNEL);
3294        if (!base->lookup_phy_chans)
3295                goto failure;
3296
3297        base->lookup_log_chans = kzalloc(num_log_chans *
3298                                         sizeof(struct d40_chan *),
3299                                         GFP_KERNEL);
3300        if (!base->lookup_log_chans)
3301                goto failure;
3302
3303        base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
3304                                            sizeof(d40_backup_regs_chan),
3305                                            GFP_KERNEL);
3306        if (!base->reg_val_backup_chan)
3307                goto failure;
3308
3309        base->lcla_pool.alloc_map =
3310                kzalloc(num_phy_chans * sizeof(struct d40_desc *)
3311                        * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3312        if (!base->lcla_pool.alloc_map)
3313                goto failure;
3314
3315        base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3316                                            0, SLAB_HWCACHE_ALIGN,
3317                                            NULL);
3318        if (base->desc_slab == NULL)
3319                goto failure;
3320
3321        return base;
3322
3323failure:
3324        if (!clk_ret)
3325                clk_disable_unprepare(clk);
3326        if (!IS_ERR(clk))
3327                clk_put(clk);
3328        if (virtbase)
3329                iounmap(virtbase);
3330        if (res)
3331                release_mem_region(res->start,
3332                                   resource_size(res));
3333        if (virtbase)
3334                iounmap(virtbase);
3335
3336        if (base) {
3337                kfree(base->lcla_pool.alloc_map);
3338                kfree(base->reg_val_backup_chan);
3339                kfree(base->lookup_log_chans);
3340                kfree(base->lookup_phy_chans);
3341                kfree(base->phy_res);
3342                kfree(base);
3343        }
3344
3345        return NULL;
3346}
3347
3348static void __init d40_hw_init(struct d40_base *base)
3349{
3350
3351        int i;
3352        u32 prmseo[2] = {0, 0};
3353        u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3354        u32 pcmis = 0;
3355        u32 pcicr = 0;
3356        struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3357        u32 reg_size = base->gen_dmac.init_reg_size;
3358
3359        for (i = 0; i < reg_size; i++)
3360                writel(dma_init_reg[i].val,
3361                       base->virtbase + dma_init_reg[i].reg);
3362
3363        /* Configure all our dma channels to default settings */
3364        for (i = 0; i < base->num_phy_chans; i++) {
3365
3366                activeo[i % 2] = activeo[i % 2] << 2;
3367
3368                if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3369                    == D40_ALLOC_PHY) {
3370                        activeo[i % 2] |= 3;
3371                        continue;
3372                }
3373
3374                /* Enable interrupt # */
3375                pcmis = (pcmis << 1) | 1;
3376
3377                /* Clear interrupt # */
3378                pcicr = (pcicr << 1) | 1;
3379
3380                /* Set channel to physical mode */
3381                prmseo[i % 2] = prmseo[i % 2] << 2;
3382                prmseo[i % 2] |= 1;
3383
3384        }
3385
3386        writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3387        writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3388        writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3389        writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3390
3391        /* Write which interrupt to enable */
3392        writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3393
3394        /* Write which interrupt to clear */
3395        writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3396
3397        /* These are __initdata and cannot be accessed after init */
3398        base->gen_dmac.init_reg = NULL;
3399        base->gen_dmac.init_reg_size = 0;
3400}
3401
3402static int __init d40_lcla_allocate(struct d40_base *base)
3403{
3404        struct d40_lcla_pool *pool = &base->lcla_pool;
3405        unsigned long *page_list;
3406        int i, j;
3407        int ret = 0;
3408
3409        /*
3410         * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3411         * To full fill this hardware requirement without wasting 256 kb
3412         * we allocate pages until we get an aligned one.
3413         */
3414        page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3415                            GFP_KERNEL);
3416
3417        if (!page_list) {
3418                ret = -ENOMEM;
3419                goto failure;
3420        }
3421
3422        /* Calculating how many pages that are required */
3423        base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3424
3425        for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3426                page_list[i] = __get_free_pages(GFP_KERNEL,
3427                                                base->lcla_pool.pages);
3428                if (!page_list[i]) {
3429
3430                        d40_err(base->dev, "Failed to allocate %d pages.\n",
3431                                base->lcla_pool.pages);
3432                        ret = -ENOMEM;
3433
3434                        for (j = 0; j < i; j++)
3435                                free_pages(page_list[j], base->lcla_pool.pages);
3436                        goto failure;
3437                }
3438
3439                if ((virt_to_phys((void *)page_list[i]) &
3440                     (LCLA_ALIGNMENT - 1)) == 0)
3441                        break;
3442        }
3443
3444        for (j = 0; j < i; j++)
3445                free_pages(page_list[j], base->lcla_pool.pages);
3446
3447        if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3448                base->lcla_pool.base = (void *)page_list[i];
3449        } else {
3450                /*
3451                 * After many attempts and no succees with finding the correct
3452                 * alignment, try with allocating a big buffer.
3453                 */
3454                dev_warn(base->dev,
3455                         "[%s] Failed to get %d pages @ 18 bit align.\n",
3456                         __func__, base->lcla_pool.pages);
3457                base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3458                                                         base->num_phy_chans +
3459                                                         LCLA_ALIGNMENT,
3460                                                         GFP_KERNEL);
3461                if (!base->lcla_pool.base_unaligned) {
3462                        ret = -ENOMEM;
3463                        goto failure;
3464                }
3465
3466                base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3467                                                 LCLA_ALIGNMENT);
3468        }
3469
3470        pool->dma_addr = dma_map_single(base->dev, pool->base,
3471                                        SZ_1K * base->num_phy_chans,
3472                                        DMA_TO_DEVICE);
3473        if (dma_mapping_error(base->dev, pool->dma_addr)) {
3474                pool->dma_addr = 0;
3475                ret = -ENOMEM;
3476                goto failure;
3477        }
3478
3479        writel(virt_to_phys(base->lcla_pool.base),
3480               base->virtbase + D40_DREG_LCLA);
3481failure:
3482        kfree(page_list);
3483        return ret;
3484}
3485
3486static int __init d40_of_probe(struct platform_device *pdev,
3487                               struct device_node *np)
3488{
3489        struct stedma40_platform_data *pdata;
3490        int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3491        const __be32 *list;
3492
3493        pdata = devm_kzalloc(&pdev->dev,
3494                             sizeof(struct stedma40_platform_data),
3495                             GFP_KERNEL);
3496        if (!pdata)
3497                return -ENOMEM;
3498
3499        /* If absent this value will be obtained from h/w. */
3500        of_property_read_u32(np, "dma-channels", &num_phy);
3501        if (num_phy > 0)
3502                pdata->num_of_phy_chans = num_phy;
3503
3504        list = of_get_property(np, "memcpy-channels", &num_memcpy);
3505        num_memcpy /= sizeof(*list);
3506
3507        if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3508                d40_err(&pdev->dev,
3509                        "Invalid number of memcpy channels specified (%d)\n",
3510                        num_memcpy);
3511                return -EINVAL;
3512        }
3513        pdata->num_of_memcpy_chans = num_memcpy;
3514
3515        of_property_read_u32_array(np, "memcpy-channels",
3516                                   dma40_memcpy_channels,
3517                                   num_memcpy);
3518
3519        list = of_get_property(np, "disabled-channels", &num_disabled);
3520        num_disabled /= sizeof(*list);
3521
3522        if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3523                d40_err(&pdev->dev,
3524                        "Invalid number of disabled channels specified (%d)\n",
3525                        num_disabled);
3526                return -EINVAL;
3527        }
3528
3529        of_property_read_u32_array(np, "disabled-channels",
3530                                   pdata->disabled_channels,
3531                                   num_disabled);
3532        pdata->disabled_channels[num_disabled] = -1;
3533
3534        pdev->dev.platform_data = pdata;
3535
3536        return 0;
3537}
3538
3539static int __init d40_probe(struct platform_device *pdev)
3540{
3541        struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3542        struct device_node *np = pdev->dev.of_node;
3543        int ret = -ENOENT;
3544        struct d40_base *base = NULL;
3545        struct resource *res = NULL;
3546        int num_reserved_chans;
3547        u32 val;
3548
3549        if (!plat_data) {
3550                if (np) {
3551                        if(d40_of_probe(pdev, np)) {
3552                                ret = -ENOMEM;
3553                                goto failure;
3554                        }
3555                } else {
3556                        d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3557                        goto failure;
3558                }
3559        }
3560
3561        base = d40_hw_detect_init(pdev);
3562        if (!base)
3563                goto failure;
3564
3565        num_reserved_chans = d40_phy_res_init(base);
3566
3567        platform_set_drvdata(pdev, base);
3568
3569        spin_lock_init(&base->interrupt_lock);
3570        spin_lock_init(&base->execmd_lock);
3571
3572        /* Get IO for logical channel parameter address */
3573        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3574        if (!res) {
3575                ret = -ENOENT;
3576                d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3577                goto failure;
3578        }
3579        base->lcpa_size = resource_size(res);
3580        base->phy_lcpa = res->start;
3581
3582        if (request_mem_region(res->start, resource_size(res),
3583                               D40_NAME " I/O lcpa") == NULL) {
3584                ret = -EBUSY;
3585                d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3586                goto failure;
3587        }
3588
3589        /* We make use of ESRAM memory for this. */
3590        val = readl(base->virtbase + D40_DREG_LCPA);
3591        if (res->start != val && val != 0) {
3592                dev_warn(&pdev->dev,
3593                         "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3594                         __func__, val, &res->start);
3595        } else
3596                writel(res->start, base->virtbase + D40_DREG_LCPA);
3597
3598        base->lcpa_base = ioremap(res->start, resource_size(res));
3599        if (!base->lcpa_base) {
3600                ret = -ENOMEM;
3601                d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3602                goto failure;
3603        }
3604        /* If lcla has to be located in ESRAM we don't need to allocate */
3605        if (base->plat_data->use_esram_lcla) {
3606                res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3607                                                        "lcla_esram");
3608                if (!res) {
3609                        ret = -ENOENT;
3610                        d40_err(&pdev->dev,
3611                                "No \"lcla_esram\" memory resource\n");
3612                        goto failure;
3613                }
3614                base->lcla_pool.base = ioremap(res->start,
3615                                                resource_size(res));
3616                if (!base->lcla_pool.base) {
3617                        ret = -ENOMEM;
3618                        d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3619                        goto failure;
3620                }
3621                writel(res->start, base->virtbase + D40_DREG_LCLA);
3622
3623        } else {
3624                ret = d40_lcla_allocate(base);
3625                if (ret) {
3626                        d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3627                        goto failure;
3628                }
3629        }
3630
3631        spin_lock_init(&base->lcla_pool.lock);
3632
3633        base->irq = platform_get_irq(pdev, 0);
3634
3635        ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3636        if (ret) {
3637                d40_err(&pdev->dev, "No IRQ defined\n");
3638                goto failure;
3639        }
3640
3641        if (base->plat_data->use_esram_lcla) {
3642
3643                base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3644                if (IS_ERR(base->lcpa_regulator)) {
3645                        d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3646                        ret = PTR_ERR(base->lcpa_regulator);
3647                        base->lcpa_regulator = NULL;
3648                        goto failure;
3649                }
3650
3651                ret = regulator_enable(base->lcpa_regulator);
3652                if (ret) {
3653                        d40_err(&pdev->dev,
3654                                "Failed to enable lcpa_regulator\n");
3655                        regulator_put(base->lcpa_regulator);
3656                        base->lcpa_regulator = NULL;
3657                        goto failure;
3658                }
3659        }
3660
3661        writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3662
3663        pm_runtime_irq_safe(base->dev);
3664        pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3665        pm_runtime_use_autosuspend(base->dev);
3666        pm_runtime_mark_last_busy(base->dev);
3667        pm_runtime_set_active(base->dev);
3668        pm_runtime_enable(base->dev);
3669
3670        ret = d40_dmaengine_init(base, num_reserved_chans);
3671        if (ret)
3672                goto failure;
3673
3674        base->dev->dma_parms = &base->dma_parms;
3675        ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3676        if (ret) {
3677                d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3678                goto failure;
3679        }
3680
3681        d40_hw_init(base);
3682
3683        if (np) {
3684                ret = of_dma_controller_register(np, d40_xlate, NULL);
3685                if (ret)
3686                        dev_err(&pdev->dev,
3687                                "could not register of_dma_controller\n");
3688        }
3689
3690        dev_info(base->dev, "initialized\n");
3691        return 0;
3692
3693failure:
3694        if (base) {
3695                if (base->desc_slab)
3696                        kmem_cache_destroy(base->desc_slab);
3697                if (base->virtbase)
3698                        iounmap(base->virtbase);
3699
3700                if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3701                        iounmap(base->lcla_pool.base);
3702                        base->lcla_pool.base = NULL;
3703                }
3704
3705                if (base->lcla_pool.dma_addr)
3706                        dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3707                                         SZ_1K * base->num_phy_chans,
3708                                         DMA_TO_DEVICE);
3709
3710                if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3711                        free_pages((unsigned long)base->lcla_pool.base,
3712                                   base->lcla_pool.pages);
3713
3714                kfree(base->lcla_pool.base_unaligned);
3715
3716                if (base->phy_lcpa)
3717                        release_mem_region(base->phy_lcpa,
3718                                           base->lcpa_size);
3719                if (base->phy_start)
3720                        release_mem_region(base->phy_start,
3721                                           base->phy_size);
3722                if (base->clk) {
3723                        clk_disable_unprepare(base->clk);
3724                        clk_put(base->clk);
3725                }
3726
3727                if (base->lcpa_regulator) {
3728                        regulator_disable(base->lcpa_regulator);
3729                        regulator_put(base->lcpa_regulator);
3730                }
3731
3732                kfree(base->lcla_pool.alloc_map);
3733                kfree(base->lookup_log_chans);
3734                kfree(base->lookup_phy_chans);
3735                kfree(base->phy_res);
3736                kfree(base);
3737        }
3738
3739        d40_err(&pdev->dev, "probe failed\n");
3740        return ret;
3741}
3742
3743static const struct of_device_id d40_match[] = {
3744        { .compatible = "stericsson,dma40", },
3745        {}
3746};
3747
3748static struct platform_driver d40_driver = {
3749        .driver = {
3750                .name  = D40_NAME,
3751                .pm = &dma40_pm_ops,
3752                .of_match_table = d40_match,
3753        },
3754};
3755
3756static int __init stedma40_init(void)
3757{
3758        return platform_driver_probe(&d40_driver, d40_probe);
3759}
3760subsys_initcall(stedma40_init);
3761