linux/drivers/gpu/drm/i915/intel_pm.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/cpufreq.h>
  29#include "i915_drv.h"
  30#include "intel_drv.h"
  31#include "../../../platform/x86/intel_ips.h"
  32#include <linux/module.h>
  33
  34/**
  35 * RC6 is a special power stage which allows the GPU to enter an very
  36 * low-voltage mode when idle, using down to 0V while at this stage.  This
  37 * stage is entered automatically when the GPU is idle when RC6 support is
  38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  39 *
  40 * There are different RC6 modes available in Intel GPU, which differentiate
  41 * among each other with the latency required to enter and leave RC6 and
  42 * voltage consumed by the GPU in different states.
  43 *
  44 * The combination of the following flags define which states GPU is allowed
  45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  46 * RC6pp is deepest RC6. Their support by hardware varies according to the
  47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  48 * which brings the most power savings; deeper states save more power, but
  49 * require higher latency to switch to and wake up.
  50 */
  51#define INTEL_RC6_ENABLE                        (1<<0)
  52#define INTEL_RC6p_ENABLE                       (1<<1)
  53#define INTEL_RC6pp_ENABLE                      (1<<2)
  54
  55static void gen9_init_clock_gating(struct drm_device *dev)
  56{
  57        struct drm_i915_private *dev_priv = dev->dev_private;
  58
  59        /*
  60         * WaDisableSDEUnitClockGating:skl
  61         * This seems to be a pre-production w/a.
  62         */
  63        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  64                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  65
  66        /*
  67         * WaDisableDgMirrorFixInHalfSliceChicken5:skl
  68         * This is a pre-production w/a.
  69         */
  70        I915_WRITE(GEN9_HALF_SLICE_CHICKEN5,
  71                   I915_READ(GEN9_HALF_SLICE_CHICKEN5) &
  72                   ~GEN9_DG_MIRROR_FIX_ENABLE);
  73
  74        /* Wa4x4STCOptimizationDisable:skl */
  75        I915_WRITE(CACHE_MODE_1,
  76                   _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
  77}
  78
  79static void i915_pineview_get_mem_freq(struct drm_device *dev)
  80{
  81        struct drm_i915_private *dev_priv = dev->dev_private;
  82        u32 tmp;
  83
  84        tmp = I915_READ(CLKCFG);
  85
  86        switch (tmp & CLKCFG_FSB_MASK) {
  87        case CLKCFG_FSB_533:
  88                dev_priv->fsb_freq = 533; /* 133*4 */
  89                break;
  90        case CLKCFG_FSB_800:
  91                dev_priv->fsb_freq = 800; /* 200*4 */
  92                break;
  93        case CLKCFG_FSB_667:
  94                dev_priv->fsb_freq =  667; /* 167*4 */
  95                break;
  96        case CLKCFG_FSB_400:
  97                dev_priv->fsb_freq = 400; /* 100*4 */
  98                break;
  99        }
 100
 101        switch (tmp & CLKCFG_MEM_MASK) {
 102        case CLKCFG_MEM_533:
 103                dev_priv->mem_freq = 533;
 104                break;
 105        case CLKCFG_MEM_667:
 106                dev_priv->mem_freq = 667;
 107                break;
 108        case CLKCFG_MEM_800:
 109                dev_priv->mem_freq = 800;
 110                break;
 111        }
 112
 113        /* detect pineview DDR3 setting */
 114        tmp = I915_READ(CSHRDDR3CTL);
 115        dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 116}
 117
 118static void i915_ironlake_get_mem_freq(struct drm_device *dev)
 119{
 120        struct drm_i915_private *dev_priv = dev->dev_private;
 121        u16 ddrpll, csipll;
 122
 123        ddrpll = I915_READ16(DDRMPLL1);
 124        csipll = I915_READ16(CSIPLL0);
 125
 126        switch (ddrpll & 0xff) {
 127        case 0xc:
 128                dev_priv->mem_freq = 800;
 129                break;
 130        case 0x10:
 131                dev_priv->mem_freq = 1066;
 132                break;
 133        case 0x14:
 134                dev_priv->mem_freq = 1333;
 135                break;
 136        case 0x18:
 137                dev_priv->mem_freq = 1600;
 138                break;
 139        default:
 140                DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
 141                                 ddrpll & 0xff);
 142                dev_priv->mem_freq = 0;
 143                break;
 144        }
 145
 146        dev_priv->ips.r_t = dev_priv->mem_freq;
 147
 148        switch (csipll & 0x3ff) {
 149        case 0x00c:
 150                dev_priv->fsb_freq = 3200;
 151                break;
 152        case 0x00e:
 153                dev_priv->fsb_freq = 3733;
 154                break;
 155        case 0x010:
 156                dev_priv->fsb_freq = 4266;
 157                break;
 158        case 0x012:
 159                dev_priv->fsb_freq = 4800;
 160                break;
 161        case 0x014:
 162                dev_priv->fsb_freq = 5333;
 163                break;
 164        case 0x016:
 165                dev_priv->fsb_freq = 5866;
 166                break;
 167        case 0x018:
 168                dev_priv->fsb_freq = 6400;
 169                break;
 170        default:
 171                DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
 172                                 csipll & 0x3ff);
 173                dev_priv->fsb_freq = 0;
 174                break;
 175        }
 176
 177        if (dev_priv->fsb_freq == 3200) {
 178                dev_priv->ips.c_m = 0;
 179        } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
 180                dev_priv->ips.c_m = 1;
 181        } else {
 182                dev_priv->ips.c_m = 2;
 183        }
 184}
 185
 186static const struct cxsr_latency cxsr_latency_table[] = {
 187        {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 188        {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 189        {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 190        {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 191        {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 192
 193        {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 194        {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 195        {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 196        {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 197        {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 198
 199        {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 200        {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 201        {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 202        {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 203        {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 204
 205        {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 206        {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 207        {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 208        {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 209        {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 210
 211        {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 212        {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 213        {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 214        {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 215        {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 216
 217        {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 218        {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 219        {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 220        {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 221        {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 222};
 223
 224static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
 225                                                         int is_ddr3,
 226                                                         int fsb,
 227                                                         int mem)
 228{
 229        const struct cxsr_latency *latency;
 230        int i;
 231
 232        if (fsb == 0 || mem == 0)
 233                return NULL;
 234
 235        for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 236                latency = &cxsr_latency_table[i];
 237                if (is_desktop == latency->is_desktop &&
 238                    is_ddr3 == latency->is_ddr3 &&
 239                    fsb == latency->fsb_freq && mem == latency->mem_freq)
 240                        return latency;
 241        }
 242
 243        DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 244
 245        return NULL;
 246}
 247
 248void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 249{
 250        struct drm_device *dev = dev_priv->dev;
 251        u32 val;
 252
 253        if (IS_VALLEYVIEW(dev)) {
 254                I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
 255        } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
 256                I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
 257        } else if (IS_PINEVIEW(dev)) {
 258                val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
 259                val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
 260                I915_WRITE(DSPFW3, val);
 261        } else if (IS_I945G(dev) || IS_I945GM(dev)) {
 262                val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
 263                               _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
 264                I915_WRITE(FW_BLC_SELF, val);
 265        } else if (IS_I915GM(dev)) {
 266                val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
 267                               _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
 268                I915_WRITE(INSTPM, val);
 269        } else {
 270                return;
 271        }
 272
 273        DRM_DEBUG_KMS("memory self-refresh is %s\n",
 274                      enable ? "enabled" : "disabled");
 275}
 276
 277/*
 278 * Latency for FIFO fetches is dependent on several factors:
 279 *   - memory configuration (speed, channels)
 280 *   - chipset
 281 *   - current MCH state
 282 * It can be fairly high in some situations, so here we assume a fairly
 283 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 284 * set this value too high, the FIFO will fetch frequently to stay full)
 285 * and power consumption (set it too low to save power and we might see
 286 * FIFO underruns and display "flicker").
 287 *
 288 * A value of 5us seems to be a good balance; safe for very low end
 289 * platforms but not overly aggressive on lower latency configs.
 290 */
 291static const int pessimal_latency_ns = 5000;
 292
 293static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
 294{
 295        struct drm_i915_private *dev_priv = dev->dev_private;
 296        uint32_t dsparb = I915_READ(DSPARB);
 297        int size;
 298
 299        size = dsparb & 0x7f;
 300        if (plane)
 301                size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 302
 303        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 304                      plane ? "B" : "A", size);
 305
 306        return size;
 307}
 308
 309static int i830_get_fifo_size(struct drm_device *dev, int plane)
 310{
 311        struct drm_i915_private *dev_priv = dev->dev_private;
 312        uint32_t dsparb = I915_READ(DSPARB);
 313        int size;
 314
 315        size = dsparb & 0x1ff;
 316        if (plane)
 317                size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 318        size >>= 1; /* Convert to cachelines */
 319
 320        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 321                      plane ? "B" : "A", size);
 322
 323        return size;
 324}
 325
 326static int i845_get_fifo_size(struct drm_device *dev, int plane)
 327{
 328        struct drm_i915_private *dev_priv = dev->dev_private;
 329        uint32_t dsparb = I915_READ(DSPARB);
 330        int size;
 331
 332        size = dsparb & 0x7f;
 333        size >>= 2; /* Convert to cachelines */
 334
 335        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 336                      plane ? "B" : "A",
 337                      size);
 338
 339        return size;
 340}
 341
 342/* Pineview has different values for various configs */
 343static const struct intel_watermark_params pineview_display_wm = {
 344        .fifo_size = PINEVIEW_DISPLAY_FIFO,
 345        .max_wm = PINEVIEW_MAX_WM,
 346        .default_wm = PINEVIEW_DFT_WM,
 347        .guard_size = PINEVIEW_GUARD_WM,
 348        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 349};
 350static const struct intel_watermark_params pineview_display_hplloff_wm = {
 351        .fifo_size = PINEVIEW_DISPLAY_FIFO,
 352        .max_wm = PINEVIEW_MAX_WM,
 353        .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
 354        .guard_size = PINEVIEW_GUARD_WM,
 355        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 356};
 357static const struct intel_watermark_params pineview_cursor_wm = {
 358        .fifo_size = PINEVIEW_CURSOR_FIFO,
 359        .max_wm = PINEVIEW_CURSOR_MAX_WM,
 360        .default_wm = PINEVIEW_CURSOR_DFT_WM,
 361        .guard_size = PINEVIEW_CURSOR_GUARD_WM,
 362        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 363};
 364static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
 365        .fifo_size = PINEVIEW_CURSOR_FIFO,
 366        .max_wm = PINEVIEW_CURSOR_MAX_WM,
 367        .default_wm = PINEVIEW_CURSOR_DFT_WM,
 368        .guard_size = PINEVIEW_CURSOR_GUARD_WM,
 369        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 370};
 371static const struct intel_watermark_params g4x_wm_info = {
 372        .fifo_size = G4X_FIFO_SIZE,
 373        .max_wm = G4X_MAX_WM,
 374        .default_wm = G4X_MAX_WM,
 375        .guard_size = 2,
 376        .cacheline_size = G4X_FIFO_LINE_SIZE,
 377};
 378static const struct intel_watermark_params g4x_cursor_wm_info = {
 379        .fifo_size = I965_CURSOR_FIFO,
 380        .max_wm = I965_CURSOR_MAX_WM,
 381        .default_wm = I965_CURSOR_DFT_WM,
 382        .guard_size = 2,
 383        .cacheline_size = G4X_FIFO_LINE_SIZE,
 384};
 385static const struct intel_watermark_params valleyview_wm_info = {
 386        .fifo_size = VALLEYVIEW_FIFO_SIZE,
 387        .max_wm = VALLEYVIEW_MAX_WM,
 388        .default_wm = VALLEYVIEW_MAX_WM,
 389        .guard_size = 2,
 390        .cacheline_size = G4X_FIFO_LINE_SIZE,
 391};
 392static const struct intel_watermark_params valleyview_cursor_wm_info = {
 393        .fifo_size = I965_CURSOR_FIFO,
 394        .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
 395        .default_wm = I965_CURSOR_DFT_WM,
 396        .guard_size = 2,
 397        .cacheline_size = G4X_FIFO_LINE_SIZE,
 398};
 399static const struct intel_watermark_params i965_cursor_wm_info = {
 400        .fifo_size = I965_CURSOR_FIFO,
 401        .max_wm = I965_CURSOR_MAX_WM,
 402        .default_wm = I965_CURSOR_DFT_WM,
 403        .guard_size = 2,
 404        .cacheline_size = I915_FIFO_LINE_SIZE,
 405};
 406static const struct intel_watermark_params i945_wm_info = {
 407        .fifo_size = I945_FIFO_SIZE,
 408        .max_wm = I915_MAX_WM,
 409        .default_wm = 1,
 410        .guard_size = 2,
 411        .cacheline_size = I915_FIFO_LINE_SIZE,
 412};
 413static const struct intel_watermark_params i915_wm_info = {
 414        .fifo_size = I915_FIFO_SIZE,
 415        .max_wm = I915_MAX_WM,
 416        .default_wm = 1,
 417        .guard_size = 2,
 418        .cacheline_size = I915_FIFO_LINE_SIZE,
 419};
 420static const struct intel_watermark_params i830_a_wm_info = {
 421        .fifo_size = I855GM_FIFO_SIZE,
 422        .max_wm = I915_MAX_WM,
 423        .default_wm = 1,
 424        .guard_size = 2,
 425        .cacheline_size = I830_FIFO_LINE_SIZE,
 426};
 427static const struct intel_watermark_params i830_bc_wm_info = {
 428        .fifo_size = I855GM_FIFO_SIZE,
 429        .max_wm = I915_MAX_WM/2,
 430        .default_wm = 1,
 431        .guard_size = 2,
 432        .cacheline_size = I830_FIFO_LINE_SIZE,
 433};
 434static const struct intel_watermark_params i845_wm_info = {
 435        .fifo_size = I830_FIFO_SIZE,
 436        .max_wm = I915_MAX_WM,
 437        .default_wm = 1,
 438        .guard_size = 2,
 439        .cacheline_size = I830_FIFO_LINE_SIZE,
 440};
 441
 442/**
 443 * intel_calculate_wm - calculate watermark level
 444 * @clock_in_khz: pixel clock
 445 * @wm: chip FIFO params
 446 * @pixel_size: display pixel size
 447 * @latency_ns: memory latency for the platform
 448 *
 449 * Calculate the watermark level (the level at which the display plane will
 450 * start fetching from memory again).  Each chip has a different display
 451 * FIFO size and allocation, so the caller needs to figure that out and pass
 452 * in the correct intel_watermark_params structure.
 453 *
 454 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 455 * on the pixel size.  When it reaches the watermark level, it'll start
 456 * fetching FIFO line sized based chunks from memory until the FIFO fills
 457 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 458 * will occur, and a display engine hang could result.
 459 */
 460static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
 461                                        const struct intel_watermark_params *wm,
 462                                        int fifo_size,
 463                                        int pixel_size,
 464                                        unsigned long latency_ns)
 465{
 466        long entries_required, wm_size;
 467
 468        /*
 469         * Note: we need to make sure we don't overflow for various clock &
 470         * latency values.
 471         * clocks go from a few thousand to several hundred thousand.
 472         * latency is usually a few thousand
 473         */
 474        entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
 475                1000;
 476        entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
 477
 478        DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
 479
 480        wm_size = fifo_size - (entries_required + wm->guard_size);
 481
 482        DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
 483
 484        /* Don't promote wm_size to unsigned... */
 485        if (wm_size > (long)wm->max_wm)
 486                wm_size = wm->max_wm;
 487        if (wm_size <= 0)
 488                wm_size = wm->default_wm;
 489
 490        /*
 491         * Bspec seems to indicate that the value shouldn't be lower than
 492         * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
 493         * Lets go for 8 which is the burst size since certain platforms
 494         * already use a hardcoded 8 (which is what the spec says should be
 495         * done).
 496         */
 497        if (wm_size <= 8)
 498                wm_size = 8;
 499
 500        return wm_size;
 501}
 502
 503static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
 504{
 505        struct drm_crtc *crtc, *enabled = NULL;
 506
 507        for_each_crtc(dev, crtc) {
 508                if (intel_crtc_active(crtc)) {
 509                        if (enabled)
 510                                return NULL;
 511                        enabled = crtc;
 512                }
 513        }
 514
 515        return enabled;
 516}
 517
 518static void pineview_update_wm(struct drm_crtc *unused_crtc)
 519{
 520        struct drm_device *dev = unused_crtc->dev;
 521        struct drm_i915_private *dev_priv = dev->dev_private;
 522        struct drm_crtc *crtc;
 523        const struct cxsr_latency *latency;
 524        u32 reg;
 525        unsigned long wm;
 526
 527        latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
 528                                         dev_priv->fsb_freq, dev_priv->mem_freq);
 529        if (!latency) {
 530                DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 531                intel_set_memory_cxsr(dev_priv, false);
 532                return;
 533        }
 534
 535        crtc = single_enabled_crtc(dev);
 536        if (crtc) {
 537                const struct drm_display_mode *adjusted_mode;
 538                int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
 539                int clock;
 540
 541                adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 542                clock = adjusted_mode->crtc_clock;
 543
 544                /* Display SR */
 545                wm = intel_calculate_wm(clock, &pineview_display_wm,
 546                                        pineview_display_wm.fifo_size,
 547                                        pixel_size, latency->display_sr);
 548                reg = I915_READ(DSPFW1);
 549                reg &= ~DSPFW_SR_MASK;
 550                reg |= wm << DSPFW_SR_SHIFT;
 551                I915_WRITE(DSPFW1, reg);
 552                DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
 553
 554                /* cursor SR */
 555                wm = intel_calculate_wm(clock, &pineview_cursor_wm,
 556                                        pineview_display_wm.fifo_size,
 557                                        pixel_size, latency->cursor_sr);
 558                reg = I915_READ(DSPFW3);
 559                reg &= ~DSPFW_CURSOR_SR_MASK;
 560                reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
 561                I915_WRITE(DSPFW3, reg);
 562
 563                /* Display HPLL off SR */
 564                wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
 565                                        pineview_display_hplloff_wm.fifo_size,
 566                                        pixel_size, latency->display_hpll_disable);
 567                reg = I915_READ(DSPFW3);
 568                reg &= ~DSPFW_HPLL_SR_MASK;
 569                reg |= wm & DSPFW_HPLL_SR_MASK;
 570                I915_WRITE(DSPFW3, reg);
 571
 572                /* cursor HPLL off SR */
 573                wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
 574                                        pineview_display_hplloff_wm.fifo_size,
 575                                        pixel_size, latency->cursor_hpll_disable);
 576                reg = I915_READ(DSPFW3);
 577                reg &= ~DSPFW_HPLL_CURSOR_MASK;
 578                reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
 579                I915_WRITE(DSPFW3, reg);
 580                DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
 581
 582                intel_set_memory_cxsr(dev_priv, true);
 583        } else {
 584                intel_set_memory_cxsr(dev_priv, false);
 585        }
 586}
 587
 588static bool g4x_compute_wm0(struct drm_device *dev,
 589                            int plane,
 590                            const struct intel_watermark_params *display,
 591                            int display_latency_ns,
 592                            const struct intel_watermark_params *cursor,
 593                            int cursor_latency_ns,
 594                            int *plane_wm,
 595                            int *cursor_wm)
 596{
 597        struct drm_crtc *crtc;
 598        const struct drm_display_mode *adjusted_mode;
 599        int htotal, hdisplay, clock, pixel_size;
 600        int line_time_us, line_count;
 601        int entries, tlb_miss;
 602
 603        crtc = intel_get_crtc_for_plane(dev, plane);
 604        if (!intel_crtc_active(crtc)) {
 605                *cursor_wm = cursor->guard_size;
 606                *plane_wm = display->guard_size;
 607                return false;
 608        }
 609
 610        adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 611        clock = adjusted_mode->crtc_clock;
 612        htotal = adjusted_mode->crtc_htotal;
 613        hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
 614        pixel_size = crtc->primary->fb->bits_per_pixel / 8;
 615
 616        /* Use the small buffer method to calculate plane watermark */
 617        entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
 618        tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
 619        if (tlb_miss > 0)
 620                entries += tlb_miss;
 621        entries = DIV_ROUND_UP(entries, display->cacheline_size);
 622        *plane_wm = entries + display->guard_size;
 623        if (*plane_wm > (int)display->max_wm)
 624                *plane_wm = display->max_wm;
 625
 626        /* Use the large buffer method to calculate cursor watermark */
 627        line_time_us = max(htotal * 1000 / clock, 1);
 628        line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
 629        entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
 630        tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
 631        if (tlb_miss > 0)
 632                entries += tlb_miss;
 633        entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
 634        *cursor_wm = entries + cursor->guard_size;
 635        if (*cursor_wm > (int)cursor->max_wm)
 636                *cursor_wm = (int)cursor->max_wm;
 637
 638        return true;
 639}
 640
 641/*
 642 * Check the wm result.
 643 *
 644 * If any calculated watermark values is larger than the maximum value that
 645 * can be programmed into the associated watermark register, that watermark
 646 * must be disabled.
 647 */
 648static bool g4x_check_srwm(struct drm_device *dev,
 649                           int display_wm, int cursor_wm,
 650                           const struct intel_watermark_params *display,
 651                           const struct intel_watermark_params *cursor)
 652{
 653        DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
 654                      display_wm, cursor_wm);
 655
 656        if (display_wm > display->max_wm) {
 657                DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
 658                              display_wm, display->max_wm);
 659                return false;
 660        }
 661
 662        if (cursor_wm > cursor->max_wm) {
 663                DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
 664                              cursor_wm, cursor->max_wm);
 665                return false;
 666        }
 667
 668        if (!(display_wm || cursor_wm)) {
 669                DRM_DEBUG_KMS("SR latency is 0, disabling\n");
 670                return false;
 671        }
 672
 673        return true;
 674}
 675
 676static bool g4x_compute_srwm(struct drm_device *dev,
 677                             int plane,
 678                             int latency_ns,
 679                             const struct intel_watermark_params *display,
 680                             const struct intel_watermark_params *cursor,
 681                             int *display_wm, int *cursor_wm)
 682{
 683        struct drm_crtc *crtc;
 684        const struct drm_display_mode *adjusted_mode;
 685        int hdisplay, htotal, pixel_size, clock;
 686        unsigned long line_time_us;
 687        int line_count, line_size;
 688        int small, large;
 689        int entries;
 690
 691        if (!latency_ns) {
 692                *display_wm = *cursor_wm = 0;
 693                return false;
 694        }
 695
 696        crtc = intel_get_crtc_for_plane(dev, plane);
 697        adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 698        clock = adjusted_mode->crtc_clock;
 699        htotal = adjusted_mode->crtc_htotal;
 700        hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
 701        pixel_size = crtc->primary->fb->bits_per_pixel / 8;
 702
 703        line_time_us = max(htotal * 1000 / clock, 1);
 704        line_count = (latency_ns / line_time_us + 1000) / 1000;
 705        line_size = hdisplay * pixel_size;
 706
 707        /* Use the minimum of the small and large buffer method for primary */
 708        small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
 709        large = line_count * line_size;
 710
 711        entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
 712        *display_wm = entries + display->guard_size;
 713
 714        /* calculate the self-refresh watermark for display cursor */
 715        entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
 716        entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
 717        *cursor_wm = entries + cursor->guard_size;
 718
 719        return g4x_check_srwm(dev,
 720                              *display_wm, *cursor_wm,
 721                              display, cursor);
 722}
 723
 724static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
 725                                      int pixel_size,
 726                                      int *prec_mult,
 727                                      int *drain_latency)
 728{
 729        struct drm_device *dev = crtc->dev;
 730        int entries;
 731        int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
 732
 733        if (WARN(clock == 0, "Pixel clock is zero!\n"))
 734                return false;
 735
 736        if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
 737                return false;
 738
 739        entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
 740        if (IS_CHERRYVIEW(dev))
 741                *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_32 :
 742                                               DRAIN_LATENCY_PRECISION_16;
 743        else
 744                *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
 745                                               DRAIN_LATENCY_PRECISION_32;
 746        *drain_latency = (64 * (*prec_mult) * 4) / entries;
 747
 748        if (*drain_latency > DRAIN_LATENCY_MASK)
 749                *drain_latency = DRAIN_LATENCY_MASK;
 750
 751        return true;
 752}
 753
 754/*
 755 * Update drain latency registers of memory arbiter
 756 *
 757 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 758 * to be programmed. Each plane has a drain latency multiplier and a drain
 759 * latency value.
 760 */
 761
 762static void vlv_update_drain_latency(struct drm_crtc *crtc)
 763{
 764        struct drm_device *dev = crtc->dev;
 765        struct drm_i915_private *dev_priv = dev->dev_private;
 766        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 767        int pixel_size;
 768        int drain_latency;
 769        enum pipe pipe = intel_crtc->pipe;
 770        int plane_prec, prec_mult, plane_dl;
 771        const int high_precision = IS_CHERRYVIEW(dev) ?
 772                DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
 773
 774        plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_HIGH |
 775                   DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_HIGH |
 776                   (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
 777
 778        if (!intel_crtc_active(crtc)) {
 779                I915_WRITE(VLV_DDL(pipe), plane_dl);
 780                return;
 781        }
 782
 783        /* Primary plane Drain Latency */
 784        pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
 785        if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
 786                plane_prec = (prec_mult == high_precision) ?
 787                                           DDL_PLANE_PRECISION_HIGH :
 788                                           DDL_PLANE_PRECISION_LOW;
 789                plane_dl |= plane_prec | drain_latency;
 790        }
 791
 792        /* Cursor Drain Latency
 793         * BPP is always 4 for cursor
 794         */
 795        pixel_size = 4;
 796
 797        /* Program cursor DL only if it is enabled */
 798        if (intel_crtc->cursor_base &&
 799            vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
 800                plane_prec = (prec_mult == high_precision) ?
 801                                           DDL_CURSOR_PRECISION_HIGH :
 802                                           DDL_CURSOR_PRECISION_LOW;
 803                plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
 804        }
 805
 806        I915_WRITE(VLV_DDL(pipe), plane_dl);
 807}
 808
 809#define single_plane_enabled(mask) is_power_of_2(mask)
 810
 811static void valleyview_update_wm(struct drm_crtc *crtc)
 812{
 813        struct drm_device *dev = crtc->dev;
 814        static const int sr_latency_ns = 12000;
 815        struct drm_i915_private *dev_priv = dev->dev_private;
 816        int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
 817        int plane_sr, cursor_sr;
 818        int ignore_plane_sr, ignore_cursor_sr;
 819        unsigned int enabled = 0;
 820        bool cxsr_enabled;
 821
 822        vlv_update_drain_latency(crtc);
 823
 824        if (g4x_compute_wm0(dev, PIPE_A,
 825                            &valleyview_wm_info, pessimal_latency_ns,
 826                            &valleyview_cursor_wm_info, pessimal_latency_ns,
 827                            &planea_wm, &cursora_wm))
 828                enabled |= 1 << PIPE_A;
 829
 830        if (g4x_compute_wm0(dev, PIPE_B,
 831                            &valleyview_wm_info, pessimal_latency_ns,
 832                            &valleyview_cursor_wm_info, pessimal_latency_ns,
 833                            &planeb_wm, &cursorb_wm))
 834                enabled |= 1 << PIPE_B;
 835
 836        if (single_plane_enabled(enabled) &&
 837            g4x_compute_srwm(dev, ffs(enabled) - 1,
 838                             sr_latency_ns,
 839                             &valleyview_wm_info,
 840                             &valleyview_cursor_wm_info,
 841                             &plane_sr, &ignore_cursor_sr) &&
 842            g4x_compute_srwm(dev, ffs(enabled) - 1,
 843                             2*sr_latency_ns,
 844                             &valleyview_wm_info,
 845                             &valleyview_cursor_wm_info,
 846                             &ignore_plane_sr, &cursor_sr)) {
 847                cxsr_enabled = true;
 848        } else {
 849                cxsr_enabled = false;
 850                intel_set_memory_cxsr(dev_priv, false);
 851                plane_sr = cursor_sr = 0;
 852        }
 853
 854        DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
 855                      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
 856                      planea_wm, cursora_wm,
 857                      planeb_wm, cursorb_wm,
 858                      plane_sr, cursor_sr);
 859
 860        I915_WRITE(DSPFW1,
 861                   (plane_sr << DSPFW_SR_SHIFT) |
 862                   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
 863                   (planeb_wm << DSPFW_PLANEB_SHIFT) |
 864                   (planea_wm << DSPFW_PLANEA_SHIFT));
 865        I915_WRITE(DSPFW2,
 866                   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
 867                   (cursora_wm << DSPFW_CURSORA_SHIFT));
 868        I915_WRITE(DSPFW3,
 869                   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
 870                   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
 871
 872        if (cxsr_enabled)
 873                intel_set_memory_cxsr(dev_priv, true);
 874}
 875
 876static void cherryview_update_wm(struct drm_crtc *crtc)
 877{
 878        struct drm_device *dev = crtc->dev;
 879        static const int sr_latency_ns = 12000;
 880        struct drm_i915_private *dev_priv = dev->dev_private;
 881        int planea_wm, planeb_wm, planec_wm;
 882        int cursora_wm, cursorb_wm, cursorc_wm;
 883        int plane_sr, cursor_sr;
 884        int ignore_plane_sr, ignore_cursor_sr;
 885        unsigned int enabled = 0;
 886        bool cxsr_enabled;
 887
 888        vlv_update_drain_latency(crtc);
 889
 890        if (g4x_compute_wm0(dev, PIPE_A,
 891                            &valleyview_wm_info, pessimal_latency_ns,
 892                            &valleyview_cursor_wm_info, pessimal_latency_ns,
 893                            &planea_wm, &cursora_wm))
 894                enabled |= 1 << PIPE_A;
 895
 896        if (g4x_compute_wm0(dev, PIPE_B,
 897                            &valleyview_wm_info, pessimal_latency_ns,
 898                            &valleyview_cursor_wm_info, pessimal_latency_ns,
 899                            &planeb_wm, &cursorb_wm))
 900                enabled |= 1 << PIPE_B;
 901
 902        if (g4x_compute_wm0(dev, PIPE_C,
 903                            &valleyview_wm_info, pessimal_latency_ns,
 904                            &valleyview_cursor_wm_info, pessimal_latency_ns,
 905                            &planec_wm, &cursorc_wm))
 906                enabled |= 1 << PIPE_C;
 907
 908        if (single_plane_enabled(enabled) &&
 909            g4x_compute_srwm(dev, ffs(enabled) - 1,
 910                             sr_latency_ns,
 911                             &valleyview_wm_info,
 912                             &valleyview_cursor_wm_info,
 913                             &plane_sr, &ignore_cursor_sr) &&
 914            g4x_compute_srwm(dev, ffs(enabled) - 1,
 915                             2*sr_latency_ns,
 916                             &valleyview_wm_info,
 917                             &valleyview_cursor_wm_info,
 918                             &ignore_plane_sr, &cursor_sr)) {
 919                cxsr_enabled = true;
 920        } else {
 921                cxsr_enabled = false;
 922                intel_set_memory_cxsr(dev_priv, false);
 923                plane_sr = cursor_sr = 0;
 924        }
 925
 926        DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
 927                      "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
 928                      "SR: plane=%d, cursor=%d\n",
 929                      planea_wm, cursora_wm,
 930                      planeb_wm, cursorb_wm,
 931                      planec_wm, cursorc_wm,
 932                      plane_sr, cursor_sr);
 933
 934        I915_WRITE(DSPFW1,
 935                   (plane_sr << DSPFW_SR_SHIFT) |
 936                   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
 937                   (planeb_wm << DSPFW_PLANEB_SHIFT) |
 938                   (planea_wm << DSPFW_PLANEA_SHIFT));
 939        I915_WRITE(DSPFW2,
 940                   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
 941                   (cursora_wm << DSPFW_CURSORA_SHIFT));
 942        I915_WRITE(DSPFW3,
 943                   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
 944                   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
 945        I915_WRITE(DSPFW9_CHV,
 946                   (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
 947                                              DSPFW_CURSORC_MASK)) |
 948                   (planec_wm << DSPFW_PLANEC_SHIFT) |
 949                   (cursorc_wm << DSPFW_CURSORC_SHIFT));
 950
 951        if (cxsr_enabled)
 952                intel_set_memory_cxsr(dev_priv, true);
 953}
 954
 955static void valleyview_update_sprite_wm(struct drm_plane *plane,
 956                                        struct drm_crtc *crtc,
 957                                        uint32_t sprite_width,
 958                                        uint32_t sprite_height,
 959                                        int pixel_size,
 960                                        bool enabled, bool scaled)
 961{
 962        struct drm_device *dev = crtc->dev;
 963        struct drm_i915_private *dev_priv = dev->dev_private;
 964        int pipe = to_intel_plane(plane)->pipe;
 965        int sprite = to_intel_plane(plane)->plane;
 966        int drain_latency;
 967        int plane_prec;
 968        int sprite_dl;
 969        int prec_mult;
 970        const int high_precision = IS_CHERRYVIEW(dev) ?
 971                DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
 972
 973        sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_HIGH(sprite) |
 974                    (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
 975
 976        if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
 977                                                 &drain_latency)) {
 978                plane_prec = (prec_mult == high_precision) ?
 979                                           DDL_SPRITE_PRECISION_HIGH(sprite) :
 980                                           DDL_SPRITE_PRECISION_LOW(sprite);
 981                sprite_dl |= plane_prec |
 982                             (drain_latency << DDL_SPRITE_SHIFT(sprite));
 983        }
 984
 985        I915_WRITE(VLV_DDL(pipe), sprite_dl);
 986}
 987
 988static void g4x_update_wm(struct drm_crtc *crtc)
 989{
 990        struct drm_device *dev = crtc->dev;
 991        static const int sr_latency_ns = 12000;
 992        struct drm_i915_private *dev_priv = dev->dev_private;
 993        int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
 994        int plane_sr, cursor_sr;
 995        unsigned int enabled = 0;
 996        bool cxsr_enabled;
 997
 998        if (g4x_compute_wm0(dev, PIPE_A,
 999                            &g4x_wm_info, pessimal_latency_ns,
1000                            &g4x_cursor_wm_info, pessimal_latency_ns,
1001                            &planea_wm, &cursora_wm))
1002                enabled |= 1 << PIPE_A;
1003
1004        if (g4x_compute_wm0(dev, PIPE_B,
1005                            &g4x_wm_info, pessimal_latency_ns,
1006                            &g4x_cursor_wm_info, pessimal_latency_ns,
1007                            &planeb_wm, &cursorb_wm))
1008                enabled |= 1 << PIPE_B;
1009
1010        if (single_plane_enabled(enabled) &&
1011            g4x_compute_srwm(dev, ffs(enabled) - 1,
1012                             sr_latency_ns,
1013                             &g4x_wm_info,
1014                             &g4x_cursor_wm_info,
1015                             &plane_sr, &cursor_sr)) {
1016                cxsr_enabled = true;
1017        } else {
1018                cxsr_enabled = false;
1019                intel_set_memory_cxsr(dev_priv, false);
1020                plane_sr = cursor_sr = 0;
1021        }
1022
1023        DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1024                      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1025                      planea_wm, cursora_wm,
1026                      planeb_wm, cursorb_wm,
1027                      plane_sr, cursor_sr);
1028
1029        I915_WRITE(DSPFW1,
1030                   (plane_sr << DSPFW_SR_SHIFT) |
1031                   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1032                   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1033                   (planea_wm << DSPFW_PLANEA_SHIFT));
1034        I915_WRITE(DSPFW2,
1035                   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1036                   (cursora_wm << DSPFW_CURSORA_SHIFT));
1037        /* HPLL off in SR has some issues on G4x... disable it */
1038        I915_WRITE(DSPFW3,
1039                   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1040                   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1041
1042        if (cxsr_enabled)
1043                intel_set_memory_cxsr(dev_priv, true);
1044}
1045
1046static void i965_update_wm(struct drm_crtc *unused_crtc)
1047{
1048        struct drm_device *dev = unused_crtc->dev;
1049        struct drm_i915_private *dev_priv = dev->dev_private;
1050        struct drm_crtc *crtc;
1051        int srwm = 1;
1052        int cursor_sr = 16;
1053        bool cxsr_enabled;
1054
1055        /* Calc sr entries for one plane configs */
1056        crtc = single_enabled_crtc(dev);
1057        if (crtc) {
1058                /* self-refresh has much higher latency */
1059                static const int sr_latency_ns = 12000;
1060                const struct drm_display_mode *adjusted_mode =
1061                        &to_intel_crtc(crtc)->config->base.adjusted_mode;
1062                int clock = adjusted_mode->crtc_clock;
1063                int htotal = adjusted_mode->crtc_htotal;
1064                int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1065                int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1066                unsigned long line_time_us;
1067                int entries;
1068
1069                line_time_us = max(htotal * 1000 / clock, 1);
1070
1071                /* Use ns/us then divide to preserve precision */
1072                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1073                        pixel_size * hdisplay;
1074                entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1075                srwm = I965_FIFO_SIZE - entries;
1076                if (srwm < 0)
1077                        srwm = 1;
1078                srwm &= 0x1ff;
1079                DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1080                              entries, srwm);
1081
1082                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1083                        pixel_size * to_intel_crtc(crtc)->cursor_width;
1084                entries = DIV_ROUND_UP(entries,
1085                                          i965_cursor_wm_info.cacheline_size);
1086                cursor_sr = i965_cursor_wm_info.fifo_size -
1087                        (entries + i965_cursor_wm_info.guard_size);
1088
1089                if (cursor_sr > i965_cursor_wm_info.max_wm)
1090                        cursor_sr = i965_cursor_wm_info.max_wm;
1091
1092                DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1093                              "cursor %d\n", srwm, cursor_sr);
1094
1095                cxsr_enabled = true;
1096        } else {
1097                cxsr_enabled = false;
1098                /* Turn off self refresh if both pipes are enabled */
1099                intel_set_memory_cxsr(dev_priv, false);
1100        }
1101
1102        DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1103                      srwm);
1104
1105        /* 965 has limitations... */
1106        I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1107                   (8 << DSPFW_CURSORB_SHIFT) |
1108                   (8 << DSPFW_PLANEB_SHIFT) |
1109                   (8 << DSPFW_PLANEA_SHIFT));
1110        I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
1111                   (8 << DSPFW_PLANEC_SHIFT_OLD));
1112        /* update cursor SR watermark */
1113        I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1114
1115        if (cxsr_enabled)
1116                intel_set_memory_cxsr(dev_priv, true);
1117}
1118
1119static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1120{
1121        struct drm_device *dev = unused_crtc->dev;
1122        struct drm_i915_private *dev_priv = dev->dev_private;
1123        const struct intel_watermark_params *wm_info;
1124        uint32_t fwater_lo;
1125        uint32_t fwater_hi;
1126        int cwm, srwm = 1;
1127        int fifo_size;
1128        int planea_wm, planeb_wm;
1129        struct drm_crtc *crtc, *enabled = NULL;
1130
1131        if (IS_I945GM(dev))
1132                wm_info = &i945_wm_info;
1133        else if (!IS_GEN2(dev))
1134                wm_info = &i915_wm_info;
1135        else
1136                wm_info = &i830_a_wm_info;
1137
1138        fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1139        crtc = intel_get_crtc_for_plane(dev, 0);
1140        if (intel_crtc_active(crtc)) {
1141                const struct drm_display_mode *adjusted_mode;
1142                int cpp = crtc->primary->fb->bits_per_pixel / 8;
1143                if (IS_GEN2(dev))
1144                        cpp = 4;
1145
1146                adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1147                planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1148                                               wm_info, fifo_size, cpp,
1149                                               pessimal_latency_ns);
1150                enabled = crtc;
1151        } else {
1152                planea_wm = fifo_size - wm_info->guard_size;
1153                if (planea_wm > (long)wm_info->max_wm)
1154                        planea_wm = wm_info->max_wm;
1155        }
1156
1157        if (IS_GEN2(dev))
1158                wm_info = &i830_bc_wm_info;
1159
1160        fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1161        crtc = intel_get_crtc_for_plane(dev, 1);
1162        if (intel_crtc_active(crtc)) {
1163                const struct drm_display_mode *adjusted_mode;
1164                int cpp = crtc->primary->fb->bits_per_pixel / 8;
1165                if (IS_GEN2(dev))
1166                        cpp = 4;
1167
1168                adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1169                planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1170                                               wm_info, fifo_size, cpp,
1171                                               pessimal_latency_ns);
1172                if (enabled == NULL)
1173                        enabled = crtc;
1174                else
1175                        enabled = NULL;
1176        } else {
1177                planeb_wm = fifo_size - wm_info->guard_size;
1178                if (planeb_wm > (long)wm_info->max_wm)
1179                        planeb_wm = wm_info->max_wm;
1180        }
1181
1182        DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1183
1184        if (IS_I915GM(dev) && enabled) {
1185                struct drm_i915_gem_object *obj;
1186
1187                obj = intel_fb_obj(enabled->primary->fb);
1188
1189                /* self-refresh seems busted with untiled */
1190                if (obj->tiling_mode == I915_TILING_NONE)
1191                        enabled = NULL;
1192        }
1193
1194        /*
1195         * Overlay gets an aggressive default since video jitter is bad.
1196         */
1197        cwm = 2;
1198
1199        /* Play safe and disable self-refresh before adjusting watermarks. */
1200        intel_set_memory_cxsr(dev_priv, false);
1201
1202        /* Calc sr entries for one plane configs */
1203        if (HAS_FW_BLC(dev) && enabled) {
1204                /* self-refresh has much higher latency */
1205                static const int sr_latency_ns = 6000;
1206                const struct drm_display_mode *adjusted_mode =
1207                        &to_intel_crtc(enabled)->config->base.adjusted_mode;
1208                int clock = adjusted_mode->crtc_clock;
1209                int htotal = adjusted_mode->crtc_htotal;
1210                int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1211                int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1212                unsigned long line_time_us;
1213                int entries;
1214
1215                line_time_us = max(htotal * 1000 / clock, 1);
1216
1217                /* Use ns/us then divide to preserve precision */
1218                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1219                        pixel_size * hdisplay;
1220                entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1221                DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1222                srwm = wm_info->fifo_size - entries;
1223                if (srwm < 0)
1224                        srwm = 1;
1225
1226                if (IS_I945G(dev) || IS_I945GM(dev))
1227                        I915_WRITE(FW_BLC_SELF,
1228                                   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1229                else if (IS_I915GM(dev))
1230                        I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1231        }
1232
1233        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1234                      planea_wm, planeb_wm, cwm, srwm);
1235
1236        fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1237        fwater_hi = (cwm & 0x1f);
1238
1239        /* Set request length to 8 cachelines per fetch */
1240        fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1241        fwater_hi = fwater_hi | (1 << 8);
1242
1243        I915_WRITE(FW_BLC, fwater_lo);
1244        I915_WRITE(FW_BLC2, fwater_hi);
1245
1246        if (enabled)
1247                intel_set_memory_cxsr(dev_priv, true);
1248}
1249
1250static void i845_update_wm(struct drm_crtc *unused_crtc)
1251{
1252        struct drm_device *dev = unused_crtc->dev;
1253        struct drm_i915_private *dev_priv = dev->dev_private;
1254        struct drm_crtc *crtc;
1255        const struct drm_display_mode *adjusted_mode;
1256        uint32_t fwater_lo;
1257        int planea_wm;
1258
1259        crtc = single_enabled_crtc(dev);
1260        if (crtc == NULL)
1261                return;
1262
1263        adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1264        planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1265                                       &i845_wm_info,
1266                                       dev_priv->display.get_fifo_size(dev, 0),
1267                                       4, pessimal_latency_ns);
1268        fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1269        fwater_lo |= (3<<8) | planea_wm;
1270
1271        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1272
1273        I915_WRITE(FW_BLC, fwater_lo);
1274}
1275
1276static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1277                                    struct drm_crtc *crtc)
1278{
1279        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1280        uint32_t pixel_rate;
1281
1282        pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1283
1284        /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1285         * adjust the pixel_rate here. */
1286
1287        if (intel_crtc->config->pch_pfit.enabled) {
1288                uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1289                uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1290
1291                pipe_w = intel_crtc->config->pipe_src_w;
1292                pipe_h = intel_crtc->config->pipe_src_h;
1293                pfit_w = (pfit_size >> 16) & 0xFFFF;
1294                pfit_h = pfit_size & 0xFFFF;
1295                if (pipe_w < pfit_w)
1296                        pipe_w = pfit_w;
1297                if (pipe_h < pfit_h)
1298                        pipe_h = pfit_h;
1299
1300                pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1301                                     pfit_w * pfit_h);
1302        }
1303
1304        return pixel_rate;
1305}
1306
1307/* latency must be in 0.1us units. */
1308static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1309                               uint32_t latency)
1310{
1311        uint64_t ret;
1312
1313        if (WARN(latency == 0, "Latency value missing\n"))
1314                return UINT_MAX;
1315
1316        ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1317        ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1318
1319        return ret;
1320}
1321
1322/* latency must be in 0.1us units. */
1323static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1324                               uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1325                               uint32_t latency)
1326{
1327        uint32_t ret;
1328
1329        if (WARN(latency == 0, "Latency value missing\n"))
1330                return UINT_MAX;
1331
1332        ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1333        ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1334        ret = DIV_ROUND_UP(ret, 64) + 2;
1335        return ret;
1336}
1337
1338static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1339                           uint8_t bytes_per_pixel)
1340{
1341        return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1342}
1343
1344struct skl_pipe_wm_parameters {
1345        bool active;
1346        uint32_t pipe_htotal;
1347        uint32_t pixel_rate; /* in KHz */
1348        struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1349        struct intel_plane_wm_parameters cursor;
1350};
1351
1352struct ilk_pipe_wm_parameters {
1353        bool active;
1354        uint32_t pipe_htotal;
1355        uint32_t pixel_rate;
1356        struct intel_plane_wm_parameters pri;
1357        struct intel_plane_wm_parameters spr;
1358        struct intel_plane_wm_parameters cur;
1359};
1360
1361struct ilk_wm_maximums {
1362        uint16_t pri;
1363        uint16_t spr;
1364        uint16_t cur;
1365        uint16_t fbc;
1366};
1367
1368/* used in computing the new watermarks state */
1369struct intel_wm_config {
1370        unsigned int num_pipes_active;
1371        bool sprites_enabled;
1372        bool sprites_scaled;
1373};
1374
1375/*
1376 * For both WM_PIPE and WM_LP.
1377 * mem_value must be in 0.1us units.
1378 */
1379static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1380                                   uint32_t mem_value,
1381                                   bool is_lp)
1382{
1383        uint32_t method1, method2;
1384
1385        if (!params->active || !params->pri.enabled)
1386                return 0;
1387
1388        method1 = ilk_wm_method1(params->pixel_rate,
1389                                 params->pri.bytes_per_pixel,
1390                                 mem_value);
1391
1392        if (!is_lp)
1393                return method1;
1394
1395        method2 = ilk_wm_method2(params->pixel_rate,
1396                                 params->pipe_htotal,
1397                                 params->pri.horiz_pixels,
1398                                 params->pri.bytes_per_pixel,
1399                                 mem_value);
1400
1401        return min(method1, method2);
1402}
1403
1404/*
1405 * For both WM_PIPE and WM_LP.
1406 * mem_value must be in 0.1us units.
1407 */
1408static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1409                                   uint32_t mem_value)
1410{
1411        uint32_t method1, method2;
1412
1413        if (!params->active || !params->spr.enabled)
1414                return 0;
1415
1416        method1 = ilk_wm_method1(params->pixel_rate,
1417                                 params->spr.bytes_per_pixel,
1418                                 mem_value);
1419        method2 = ilk_wm_method2(params->pixel_rate,
1420                                 params->pipe_htotal,
1421                                 params->spr.horiz_pixels,
1422                                 params->spr.bytes_per_pixel,
1423                                 mem_value);
1424        return min(method1, method2);
1425}
1426
1427/*
1428 * For both WM_PIPE and WM_LP.
1429 * mem_value must be in 0.1us units.
1430 */
1431static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1432                                   uint32_t mem_value)
1433{
1434        if (!params->active || !params->cur.enabled)
1435                return 0;
1436
1437        return ilk_wm_method2(params->pixel_rate,
1438                              params->pipe_htotal,
1439                              params->cur.horiz_pixels,
1440                              params->cur.bytes_per_pixel,
1441                              mem_value);
1442}
1443
1444/* Only for WM_LP. */
1445static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1446                                   uint32_t pri_val)
1447{
1448        if (!params->active || !params->pri.enabled)
1449                return 0;
1450
1451        return ilk_wm_fbc(pri_val,
1452                          params->pri.horiz_pixels,
1453                          params->pri.bytes_per_pixel);
1454}
1455
1456static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1457{
1458        if (INTEL_INFO(dev)->gen >= 8)
1459                return 3072;
1460        else if (INTEL_INFO(dev)->gen >= 7)
1461                return 768;
1462        else
1463                return 512;
1464}
1465
1466static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1467                                         int level, bool is_sprite)
1468{
1469        if (INTEL_INFO(dev)->gen >= 8)
1470                /* BDW primary/sprite plane watermarks */
1471                return level == 0 ? 255 : 2047;
1472        else if (INTEL_INFO(dev)->gen >= 7)
1473                /* IVB/HSW primary/sprite plane watermarks */
1474                return level == 0 ? 127 : 1023;
1475        else if (!is_sprite)
1476                /* ILK/SNB primary plane watermarks */
1477                return level == 0 ? 127 : 511;
1478        else
1479                /* ILK/SNB sprite plane watermarks */
1480                return level == 0 ? 63 : 255;
1481}
1482
1483static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1484                                          int level)
1485{
1486        if (INTEL_INFO(dev)->gen >= 7)
1487                return level == 0 ? 63 : 255;
1488        else
1489                return level == 0 ? 31 : 63;
1490}
1491
1492static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1493{
1494        if (INTEL_INFO(dev)->gen >= 8)
1495                return 31;
1496        else
1497                return 15;
1498}
1499
1500/* Calculate the maximum primary/sprite plane watermark */
1501static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1502                                     int level,
1503                                     const struct intel_wm_config *config,
1504                                     enum intel_ddb_partitioning ddb_partitioning,
1505                                     bool is_sprite)
1506{
1507        unsigned int fifo_size = ilk_display_fifo_size(dev);
1508
1509        /* if sprites aren't enabled, sprites get nothing */
1510        if (is_sprite && !config->sprites_enabled)
1511                return 0;
1512
1513        /* HSW allows LP1+ watermarks even with multiple pipes */
1514        if (level == 0 || config->num_pipes_active > 1) {
1515                fifo_size /= INTEL_INFO(dev)->num_pipes;
1516
1517                /*
1518                 * For some reason the non self refresh
1519                 * FIFO size is only half of the self
1520                 * refresh FIFO size on ILK/SNB.
1521                 */
1522                if (INTEL_INFO(dev)->gen <= 6)
1523                        fifo_size /= 2;
1524        }
1525
1526        if (config->sprites_enabled) {
1527                /* level 0 is always calculated with 1:1 split */
1528                if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1529                        if (is_sprite)
1530                                fifo_size *= 5;
1531                        fifo_size /= 6;
1532                } else {
1533                        fifo_size /= 2;
1534                }
1535        }
1536
1537        /* clamp to max that the registers can hold */
1538        return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1539}
1540
1541/* Calculate the maximum cursor plane watermark */
1542static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1543                                      int level,
1544                                      const struct intel_wm_config *config)
1545{
1546        /* HSW LP1+ watermarks w/ multiple pipes */
1547        if (level > 0 && config->num_pipes_active > 1)
1548                return 64;
1549
1550        /* otherwise just report max that registers can hold */
1551        return ilk_cursor_wm_reg_max(dev, level);
1552}
1553
1554static void ilk_compute_wm_maximums(const struct drm_device *dev,
1555                                    int level,
1556                                    const struct intel_wm_config *config,
1557                                    enum intel_ddb_partitioning ddb_partitioning,
1558                                    struct ilk_wm_maximums *max)
1559{
1560        max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1561        max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1562        max->cur = ilk_cursor_wm_max(dev, level, config);
1563        max->fbc = ilk_fbc_wm_reg_max(dev);
1564}
1565
1566static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1567                                        int level,
1568                                        struct ilk_wm_maximums *max)
1569{
1570        max->pri = ilk_plane_wm_reg_max(dev, level, false);
1571        max->spr = ilk_plane_wm_reg_max(dev, level, true);
1572        max->cur = ilk_cursor_wm_reg_max(dev, level);
1573        max->fbc = ilk_fbc_wm_reg_max(dev);
1574}
1575
1576static bool ilk_validate_wm_level(int level,
1577                                  const struct ilk_wm_maximums *max,
1578                                  struct intel_wm_level *result)
1579{
1580        bool ret;
1581
1582        /* already determined to be invalid? */
1583        if (!result->enable)
1584                return false;
1585
1586        result->enable = result->pri_val <= max->pri &&
1587                         result->spr_val <= max->spr &&
1588                         result->cur_val <= max->cur;
1589
1590        ret = result->enable;
1591
1592        /*
1593         * HACK until we can pre-compute everything,
1594         * and thus fail gracefully if LP0 watermarks
1595         * are exceeded...
1596         */
1597        if (level == 0 && !result->enable) {
1598                if (result->pri_val > max->pri)
1599                        DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1600                                      level, result->pri_val, max->pri);
1601                if (result->spr_val > max->spr)
1602                        DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1603                                      level, result->spr_val, max->spr);
1604                if (result->cur_val > max->cur)
1605                        DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1606                                      level, result->cur_val, max->cur);
1607
1608                result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1609                result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1610                result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1611                result->enable = true;
1612        }
1613
1614        return ret;
1615}
1616
1617static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1618                                 int level,
1619                                 const struct ilk_pipe_wm_parameters *p,
1620                                 struct intel_wm_level *result)
1621{
1622        uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1623        uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1624        uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1625
1626        /* WM1+ latency values stored in 0.5us units */
1627        if (level > 0) {
1628                pri_latency *= 5;
1629                spr_latency *= 5;
1630                cur_latency *= 5;
1631        }
1632
1633        result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1634        result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1635        result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1636        result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1637        result->enable = true;
1638}
1639
1640static uint32_t
1641hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1642{
1643        struct drm_i915_private *dev_priv = dev->dev_private;
1644        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1645        struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1646        u32 linetime, ips_linetime;
1647
1648        if (!intel_crtc_active(crtc))
1649                return 0;
1650
1651        /* The WM are computed with base on how long it takes to fill a single
1652         * row at the given clock rate, multiplied by 8.
1653         * */
1654        linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1655                                     mode->crtc_clock);
1656        ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1657                                         intel_ddi_get_cdclk_freq(dev_priv));
1658
1659        return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
1660               PIPE_WM_LINETIME_TIME(linetime);
1661}
1662
1663static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1664{
1665        struct drm_i915_private *dev_priv = dev->dev_private;
1666
1667        if (IS_GEN9(dev)) {
1668                uint32_t val;
1669                int ret, i;
1670                int level, max_level = ilk_wm_max_level(dev);
1671
1672                /* read the first set of memory latencies[0:3] */
1673                val = 0; /* data0 to be programmed to 0 for first set */
1674                mutex_lock(&dev_priv->rps.hw_lock);
1675                ret = sandybridge_pcode_read(dev_priv,
1676                                             GEN9_PCODE_READ_MEM_LATENCY,
1677                                             &val);
1678                mutex_unlock(&dev_priv->rps.hw_lock);
1679
1680                if (ret) {
1681                        DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1682                        return;
1683                }
1684
1685                wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1686                wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1687                                GEN9_MEM_LATENCY_LEVEL_MASK;
1688                wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1689                                GEN9_MEM_LATENCY_LEVEL_MASK;
1690                wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1691                                GEN9_MEM_LATENCY_LEVEL_MASK;
1692
1693                /* read the second set of memory latencies[4:7] */
1694                val = 1; /* data0 to be programmed to 1 for second set */
1695                mutex_lock(&dev_priv->rps.hw_lock);
1696                ret = sandybridge_pcode_read(dev_priv,
1697                                             GEN9_PCODE_READ_MEM_LATENCY,
1698                                             &val);
1699                mutex_unlock(&dev_priv->rps.hw_lock);
1700                if (ret) {
1701                        DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1702                        return;
1703                }
1704
1705                wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1706                wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1707                                GEN9_MEM_LATENCY_LEVEL_MASK;
1708                wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1709                                GEN9_MEM_LATENCY_LEVEL_MASK;
1710                wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1711                                GEN9_MEM_LATENCY_LEVEL_MASK;
1712
1713                /*
1714                 * punit doesn't take into account the read latency so we need
1715                 * to add 2us to the various latency levels we retrieve from
1716                 * the punit.
1717                 *   - W0 is a bit special in that it's the only level that
1718                 *   can't be disabled if we want to have display working, so
1719                 *   we always add 2us there.
1720                 *   - For levels >=1, punit returns 0us latency when they are
1721                 *   disabled, so we respect that and don't add 2us then
1722                 *
1723                 * Additionally, if a level n (n > 1) has a 0us latency, all
1724                 * levels m (m >= n) need to be disabled. We make sure to
1725                 * sanitize the values out of the punit to satisfy this
1726                 * requirement.
1727                 */
1728                wm[0] += 2;
1729                for (level = 1; level <= max_level; level++)
1730                        if (wm[level] != 0)
1731                                wm[level] += 2;
1732                        else {
1733                                for (i = level + 1; i <= max_level; i++)
1734                                        wm[i] = 0;
1735
1736                                break;
1737                        }
1738        } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1739                uint64_t sskpd = I915_READ64(MCH_SSKPD);
1740
1741                wm[0] = (sskpd >> 56) & 0xFF;
1742                if (wm[0] == 0)
1743                        wm[0] = sskpd & 0xF;
1744                wm[1] = (sskpd >> 4) & 0xFF;
1745                wm[2] = (sskpd >> 12) & 0xFF;
1746                wm[3] = (sskpd >> 20) & 0x1FF;
1747                wm[4] = (sskpd >> 32) & 0x1FF;
1748        } else if (INTEL_INFO(dev)->gen >= 6) {
1749                uint32_t sskpd = I915_READ(MCH_SSKPD);
1750
1751                wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
1752                wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
1753                wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
1754                wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1755        } else if (INTEL_INFO(dev)->gen >= 5) {
1756                uint32_t mltr = I915_READ(MLTR_ILK);
1757
1758                /* ILK primary LP0 latency is 700 ns */
1759                wm[0] = 7;
1760                wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
1761                wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1762        }
1763}
1764
1765static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
1766{
1767        /* ILK sprite LP0 latency is 1300 ns */
1768        if (INTEL_INFO(dev)->gen == 5)
1769                wm[0] = 13;
1770}
1771
1772static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
1773{
1774        /* ILK cursor LP0 latency is 1300 ns */
1775        if (INTEL_INFO(dev)->gen == 5)
1776                wm[0] = 13;
1777
1778        /* WaDoubleCursorLP3Latency:ivb */
1779        if (IS_IVYBRIDGE(dev))
1780                wm[3] *= 2;
1781}
1782
1783int ilk_wm_max_level(const struct drm_device *dev)
1784{
1785        /* how many WM levels are we expecting */
1786        if (IS_GEN9(dev))
1787                return 7;
1788        else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1789                return 4;
1790        else if (INTEL_INFO(dev)->gen >= 6)
1791                return 3;
1792        else
1793                return 2;
1794}
1795
1796static void intel_print_wm_latency(struct drm_device *dev,
1797                                   const char *name,
1798                                   const uint16_t wm[8])
1799{
1800        int level, max_level = ilk_wm_max_level(dev);
1801
1802        for (level = 0; level <= max_level; level++) {
1803                unsigned int latency = wm[level];
1804
1805                if (latency == 0) {
1806                        DRM_ERROR("%s WM%d latency not provided\n",
1807                                  name, level);
1808                        continue;
1809                }
1810
1811                /*
1812                 * - latencies are in us on gen9.
1813                 * - before then, WM1+ latency values are in 0.5us units
1814                 */
1815                if (IS_GEN9(dev))
1816                        latency *= 10;
1817                else if (level > 0)
1818                        latency *= 5;
1819
1820                DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
1821                              name, level, wm[level],
1822                              latency / 10, latency % 10);
1823        }
1824}
1825
1826static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
1827                                    uint16_t wm[5], uint16_t min)
1828{
1829        int level, max_level = ilk_wm_max_level(dev_priv->dev);
1830
1831        if (wm[0] >= min)
1832                return false;
1833
1834        wm[0] = max(wm[0], min);
1835        for (level = 1; level <= max_level; level++)
1836                wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
1837
1838        return true;
1839}
1840
1841static void snb_wm_latency_quirk(struct drm_device *dev)
1842{
1843        struct drm_i915_private *dev_priv = dev->dev_private;
1844        bool changed;
1845
1846        /*
1847         * The BIOS provided WM memory latency values are often
1848         * inadequate for high resolution displays. Adjust them.
1849         */
1850        changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
1851                ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
1852                ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
1853
1854        if (!changed)
1855                return;
1856
1857        DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
1858        intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1859        intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
1860        intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1861}
1862
1863static void ilk_setup_wm_latency(struct drm_device *dev)
1864{
1865        struct drm_i915_private *dev_priv = dev->dev_private;
1866
1867        intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
1868
1869        memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
1870               sizeof(dev_priv->wm.pri_latency));
1871        memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
1872               sizeof(dev_priv->wm.pri_latency));
1873
1874        intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
1875        intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
1876
1877        intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1878        intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
1879        intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1880
1881        if (IS_GEN6(dev))
1882                snb_wm_latency_quirk(dev);
1883}
1884
1885static void skl_setup_wm_latency(struct drm_device *dev)
1886{
1887        struct drm_i915_private *dev_priv = dev->dev_private;
1888
1889        intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
1890        intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
1891}
1892
1893static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
1894                                      struct ilk_pipe_wm_parameters *p)
1895{
1896        struct drm_device *dev = crtc->dev;
1897        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1898        enum pipe pipe = intel_crtc->pipe;
1899        struct drm_plane *plane;
1900
1901        if (!intel_crtc_active(crtc))
1902                return;
1903
1904        p->active = true;
1905        p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
1906        p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
1907        p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
1908        p->cur.bytes_per_pixel = 4;
1909        p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
1910        p->cur.horiz_pixels = intel_crtc->cursor_width;
1911        /* TODO: for now, assume primary and cursor planes are always enabled. */
1912        p->pri.enabled = true;
1913        p->cur.enabled = true;
1914
1915        drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
1916                struct intel_plane *intel_plane = to_intel_plane(plane);
1917
1918                if (intel_plane->pipe == pipe) {
1919                        p->spr = intel_plane->wm;
1920                        break;
1921                }
1922        }
1923}
1924
1925static void ilk_compute_wm_config(struct drm_device *dev,
1926                                  struct intel_wm_config *config)
1927{
1928        struct intel_crtc *intel_crtc;
1929
1930        /* Compute the currently _active_ config */
1931        for_each_intel_crtc(dev, intel_crtc) {
1932                const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
1933
1934                if (!wm->pipe_enabled)
1935                        continue;
1936
1937                config->sprites_enabled |= wm->sprites_enabled;
1938                config->sprites_scaled |= wm->sprites_scaled;
1939                config->num_pipes_active++;
1940        }
1941}
1942
1943/* Compute new watermarks for the pipe */
1944static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
1945                                  const struct ilk_pipe_wm_parameters *params,
1946                                  struct intel_pipe_wm *pipe_wm)
1947{
1948        struct drm_device *dev = crtc->dev;
1949        const struct drm_i915_private *dev_priv = dev->dev_private;
1950        int level, max_level = ilk_wm_max_level(dev);
1951        /* LP0 watermark maximums depend on this pipe alone */
1952        struct intel_wm_config config = {
1953                .num_pipes_active = 1,
1954                .sprites_enabled = params->spr.enabled,
1955                .sprites_scaled = params->spr.scaled,
1956        };
1957        struct ilk_wm_maximums max;
1958
1959        pipe_wm->pipe_enabled = params->active;
1960        pipe_wm->sprites_enabled = params->spr.enabled;
1961        pipe_wm->sprites_scaled = params->spr.scaled;
1962
1963        /* ILK/SNB: LP2+ watermarks only w/o sprites */
1964        if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
1965                max_level = 1;
1966
1967        /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
1968        if (params->spr.scaled)
1969                max_level = 0;
1970
1971        ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
1972
1973        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1974                pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
1975
1976        /* LP0 watermarks always use 1/2 DDB partitioning */
1977        ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
1978
1979        /* At least LP0 must be valid */
1980        if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
1981                return false;
1982
1983        ilk_compute_wm_reg_maximums(dev, 1, &max);
1984
1985        for (level = 1; level <= max_level; level++) {
1986                struct intel_wm_level wm = {};
1987
1988                ilk_compute_wm_level(dev_priv, level, params, &wm);
1989
1990                /*
1991                 * Disable any watermark level that exceeds the
1992                 * register maximums since such watermarks are
1993                 * always invalid.
1994                 */
1995                if (!ilk_validate_wm_level(level, &max, &wm))
1996                        break;
1997
1998                pipe_wm->wm[level] = wm;
1999        }
2000
2001        return true;
2002}
2003
2004/*
2005 * Merge the watermarks from all active pipes for a specific level.
2006 */
2007static void ilk_merge_wm_level(struct drm_device *dev,
2008                               int level,
2009                               struct intel_wm_level *ret_wm)
2010{
2011        const struct intel_crtc *intel_crtc;
2012
2013        ret_wm->enable = true;
2014
2015        for_each_intel_crtc(dev, intel_crtc) {
2016                const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2017                const struct intel_wm_level *wm = &active->wm[level];
2018
2019                if (!active->pipe_enabled)
2020                        continue;
2021
2022                /*
2023                 * The watermark values may have been used in the past,
2024                 * so we must maintain them in the registers for some
2025                 * time even if the level is now disabled.
2026                 */
2027                if (!wm->enable)
2028                        ret_wm->enable = false;
2029
2030                ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2031                ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2032                ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2033                ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2034        }
2035}
2036
2037/*
2038 * Merge all low power watermarks for all active pipes.
2039 */
2040static void ilk_wm_merge(struct drm_device *dev,
2041                         const struct intel_wm_config *config,
2042                         const struct ilk_wm_maximums *max,
2043                         struct intel_pipe_wm *merged)
2044{
2045        int level, max_level = ilk_wm_max_level(dev);
2046        int last_enabled_level = max_level;
2047
2048        /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2049        if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2050            config->num_pipes_active > 1)
2051                return;
2052
2053        /* ILK: FBC WM must be disabled always */
2054        merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2055
2056        /* merge each WM1+ level */
2057        for (level = 1; level <= max_level; level++) {
2058                struct intel_wm_level *wm = &merged->wm[level];
2059
2060                ilk_merge_wm_level(dev, level, wm);
2061
2062                if (level > last_enabled_level)
2063                        wm->enable = false;
2064                else if (!ilk_validate_wm_level(level, max, wm))
2065                        /* make sure all following levels get disabled */
2066                        last_enabled_level = level - 1;
2067
2068                /*
2069                 * The spec says it is preferred to disable
2070                 * FBC WMs instead of disabling a WM level.
2071                 */
2072                if (wm->fbc_val > max->fbc) {
2073                        if (wm->enable)
2074                                merged->fbc_wm_enabled = false;
2075                        wm->fbc_val = 0;
2076                }
2077        }
2078
2079        /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2080        /*
2081         * FIXME this is racy. FBC might get enabled later.
2082         * What we should check here is whether FBC can be
2083         * enabled sometime later.
2084         */
2085        if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2086                for (level = 2; level <= max_level; level++) {
2087                        struct intel_wm_level *wm = &merged->wm[level];
2088
2089                        wm->enable = false;
2090                }
2091        }
2092}
2093
2094static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2095{
2096        /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2097        return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2098}
2099
2100/* The value we need to program into the WM_LPx latency field */
2101static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2102{
2103        struct drm_i915_private *dev_priv = dev->dev_private;
2104
2105        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2106                return 2 * level;
2107        else
2108                return dev_priv->wm.pri_latency[level];
2109}
2110
2111static void ilk_compute_wm_results(struct drm_device *dev,
2112                                   const struct intel_pipe_wm *merged,
2113                                   enum intel_ddb_partitioning partitioning,
2114                                   struct ilk_wm_values *results)
2115{
2116        struct intel_crtc *intel_crtc;
2117        int level, wm_lp;
2118
2119        results->enable_fbc_wm = merged->fbc_wm_enabled;
2120        results->partitioning = partitioning;
2121
2122        /* LP1+ register values */
2123        for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2124                const struct intel_wm_level *r;
2125
2126                level = ilk_wm_lp_to_level(wm_lp, merged);
2127
2128                r = &merged->wm[level];
2129
2130                /*
2131                 * Maintain the watermark values even if the level is
2132                 * disabled. Doing otherwise could cause underruns.
2133                 */
2134                results->wm_lp[wm_lp - 1] =
2135                        (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2136                        (r->pri_val << WM1_LP_SR_SHIFT) |
2137                        r->cur_val;
2138
2139                if (r->enable)
2140                        results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2141
2142                if (INTEL_INFO(dev)->gen >= 8)
2143                        results->wm_lp[wm_lp - 1] |=
2144                                r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2145                else
2146                        results->wm_lp[wm_lp - 1] |=
2147                                r->fbc_val << WM1_LP_FBC_SHIFT;
2148
2149                /*
2150                 * Always set WM1S_LP_EN when spr_val != 0, even if the
2151                 * level is disabled. Doing otherwise could cause underruns.
2152                 */
2153                if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2154                        WARN_ON(wm_lp != 1);
2155                        results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2156                } else
2157                        results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2158        }
2159
2160        /* LP0 register values */
2161        for_each_intel_crtc(dev, intel_crtc) {
2162                enum pipe pipe = intel_crtc->pipe;
2163                const struct intel_wm_level *r =
2164                        &intel_crtc->wm.active.wm[0];
2165
2166                if (WARN_ON(!r->enable))
2167                        continue;
2168
2169                results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2170
2171                results->wm_pipe[pipe] =
2172                        (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2173                        (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2174                        r->cur_val;
2175        }
2176}
2177
2178/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2179 * case both are at the same level. Prefer r1 in case they're the same. */
2180static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2181                                                  struct intel_pipe_wm *r1,
2182                                                  struct intel_pipe_wm *r2)
2183{
2184        int level, max_level = ilk_wm_max_level(dev);
2185        int level1 = 0, level2 = 0;
2186
2187        for (level = 1; level <= max_level; level++) {
2188                if (r1->wm[level].enable)
2189                        level1 = level;
2190                if (r2->wm[level].enable)
2191                        level2 = level;
2192        }
2193
2194        if (level1 == level2) {
2195                if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2196                        return r2;
2197                else
2198                        return r1;
2199        } else if (level1 > level2) {
2200                return r1;
2201        } else {
2202                return r2;
2203        }
2204}
2205
2206/* dirty bits used to track which watermarks need changes */
2207#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2208#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2209#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2210#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2211#define WM_DIRTY_FBC (1 << 24)
2212#define WM_DIRTY_DDB (1 << 25)
2213
2214static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2215                                         const struct ilk_wm_values *old,
2216                                         const struct ilk_wm_values *new)
2217{
2218        unsigned int dirty = 0;
2219        enum pipe pipe;
2220        int wm_lp;
2221
2222        for_each_pipe(dev_priv, pipe) {
2223                if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2224                        dirty |= WM_DIRTY_LINETIME(pipe);
2225                        /* Must disable LP1+ watermarks too */
2226                        dirty |= WM_DIRTY_LP_ALL;
2227                }
2228
2229                if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2230                        dirty |= WM_DIRTY_PIPE(pipe);
2231                        /* Must disable LP1+ watermarks too */
2232                        dirty |= WM_DIRTY_LP_ALL;
2233                }
2234        }
2235
2236        if (old->enable_fbc_wm != new->enable_fbc_wm) {
2237                dirty |= WM_DIRTY_FBC;
2238                /* Must disable LP1+ watermarks too */
2239                dirty |= WM_DIRTY_LP_ALL;
2240        }
2241
2242        if (old->partitioning != new->partitioning) {
2243                dirty |= WM_DIRTY_DDB;
2244                /* Must disable LP1+ watermarks too */
2245                dirty |= WM_DIRTY_LP_ALL;
2246        }
2247
2248        /* LP1+ watermarks already deemed dirty, no need to continue */
2249        if (dirty & WM_DIRTY_LP_ALL)
2250                return dirty;
2251
2252        /* Find the lowest numbered LP1+ watermark in need of an update... */
2253        for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2254                if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2255                    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2256                        break;
2257        }
2258
2259        /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2260        for (; wm_lp <= 3; wm_lp++)
2261                dirty |= WM_DIRTY_LP(wm_lp);
2262
2263        return dirty;
2264}
2265
2266static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2267                               unsigned int dirty)
2268{
2269        struct ilk_wm_values *previous = &dev_priv->wm.hw;
2270        bool changed = false;
2271
2272        if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2273                previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2274                I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2275                changed = true;
2276        }
2277        if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2278                previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2279                I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2280                changed = true;
2281        }
2282        if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2283                previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2284                I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2285                changed = true;
2286        }
2287
2288        /*
2289         * Don't touch WM1S_LP_EN here.
2290         * Doing so could cause underruns.
2291         */
2292
2293        return changed;
2294}
2295
2296/*
2297 * The spec says we shouldn't write when we don't need, because every write
2298 * causes WMs to be re-evaluated, expending some power.
2299 */
2300static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2301                                struct ilk_wm_values *results)
2302{
2303        struct drm_device *dev = dev_priv->dev;
2304        struct ilk_wm_values *previous = &dev_priv->wm.hw;
2305        unsigned int dirty;
2306        uint32_t val;
2307
2308        dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2309        if (!dirty)
2310                return;
2311
2312        _ilk_disable_lp_wm(dev_priv, dirty);
2313
2314        if (dirty & WM_DIRTY_PIPE(PIPE_A))
2315                I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2316        if (dirty & WM_DIRTY_PIPE(PIPE_B))
2317                I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2318        if (dirty & WM_DIRTY_PIPE(PIPE_C))
2319                I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2320
2321        if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2322                I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2323        if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2324                I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2325        if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2326                I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2327
2328        if (dirty & WM_DIRTY_DDB) {
2329                if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2330                        val = I915_READ(WM_MISC);
2331                        if (results->partitioning == INTEL_DDB_PART_1_2)
2332                                val &= ~WM_MISC_DATA_PARTITION_5_6;
2333                        else
2334                                val |= WM_MISC_DATA_PARTITION_5_6;
2335                        I915_WRITE(WM_MISC, val);
2336                } else {
2337                        val = I915_READ(DISP_ARB_CTL2);
2338                        if (results->partitioning == INTEL_DDB_PART_1_2)
2339                                val &= ~DISP_DATA_PARTITION_5_6;
2340                        else
2341                                val |= DISP_DATA_PARTITION_5_6;
2342                        I915_WRITE(DISP_ARB_CTL2, val);
2343                }
2344        }
2345
2346        if (dirty & WM_DIRTY_FBC) {
2347                val = I915_READ(DISP_ARB_CTL);
2348                if (results->enable_fbc_wm)
2349                        val &= ~DISP_FBC_WM_DIS;
2350                else
2351                        val |= DISP_FBC_WM_DIS;
2352                I915_WRITE(DISP_ARB_CTL, val);
2353        }
2354
2355        if (dirty & WM_DIRTY_LP(1) &&
2356            previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2357                I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2358
2359        if (INTEL_INFO(dev)->gen >= 7) {
2360                if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2361                        I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2362                if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2363                        I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2364        }
2365
2366        if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2367                I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2368        if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2369                I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2370        if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2371                I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2372
2373        dev_priv->wm.hw = *results;
2374}
2375
2376static bool ilk_disable_lp_wm(struct drm_device *dev)
2377{
2378        struct drm_i915_private *dev_priv = dev->dev_private;
2379
2380        return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2381}
2382
2383/*
2384 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2385 * different active planes.
2386 */
2387
2388#define SKL_DDB_SIZE            896     /* in blocks */
2389
2390static void
2391skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2392                                   struct drm_crtc *for_crtc,
2393                                   const struct intel_wm_config *config,
2394                                   const struct skl_pipe_wm_parameters *params,
2395                                   struct skl_ddb_entry *alloc /* out */)
2396{
2397        struct drm_crtc *crtc;
2398        unsigned int pipe_size, ddb_size;
2399        int nth_active_pipe;
2400
2401        if (!params->active) {
2402                alloc->start = 0;
2403                alloc->end = 0;
2404                return;
2405        }
2406
2407        ddb_size = SKL_DDB_SIZE;
2408
2409        ddb_size -= 4; /* 4 blocks for bypass path allocation */
2410
2411        nth_active_pipe = 0;
2412        for_each_crtc(dev, crtc) {
2413                if (!intel_crtc_active(crtc))
2414                        continue;
2415
2416                if (crtc == for_crtc)
2417                        break;
2418
2419                nth_active_pipe++;
2420        }
2421
2422        pipe_size = ddb_size / config->num_pipes_active;
2423        alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2424        alloc->end = alloc->start + pipe_size;
2425}
2426
2427static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2428{
2429        if (config->num_pipes_active == 1)
2430                return 32;
2431
2432        return 8;
2433}
2434
2435static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2436{
2437        entry->start = reg & 0x3ff;
2438        entry->end = (reg >> 16) & 0x3ff;
2439        if (entry->end)
2440                entry->end += 1;
2441}
2442
2443void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2444                          struct skl_ddb_allocation *ddb /* out */)
2445{
2446        struct drm_device *dev = dev_priv->dev;
2447        enum pipe pipe;
2448        int plane;
2449        u32 val;
2450
2451        for_each_pipe(dev_priv, pipe) {
2452                for_each_plane(pipe, plane) {
2453                        val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2454                        skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2455                                                   val);
2456                }
2457
2458                val = I915_READ(CUR_BUF_CFG(pipe));
2459                skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2460        }
2461}
2462
2463static unsigned int
2464skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
2465{
2466        return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2467}
2468
2469/*
2470 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2471 * a 8192x4096@32bpp framebuffer:
2472 *   3 * 4096 * 8192  * 4 < 2^32
2473 */
2474static unsigned int
2475skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2476                                 const struct skl_pipe_wm_parameters *params)
2477{
2478        unsigned int total_data_rate = 0;
2479        int plane;
2480
2481        for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2482                const struct intel_plane_wm_parameters *p;
2483
2484                p = &params->plane[plane];
2485                if (!p->enabled)
2486                        continue;
2487
2488                total_data_rate += skl_plane_relative_data_rate(p);
2489        }
2490
2491        return total_data_rate;
2492}
2493
2494static void
2495skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2496                      const struct intel_wm_config *config,
2497                      const struct skl_pipe_wm_parameters *params,
2498                      struct skl_ddb_allocation *ddb /* out */)
2499{
2500        struct drm_device *dev = crtc->dev;
2501        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2502        enum pipe pipe = intel_crtc->pipe;
2503        struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2504        uint16_t alloc_size, start, cursor_blocks;
2505        unsigned int total_data_rate;
2506        int plane;
2507
2508        skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2509        alloc_size = skl_ddb_entry_size(alloc);
2510        if (alloc_size == 0) {
2511                memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2512                memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2513                return;
2514        }
2515
2516        cursor_blocks = skl_cursor_allocation(config);
2517        ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2518        ddb->cursor[pipe].end = alloc->end;
2519
2520        alloc_size -= cursor_blocks;
2521        alloc->end -= cursor_blocks;
2522
2523        /*
2524         * Each active plane get a portion of the remaining space, in
2525         * proportion to the amount of data they need to fetch from memory.
2526         *
2527         * FIXME: we may not allocate every single block here.
2528         */
2529        total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2530
2531        start = alloc->start;
2532        for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2533                const struct intel_plane_wm_parameters *p;
2534                unsigned int data_rate;
2535                uint16_t plane_blocks;
2536
2537                p = &params->plane[plane];
2538                if (!p->enabled)
2539                        continue;
2540
2541                data_rate = skl_plane_relative_data_rate(p);
2542
2543                /*
2544                 * promote the expression to 64 bits to avoid overflowing, the
2545                 * result is < available as data_rate / total_data_rate < 1
2546                 */
2547                plane_blocks = div_u64((uint64_t)alloc_size * data_rate,
2548                                       total_data_rate);
2549
2550                ddb->plane[pipe][plane].start = start;
2551                ddb->plane[pipe][plane].end = start + plane_blocks;
2552
2553                start += plane_blocks;
2554        }
2555
2556}
2557
2558static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2559{
2560        /* TODO: Take into account the scalers once we support them */
2561        return config->base.adjusted_mode.crtc_clock;
2562}
2563
2564/*
2565 * The max latency should be 257 (max the punit can code is 255 and we add 2us
2566 * for the read latency) and bytes_per_pixel should always be <= 8, so that
2567 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2568 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2569*/
2570static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2571                               uint32_t latency)
2572{
2573        uint32_t wm_intermediate_val, ret;
2574
2575        if (latency == 0)
2576                return UINT_MAX;
2577
2578        wm_intermediate_val = latency * pixel_rate * bytes_per_pixel;
2579        ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
2580
2581        return ret;
2582}
2583
2584static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2585                               uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2586                               uint32_t latency)
2587{
2588        uint32_t ret, plane_bytes_per_line, wm_intermediate_val;
2589
2590        if (latency == 0)
2591                return UINT_MAX;
2592
2593        plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2594        wm_intermediate_val = latency * pixel_rate;
2595        ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2596                                plane_bytes_per_line;
2597
2598        return ret;
2599}
2600
2601static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
2602                                       const struct intel_crtc *intel_crtc)
2603{
2604        struct drm_device *dev = intel_crtc->base.dev;
2605        struct drm_i915_private *dev_priv = dev->dev_private;
2606        const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
2607        enum pipe pipe = intel_crtc->pipe;
2608
2609        if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
2610                   sizeof(new_ddb->plane[pipe])))
2611                return true;
2612
2613        if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
2614                    sizeof(new_ddb->cursor[pipe])))
2615                return true;
2616
2617        return false;
2618}
2619
2620static void skl_compute_wm_global_parameters(struct drm_device *dev,
2621                                             struct intel_wm_config *config)
2622{
2623        struct drm_crtc *crtc;
2624        struct drm_plane *plane;
2625
2626        list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2627                config->num_pipes_active += intel_crtc_active(crtc);
2628
2629        /* FIXME: I don't think we need those two global parameters on SKL */
2630        list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2631                struct intel_plane *intel_plane = to_intel_plane(plane);
2632
2633                config->sprites_enabled |= intel_plane->wm.enabled;
2634                config->sprites_scaled |= intel_plane->wm.scaled;
2635        }
2636}
2637
2638static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
2639                                           struct skl_pipe_wm_parameters *p)
2640{
2641        struct drm_device *dev = crtc->dev;
2642        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2643        enum pipe pipe = intel_crtc->pipe;
2644        struct drm_plane *plane;
2645        int i = 1; /* Index for sprite planes start */
2646
2647        p->active = intel_crtc_active(crtc);
2648        if (p->active) {
2649                p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2650                p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2651
2652                /*
2653                 * For now, assume primary and cursor planes are always enabled.
2654                 */
2655                p->plane[0].enabled = true;
2656                p->plane[0].bytes_per_pixel =
2657                        crtc->primary->fb->bits_per_pixel / 8;
2658                p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
2659                p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2660
2661                p->cursor.enabled = true;
2662                p->cursor.bytes_per_pixel = 4;
2663                p->cursor.horiz_pixels = intel_crtc->cursor_width ?
2664                                         intel_crtc->cursor_width : 64;
2665        }
2666
2667        list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2668                struct intel_plane *intel_plane = to_intel_plane(plane);
2669
2670                if (intel_plane->pipe == pipe &&
2671                        plane->type == DRM_PLANE_TYPE_OVERLAY)
2672                        p->plane[i++] = intel_plane->wm;
2673        }
2674}
2675
2676static bool skl_compute_plane_wm(struct skl_pipe_wm_parameters *p,
2677                                 struct intel_plane_wm_parameters *p_params,
2678                                 uint16_t ddb_allocation,
2679                                 uint32_t mem_value,
2680                                 uint16_t *out_blocks, /* out */
2681                                 uint8_t *out_lines /* out */)
2682{
2683        uint32_t method1, method2, plane_bytes_per_line, res_blocks, res_lines;
2684        uint32_t result_bytes;
2685
2686        if (mem_value == 0 || !p->active || !p_params->enabled)
2687                return false;
2688
2689        method1 = skl_wm_method1(p->pixel_rate,
2690                                 p_params->bytes_per_pixel,
2691                                 mem_value);
2692        method2 = skl_wm_method2(p->pixel_rate,
2693                                 p->pipe_htotal,
2694                                 p_params->horiz_pixels,
2695                                 p_params->bytes_per_pixel,
2696                                 mem_value);
2697
2698        plane_bytes_per_line = p_params->horiz_pixels *
2699                                        p_params->bytes_per_pixel;
2700
2701        /* For now xtile and linear */
2702        if (((ddb_allocation * 512) / plane_bytes_per_line) >= 1)
2703                result_bytes = min(method1, method2);
2704        else
2705                result_bytes = method1;
2706
2707        res_blocks = DIV_ROUND_UP(result_bytes, 512) + 1;
2708        res_lines = DIV_ROUND_UP(result_bytes, plane_bytes_per_line);
2709
2710        if (res_blocks > ddb_allocation || res_lines > 31)
2711                return false;
2712
2713        *out_blocks = res_blocks;
2714        *out_lines = res_lines;
2715
2716        return true;
2717}
2718
2719static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
2720                                 struct skl_ddb_allocation *ddb,
2721                                 struct skl_pipe_wm_parameters *p,
2722                                 enum pipe pipe,
2723                                 int level,
2724                                 int num_planes,
2725                                 struct skl_wm_level *result)
2726{
2727        uint16_t latency = dev_priv->wm.skl_latency[level];
2728        uint16_t ddb_blocks;
2729        int i;
2730
2731        for (i = 0; i < num_planes; i++) {
2732                ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
2733
2734                result->plane_en[i] = skl_compute_plane_wm(p, &p->plane[i],
2735                                                ddb_blocks,
2736                                                latency,
2737                                                &result->plane_res_b[i],
2738                                                &result->plane_res_l[i]);
2739        }
2740
2741        ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
2742        result->cursor_en = skl_compute_plane_wm(p, &p->cursor, ddb_blocks,
2743                                                 latency, &result->cursor_res_b,
2744                                                 &result->cursor_res_l);
2745}
2746
2747static uint32_t
2748skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
2749{
2750        if (!intel_crtc_active(crtc))
2751                return 0;
2752
2753        return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
2754
2755}
2756
2757static void skl_compute_transition_wm(struct drm_crtc *crtc,
2758                                      struct skl_pipe_wm_parameters *params,
2759                                      struct skl_wm_level *trans_wm /* out */)
2760{
2761        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2762        int i;
2763
2764        if (!params->active)
2765                return;
2766
2767        /* Until we know more, just disable transition WMs */
2768        for (i = 0; i < intel_num_planes(intel_crtc); i++)
2769                trans_wm->plane_en[i] = false;
2770        trans_wm->cursor_en = false;
2771}
2772
2773static void skl_compute_pipe_wm(struct drm_crtc *crtc,
2774                                struct skl_ddb_allocation *ddb,
2775                                struct skl_pipe_wm_parameters *params,
2776                                struct skl_pipe_wm *pipe_wm)
2777{
2778        struct drm_device *dev = crtc->dev;
2779        const struct drm_i915_private *dev_priv = dev->dev_private;
2780        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2781        int level, max_level = ilk_wm_max_level(dev);
2782
2783        for (level = 0; level <= max_level; level++) {
2784                skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
2785                                     level, intel_num_planes(intel_crtc),
2786                                     &pipe_wm->wm[level]);
2787        }
2788        pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
2789
2790        skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
2791}
2792
2793static void skl_compute_wm_results(struct drm_device *dev,
2794                                   struct skl_pipe_wm_parameters *p,
2795                                   struct skl_pipe_wm *p_wm,
2796                                   struct skl_wm_values *r,
2797                                   struct intel_crtc *intel_crtc)
2798{
2799        int level, max_level = ilk_wm_max_level(dev);
2800        enum pipe pipe = intel_crtc->pipe;
2801        uint32_t temp;
2802        int i;
2803
2804        for (level = 0; level <= max_level; level++) {
2805                for (i = 0; i < intel_num_planes(intel_crtc); i++) {
2806                        temp = 0;
2807
2808                        temp |= p_wm->wm[level].plane_res_l[i] <<
2809                                        PLANE_WM_LINES_SHIFT;
2810                        temp |= p_wm->wm[level].plane_res_b[i];
2811                        if (p_wm->wm[level].plane_en[i])
2812                                temp |= PLANE_WM_EN;
2813
2814                        r->plane[pipe][i][level] = temp;
2815                }
2816
2817                temp = 0;
2818
2819                temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
2820                temp |= p_wm->wm[level].cursor_res_b;
2821
2822                if (p_wm->wm[level].cursor_en)
2823                        temp |= PLANE_WM_EN;
2824
2825                r->cursor[pipe][level] = temp;
2826
2827        }
2828
2829        /* transition WMs */
2830        for (i = 0; i < intel_num_planes(intel_crtc); i++) {
2831                temp = 0;
2832                temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
2833                temp |= p_wm->trans_wm.plane_res_b[i];
2834                if (p_wm->trans_wm.plane_en[i])
2835                        temp |= PLANE_WM_EN;
2836
2837                r->plane_trans[pipe][i] = temp;
2838        }
2839
2840        temp = 0;
2841        temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
2842        temp |= p_wm->trans_wm.cursor_res_b;
2843        if (p_wm->trans_wm.cursor_en)
2844                temp |= PLANE_WM_EN;
2845
2846        r->cursor_trans[pipe] = temp;
2847
2848        r->wm_linetime[pipe] = p_wm->linetime;
2849}
2850
2851static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
2852                                const struct skl_ddb_entry *entry)
2853{
2854        if (entry->end)
2855                I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
2856        else
2857                I915_WRITE(reg, 0);
2858}
2859
2860static void skl_write_wm_values(struct drm_i915_private *dev_priv,
2861                                const struct skl_wm_values *new)
2862{
2863        struct drm_device *dev = dev_priv->dev;
2864        struct intel_crtc *crtc;
2865
2866        list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
2867                int i, level, max_level = ilk_wm_max_level(dev);
2868                enum pipe pipe = crtc->pipe;
2869
2870                if (!new->dirty[pipe])
2871                        continue;
2872
2873                I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
2874
2875                for (level = 0; level <= max_level; level++) {
2876                        for (i = 0; i < intel_num_planes(crtc); i++)
2877                                I915_WRITE(PLANE_WM(pipe, i, level),
2878                                           new->plane[pipe][i][level]);
2879                        I915_WRITE(CUR_WM(pipe, level),
2880                                   new->cursor[pipe][level]);
2881                }
2882                for (i = 0; i < intel_num_planes(crtc); i++)
2883                        I915_WRITE(PLANE_WM_TRANS(pipe, i),
2884                                   new->plane_trans[pipe][i]);
2885                I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
2886
2887                for (i = 0; i < intel_num_planes(crtc); i++)
2888                        skl_ddb_entry_write(dev_priv,
2889                                            PLANE_BUF_CFG(pipe, i),
2890                                            &new->ddb.plane[pipe][i]);
2891
2892                skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
2893                                    &new->ddb.cursor[pipe]);
2894        }
2895}
2896
2897/*
2898 * When setting up a new DDB allocation arrangement, we need to correctly
2899 * sequence the times at which the new allocations for the pipes are taken into
2900 * account or we'll have pipes fetching from space previously allocated to
2901 * another pipe.
2902 *
2903 * Roughly the sequence looks like:
2904 *  1. re-allocate the pipe(s) with the allocation being reduced and not
2905 *     overlapping with a previous light-up pipe (another way to put it is:
2906 *     pipes with their new allocation strickly included into their old ones).
2907 *  2. re-allocate the other pipes that get their allocation reduced
2908 *  3. allocate the pipes having their allocation increased
2909 *
2910 * Steps 1. and 2. are here to take care of the following case:
2911 * - Initially DDB looks like this:
2912 *     |   B    |   C    |
2913 * - enable pipe A.
2914 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
2915 *   allocation
2916 *     |  A  |  B  |  C  |
2917 *
2918 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
2919 */
2920
2921static void
2922skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
2923{
2924        struct drm_device *dev = dev_priv->dev;
2925        int plane;
2926
2927        DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
2928
2929        for_each_plane(pipe, plane) {
2930                I915_WRITE(PLANE_SURF(pipe, plane),
2931                           I915_READ(PLANE_SURF(pipe, plane)));
2932        }
2933        I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
2934}
2935
2936static bool
2937skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
2938                            const struct skl_ddb_allocation *new,
2939                            enum pipe pipe)
2940{
2941        uint16_t old_size, new_size;
2942
2943        old_size = skl_ddb_entry_size(&old->pipe[pipe]);
2944        new_size = skl_ddb_entry_size(&new->pipe[pipe]);
2945
2946        return old_size != new_size &&
2947               new->pipe[pipe].start >= old->pipe[pipe].start &&
2948               new->pipe[pipe].end <= old->pipe[pipe].end;
2949}
2950
2951static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
2952                                struct skl_wm_values *new_values)
2953{
2954        struct drm_device *dev = dev_priv->dev;
2955        struct skl_ddb_allocation *cur_ddb, *new_ddb;
2956        bool reallocated[I915_MAX_PIPES] = {false, false, false};
2957        struct intel_crtc *crtc;
2958        enum pipe pipe;
2959
2960        new_ddb = &new_values->ddb;
2961        cur_ddb = &dev_priv->wm.skl_hw.ddb;
2962
2963        /*
2964         * First pass: flush the pipes with the new allocation contained into
2965         * the old space.
2966         *
2967         * We'll wait for the vblank on those pipes to ensure we can safely
2968         * re-allocate the freed space without this pipe fetching from it.
2969         */
2970        for_each_intel_crtc(dev, crtc) {
2971                if (!crtc->active)
2972                        continue;
2973
2974                pipe = crtc->pipe;
2975
2976                if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
2977                        continue;
2978
2979                skl_wm_flush_pipe(dev_priv, pipe, 1);
2980                intel_wait_for_vblank(dev, pipe);
2981
2982                reallocated[pipe] = true;
2983        }
2984
2985
2986        /*
2987         * Second pass: flush the pipes that are having their allocation
2988         * reduced, but overlapping with a previous allocation.
2989         *
2990         * Here as well we need to wait for the vblank to make sure the freed
2991         * space is not used anymore.
2992         */
2993        for_each_intel_crtc(dev, crtc) {
2994                if (!crtc->active)
2995                        continue;
2996
2997                pipe = crtc->pipe;
2998
2999                if (reallocated[pipe])
3000                        continue;
3001
3002                if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3003                    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3004                        skl_wm_flush_pipe(dev_priv, pipe, 2);
3005                        intel_wait_for_vblank(dev, pipe);
3006                        reallocated[pipe] = true;
3007                }
3008        }
3009
3010        /*
3011         * Third pass: flush the pipes that got more space allocated.
3012         *
3013         * We don't need to actively wait for the update here, next vblank
3014         * will just get more DDB space with the correct WM values.
3015         */
3016        for_each_intel_crtc(dev, crtc) {
3017                if (!crtc->active)
3018                        continue;
3019
3020                pipe = crtc->pipe;
3021
3022                /*
3023                 * At this point, only the pipes more space than before are
3024                 * left to re-allocate.
3025                 */
3026                if (reallocated[pipe])
3027                        continue;
3028
3029                skl_wm_flush_pipe(dev_priv, pipe, 3);
3030        }
3031}
3032
3033static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3034                               struct skl_pipe_wm_parameters *params,
3035                               struct intel_wm_config *config,
3036                               struct skl_ddb_allocation *ddb, /* out */
3037                               struct skl_pipe_wm *pipe_wm /* out */)
3038{
3039        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3040
3041        skl_compute_wm_pipe_parameters(crtc, params);
3042        skl_allocate_pipe_ddb(crtc, config, params, ddb);
3043        skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3044
3045        if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3046                return false;
3047
3048        intel_crtc->wm.skl_active = *pipe_wm;
3049        return true;
3050}
3051
3052static void skl_update_other_pipe_wm(struct drm_device *dev,
3053                                     struct drm_crtc *crtc,
3054                                     struct intel_wm_config *config,
3055                                     struct skl_wm_values *r)
3056{
3057        struct intel_crtc *intel_crtc;
3058        struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3059
3060        /*
3061         * If the WM update hasn't changed the allocation for this_crtc (the
3062         * crtc we are currently computing the new WM values for), other
3063         * enabled crtcs will keep the same allocation and we don't need to
3064         * recompute anything for them.
3065         */
3066        if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3067                return;
3068
3069        /*
3070         * Otherwise, because of this_crtc being freshly enabled/disabled, the
3071         * other active pipes need new DDB allocation and WM values.
3072         */
3073        list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3074                                base.head) {
3075                struct skl_pipe_wm_parameters params = {};
3076                struct skl_pipe_wm pipe_wm = {};
3077                bool wm_changed;
3078
3079                if (this_crtc->pipe == intel_crtc->pipe)
3080                        continue;
3081
3082                if (!intel_crtc->active)
3083                        continue;
3084
3085                wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3086                                                &params, config,
3087                                                &r->ddb, &pipe_wm);
3088
3089                /*
3090                 * If we end up re-computing the other pipe WM values, it's
3091                 * because it was really needed, so we expect the WM values to
3092                 * be different.
3093                 */
3094                WARN_ON(!wm_changed);
3095
3096                skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3097                r->dirty[intel_crtc->pipe] = true;
3098        }
3099}
3100
3101static void skl_update_wm(struct drm_crtc *crtc)
3102{
3103        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3104        struct drm_device *dev = crtc->dev;
3105        struct drm_i915_private *dev_priv = dev->dev_private;
3106        struct skl_pipe_wm_parameters params = {};
3107        struct skl_wm_values *results = &dev_priv->wm.skl_results;
3108        struct skl_pipe_wm pipe_wm = {};
3109        struct intel_wm_config config = {};
3110
3111        memset(results, 0, sizeof(*results));
3112
3113        skl_compute_wm_global_parameters(dev, &config);
3114
3115        if (!skl_update_pipe_wm(crtc, &params, &config,
3116                                &results->ddb, &pipe_wm))
3117                return;
3118
3119        skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3120        results->dirty[intel_crtc->pipe] = true;
3121
3122        skl_update_other_pipe_wm(dev, crtc, &config, results);
3123        skl_write_wm_values(dev_priv, results);
3124        skl_flush_wm_values(dev_priv, results);
3125
3126        /* store the new configuration */
3127        dev_priv->wm.skl_hw = *results;
3128}
3129
3130static void
3131skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3132                     uint32_t sprite_width, uint32_t sprite_height,
3133                     int pixel_size, bool enabled, bool scaled)
3134{
3135        struct intel_plane *intel_plane = to_intel_plane(plane);
3136
3137        intel_plane->wm.enabled = enabled;
3138        intel_plane->wm.scaled = scaled;
3139        intel_plane->wm.horiz_pixels = sprite_width;
3140        intel_plane->wm.vert_pixels = sprite_height;
3141        intel_plane->wm.bytes_per_pixel = pixel_size;
3142
3143        skl_update_wm(crtc);
3144}
3145
3146static void ilk_update_wm(struct drm_crtc *crtc)
3147{
3148        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3149        struct drm_device *dev = crtc->dev;
3150        struct drm_i915_private *dev_priv = dev->dev_private;
3151        struct ilk_wm_maximums max;
3152        struct ilk_pipe_wm_parameters params = {};
3153        struct ilk_wm_values results = {};
3154        enum intel_ddb_partitioning partitioning;
3155        struct intel_pipe_wm pipe_wm = {};
3156        struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3157        struct intel_wm_config config = {};
3158
3159        ilk_compute_wm_parameters(crtc, &params);
3160
3161        intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3162
3163        if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3164                return;
3165
3166        intel_crtc->wm.active = pipe_wm;
3167
3168        ilk_compute_wm_config(dev, &config);
3169
3170        ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3171        ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3172
3173        /* 5/6 split only in single pipe config on IVB+ */
3174        if (INTEL_INFO(dev)->gen >= 7 &&
3175            config.num_pipes_active == 1 && config.sprites_enabled) {
3176                ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3177                ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3178
3179                best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3180        } else {
3181                best_lp_wm = &lp_wm_1_2;
3182        }
3183
3184        partitioning = (best_lp_wm == &lp_wm_1_2) ?
3185                       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3186
3187        ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3188
3189        ilk_write_wm_values(dev_priv, &results);
3190}
3191
3192static void
3193ilk_update_sprite_wm(struct drm_plane *plane,
3194                     struct drm_crtc *crtc,
3195                     uint32_t sprite_width, uint32_t sprite_height,
3196                     int pixel_size, bool enabled, bool scaled)
3197{
3198        struct drm_device *dev = plane->dev;
3199        struct intel_plane *intel_plane = to_intel_plane(plane);
3200
3201        intel_plane->wm.enabled = enabled;
3202        intel_plane->wm.scaled = scaled;
3203        intel_plane->wm.horiz_pixels = sprite_width;
3204        intel_plane->wm.vert_pixels = sprite_width;
3205        intel_plane->wm.bytes_per_pixel = pixel_size;
3206
3207        /*
3208         * IVB workaround: must disable low power watermarks for at least
3209         * one frame before enabling scaling.  LP watermarks can be re-enabled
3210         * when scaling is disabled.
3211         *
3212         * WaCxSRDisabledForSpriteScaling:ivb
3213         */
3214        if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3215                intel_wait_for_vblank(dev, intel_plane->pipe);
3216
3217        ilk_update_wm(crtc);
3218}
3219
3220static void skl_pipe_wm_active_state(uint32_t val,
3221                                     struct skl_pipe_wm *active,
3222                                     bool is_transwm,
3223                                     bool is_cursor,
3224                                     int i,
3225                                     int level)
3226{
3227        bool is_enabled = (val & PLANE_WM_EN) != 0;
3228
3229        if (!is_transwm) {
3230                if (!is_cursor) {
3231                        active->wm[level].plane_en[i] = is_enabled;
3232                        active->wm[level].plane_res_b[i] =
3233                                        val & PLANE_WM_BLOCKS_MASK;
3234                        active->wm[level].plane_res_l[i] =
3235                                        (val >> PLANE_WM_LINES_SHIFT) &
3236                                                PLANE_WM_LINES_MASK;
3237                } else {
3238                        active->wm[level].cursor_en = is_enabled;
3239                        active->wm[level].cursor_res_b =
3240                                        val & PLANE_WM_BLOCKS_MASK;
3241                        active->wm[level].cursor_res_l =
3242                                        (val >> PLANE_WM_LINES_SHIFT) &
3243                                                PLANE_WM_LINES_MASK;
3244                }
3245        } else {
3246                if (!is_cursor) {
3247                        active->trans_wm.plane_en[i] = is_enabled;
3248                        active->trans_wm.plane_res_b[i] =
3249                                        val & PLANE_WM_BLOCKS_MASK;
3250                        active->trans_wm.plane_res_l[i] =
3251                                        (val >> PLANE_WM_LINES_SHIFT) &
3252                                                PLANE_WM_LINES_MASK;
3253                } else {
3254                        active->trans_wm.cursor_en = is_enabled;
3255                        active->trans_wm.cursor_res_b =
3256                                        val & PLANE_WM_BLOCKS_MASK;
3257                        active->trans_wm.cursor_res_l =
3258                                        (val >> PLANE_WM_LINES_SHIFT) &
3259                                                PLANE_WM_LINES_MASK;
3260                }
3261        }
3262}
3263
3264static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3265{
3266        struct drm_device *dev = crtc->dev;
3267        struct drm_i915_private *dev_priv = dev->dev_private;
3268        struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3269        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3270        struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3271        enum pipe pipe = intel_crtc->pipe;
3272        int level, i, max_level;
3273        uint32_t temp;
3274
3275        max_level = ilk_wm_max_level(dev);
3276
3277        hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3278
3279        for (level = 0; level <= max_level; level++) {
3280                for (i = 0; i < intel_num_planes(intel_crtc); i++)
3281                        hw->plane[pipe][i][level] =
3282                                        I915_READ(PLANE_WM(pipe, i, level));
3283                hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3284        }
3285
3286        for (i = 0; i < intel_num_planes(intel_crtc); i++)
3287                hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3288        hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3289
3290        if (!intel_crtc_active(crtc))
3291                return;
3292
3293        hw->dirty[pipe] = true;
3294
3295        active->linetime = hw->wm_linetime[pipe];
3296
3297        for (level = 0; level <= max_level; level++) {
3298                for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3299                        temp = hw->plane[pipe][i][level];
3300                        skl_pipe_wm_active_state(temp, active, false,
3301                                                false, i, level);
3302                }
3303                temp = hw->cursor[pipe][level];
3304                skl_pipe_wm_active_state(temp, active, false, true, i, level);
3305        }
3306
3307        for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3308                temp = hw->plane_trans[pipe][i];
3309                skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3310        }
3311
3312        temp = hw->cursor_trans[pipe];
3313        skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3314}
3315
3316void skl_wm_get_hw_state(struct drm_device *dev)
3317{
3318        struct drm_i915_private *dev_priv = dev->dev_private;
3319        struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3320        struct drm_crtc *crtc;
3321
3322        skl_ddb_get_hw_state(dev_priv, ddb);
3323        list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3324                skl_pipe_wm_get_hw_state(crtc);
3325}
3326
3327static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3328{
3329        struct drm_device *dev = crtc->dev;
3330        struct drm_i915_private *dev_priv = dev->dev_private;
3331        struct ilk_wm_values *hw = &dev_priv->wm.hw;
3332        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3333        struct intel_pipe_wm *active = &intel_crtc->wm.active;
3334        enum pipe pipe = intel_crtc->pipe;
3335        static const unsigned int wm0_pipe_reg[] = {
3336                [PIPE_A] = WM0_PIPEA_ILK,
3337                [PIPE_B] = WM0_PIPEB_ILK,
3338                [PIPE_C] = WM0_PIPEC_IVB,
3339        };
3340
3341        hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3342        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3343                hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3344
3345        active->pipe_enabled = intel_crtc_active(crtc);
3346
3347        if (active->pipe_enabled) {
3348                u32 tmp = hw->wm_pipe[pipe];
3349
3350                /*
3351                 * For active pipes LP0 watermark is marked as
3352                 * enabled, and LP1+ watermaks as disabled since
3353                 * we can't really reverse compute them in case
3354                 * multiple pipes are active.
3355                 */
3356                active->wm[0].enable = true;
3357                active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3358                active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3359                active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3360                active->linetime = hw->wm_linetime[pipe];
3361        } else {
3362                int level, max_level = ilk_wm_max_level(dev);
3363
3364                /*
3365                 * For inactive pipes, all watermark levels
3366                 * should be marked as enabled but zeroed,
3367                 * which is what we'd compute them to.
3368                 */
3369                for (level = 0; level <= max_level; level++)
3370                        active->wm[level].enable = true;
3371        }
3372}
3373
3374void ilk_wm_get_hw_state(struct drm_device *dev)
3375{
3376        struct drm_i915_private *dev_priv = dev->dev_private;
3377        struct ilk_wm_values *hw = &dev_priv->wm.hw;
3378        struct drm_crtc *crtc;
3379
3380        for_each_crtc(dev, crtc)
3381                ilk_pipe_wm_get_hw_state(crtc);
3382
3383        hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3384        hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3385        hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3386
3387        hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3388        if (INTEL_INFO(dev)->gen >= 7) {
3389                hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3390                hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3391        }
3392
3393        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3394                hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3395                        INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3396        else if (IS_IVYBRIDGE(dev))
3397                hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3398                        INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3399
3400        hw->enable_fbc_wm =
3401                !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3402}
3403
3404/**
3405 * intel_update_watermarks - update FIFO watermark values based on current modes
3406 *
3407 * Calculate watermark values for the various WM regs based on current mode
3408 * and plane configuration.
3409 *
3410 * There are several cases to deal with here:
3411 *   - normal (i.e. non-self-refresh)
3412 *   - self-refresh (SR) mode
3413 *   - lines are large relative to FIFO size (buffer can hold up to 2)
3414 *   - lines are small relative to FIFO size (buffer can hold more than 2
3415 *     lines), so need to account for TLB latency
3416 *
3417 *   The normal calculation is:
3418 *     watermark = dotclock * bytes per pixel * latency
3419 *   where latency is platform & configuration dependent (we assume pessimal
3420 *   values here).
3421 *
3422 *   The SR calculation is:
3423 *     watermark = (trunc(latency/line time)+1) * surface width *
3424 *       bytes per pixel
3425 *   where
3426 *     line time = htotal / dotclock
3427 *     surface width = hdisplay for normal plane and 64 for cursor
3428 *   and latency is assumed to be high, as above.
3429 *
3430 * The final value programmed to the register should always be rounded up,
3431 * and include an extra 2 entries to account for clock crossings.
3432 *
3433 * We don't use the sprite, so we can ignore that.  And on Crestline we have
3434 * to set the non-SR watermarks to 8.
3435 */
3436void intel_update_watermarks(struct drm_crtc *crtc)
3437{
3438        struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3439
3440        if (dev_priv->display.update_wm)
3441                dev_priv->display.update_wm(crtc);
3442}
3443
3444void intel_update_sprite_watermarks(struct drm_plane *plane,
3445                                    struct drm_crtc *crtc,
3446                                    uint32_t sprite_width,
3447                                    uint32_t sprite_height,
3448                                    int pixel_size,
3449                                    bool enabled, bool scaled)
3450{
3451        struct drm_i915_private *dev_priv = plane->dev->dev_private;
3452
3453        if (dev_priv->display.update_sprite_wm)
3454                dev_priv->display.update_sprite_wm(plane, crtc,
3455                                                   sprite_width, sprite_height,
3456                                                   pixel_size, enabled, scaled);
3457}
3458
3459static struct drm_i915_gem_object *
3460intel_alloc_context_page(struct drm_device *dev)
3461{
3462        struct drm_i915_gem_object *ctx;
3463        int ret;
3464
3465        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3466
3467        ctx = i915_gem_alloc_object(dev, 4096);
3468        if (!ctx) {
3469                DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3470                return NULL;
3471        }
3472
3473        ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3474        if (ret) {
3475                DRM_ERROR("failed to pin power context: %d\n", ret);
3476                goto err_unref;
3477        }
3478
3479        ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3480        if (ret) {
3481                DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3482                goto err_unpin;
3483        }
3484
3485        return ctx;
3486
3487err_unpin:
3488        i915_gem_object_ggtt_unpin(ctx);
3489err_unref:
3490        drm_gem_object_unreference(&ctx->base);
3491        return NULL;
3492}
3493
3494/**
3495 * Lock protecting IPS related data structures
3496 */
3497DEFINE_SPINLOCK(mchdev_lock);
3498
3499/* Global for IPS driver to get at the current i915 device. Protected by
3500 * mchdev_lock. */
3501static struct drm_i915_private *i915_mch_dev;
3502
3503bool ironlake_set_drps(struct drm_device *dev, u8 val)
3504{
3505        struct drm_i915_private *dev_priv = dev->dev_private;
3506        u16 rgvswctl;
3507
3508        assert_spin_locked(&mchdev_lock);
3509
3510        rgvswctl = I915_READ16(MEMSWCTL);
3511        if (rgvswctl & MEMCTL_CMD_STS) {
3512                DRM_DEBUG("gpu busy, RCS change rejected\n");
3513                return false; /* still busy with another command */
3514        }
3515
3516        rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3517                (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3518        I915_WRITE16(MEMSWCTL, rgvswctl);
3519        POSTING_READ16(MEMSWCTL);
3520
3521        rgvswctl |= MEMCTL_CMD_STS;
3522        I915_WRITE16(MEMSWCTL, rgvswctl);
3523
3524        return true;
3525}
3526
3527static void ironlake_enable_drps(struct drm_device *dev)
3528{
3529        struct drm_i915_private *dev_priv = dev->dev_private;
3530        u32 rgvmodectl = I915_READ(MEMMODECTL);
3531        u8 fmax, fmin, fstart, vstart;
3532
3533        spin_lock_irq(&mchdev_lock);
3534
3535        /* Enable temp reporting */
3536        I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3537        I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3538
3539        /* 100ms RC evaluation intervals */
3540        I915_WRITE(RCUPEI, 100000);
3541        I915_WRITE(RCDNEI, 100000);
3542
3543        /* Set max/min thresholds to 90ms and 80ms respectively */
3544        I915_WRITE(RCBMAXAVG, 90000);
3545        I915_WRITE(RCBMINAVG, 80000);
3546
3547        I915_WRITE(MEMIHYST, 1);
3548
3549        /* Set up min, max, and cur for interrupt handling */
3550        fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3551        fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3552        fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3553                MEMMODE_FSTART_SHIFT;
3554
3555        vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3556                PXVFREQ_PX_SHIFT;
3557
3558        dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3559        dev_priv->ips.fstart = fstart;
3560
3561        dev_priv->ips.max_delay = fstart;
3562        dev_priv->ips.min_delay = fmin;
3563        dev_priv->ips.cur_delay = fstart;
3564
3565        DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3566                         fmax, fmin, fstart);
3567
3568        I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3569
3570        /*
3571         * Interrupts will be enabled in ironlake_irq_postinstall
3572         */
3573
3574        I915_WRITE(VIDSTART, vstart);
3575        POSTING_READ(VIDSTART);
3576
3577        rgvmodectl |= MEMMODE_SWMODE_EN;
3578        I915_WRITE(MEMMODECTL, rgvmodectl);
3579
3580        if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3581                DRM_ERROR("stuck trying to change perf mode\n");
3582        mdelay(1);
3583
3584        ironlake_set_drps(dev, fstart);
3585
3586        dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3587                I915_READ(0x112e0);
3588        dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3589        dev_priv->ips.last_count2 = I915_READ(0x112f4);
3590        dev_priv->ips.last_time2 = ktime_get_raw_ns();
3591
3592        spin_unlock_irq(&mchdev_lock);
3593}
3594
3595static void ironlake_disable_drps(struct drm_device *dev)
3596{
3597        struct drm_i915_private *dev_priv = dev->dev_private;
3598        u16 rgvswctl;
3599
3600        spin_lock_irq(&mchdev_lock);
3601
3602        rgvswctl = I915_READ16(MEMSWCTL);
3603
3604        /* Ack interrupts, disable EFC interrupt */
3605        I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3606        I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3607        I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3608        I915_WRITE(DEIIR, DE_PCU_EVENT);
3609        I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3610
3611        /* Go back to the starting frequency */
3612        ironlake_set_drps(dev, dev_priv->ips.fstart);
3613        mdelay(1);
3614        rgvswctl |= MEMCTL_CMD_STS;
3615        I915_WRITE(MEMSWCTL, rgvswctl);
3616        mdelay(1);
3617
3618        spin_unlock_irq(&mchdev_lock);
3619}
3620
3621/* There's a funny hw issue where the hw returns all 0 when reading from
3622 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3623 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3624 * all limits and the gpu stuck at whatever frequency it is at atm).
3625 */
3626static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3627{
3628        u32 limits;
3629
3630        /* Only set the down limit when we've reached the lowest level to avoid
3631         * getting more interrupts, otherwise leave this clear. This prevents a
3632         * race in the hw when coming out of rc6: There's a tiny window where
3633         * the hw runs at the minimal clock before selecting the desired
3634         * frequency, if the down threshold expires in that window we will not
3635         * receive a down interrupt. */
3636        limits = dev_priv->rps.max_freq_softlimit << 24;
3637        if (val <= dev_priv->rps.min_freq_softlimit)
3638                limits |= dev_priv->rps.min_freq_softlimit << 16;
3639
3640        return limits;
3641}
3642
3643static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3644{
3645        int new_power;
3646
3647        new_power = dev_priv->rps.power;
3648        switch (dev_priv->rps.power) {
3649        case LOW_POWER:
3650                if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3651                        new_power = BETWEEN;
3652                break;
3653
3654        case BETWEEN:
3655                if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3656                        new_power = LOW_POWER;
3657                else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3658                        new_power = HIGH_POWER;
3659                break;
3660
3661        case HIGH_POWER:
3662                if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3663                        new_power = BETWEEN;
3664                break;
3665        }
3666        /* Max/min bins are special */
3667        if (val == dev_priv->rps.min_freq_softlimit)
3668                new_power = LOW_POWER;
3669        if (val == dev_priv->rps.max_freq_softlimit)
3670                new_power = HIGH_POWER;
3671        if (new_power == dev_priv->rps.power)
3672                return;
3673
3674        /* Note the units here are not exactly 1us, but 1280ns. */
3675        switch (new_power) {
3676        case LOW_POWER:
3677                /* Upclock if more than 95% busy over 16ms */
3678                I915_WRITE(GEN6_RP_UP_EI, 12500);
3679                I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3680
3681                /* Downclock if less than 85% busy over 32ms */
3682                I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3683                I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3684
3685                I915_WRITE(GEN6_RP_CONTROL,
3686                           GEN6_RP_MEDIA_TURBO |
3687                           GEN6_RP_MEDIA_HW_NORMAL_MODE |
3688                           GEN6_RP_MEDIA_IS_GFX |
3689                           GEN6_RP_ENABLE |
3690                           GEN6_RP_UP_BUSY_AVG |
3691                           GEN6_RP_DOWN_IDLE_AVG);
3692                break;
3693
3694        case BETWEEN:
3695                /* Upclock if more than 90% busy over 13ms */
3696                I915_WRITE(GEN6_RP_UP_EI, 10250);
3697                I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3698
3699                /* Downclock if less than 75% busy over 32ms */
3700                I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3701                I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3702
3703                I915_WRITE(GEN6_RP_CONTROL,
3704                           GEN6_RP_MEDIA_TURBO |
3705                           GEN6_RP_MEDIA_HW_NORMAL_MODE |
3706                           GEN6_RP_MEDIA_IS_GFX |
3707                           GEN6_RP_ENABLE |
3708                           GEN6_RP_UP_BUSY_AVG |
3709                           GEN6_RP_DOWN_IDLE_AVG);
3710                break;
3711
3712        case HIGH_POWER:
3713                /* Upclock if more than 85% busy over 10ms */
3714                I915_WRITE(GEN6_RP_UP_EI, 8000);
3715                I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3716
3717                /* Downclock if less than 60% busy over 32ms */
3718                I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3719                I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3720
3721                I915_WRITE(GEN6_RP_CONTROL,
3722                           GEN6_RP_MEDIA_TURBO |
3723                           GEN6_RP_MEDIA_HW_NORMAL_MODE |
3724                           GEN6_RP_MEDIA_IS_GFX |
3725                           GEN6_RP_ENABLE |
3726                           GEN6_RP_UP_BUSY_AVG |
3727                           GEN6_RP_DOWN_IDLE_AVG);
3728                break;
3729        }
3730
3731        dev_priv->rps.power = new_power;
3732        dev_priv->rps.last_adj = 0;
3733}
3734
3735static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3736{
3737        u32 mask = 0;
3738
3739        if (val > dev_priv->rps.min_freq_softlimit)
3740                mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3741        if (val < dev_priv->rps.max_freq_softlimit)
3742                mask |= GEN6_PM_RP_UP_THRESHOLD;
3743
3744        mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3745        mask &= dev_priv->pm_rps_events;
3746
3747        return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3748}
3749
3750/* gen6_set_rps is called to update the frequency request, but should also be
3751 * called when the range (min_delay and max_delay) is modified so that we can
3752 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3753void gen6_set_rps(struct drm_device *dev, u8 val)
3754{
3755        struct drm_i915_private *dev_priv = dev->dev_private;
3756
3757        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3758        WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3759        WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3760
3761        /* min/max delay may still have been modified so be sure to
3762         * write the limits value.
3763         */
3764        if (val != dev_priv->rps.cur_freq) {
3765                gen6_set_rps_thresholds(dev_priv, val);
3766
3767                if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3768                        I915_WRITE(GEN6_RPNSWREQ,
3769                                   HSW_FREQUENCY(val));
3770                else
3771                        I915_WRITE(GEN6_RPNSWREQ,
3772                                   GEN6_FREQUENCY(val) |
3773                                   GEN6_OFFSET(0) |
3774                                   GEN6_AGGRESSIVE_TURBO);
3775        }
3776
3777        /* Make sure we continue to get interrupts
3778         * until we hit the minimum or maximum frequencies.
3779         */
3780        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3781        I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3782
3783        POSTING_READ(GEN6_RPNSWREQ);
3784
3785        dev_priv->rps.cur_freq = val;
3786        trace_intel_gpu_freq_change(val * 50);
3787}
3788
3789/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3790 *
3791 * * If Gfx is Idle, then
3792 * 1. Mask Turbo interrupts
3793 * 2. Bring up Gfx clock
3794 * 3. Change the freq to Rpn and wait till P-Unit updates freq
3795 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3796 * 5. Unmask Turbo interrupts
3797*/
3798static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3799{
3800        struct drm_device *dev = dev_priv->dev;
3801
3802        /* CHV and latest VLV don't need to force the gfx clock */
3803        if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
3804                valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3805                return;
3806        }
3807
3808        /*
3809         * When we are idle.  Drop to min voltage state.
3810         */
3811
3812        if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3813                return;
3814
3815        /* Mask turbo interrupt so that they will not come in between */
3816        I915_WRITE(GEN6_PMINTRMSK,
3817                   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
3818
3819        vlv_force_gfx_clock(dev_priv, true);
3820
3821        dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3822
3823        vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3824                                        dev_priv->rps.min_freq_softlimit);
3825
3826        if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3827                                & GENFREQSTATUS) == 0, 100))
3828                DRM_ERROR("timed out waiting for Punit\n");
3829
3830        vlv_force_gfx_clock(dev_priv, false);
3831
3832        I915_WRITE(GEN6_PMINTRMSK,
3833                   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3834}
3835
3836void gen6_rps_idle(struct drm_i915_private *dev_priv)
3837{
3838        struct drm_device *dev = dev_priv->dev;
3839
3840        mutex_lock(&dev_priv->rps.hw_lock);
3841        if (dev_priv->rps.enabled) {
3842                if (IS_VALLEYVIEW(dev))
3843                        vlv_set_rps_idle(dev_priv);
3844                else
3845                        gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3846                dev_priv->rps.last_adj = 0;
3847        }
3848        mutex_unlock(&dev_priv->rps.hw_lock);
3849}
3850
3851void gen6_rps_boost(struct drm_i915_private *dev_priv)
3852{
3853        struct drm_device *dev = dev_priv->dev;
3854
3855        mutex_lock(&dev_priv->rps.hw_lock);
3856        if (dev_priv->rps.enabled) {
3857                if (IS_VALLEYVIEW(dev))
3858                        valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3859                else
3860                        gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3861                dev_priv->rps.last_adj = 0;
3862        }
3863        mutex_unlock(&dev_priv->rps.hw_lock);
3864}
3865
3866void valleyview_set_rps(struct drm_device *dev, u8 val)
3867{
3868        struct drm_i915_private *dev_priv = dev->dev_private;
3869
3870        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3871        WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3872        WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3873
3874        if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
3875                      "Odd GPU freq value\n"))
3876                val &= ~1;
3877
3878        if (val != dev_priv->rps.cur_freq)
3879                vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3880
3881        I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3882
3883        dev_priv->rps.cur_freq = val;
3884        trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
3885}
3886
3887static void gen9_disable_rps(struct drm_device *dev)
3888{
3889        struct drm_i915_private *dev_priv = dev->dev_private;
3890
3891        I915_WRITE(GEN6_RC_CONTROL, 0);
3892        I915_WRITE(GEN9_PG_ENABLE, 0);
3893}
3894
3895static void gen6_disable_rps(struct drm_device *dev)
3896{
3897        struct drm_i915_private *dev_priv = dev->dev_private;
3898
3899        I915_WRITE(GEN6_RC_CONTROL, 0);
3900        I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3901}
3902
3903static void cherryview_disable_rps(struct drm_device *dev)
3904{
3905        struct drm_i915_private *dev_priv = dev->dev_private;
3906
3907        I915_WRITE(GEN6_RC_CONTROL, 0);
3908}
3909
3910static void valleyview_disable_rps(struct drm_device *dev)
3911{
3912        struct drm_i915_private *dev_priv = dev->dev_private;
3913
3914        /* we're doing forcewake before Disabling RC6,
3915         * This what the BIOS expects when going into suspend */
3916        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
3917
3918        I915_WRITE(GEN6_RC_CONTROL, 0);
3919
3920        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
3921}
3922
3923static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3924{
3925        if (IS_VALLEYVIEW(dev)) {
3926                if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3927                        mode = GEN6_RC_CTL_RC6_ENABLE;
3928                else
3929                        mode = 0;
3930        }
3931        if (HAS_RC6p(dev))
3932                DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
3933                              (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3934                              (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3935                              (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3936
3937        else
3938                DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
3939                              (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
3940}
3941
3942static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3943{
3944        /* No RC6 before Ironlake */
3945        if (INTEL_INFO(dev)->gen < 5)
3946                return 0;
3947
3948        /* RC6 is only on Ironlake mobile not on desktop */
3949        if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3950                return 0;
3951
3952        /* Respect the kernel parameter if it is set */
3953        if (enable_rc6 >= 0) {
3954                int mask;
3955
3956                if (HAS_RC6p(dev))
3957                        mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3958                               INTEL_RC6pp_ENABLE;
3959                else
3960                        mask = INTEL_RC6_ENABLE;
3961
3962                if ((enable_rc6 & mask) != enable_rc6)
3963                        DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3964                                      enable_rc6 & mask, enable_rc6, mask);
3965
3966                return enable_rc6 & mask;
3967        }
3968
3969        /* Disable RC6 on Ironlake */
3970        if (INTEL_INFO(dev)->gen == 5)
3971                return 0;
3972
3973        if (IS_IVYBRIDGE(dev))
3974                return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3975
3976        return INTEL_RC6_ENABLE;
3977}
3978
3979int intel_enable_rc6(const struct drm_device *dev)
3980{
3981        return i915.enable_rc6;
3982}
3983
3984static void gen6_init_rps_frequencies(struct drm_device *dev)
3985{
3986        struct drm_i915_private *dev_priv = dev->dev_private;
3987        uint32_t rp_state_cap;
3988        u32 ddcc_status = 0;
3989        int ret;
3990
3991        rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3992        /* All of these values are in units of 50MHz */
3993        dev_priv->rps.cur_freq          = 0;
3994        /* static values from HW: RP0 > RP1 > RPn (min_freq) */
3995        dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3996        dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3997        dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3998        /* hw_max = RP0 until we check for overclocking */
3999        dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4000
4001        dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4002        if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4003                ret = sandybridge_pcode_read(dev_priv,
4004                                        HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4005                                        &ddcc_status);
4006                if (0 == ret)
4007                        dev_priv->rps.efficient_freq =
4008                                clamp_t(u8,
4009                                        ((ddcc_status >> 8) & 0xff),
4010                                        dev_priv->rps.min_freq,
4011                                        dev_priv->rps.max_freq);
4012        }
4013
4014        /* Preserve min/max settings in case of re-init */
4015        if (dev_priv->rps.max_freq_softlimit == 0)
4016                dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4017
4018        if (dev_priv->rps.min_freq_softlimit == 0) {
4019                if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4020                        dev_priv->rps.min_freq_softlimit =
4021                                /* max(RPe, 450 MHz) */
4022                                max(dev_priv->rps.efficient_freq, (u8) 9);
4023                else
4024                        dev_priv->rps.min_freq_softlimit =
4025                                dev_priv->rps.min_freq;
4026        }
4027}
4028
4029/* See the Gen9_GT_PM_Programming_Guide doc for the below */
4030static void gen9_enable_rps(struct drm_device *dev)
4031{
4032        struct drm_i915_private *dev_priv = dev->dev_private;
4033
4034        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4035
4036        gen6_init_rps_frequencies(dev);
4037
4038        I915_WRITE(GEN6_RPNSWREQ, 0xc800000);
4039        I915_WRITE(GEN6_RC_VIDEO_FREQ, 0xc800000);
4040
4041        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4042        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, 0x12060000);
4043        I915_WRITE(GEN6_RP_UP_THRESHOLD, 0xe808);
4044        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 0x3bd08);
4045        I915_WRITE(GEN6_RP_UP_EI, 0x101d0);
4046        I915_WRITE(GEN6_RP_DOWN_EI, 0x55730);
4047        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4048        I915_WRITE(GEN6_PMINTRMSK, 0x6);
4049        I915_WRITE(GEN6_RP_CONTROL, GEN6_RP_MEDIA_TURBO |
4050                   GEN6_RP_MEDIA_HW_MODE | GEN6_RP_MEDIA_IS_GFX |
4051                   GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG |
4052                   GEN6_RP_DOWN_IDLE_AVG);
4053
4054        gen6_enable_rps_interrupts(dev);
4055
4056        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4057}
4058
4059static void gen9_enable_rc6(struct drm_device *dev)
4060{
4061        struct drm_i915_private *dev_priv = dev->dev_private;
4062        struct intel_engine_cs *ring;
4063        uint32_t rc6_mask = 0;
4064        int unused;
4065
4066        /* 1a: Software RC state - RC0 */
4067        I915_WRITE(GEN6_RC_STATE, 0);
4068
4069        /* 1b: Get forcewake during program sequence. Although the driver
4070         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4071        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4072
4073        /* 2a: Disable RC states. */
4074        I915_WRITE(GEN6_RC_CONTROL, 0);
4075
4076        /* 2b: Program RC6 thresholds.*/
4077        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4078        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4079        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4080        for_each_ring(ring, dev_priv, unused)
4081                I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4082        I915_WRITE(GEN6_RC_SLEEP, 0);
4083        I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4084
4085        /* 2c: Program Coarse Power Gating Policies. */
4086        I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4087        I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4088
4089        /* 3a: Enable RC6 */
4090        if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4091                rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4092        DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4093                        "on" : "off");
4094        I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4095                                   GEN6_RC_CTL_EI_MODE(1) |
4096                                   rc6_mask);
4097
4098        /* 3b: Enable Coarse Power Gating only when RC6 is enabled */
4099        I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);
4100
4101        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4102
4103}
4104
4105static void gen8_enable_rps(struct drm_device *dev)
4106{
4107        struct drm_i915_private *dev_priv = dev->dev_private;
4108        struct intel_engine_cs *ring;
4109        uint32_t rc6_mask = 0;
4110        int unused;
4111
4112        /* 1a: Software RC state - RC0 */
4113        I915_WRITE(GEN6_RC_STATE, 0);
4114
4115        /* 1c & 1d: Get forcewake during program sequence. Although the driver
4116         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4117        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4118
4119        /* 2a: Disable RC states. */
4120        I915_WRITE(GEN6_RC_CONTROL, 0);
4121
4122        /* Initialize rps frequencies */
4123        gen6_init_rps_frequencies(dev);
4124
4125        /* 2b: Program RC6 thresholds.*/
4126        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4127        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4128        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4129        for_each_ring(ring, dev_priv, unused)
4130                I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4131        I915_WRITE(GEN6_RC_SLEEP, 0);
4132        if (IS_BROADWELL(dev))
4133                I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4134        else
4135                I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4136
4137        /* 3: Enable RC6 */
4138        if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4139                rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4140        intel_print_rc6_info(dev, rc6_mask);
4141        if (IS_BROADWELL(dev))
4142                I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4143                                GEN7_RC_CTL_TO_MODE |
4144                                rc6_mask);
4145        else
4146                I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4147                                GEN6_RC_CTL_EI_MODE(1) |
4148                                rc6_mask);
4149
4150        /* 4 Program defaults and thresholds for RPS*/
4151        I915_WRITE(GEN6_RPNSWREQ,
4152                   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4153        I915_WRITE(GEN6_RC_VIDEO_FREQ,
4154                   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4155        /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4156        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4157
4158        /* Docs recommend 900MHz, and 300 MHz respectively */
4159        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4160                   dev_priv->rps.max_freq_softlimit << 24 |
4161                   dev_priv->rps.min_freq_softlimit << 16);
4162
4163        I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4164        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4165        I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4166        I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4167
4168        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4169
4170        /* 5: Enable RPS */
4171        I915_WRITE(GEN6_RP_CONTROL,
4172                   GEN6_RP_MEDIA_TURBO |
4173                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4174                   GEN6_RP_MEDIA_IS_GFX |
4175                   GEN6_RP_ENABLE |
4176                   GEN6_RP_UP_BUSY_AVG |
4177                   GEN6_RP_DOWN_IDLE_AVG);
4178
4179        /* 6: Ring frequency + overclocking (our driver does this later */
4180
4181        dev_priv->rps.power = HIGH_POWER; /* force a reset */
4182        gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4183
4184        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4185}
4186
4187static void gen6_enable_rps(struct drm_device *dev)
4188{
4189        struct drm_i915_private *dev_priv = dev->dev_private;
4190        struct intel_engine_cs *ring;
4191        u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4192        u32 gtfifodbg;
4193        int rc6_mode;
4194        int i, ret;
4195
4196        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4197
4198        /* Here begins a magic sequence of register writes to enable
4199         * auto-downclocking.
4200         *
4201         * Perhaps there might be some value in exposing these to
4202         * userspace...
4203         */
4204        I915_WRITE(GEN6_RC_STATE, 0);
4205
4206        /* Clear the DBG now so we don't confuse earlier errors */
4207        if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4208                DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4209                I915_WRITE(GTFIFODBG, gtfifodbg);
4210        }
4211
4212        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4213
4214        /* Initialize rps frequencies */
4215        gen6_init_rps_frequencies(dev);
4216
4217        /* disable the counters and set deterministic thresholds */
4218        I915_WRITE(GEN6_RC_CONTROL, 0);
4219
4220        I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4221        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4222        I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4223        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4224        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4225
4226        for_each_ring(ring, dev_priv, i)
4227                I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4228
4229        I915_WRITE(GEN6_RC_SLEEP, 0);
4230        I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4231        if (IS_IVYBRIDGE(dev))
4232                I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4233        else
4234                I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4235        I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4236        I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4237
4238        /* Check if we are enabling RC6 */
4239        rc6_mode = intel_enable_rc6(dev_priv->dev);
4240        if (rc6_mode & INTEL_RC6_ENABLE)
4241                rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4242
4243        /* We don't use those on Haswell */
4244        if (!IS_HASWELL(dev)) {
4245                if (rc6_mode & INTEL_RC6p_ENABLE)
4246                        rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4247
4248                if (rc6_mode & INTEL_RC6pp_ENABLE)
4249                        rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4250        }
4251
4252        intel_print_rc6_info(dev, rc6_mask);
4253
4254        I915_WRITE(GEN6_RC_CONTROL,
4255                   rc6_mask |
4256                   GEN6_RC_CTL_EI_MODE(1) |
4257                   GEN6_RC_CTL_HW_ENABLE);
4258
4259        /* Power down if completely idle for over 50ms */
4260        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4261        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4262
4263        ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4264        if (ret)
4265                DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4266
4267        ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4268        if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4269                DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4270                                 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4271                                 (pcu_mbox & 0xff) * 50);
4272                dev_priv->rps.max_freq = pcu_mbox & 0xff;
4273        }
4274
4275        dev_priv->rps.power = HIGH_POWER; /* force a reset */
4276        gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4277
4278        rc6vids = 0;
4279        ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4280        if (IS_GEN6(dev) && ret) {
4281                DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4282        } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4283                DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4284                          GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4285                rc6vids &= 0xffff00;
4286                rc6vids |= GEN6_ENCODE_RC6_VID(450);
4287                ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4288                if (ret)
4289                        DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4290        }
4291
4292        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4293}
4294
4295static void __gen6_update_ring_freq(struct drm_device *dev)
4296{
4297        struct drm_i915_private *dev_priv = dev->dev_private;
4298        int min_freq = 15;
4299        unsigned int gpu_freq;
4300        unsigned int max_ia_freq, min_ring_freq;
4301        int scaling_factor = 180;
4302        struct cpufreq_policy *policy;
4303
4304        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4305
4306        policy = cpufreq_cpu_get(0);
4307        if (policy) {
4308                max_ia_freq = policy->cpuinfo.max_freq;
4309                cpufreq_cpu_put(policy);
4310        } else {
4311                /*
4312                 * Default to measured freq if none found, PCU will ensure we
4313                 * don't go over
4314                 */
4315                max_ia_freq = tsc_khz;
4316        }
4317
4318        /* Convert from kHz to MHz */
4319        max_ia_freq /= 1000;
4320
4321        min_ring_freq = I915_READ(DCLK) & 0xf;
4322        /* convert DDR frequency from units of 266.6MHz to bandwidth */
4323        min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4324
4325        /*
4326         * For each potential GPU frequency, load a ring frequency we'd like
4327         * to use for memory access.  We do this by specifying the IA frequency
4328         * the PCU should use as a reference to determine the ring frequency.
4329         */
4330        for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4331             gpu_freq--) {
4332                int diff = dev_priv->rps.max_freq - gpu_freq;
4333                unsigned int ia_freq = 0, ring_freq = 0;
4334
4335                if (INTEL_INFO(dev)->gen >= 8) {
4336                        /* max(2 * GT, DDR). NB: GT is 50MHz units */
4337                        ring_freq = max(min_ring_freq, gpu_freq);
4338                } else if (IS_HASWELL(dev)) {
4339                        ring_freq = mult_frac(gpu_freq, 5, 4);
4340                        ring_freq = max(min_ring_freq, ring_freq);
4341                        /* leave ia_freq as the default, chosen by cpufreq */
4342                } else {
4343                        /* On older processors, there is no separate ring
4344                         * clock domain, so in order to boost the bandwidth
4345                         * of the ring, we need to upclock the CPU (ia_freq).
4346                         *
4347                         * For GPU frequencies less than 750MHz,
4348                         * just use the lowest ring freq.
4349                         */
4350                        if (gpu_freq < min_freq)
4351                                ia_freq = 800;
4352                        else
4353                                ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4354                        ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4355                }
4356
4357                sandybridge_pcode_write(dev_priv,
4358                                        GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4359                                        ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4360                                        ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4361                                        gpu_freq);
4362        }
4363}
4364
4365void gen6_update_ring_freq(struct drm_device *dev)
4366{
4367        struct drm_i915_private *dev_priv = dev->dev_private;
4368
4369        if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4370                return;
4371
4372        mutex_lock(&dev_priv->rps.hw_lock);
4373        __gen6_update_ring_freq(dev);
4374        mutex_unlock(&dev_priv->rps.hw_lock);
4375}
4376
4377static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4378{
4379        struct drm_device *dev = dev_priv->dev;
4380        u32 val, rp0;
4381
4382        if (dev->pdev->revision >= 0x20) {
4383                val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4384
4385                switch (INTEL_INFO(dev)->eu_total) {
4386                case 8:
4387                                /* (2 * 4) config */
4388                                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
4389                                break;
4390                case 12:
4391                                /* (2 * 6) config */
4392                                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
4393                                break;
4394                case 16:
4395                                /* (2 * 8) config */
4396                default:
4397                                /* Setting (2 * 8) Min RP0 for any other combination */
4398                                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
4399                                break;
4400                }
4401                rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
4402        } else {
4403                /* For pre-production hardware */
4404                val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4405                rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4406                       PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4407        }
4408        return rp0;
4409}
4410
4411static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4412{
4413        u32 val, rpe;
4414
4415        val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4416        rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4417
4418        return rpe;
4419}
4420
4421static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4422{
4423        struct drm_device *dev = dev_priv->dev;
4424        u32 val, rp1;
4425
4426        if (dev->pdev->revision >= 0x20) {
4427                val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4428                rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
4429        } else {
4430                /* For pre-production hardware */
4431                val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4432                rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4433                       PUNIT_GPU_STATUS_MAX_FREQ_MASK);
4434        }
4435        return rp1;
4436}
4437
4438static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4439{
4440        struct drm_device *dev = dev_priv->dev;
4441        u32 val, rpn;
4442
4443        if (dev->pdev->revision >= 0x20) {
4444                val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
4445                rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
4446                       FB_GFX_FREQ_FUSE_MASK);
4447        } else { /* For pre-production hardware */
4448                val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4449                rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
4450                       PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
4451        }
4452
4453        return rpn;
4454}
4455
4456static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4457{
4458        u32 val, rp1;
4459
4460        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4461
4462        rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4463
4464        return rp1;
4465}
4466
4467static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4468{
4469        u32 val, rp0;
4470
4471        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4472
4473        rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4474        /* Clamp to max */
4475        rp0 = min_t(u32, rp0, 0xea);
4476
4477        return rp0;
4478}
4479
4480static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4481{
4482        u32 val, rpe;
4483
4484        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4485        rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4486        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4487        rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4488
4489        return rpe;
4490}
4491
4492static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4493{
4494        return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4495}
4496
4497/* Check that the pctx buffer wasn't move under us. */
4498static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4499{
4500        unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4501
4502        WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4503                             dev_priv->vlv_pctx->stolen->start);
4504}
4505
4506
4507/* Check that the pcbr address is not empty. */
4508static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4509{
4510        unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4511
4512        WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4513}
4514
4515static void cherryview_setup_pctx(struct drm_device *dev)
4516{
4517        struct drm_i915_private *dev_priv = dev->dev_private;
4518        unsigned long pctx_paddr, paddr;
4519        struct i915_gtt *gtt = &dev_priv->gtt;
4520        u32 pcbr;
4521        int pctx_size = 32*1024;
4522
4523        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4524
4525        pcbr = I915_READ(VLV_PCBR);
4526        if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4527                DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4528                paddr = (dev_priv->mm.stolen_base +
4529                         (gtt->stolen_size - pctx_size));
4530
4531                pctx_paddr = (paddr & (~4095));
4532                I915_WRITE(VLV_PCBR, pctx_paddr);
4533        }
4534
4535        DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4536}
4537
4538static void valleyview_setup_pctx(struct drm_device *dev)
4539{
4540        struct drm_i915_private *dev_priv = dev->dev_private;
4541        struct drm_i915_gem_object *pctx;
4542        unsigned long pctx_paddr;
4543        u32 pcbr;
4544        int pctx_size = 24*1024;
4545
4546        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4547
4548        pcbr = I915_READ(VLV_PCBR);
4549        if (pcbr) {
4550                /* BIOS set it up already, grab the pre-alloc'd space */
4551                int pcbr_offset;
4552
4553                pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4554                pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4555                                                                      pcbr_offset,
4556                                                                      I915_GTT_OFFSET_NONE,
4557                                                                      pctx_size);
4558                goto out;
4559        }
4560
4561        DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4562
4563        /*
4564         * From the Gunit register HAS:
4565         * The Gfx driver is expected to program this register and ensure
4566         * proper allocation within Gfx stolen memory.  For example, this
4567         * register should be programmed such than the PCBR range does not
4568         * overlap with other ranges, such as the frame buffer, protected
4569         * memory, or any other relevant ranges.
4570         */
4571        pctx = i915_gem_object_create_stolen(dev, pctx_size);
4572        if (!pctx) {
4573                DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4574                return;
4575        }
4576
4577        pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4578        I915_WRITE(VLV_PCBR, pctx_paddr);
4579
4580out:
4581        DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4582        dev_priv->vlv_pctx = pctx;
4583}
4584
4585static void valleyview_cleanup_pctx(struct drm_device *dev)
4586{
4587        struct drm_i915_private *dev_priv = dev->dev_private;
4588
4589        if (WARN_ON(!dev_priv->vlv_pctx))
4590                return;
4591
4592        drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4593        dev_priv->vlv_pctx = NULL;
4594}
4595
4596static void valleyview_init_gt_powersave(struct drm_device *dev)
4597{
4598        struct drm_i915_private *dev_priv = dev->dev_private;
4599        u32 val;
4600
4601        valleyview_setup_pctx(dev);
4602
4603        mutex_lock(&dev_priv->rps.hw_lock);
4604
4605        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4606        switch ((val >> 6) & 3) {
4607        case 0:
4608        case 1:
4609                dev_priv->mem_freq = 800;
4610                break;
4611        case 2:
4612                dev_priv->mem_freq = 1066;
4613                break;
4614        case 3:
4615                dev_priv->mem_freq = 1333;
4616                break;
4617        }
4618        DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4619
4620        dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4621        dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4622        DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4623                         intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4624                         dev_priv->rps.max_freq);
4625
4626        dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4627        DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4628                         intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4629                         dev_priv->rps.efficient_freq);
4630
4631        dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4632        DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4633                         intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4634                         dev_priv->rps.rp1_freq);
4635
4636        dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4637        DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4638                         intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4639                         dev_priv->rps.min_freq);
4640
4641        /* Preserve min/max settings in case of re-init */
4642        if (dev_priv->rps.max_freq_softlimit == 0)
4643                dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4644
4645        if (dev_priv->rps.min_freq_softlimit == 0)
4646                dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4647
4648        mutex_unlock(&dev_priv->rps.hw_lock);
4649}
4650
4651static void cherryview_init_gt_powersave(struct drm_device *dev)
4652{
4653        struct drm_i915_private *dev_priv = dev->dev_private;
4654        u32 val;
4655
4656        cherryview_setup_pctx(dev);
4657
4658        mutex_lock(&dev_priv->rps.hw_lock);
4659
4660        mutex_lock(&dev_priv->dpio_lock);
4661        val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
4662        mutex_unlock(&dev_priv->dpio_lock);
4663
4664        switch ((val >> 2) & 0x7) {
4665        case 0:
4666        case 1:
4667                dev_priv->rps.cz_freq = 200;
4668                dev_priv->mem_freq = 1600;
4669                break;
4670        case 2:
4671                dev_priv->rps.cz_freq = 267;
4672                dev_priv->mem_freq = 1600;
4673                break;
4674        case 3:
4675                dev_priv->rps.cz_freq = 333;
4676                dev_priv->mem_freq = 2000;
4677                break;
4678        case 4:
4679                dev_priv->rps.cz_freq = 320;
4680                dev_priv->mem_freq = 1600;
4681                break;
4682        case 5:
4683                dev_priv->rps.cz_freq = 400;
4684                dev_priv->mem_freq = 1600;
4685                break;
4686        }
4687        DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4688
4689        dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4690        dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4691        DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4692                         intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4693                         dev_priv->rps.max_freq);
4694
4695        dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4696        DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4697                         intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4698                         dev_priv->rps.efficient_freq);
4699
4700        dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4701        DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4702                         intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4703                         dev_priv->rps.rp1_freq);
4704
4705        dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4706        DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4707                         intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4708                         dev_priv->rps.min_freq);
4709
4710        WARN_ONCE((dev_priv->rps.max_freq |
4711                   dev_priv->rps.efficient_freq |
4712                   dev_priv->rps.rp1_freq |
4713                   dev_priv->rps.min_freq) & 1,
4714                  "Odd GPU freq values\n");
4715
4716        /* Preserve min/max settings in case of re-init */
4717        if (dev_priv->rps.max_freq_softlimit == 0)
4718                dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4719
4720        if (dev_priv->rps.min_freq_softlimit == 0)
4721                dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4722
4723        mutex_unlock(&dev_priv->rps.hw_lock);
4724}
4725
4726static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4727{
4728        valleyview_cleanup_pctx(dev);
4729}
4730
4731static void cherryview_enable_rps(struct drm_device *dev)
4732{
4733        struct drm_i915_private *dev_priv = dev->dev_private;
4734        struct intel_engine_cs *ring;
4735        u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4736        int i;
4737
4738        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4739
4740        gtfifodbg = I915_READ(GTFIFODBG);
4741        if (gtfifodbg) {
4742                DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4743                                 gtfifodbg);
4744                I915_WRITE(GTFIFODBG, gtfifodbg);
4745        }
4746
4747        cherryview_check_pctx(dev_priv);
4748
4749        /* 1a & 1b: Get forcewake during program sequence. Although the driver
4750         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4751        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4752
4753        /*  Disable RC states. */
4754        I915_WRITE(GEN6_RC_CONTROL, 0);
4755
4756        /* 2a: Program RC6 thresholds.*/
4757        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4758        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4759        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4760
4761        for_each_ring(ring, dev_priv, i)
4762                I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4763        I915_WRITE(GEN6_RC_SLEEP, 0);
4764
4765        /* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
4766        I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4767
4768        /* allows RC6 residency counter to work */
4769        I915_WRITE(VLV_COUNTER_CONTROL,
4770                   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4771                                      VLV_MEDIA_RC6_COUNT_EN |
4772                                      VLV_RENDER_RC6_COUNT_EN));
4773
4774        /* For now we assume BIOS is allocating and populating the PCBR  */
4775        pcbr = I915_READ(VLV_PCBR);
4776
4777        /* 3: Enable RC6 */
4778        if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4779                                                (pcbr >> VLV_PCBR_ADDR_SHIFT))
4780                rc6_mode = GEN7_RC_CTL_TO_MODE;
4781
4782        I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4783
4784        /* 4 Program defaults and thresholds for RPS*/
4785        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4786        I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4787        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4788        I915_WRITE(GEN6_RP_UP_EI, 66000);
4789        I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4790
4791        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4792
4793        /* 5: Enable RPS */
4794        I915_WRITE(GEN6_RP_CONTROL,
4795                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4796                   GEN6_RP_MEDIA_IS_GFX |
4797                   GEN6_RP_ENABLE |
4798                   GEN6_RP_UP_BUSY_AVG |
4799                   GEN6_RP_DOWN_IDLE_AVG);
4800
4801        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4802
4803        /* RPS code assumes GPLL is used */
4804        WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
4805
4806        DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4807        DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4808
4809        dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4810        DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4811                         intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4812                         dev_priv->rps.cur_freq);
4813
4814        DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4815                         intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4816                         dev_priv->rps.efficient_freq);
4817
4818        valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4819
4820        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4821}
4822
4823static void valleyview_enable_rps(struct drm_device *dev)
4824{
4825        struct drm_i915_private *dev_priv = dev->dev_private;
4826        struct intel_engine_cs *ring;
4827        u32 gtfifodbg, val, rc6_mode = 0;
4828        int i;
4829
4830        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4831
4832        valleyview_check_pctx(dev_priv);
4833
4834        if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4835                DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4836                                 gtfifodbg);
4837                I915_WRITE(GTFIFODBG, gtfifodbg);
4838        }
4839
4840        /* If VLV, Forcewake all wells, else re-direct to regular path */
4841        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4842
4843        /*  Disable RC states. */
4844        I915_WRITE(GEN6_RC_CONTROL, 0);
4845
4846        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4847        I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4848        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4849        I915_WRITE(GEN6_RP_UP_EI, 66000);
4850        I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4851
4852        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4853
4854        I915_WRITE(GEN6_RP_CONTROL,
4855                   GEN6_RP_MEDIA_TURBO |
4856                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4857                   GEN6_RP_MEDIA_IS_GFX |
4858                   GEN6_RP_ENABLE |
4859                   GEN6_RP_UP_BUSY_AVG |
4860                   GEN6_RP_DOWN_IDLE_CONT);
4861
4862        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4863        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4864        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4865
4866        for_each_ring(ring, dev_priv, i)
4867                I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4868
4869        I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4870
4871        /* allows RC6 residency counter to work */
4872        I915_WRITE(VLV_COUNTER_CONTROL,
4873                   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4874                                      VLV_RENDER_RC0_COUNT_EN |
4875                                      VLV_MEDIA_RC6_COUNT_EN |
4876                                      VLV_RENDER_RC6_COUNT_EN));
4877
4878        if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4879                rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4880
4881        intel_print_rc6_info(dev, rc6_mode);
4882
4883        I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4884
4885        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4886
4887        /* RPS code assumes GPLL is used */
4888        WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
4889
4890        DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4891        DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4892
4893        dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4894        DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4895                         intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4896                         dev_priv->rps.cur_freq);
4897
4898        DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4899                         intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4900                         dev_priv->rps.efficient_freq);
4901
4902        valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4903
4904        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4905}
4906
4907void ironlake_teardown_rc6(struct drm_device *dev)
4908{
4909        struct drm_i915_private *dev_priv = dev->dev_private;
4910
4911        if (dev_priv->ips.renderctx) {
4912                i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4913                drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4914                dev_priv->ips.renderctx = NULL;
4915        }
4916
4917        if (dev_priv->ips.pwrctx) {
4918                i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4919                drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4920                dev_priv->ips.pwrctx = NULL;
4921        }
4922}
4923
4924static void ironlake_disable_rc6(struct drm_device *dev)
4925{
4926        struct drm_i915_private *dev_priv = dev->dev_private;
4927
4928        if (I915_READ(PWRCTXA)) {
4929                /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4930                I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4931                wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4932                         50);
4933
4934                I915_WRITE(PWRCTXA, 0);
4935                POSTING_READ(PWRCTXA);
4936
4937                I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4938                POSTING_READ(RSTDBYCTL);
4939        }
4940}
4941
4942static int ironlake_setup_rc6(struct drm_device *dev)
4943{
4944        struct drm_i915_private *dev_priv = dev->dev_private;
4945
4946        if (dev_priv->ips.renderctx == NULL)
4947                dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4948        if (!dev_priv->ips.renderctx)
4949                return -ENOMEM;
4950
4951        if (dev_priv->ips.pwrctx == NULL)
4952                dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4953        if (!dev_priv->ips.pwrctx) {
4954                ironlake_teardown_rc6(dev);
4955                return -ENOMEM;
4956        }
4957
4958        return 0;
4959}
4960
4961static void ironlake_enable_rc6(struct drm_device *dev)
4962{
4963        struct drm_i915_private *dev_priv = dev->dev_private;
4964        struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4965        bool was_interruptible;
4966        int ret;
4967
4968        /* rc6 disabled by default due to repeated reports of hanging during
4969         * boot and resume.
4970         */
4971        if (!intel_enable_rc6(dev))
4972                return;
4973
4974        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4975
4976        ret = ironlake_setup_rc6(dev);
4977        if (ret)
4978                return;
4979
4980        was_interruptible = dev_priv->mm.interruptible;
4981        dev_priv->mm.interruptible = false;
4982
4983        /*
4984         * GPU can automatically power down the render unit if given a page
4985         * to save state.
4986         */
4987        ret = intel_ring_begin(ring, 6);
4988        if (ret) {
4989                ironlake_teardown_rc6(dev);
4990                dev_priv->mm.interruptible = was_interruptible;
4991                return;
4992        }
4993
4994        intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4995        intel_ring_emit(ring, MI_SET_CONTEXT);
4996        intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4997                        MI_MM_SPACE_GTT |
4998                        MI_SAVE_EXT_STATE_EN |
4999                        MI_RESTORE_EXT_STATE_EN |
5000                        MI_RESTORE_INHIBIT);
5001        intel_ring_emit(ring, MI_SUSPEND_FLUSH);
5002        intel_ring_emit(ring, MI_NOOP);
5003        intel_ring_emit(ring, MI_FLUSH);
5004        intel_ring_advance(ring);
5005
5006        /*
5007         * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
5008         * does an implicit flush, combined with MI_FLUSH above, it should be
5009         * safe to assume that renderctx is valid
5010         */
5011        ret = intel_ring_idle(ring);
5012        dev_priv->mm.interruptible = was_interruptible;
5013        if (ret) {
5014                DRM_ERROR("failed to enable ironlake power savings\n");
5015                ironlake_teardown_rc6(dev);
5016                return;
5017        }
5018
5019        I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
5020        I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
5021
5022        intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
5023}
5024
5025static unsigned long intel_pxfreq(u32 vidfreq)
5026{
5027        unsigned long freq;
5028        int div = (vidfreq & 0x3f0000) >> 16;
5029        int post = (vidfreq & 0x3000) >> 12;
5030        int pre = (vidfreq & 0x7);
5031
5032        if (!pre)
5033                return 0;
5034
5035        freq = ((div * 133333) / ((1<<post) * pre));
5036
5037        return freq;
5038}
5039
5040static const struct cparams {
5041        u16 i;
5042        u16 t;
5043        u16 m;
5044        u16 c;
5045} cparams[] = {
5046        { 1, 1333, 301, 28664 },
5047        { 1, 1066, 294, 24460 },
5048        { 1, 800, 294, 25192 },
5049        { 0, 1333, 276, 27605 },
5050        { 0, 1066, 276, 27605 },
5051        { 0, 800, 231, 23784 },
5052};
5053
5054static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5055{
5056        u64 total_count, diff, ret;
5057        u32 count1, count2, count3, m = 0, c = 0;
5058        unsigned long now = jiffies_to_msecs(jiffies), diff1;
5059        int i;
5060
5061        assert_spin_locked(&mchdev_lock);
5062
5063        diff1 = now - dev_priv->ips.last_time1;
5064
5065        /* Prevent division-by-zero if we are asking too fast.
5066         * Also, we don't get interesting results if we are polling
5067         * faster than once in 10ms, so just return the saved value
5068         * in such cases.
5069         */
5070        if (diff1 <= 10)
5071                return dev_priv->ips.chipset_power;
5072
5073        count1 = I915_READ(DMIEC);
5074        count2 = I915_READ(DDREC);
5075        count3 = I915_READ(CSIEC);
5076
5077        total_count = count1 + count2 + count3;
5078
5079        /* FIXME: handle per-counter overflow */
5080        if (total_count < dev_priv->ips.last_count1) {
5081                diff = ~0UL - dev_priv->ips.last_count1;
5082                diff += total_count;
5083        } else {
5084                diff = total_count - dev_priv->ips.last_count1;
5085        }
5086
5087        for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5088                if (cparams[i].i == dev_priv->ips.c_m &&
5089                    cparams[i].t == dev_priv->ips.r_t) {
5090                        m = cparams[i].m;
5091                        c = cparams[i].c;
5092                        break;
5093                }
5094        }
5095
5096        diff = div_u64(diff, diff1);
5097        ret = ((m * diff) + c);
5098        ret = div_u64(ret, 10);
5099
5100        dev_priv->ips.last_count1 = total_count;
5101        dev_priv->ips.last_time1 = now;
5102
5103        dev_priv->ips.chipset_power = ret;
5104
5105        return ret;
5106}
5107
5108unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5109{
5110        struct drm_device *dev = dev_priv->dev;
5111        unsigned long val;
5112
5113        if (INTEL_INFO(dev)->gen != 5)
5114                return 0;
5115
5116        spin_lock_irq(&mchdev_lock);
5117
5118        val = __i915_chipset_val(dev_priv);
5119
5120        spin_unlock_irq(&mchdev_lock);
5121
5122        return val;
5123}
5124
5125unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5126{
5127        unsigned long m, x, b;
5128        u32 tsfs;
5129
5130        tsfs = I915_READ(TSFS);
5131
5132        m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5133        x = I915_READ8(TR1);
5134
5135        b = tsfs & TSFS_INTR_MASK;
5136
5137        return ((m * x) / 127) - b;
5138}
5139
5140static int _pxvid_to_vd(u8 pxvid)
5141{
5142        if (pxvid == 0)
5143                return 0;
5144
5145        if (pxvid >= 8 && pxvid < 31)
5146                pxvid = 31;
5147
5148        return (pxvid + 2) * 125;
5149}
5150
5151static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5152{
5153        struct drm_device *dev = dev_priv->dev;
5154        const int vd = _pxvid_to_vd(pxvid);
5155        const int vm = vd - 1125;
5156
5157        if (INTEL_INFO(dev)->is_mobile)
5158                return vm > 0 ? vm : 0;
5159
5160        return vd;
5161}
5162
5163static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5164{
5165        u64 now, diff, diffms;
5166        u32 count;
5167
5168        assert_spin_locked(&mchdev_lock);
5169
5170        now = ktime_get_raw_ns();
5171        diffms = now - dev_priv->ips.last_time2;
5172        do_div(diffms, NSEC_PER_MSEC);
5173
5174        /* Don't divide by 0 */
5175        if (!diffms)
5176                return;
5177
5178        count = I915_READ(GFXEC);
5179
5180        if (count < dev_priv->ips.last_count2) {
5181                diff = ~0UL - dev_priv->ips.last_count2;
5182                diff += count;
5183        } else {
5184                diff = count - dev_priv->ips.last_count2;
5185        }
5186
5187        dev_priv->ips.last_count2 = count;
5188        dev_priv->ips.last_time2 = now;
5189
5190        /* More magic constants... */
5191        diff = diff * 1181;
5192        diff = div_u64(diff, diffms * 10);
5193        dev_priv->ips.gfx_power = diff;
5194}
5195
5196void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5197{
5198        struct drm_device *dev = dev_priv->dev;
5199
5200        if (INTEL_INFO(dev)->gen != 5)
5201                return;
5202
5203        spin_lock_irq(&mchdev_lock);
5204
5205        __i915_update_gfx_val(dev_priv);
5206
5207        spin_unlock_irq(&mchdev_lock);
5208}
5209
5210static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5211{
5212        unsigned long t, corr, state1, corr2, state2;
5213        u32 pxvid, ext_v;
5214
5215        assert_spin_locked(&mchdev_lock);
5216
5217        pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5218        pxvid = (pxvid >> 24) & 0x7f;
5219        ext_v = pvid_to_extvid(dev_priv, pxvid);
5220
5221        state1 = ext_v;
5222
5223        t = i915_mch_val(dev_priv);
5224
5225        /* Revel in the empirically derived constants */
5226
5227        /* Correction factor in 1/100000 units */
5228        if (t > 80)
5229                corr = ((t * 2349) + 135940);
5230        else if (t >= 50)
5231                corr = ((t * 964) + 29317);
5232        else /* < 50 */
5233                corr = ((t * 301) + 1004);
5234
5235        corr = corr * ((150142 * state1) / 10000 - 78642);
5236        corr /= 100000;
5237        corr2 = (corr * dev_priv->ips.corr);
5238
5239        state2 = (corr2 * state1) / 10000;
5240        state2 /= 100; /* convert to mW */
5241
5242        __i915_update_gfx_val(dev_priv);
5243
5244        return dev_priv->ips.gfx_power + state2;
5245}
5246
5247unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5248{
5249        struct drm_device *dev = dev_priv->dev;
5250        unsigned long val;
5251
5252        if (INTEL_INFO(dev)->gen != 5)
5253                return 0;
5254
5255        spin_lock_irq(&mchdev_lock);
5256
5257        val = __i915_gfx_val(dev_priv);
5258
5259        spin_unlock_irq(&mchdev_lock);
5260
5261        return val;
5262}
5263
5264/**
5265 * i915_read_mch_val - return value for IPS use
5266 *
5267 * Calculate and return a value for the IPS driver to use when deciding whether
5268 * we have thermal and power headroom to increase CPU or GPU power budget.
5269 */
5270unsigned long i915_read_mch_val(void)
5271{
5272        struct drm_i915_private *dev_priv;
5273        unsigned long chipset_val, graphics_val, ret = 0;
5274
5275        spin_lock_irq(&mchdev_lock);
5276        if (!i915_mch_dev)
5277                goto out_unlock;
5278        dev_priv = i915_mch_dev;
5279
5280        chipset_val = __i915_chipset_val(dev_priv);
5281        graphics_val = __i915_gfx_val(dev_priv);
5282
5283        ret = chipset_val + graphics_val;
5284
5285out_unlock:
5286        spin_unlock_irq(&mchdev_lock);
5287
5288        return ret;
5289}
5290EXPORT_SYMBOL_GPL(i915_read_mch_val);
5291
5292/**
5293 * i915_gpu_raise - raise GPU frequency limit
5294 *
5295 * Raise the limit; IPS indicates we have thermal headroom.
5296 */
5297bool i915_gpu_raise(void)
5298{
5299        struct drm_i915_private *dev_priv;
5300        bool ret = true;
5301
5302        spin_lock_irq(&mchdev_lock);
5303        if (!i915_mch_dev) {
5304                ret = false;
5305                goto out_unlock;
5306        }
5307        dev_priv = i915_mch_dev;
5308
5309        if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5310                dev_priv->ips.max_delay--;
5311
5312out_unlock:
5313        spin_unlock_irq(&mchdev_lock);
5314
5315        return ret;
5316}
5317EXPORT_SYMBOL_GPL(i915_gpu_raise);
5318
5319/**
5320 * i915_gpu_lower - lower GPU frequency limit
5321 *
5322 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5323 * frequency maximum.
5324 */
5325bool i915_gpu_lower(void)
5326{
5327        struct drm_i915_private *dev_priv;
5328        bool ret = true;
5329
5330        spin_lock_irq(&mchdev_lock);
5331        if (!i915_mch_dev) {
5332                ret = false;
5333                goto out_unlock;
5334        }
5335        dev_priv = i915_mch_dev;
5336
5337        if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5338                dev_priv->ips.max_delay++;
5339
5340out_unlock:
5341        spin_unlock_irq(&mchdev_lock);
5342
5343        return ret;
5344}
5345EXPORT_SYMBOL_GPL(i915_gpu_lower);
5346
5347/**
5348 * i915_gpu_busy - indicate GPU business to IPS
5349 *
5350 * Tell the IPS driver whether or not the GPU is busy.
5351 */
5352bool i915_gpu_busy(void)
5353{
5354        struct drm_i915_private *dev_priv;
5355        struct intel_engine_cs *ring;
5356        bool ret = false;
5357        int i;
5358
5359        spin_lock_irq(&mchdev_lock);
5360        if (!i915_mch_dev)
5361                goto out_unlock;
5362        dev_priv = i915_mch_dev;
5363
5364        for_each_ring(ring, dev_priv, i)
5365                ret |= !list_empty(&ring->request_list);
5366
5367out_unlock:
5368        spin_unlock_irq(&mchdev_lock);
5369
5370        return ret;
5371}
5372EXPORT_SYMBOL_GPL(i915_gpu_busy);
5373
5374/**
5375 * i915_gpu_turbo_disable - disable graphics turbo
5376 *
5377 * Disable graphics turbo by resetting the max frequency and setting the
5378 * current frequency to the default.
5379 */
5380bool i915_gpu_turbo_disable(void)
5381{
5382        struct drm_i915_private *dev_priv;
5383        bool ret = true;
5384
5385        spin_lock_irq(&mchdev_lock);
5386        if (!i915_mch_dev) {
5387                ret = false;
5388                goto out_unlock;
5389        }
5390        dev_priv = i915_mch_dev;
5391
5392        dev_priv->ips.max_delay = dev_priv->ips.fstart;
5393
5394        if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5395                ret = false;
5396
5397out_unlock:
5398        spin_unlock_irq(&mchdev_lock);
5399
5400        return ret;
5401}
5402EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5403
5404/**
5405 * Tells the intel_ips driver that the i915 driver is now loaded, if
5406 * IPS got loaded first.
5407 *
5408 * This awkward dance is so that neither module has to depend on the
5409 * other in order for IPS to do the appropriate communication of
5410 * GPU turbo limits to i915.
5411 */
5412static void
5413ips_ping_for_i915_load(void)
5414{
5415        void (*link)(void);
5416
5417        link = symbol_get(ips_link_to_i915_driver);
5418        if (link) {
5419                link();
5420                symbol_put(ips_link_to_i915_driver);
5421        }
5422}
5423
5424void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5425{
5426        /* We only register the i915 ips part with intel-ips once everything is
5427         * set up, to avoid intel-ips sneaking in and reading bogus values. */
5428        spin_lock_irq(&mchdev_lock);
5429        i915_mch_dev = dev_priv;
5430        spin_unlock_irq(&mchdev_lock);
5431
5432        ips_ping_for_i915_load();
5433}
5434
5435void intel_gpu_ips_teardown(void)
5436{
5437        spin_lock_irq(&mchdev_lock);
5438        i915_mch_dev = NULL;
5439        spin_unlock_irq(&mchdev_lock);
5440}
5441
5442static void intel_init_emon(struct drm_device *dev)
5443{
5444        struct drm_i915_private *dev_priv = dev->dev_private;
5445        u32 lcfuse;
5446        u8 pxw[16];
5447        int i;
5448
5449        /* Disable to program */
5450        I915_WRITE(ECR, 0);
5451        POSTING_READ(ECR);
5452
5453        /* Program energy weights for various events */
5454        I915_WRITE(SDEW, 0x15040d00);
5455        I915_WRITE(CSIEW0, 0x007f0000);
5456        I915_WRITE(CSIEW1, 0x1e220004);
5457        I915_WRITE(CSIEW2, 0x04000004);
5458
5459        for (i = 0; i < 5; i++)
5460                I915_WRITE(PEW + (i * 4), 0);
5461        for (i = 0; i < 3; i++)
5462                I915_WRITE(DEW + (i * 4), 0);
5463
5464        /* Program P-state weights to account for frequency power adjustment */
5465        for (i = 0; i < 16; i++) {
5466                u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5467                unsigned long freq = intel_pxfreq(pxvidfreq);
5468                unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5469                        PXVFREQ_PX_SHIFT;
5470                unsigned long val;
5471
5472                val = vid * vid;
5473                val *= (freq / 1000);
5474                val *= 255;
5475                val /= (127*127*900);
5476                if (val > 0xff)
5477                        DRM_ERROR("bad pxval: %ld\n", val);
5478                pxw[i] = val;
5479        }
5480        /* Render standby states get 0 weight */
5481        pxw[14] = 0;
5482        pxw[15] = 0;
5483
5484        for (i = 0; i < 4; i++) {
5485                u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5486                        (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5487                I915_WRITE(PXW + (i * 4), val);
5488        }
5489
5490        /* Adjust magic regs to magic values (more experimental results) */
5491        I915_WRITE(OGW0, 0);
5492        I915_WRITE(OGW1, 0);
5493        I915_WRITE(EG0, 0x00007f00);
5494        I915_WRITE(EG1, 0x0000000e);
5495        I915_WRITE(EG2, 0x000e0000);
5496        I915_WRITE(EG3, 0x68000300);
5497        I915_WRITE(EG4, 0x42000000);
5498        I915_WRITE(EG5, 0x00140031);
5499        I915_WRITE(EG6, 0);
5500        I915_WRITE(EG7, 0);
5501
5502        for (i = 0; i < 8; i++)
5503                I915_WRITE(PXWL + (i * 4), 0);
5504
5505        /* Enable PMON + select events */
5506        I915_WRITE(ECR, 0x80000019);
5507
5508        lcfuse = I915_READ(LCFUSE02);
5509
5510        dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5511}
5512
5513void intel_init_gt_powersave(struct drm_device *dev)
5514{
5515        i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5516
5517        if (IS_CHERRYVIEW(dev))
5518                cherryview_init_gt_powersave(dev);
5519        else if (IS_VALLEYVIEW(dev))
5520                valleyview_init_gt_powersave(dev);
5521}
5522
5523void intel_cleanup_gt_powersave(struct drm_device *dev)
5524{
5525        if (IS_CHERRYVIEW(dev))
5526                return;
5527        else if (IS_VALLEYVIEW(dev))
5528                valleyview_cleanup_gt_powersave(dev);
5529}
5530
5531static void gen6_suspend_rps(struct drm_device *dev)
5532{
5533        struct drm_i915_private *dev_priv = dev->dev_private;
5534
5535        flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5536
5537        /*
5538         * TODO: disable RPS interrupts on GEN9+ too once RPS support
5539         * is added for it.
5540         */
5541        if (INTEL_INFO(dev)->gen < 9)
5542                gen6_disable_rps_interrupts(dev);
5543}
5544
5545/**
5546 * intel_suspend_gt_powersave - suspend PM work and helper threads
5547 * @dev: drm device
5548 *
5549 * We don't want to disable RC6 or other features here, we just want
5550 * to make sure any work we've queued has finished and won't bother
5551 * us while we're suspended.
5552 */
5553void intel_suspend_gt_powersave(struct drm_device *dev)
5554{
5555        struct drm_i915_private *dev_priv = dev->dev_private;
5556
5557        if (INTEL_INFO(dev)->gen < 6)
5558                return;
5559
5560        gen6_suspend_rps(dev);
5561
5562        /* Force GPU to min freq during suspend */
5563        gen6_rps_idle(dev_priv);
5564}
5565
5566void intel_disable_gt_powersave(struct drm_device *dev)
5567{
5568        struct drm_i915_private *dev_priv = dev->dev_private;
5569
5570        if (IS_IRONLAKE_M(dev)) {
5571                ironlake_disable_drps(dev);
5572                ironlake_disable_rc6(dev);
5573        } else if (INTEL_INFO(dev)->gen >= 6) {
5574                intel_suspend_gt_powersave(dev);
5575
5576                mutex_lock(&dev_priv->rps.hw_lock);
5577                if (INTEL_INFO(dev)->gen >= 9)
5578                        gen9_disable_rps(dev);
5579                else if (IS_CHERRYVIEW(dev))
5580                        cherryview_disable_rps(dev);
5581                else if (IS_VALLEYVIEW(dev))
5582                        valleyview_disable_rps(dev);
5583                else
5584                        gen6_disable_rps(dev);
5585
5586                dev_priv->rps.enabled = false;
5587                mutex_unlock(&dev_priv->rps.hw_lock);
5588        }
5589}
5590
5591static void intel_gen6_powersave_work(struct work_struct *work)
5592{
5593        struct drm_i915_private *dev_priv =
5594                container_of(work, struct drm_i915_private,
5595                             rps.delayed_resume_work.work);
5596        struct drm_device *dev = dev_priv->dev;
5597
5598        mutex_lock(&dev_priv->rps.hw_lock);
5599
5600        /*
5601         * TODO: reset/enable RPS interrupts on GEN9+ too, once RPS support is
5602         * added for it.
5603         */
5604        if (INTEL_INFO(dev)->gen < 9)
5605                gen6_reset_rps_interrupts(dev);
5606
5607        if (IS_CHERRYVIEW(dev)) {
5608                cherryview_enable_rps(dev);
5609        } else if (IS_VALLEYVIEW(dev)) {
5610                valleyview_enable_rps(dev);
5611        } else if (INTEL_INFO(dev)->gen >= 9) {
5612                gen9_enable_rc6(dev);
5613                gen9_enable_rps(dev);
5614                __gen6_update_ring_freq(dev);
5615        } else if (IS_BROADWELL(dev)) {
5616                gen8_enable_rps(dev);
5617                __gen6_update_ring_freq(dev);
5618        } else {
5619                gen6_enable_rps(dev);
5620                __gen6_update_ring_freq(dev);
5621        }
5622        dev_priv->rps.enabled = true;
5623
5624        if (INTEL_INFO(dev)->gen < 9)
5625                gen6_enable_rps_interrupts(dev);
5626
5627        mutex_unlock(&dev_priv->rps.hw_lock);
5628
5629        intel_runtime_pm_put(dev_priv);
5630}
5631
5632void intel_enable_gt_powersave(struct drm_device *dev)
5633{
5634        struct drm_i915_private *dev_priv = dev->dev_private;
5635
5636        if (IS_IRONLAKE_M(dev)) {
5637                mutex_lock(&dev->struct_mutex);
5638                ironlake_enable_drps(dev);
5639                ironlake_enable_rc6(dev);
5640                intel_init_emon(dev);
5641                mutex_unlock(&dev->struct_mutex);
5642        } else if (INTEL_INFO(dev)->gen >= 6) {
5643                /*
5644                 * PCU communication is slow and this doesn't need to be
5645                 * done at any specific time, so do this out of our fast path
5646                 * to make resume and init faster.
5647                 *
5648                 * We depend on the HW RC6 power context save/restore
5649                 * mechanism when entering D3 through runtime PM suspend. So
5650                 * disable RPM until RPS/RC6 is properly setup. We can only
5651                 * get here via the driver load/system resume/runtime resume
5652                 * paths, so the _noresume version is enough (and in case of
5653                 * runtime resume it's necessary).
5654                 */
5655                if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5656                                           round_jiffies_up_relative(HZ)))
5657                        intel_runtime_pm_get_noresume(dev_priv);
5658        }
5659}
5660
5661void intel_reset_gt_powersave(struct drm_device *dev)
5662{
5663        struct drm_i915_private *dev_priv = dev->dev_private;
5664
5665        if (INTEL_INFO(dev)->gen < 6)
5666                return;
5667
5668        gen6_suspend_rps(dev);
5669        dev_priv->rps.enabled = false;
5670}
5671
5672static void ibx_init_clock_gating(struct drm_device *dev)
5673{
5674        struct drm_i915_private *dev_priv = dev->dev_private;
5675
5676        /*
5677         * On Ibex Peak and Cougar Point, we need to disable clock
5678         * gating for the panel power sequencer or it will fail to
5679         * start up when no ports are active.
5680         */
5681        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5682}
5683
5684static void g4x_disable_trickle_feed(struct drm_device *dev)
5685{
5686        struct drm_i915_private *dev_priv = dev->dev_private;
5687        int pipe;
5688
5689        for_each_pipe(dev_priv, pipe) {
5690                I915_WRITE(DSPCNTR(pipe),
5691                           I915_READ(DSPCNTR(pipe)) |
5692                           DISPPLANE_TRICKLE_FEED_DISABLE);
5693                intel_flush_primary_plane(dev_priv, pipe);
5694        }
5695}
5696
5697static void ilk_init_lp_watermarks(struct drm_device *dev)
5698{
5699        struct drm_i915_private *dev_priv = dev->dev_private;
5700
5701        I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5702        I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5703        I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5704
5705        /*
5706         * Don't touch WM1S_LP_EN here.
5707         * Doing so could cause underruns.
5708         */
5709}
5710
5711static void ironlake_init_clock_gating(struct drm_device *dev)
5712{
5713        struct drm_i915_private *dev_priv = dev->dev_private;
5714        uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5715
5716        /*
5717         * Required for FBC
5718         * WaFbcDisableDpfcClockGating:ilk
5719         */
5720        dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5721                   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5722                   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5723
5724        I915_WRITE(PCH_3DCGDIS0,
5725                   MARIUNIT_CLOCK_GATE_DISABLE |
5726                   SVSMUNIT_CLOCK_GATE_DISABLE);
5727        I915_WRITE(PCH_3DCGDIS1,
5728                   VFMUNIT_CLOCK_GATE_DISABLE);
5729
5730        /*
5731         * According to the spec the following bits should be set in
5732         * order to enable memory self-refresh
5733         * The bit 22/21 of 0x42004
5734         * The bit 5 of 0x42020
5735         * The bit 15 of 0x45000
5736         */
5737        I915_WRITE(ILK_DISPLAY_CHICKEN2,
5738                   (I915_READ(ILK_DISPLAY_CHICKEN2) |
5739                    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5740        dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5741        I915_WRITE(DISP_ARB_CTL,
5742                   (I915_READ(DISP_ARB_CTL) |
5743                    DISP_FBC_WM_DIS));
5744
5745        ilk_init_lp_watermarks(dev);
5746
5747        /*
5748         * Based on the document from hardware guys the following bits
5749         * should be set unconditionally in order to enable FBC.
5750         * The bit 22 of 0x42000
5751         * The bit 22 of 0x42004
5752         * The bit 7,8,9 of 0x42020.
5753         */
5754        if (IS_IRONLAKE_M(dev)) {
5755                /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5756                I915_WRITE(ILK_DISPLAY_CHICKEN1,
5757                           I915_READ(ILK_DISPLAY_CHICKEN1) |
5758                           ILK_FBCQ_DIS);
5759                I915_WRITE(ILK_DISPLAY_CHICKEN2,
5760                           I915_READ(ILK_DISPLAY_CHICKEN2) |
5761                           ILK_DPARB_GATE);
5762        }
5763
5764        I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5765
5766        I915_WRITE(ILK_DISPLAY_CHICKEN2,
5767                   I915_READ(ILK_DISPLAY_CHICKEN2) |
5768                   ILK_ELPIN_409_SELECT);
5769        I915_WRITE(_3D_CHICKEN2,
5770                   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5771                   _3D_CHICKEN2_WM_READ_PIPELINED);
5772
5773        /* WaDisableRenderCachePipelinedFlush:ilk */
5774        I915_WRITE(CACHE_MODE_0,
5775                   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5776
5777        /* WaDisable_RenderCache_OperationalFlush:ilk */
5778        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5779
5780        g4x_disable_trickle_feed(dev);
5781
5782        ibx_init_clock_gating(dev);
5783}
5784
5785static void cpt_init_clock_gating(struct drm_device *dev)
5786{
5787        struct drm_i915_private *dev_priv = dev->dev_private;
5788        int pipe;
5789        uint32_t val;
5790
5791        /*
5792         * On Ibex Peak and Cougar Point, we need to disable clock
5793         * gating for the panel power sequencer or it will fail to
5794         * start up when no ports are active.
5795         */
5796        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5797                   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5798                   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5799        I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5800                   DPLS_EDP_PPS_FIX_DIS);
5801        /* The below fixes the weird display corruption, a few pixels shifted
5802         * downward, on (only) LVDS of some HP laptops with IVY.
5803         */
5804        for_each_pipe(dev_priv, pipe) {
5805                val = I915_READ(TRANS_CHICKEN2(pipe));
5806                val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5807                val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5808                if (dev_priv->vbt.fdi_rx_polarity_inverted)
5809                        val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5810                val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5811                val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5812                val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5813                I915_WRITE(TRANS_CHICKEN2(pipe), val);
5814        }
5815        /* WADP0ClockGatingDisable */
5816        for_each_pipe(dev_priv, pipe) {
5817                I915_WRITE(TRANS_CHICKEN1(pipe),
5818                           TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5819        }
5820}
5821
5822static void gen6_check_mch_setup(struct drm_device *dev)
5823{
5824        struct drm_i915_private *dev_priv = dev->dev_private;
5825        uint32_t tmp;
5826
5827        tmp = I915_READ(MCH_SSKPD);
5828        if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5829                DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5830                              tmp);
5831}
5832
5833static void gen6_init_clock_gating(struct drm_device *dev)
5834{
5835        struct drm_i915_private *dev_priv = dev->dev_private;
5836        uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5837
5838        I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5839
5840        I915_WRITE(ILK_DISPLAY_CHICKEN2,
5841                   I915_READ(ILK_DISPLAY_CHICKEN2) |
5842                   ILK_ELPIN_409_SELECT);
5843
5844        /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5845        I915_WRITE(_3D_CHICKEN,
5846                   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5847
5848        /* WaDisable_RenderCache_OperationalFlush:snb */
5849        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5850
5851        /*
5852         * BSpec recoomends 8x4 when MSAA is used,
5853         * however in practice 16x4 seems fastest.
5854         *
5855         * Note that PS/WM thread counts depend on the WIZ hashing
5856         * disable bit, which we don't touch here, but it's good
5857         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5858         */
5859        I915_WRITE(GEN6_GT_MODE,
5860                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5861
5862        ilk_init_lp_watermarks(dev);
5863
5864        I915_WRITE(CACHE_MODE_0,
5865                   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5866
5867        I915_WRITE(GEN6_UCGCTL1,
5868                   I915_READ(GEN6_UCGCTL1) |
5869                   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5870                   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5871
5872        /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5873         * gating disable must be set.  Failure to set it results in
5874         * flickering pixels due to Z write ordering failures after
5875         * some amount of runtime in the Mesa "fire" demo, and Unigine
5876         * Sanctuary and Tropics, and apparently anything else with
5877         * alpha test or pixel discard.
5878         *
5879         * According to the spec, bit 11 (RCCUNIT) must also be set,
5880         * but we didn't debug actual testcases to find it out.
5881         *
5882         * WaDisableRCCUnitClockGating:snb
5883         * WaDisableRCPBUnitClockGating:snb
5884         */
5885        I915_WRITE(GEN6_UCGCTL2,
5886                   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5887                   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5888
5889        /* WaStripsFansDisableFastClipPerformanceFix:snb */
5890        I915_WRITE(_3D_CHICKEN3,
5891                   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5892
5893        /*
5894         * Bspec says:
5895         * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5896         * 3DSTATE_SF number of SF output attributes is more than 16."
5897         */
5898        I915_WRITE(_3D_CHICKEN3,
5899                   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5900
5901        /*
5902         * According to the spec the following bits should be
5903         * set in order to enable memory self-refresh and fbc:
5904         * The bit21 and bit22 of 0x42000
5905         * The bit21 and bit22 of 0x42004
5906         * The bit5 and bit7 of 0x42020
5907         * The bit14 of 0x70180
5908         * The bit14 of 0x71180
5909         *
5910         * WaFbcAsynchFlipDisableFbcQueue:snb
5911         */
5912        I915_WRITE(ILK_DISPLAY_CHICKEN1,
5913                   I915_READ(ILK_DISPLAY_CHICKEN1) |
5914                   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5915        I915_WRITE(ILK_DISPLAY_CHICKEN2,
5916                   I915_READ(ILK_DISPLAY_CHICKEN2) |
5917                   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5918        I915_WRITE(ILK_DSPCLK_GATE_D,
5919                   I915_READ(ILK_DSPCLK_GATE_D) |
5920                   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
5921                   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5922
5923        g4x_disable_trickle_feed(dev);
5924
5925        cpt_init_clock_gating(dev);
5926
5927        gen6_check_mch_setup(dev);
5928}
5929
5930static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5931{
5932        uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5933
5934        /*
5935         * WaVSThreadDispatchOverride:ivb,vlv
5936         *
5937         * This actually overrides the dispatch
5938         * mode for all thread types.
5939         */
5940        reg &= ~GEN7_FF_SCHED_MASK;
5941        reg |= GEN7_FF_TS_SCHED_HW;
5942        reg |= GEN7_FF_VS_SCHED_HW;
5943        reg |= GEN7_FF_DS_SCHED_HW;
5944
5945        I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5946}
5947
5948static void lpt_init_clock_gating(struct drm_device *dev)
5949{
5950        struct drm_i915_private *dev_priv = dev->dev_private;
5951
5952        /*
5953         * TODO: this bit should only be enabled when really needed, then
5954         * disabled when not needed anymore in order to save power.
5955         */
5956        if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5957                I915_WRITE(SOUTH_DSPCLK_GATE_D,
5958                           I915_READ(SOUTH_DSPCLK_GATE_D) |
5959                           PCH_LP_PARTITION_LEVEL_DISABLE);
5960
5961        /* WADPOClockGatingDisable:hsw */
5962        I915_WRITE(_TRANSA_CHICKEN1,
5963                   I915_READ(_TRANSA_CHICKEN1) |
5964                   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5965}
5966
5967static void lpt_suspend_hw(struct drm_device *dev)
5968{
5969        struct drm_i915_private *dev_priv = dev->dev_private;
5970
5971        if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5972                uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5973
5974                val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5975                I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5976        }
5977}
5978
5979static void broadwell_init_clock_gating(struct drm_device *dev)
5980{
5981        struct drm_i915_private *dev_priv = dev->dev_private;
5982        enum pipe pipe;
5983
5984        I915_WRITE(WM3_LP_ILK, 0);
5985        I915_WRITE(WM2_LP_ILK, 0);
5986        I915_WRITE(WM1_LP_ILK, 0);
5987
5988        /* WaSwitchSolVfFArbitrationPriority:bdw */
5989        I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5990
5991        /* WaPsrDPAMaskVBlankInSRD:bdw */
5992        I915_WRITE(CHICKEN_PAR1_1,
5993                   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5994
5995        /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5996        for_each_pipe(dev_priv, pipe) {
5997                I915_WRITE(CHICKEN_PIPESL_1(pipe),
5998                           I915_READ(CHICKEN_PIPESL_1(pipe)) |
5999                           BDW_DPRS_MASK_VBLANK_SRD);
6000        }
6001
6002        /* WaVSRefCountFullforceMissDisable:bdw */
6003        /* WaDSRefCountFullforceMissDisable:bdw */
6004        I915_WRITE(GEN7_FF_THREAD_MODE,
6005                   I915_READ(GEN7_FF_THREAD_MODE) &
6006                   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6007
6008        I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6009                   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6010
6011        /* WaDisableSDEUnitClockGating:bdw */
6012        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6013                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6014
6015        lpt_init_clock_gating(dev);
6016}
6017
6018static void haswell_init_clock_gating(struct drm_device *dev)
6019{
6020        struct drm_i915_private *dev_priv = dev->dev_private;
6021
6022        ilk_init_lp_watermarks(dev);
6023
6024        /* L3 caching of data atomics doesn't work -- disable it. */
6025        I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6026        I915_WRITE(HSW_ROW_CHICKEN3,
6027                   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6028
6029        /* This is required by WaCatErrorRejectionIssue:hsw */
6030        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6031                        I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6032                        GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6033
6034        /* WaVSRefCountFullforceMissDisable:hsw */
6035        I915_WRITE(GEN7_FF_THREAD_MODE,
6036                   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6037
6038        /* WaDisable_RenderCache_OperationalFlush:hsw */
6039        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6040
6041        /* enable HiZ Raw Stall Optimization */
6042        I915_WRITE(CACHE_MODE_0_GEN7,
6043                   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6044
6045        /* WaDisable4x2SubspanOptimization:hsw */
6046        I915_WRITE(CACHE_MODE_1,
6047                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6048
6049        /*
6050         * BSpec recommends 8x4 when MSAA is used,
6051         * however in practice 16x4 seems fastest.
6052         *
6053         * Note that PS/WM thread counts depend on the WIZ hashing
6054         * disable bit, which we don't touch here, but it's good
6055         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6056         */
6057        I915_WRITE(GEN7_GT_MODE,
6058                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6059
6060        /* WaSampleCChickenBitEnable:hsw */
6061        I915_WRITE(HALF_SLICE_CHICKEN3,
6062                   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6063
6064        /* WaSwitchSolVfFArbitrationPriority:hsw */
6065        I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6066
6067        /* WaRsPkgCStateDisplayPMReq:hsw */
6068        I915_WRITE(CHICKEN_PAR1_1,
6069                   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6070
6071        lpt_init_clock_gating(dev);
6072}
6073
6074static void ivybridge_init_clock_gating(struct drm_device *dev)
6075{
6076        struct drm_i915_private *dev_priv = dev->dev_private;
6077        uint32_t snpcr;
6078
6079        ilk_init_lp_watermarks(dev);
6080
6081        I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6082
6083        /* WaDisableEarlyCull:ivb */
6084        I915_WRITE(_3D_CHICKEN3,
6085                   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6086
6087        /* WaDisableBackToBackFlipFix:ivb */
6088        I915_WRITE(IVB_CHICKEN3,
6089                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6090                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6091
6092        /* WaDisablePSDDualDispatchEnable:ivb */
6093        if (IS_IVB_GT1(dev))
6094                I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6095                           _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6096
6097        /* WaDisable_RenderCache_OperationalFlush:ivb */
6098        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6099
6100        /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6101        I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6102                   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6103
6104        /* WaApplyL3ControlAndL3ChickenMode:ivb */
6105        I915_WRITE(GEN7_L3CNTLREG1,
6106                        GEN7_WA_FOR_GEN7_L3_CONTROL);
6107        I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6108                   GEN7_WA_L3_CHICKEN_MODE);
6109        if (IS_IVB_GT1(dev))
6110                I915_WRITE(GEN7_ROW_CHICKEN2,
6111                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6112        else {
6113                /* must write both registers */
6114                I915_WRITE(GEN7_ROW_CHICKEN2,
6115                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6116                I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6117                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6118        }
6119
6120        /* WaForceL3Serialization:ivb */
6121        I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6122                   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6123
6124        /*
6125         * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6126         * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6127         */
6128        I915_WRITE(GEN6_UCGCTL2,
6129                   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6130
6131        /* This is required by WaCatErrorRejectionIssue:ivb */
6132        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6133                        I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6134                        GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6135
6136        g4x_disable_trickle_feed(dev);
6137
6138        gen7_setup_fixed_func_scheduler(dev_priv);
6139
6140        if (0) { /* causes HiZ corruption on ivb:gt1 */
6141                /* enable HiZ Raw Stall Optimization */
6142                I915_WRITE(CACHE_MODE_0_GEN7,
6143                           _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6144        }
6145
6146        /* WaDisable4x2SubspanOptimization:ivb */
6147        I915_WRITE(CACHE_MODE_1,
6148                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6149
6150        /*
6151         * BSpec recommends 8x4 when MSAA is used,
6152         * however in practice 16x4 seems fastest.
6153         *
6154         * Note that PS/WM thread counts depend on the WIZ hashing
6155         * disable bit, which we don't touch here, but it's good
6156         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6157         */
6158        I915_WRITE(GEN7_GT_MODE,
6159                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6160
6161        snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6162        snpcr &= ~GEN6_MBC_SNPCR_MASK;
6163        snpcr |= GEN6_MBC_SNPCR_MED;
6164        I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6165
6166        if (!HAS_PCH_NOP(dev))
6167                cpt_init_clock_gating(dev);
6168
6169        gen6_check_mch_setup(dev);
6170}
6171
6172static void valleyview_init_clock_gating(struct drm_device *dev)
6173{
6174        struct drm_i915_private *dev_priv = dev->dev_private;
6175
6176        I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6177
6178        /* WaDisableEarlyCull:vlv */
6179        I915_WRITE(_3D_CHICKEN3,
6180                   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6181
6182        /* WaDisableBackToBackFlipFix:vlv */
6183        I915_WRITE(IVB_CHICKEN3,
6184                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6185                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6186
6187        /* WaPsdDispatchEnable:vlv */
6188        /* WaDisablePSDDualDispatchEnable:vlv */
6189        I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6190                   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6191                                      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6192
6193        /* WaDisable_RenderCache_OperationalFlush:vlv */
6194        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6195
6196        /* WaForceL3Serialization:vlv */
6197        I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6198                   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6199
6200        /* WaDisableDopClockGating:vlv */
6201        I915_WRITE(GEN7_ROW_CHICKEN2,
6202                   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6203
6204        /* This is required by WaCatErrorRejectionIssue:vlv */
6205        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6206                   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6207                   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6208
6209        gen7_setup_fixed_func_scheduler(dev_priv);
6210
6211        /*
6212         * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6213         * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6214         */
6215        I915_WRITE(GEN6_UCGCTL2,
6216                   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6217
6218        /* WaDisableL3Bank2xClockGate:vlv
6219         * Disabling L3 clock gating- MMIO 940c[25] = 1
6220         * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6221        I915_WRITE(GEN7_UCGCTL4,
6222                   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6223
6224        I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6225
6226        /*
6227         * BSpec says this must be set, even though
6228         * WaDisable4x2SubspanOptimization isn't listed for VLV.
6229         */
6230        I915_WRITE(CACHE_MODE_1,
6231                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6232
6233        /*
6234         * BSpec recommends 8x4 when MSAA is used,
6235         * however in practice 16x4 seems fastest.
6236         *
6237         * Note that PS/WM thread counts depend on the WIZ hashing
6238         * disable bit, which we don't touch here, but it's good
6239         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6240         */
6241        I915_WRITE(GEN7_GT_MODE,
6242                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6243
6244        /*
6245         * WaIncreaseL3CreditsForVLVB0:vlv
6246         * This is the hardware default actually.
6247         */
6248        I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6249
6250        /*
6251         * WaDisableVLVClockGating_VBIIssue:vlv
6252         * Disable clock gating on th GCFG unit to prevent a delay
6253         * in the reporting of vblank events.
6254         */
6255        I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6256}
6257
6258static void cherryview_init_clock_gating(struct drm_device *dev)
6259{
6260        struct drm_i915_private *dev_priv = dev->dev_private;
6261
6262        I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6263
6264        I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6265
6266        /* WaVSRefCountFullforceMissDisable:chv */
6267        /* WaDSRefCountFullforceMissDisable:chv */
6268        I915_WRITE(GEN7_FF_THREAD_MODE,
6269                   I915_READ(GEN7_FF_THREAD_MODE) &
6270                   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6271
6272        /* WaDisableSemaphoreAndSyncFlipWait:chv */
6273        I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6274                   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6275
6276        /* WaDisableCSUnitClockGating:chv */
6277        I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6278                   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6279
6280        /* WaDisableSDEUnitClockGating:chv */
6281        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6282                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6283}
6284
6285static void g4x_init_clock_gating(struct drm_device *dev)
6286{
6287        struct drm_i915_private *dev_priv = dev->dev_private;
6288        uint32_t dspclk_gate;
6289
6290        I915_WRITE(RENCLK_GATE_D1, 0);
6291        I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6292                   GS_UNIT_CLOCK_GATE_DISABLE |
6293                   CL_UNIT_CLOCK_GATE_DISABLE);
6294        I915_WRITE(RAMCLK_GATE_D, 0);
6295        dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6296                OVRUNIT_CLOCK_GATE_DISABLE |
6297                OVCUNIT_CLOCK_GATE_DISABLE;
6298        if (IS_GM45(dev))
6299                dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6300        I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6301
6302        /* WaDisableRenderCachePipelinedFlush */
6303        I915_WRITE(CACHE_MODE_0,
6304                   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6305
6306        /* WaDisable_RenderCache_OperationalFlush:g4x */
6307        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6308
6309        g4x_disable_trickle_feed(dev);
6310}
6311
6312static void crestline_init_clock_gating(struct drm_device *dev)
6313{
6314        struct drm_i915_private *dev_priv = dev->dev_private;
6315
6316        I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6317        I915_WRITE(RENCLK_GATE_D2, 0);
6318        I915_WRITE(DSPCLK_GATE_D, 0);
6319        I915_WRITE(RAMCLK_GATE_D, 0);
6320        I915_WRITE16(DEUC, 0);
6321        I915_WRITE(MI_ARB_STATE,
6322                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6323
6324        /* WaDisable_RenderCache_OperationalFlush:gen4 */
6325        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6326}
6327
6328static void broadwater_init_clock_gating(struct drm_device *dev)
6329{
6330        struct drm_i915_private *dev_priv = dev->dev_private;
6331
6332        I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6333                   I965_RCC_CLOCK_GATE_DISABLE |
6334                   I965_RCPB_CLOCK_GATE_DISABLE |
6335                   I965_ISC_CLOCK_GATE_DISABLE |
6336                   I965_FBC_CLOCK_GATE_DISABLE);
6337        I915_WRITE(RENCLK_GATE_D2, 0);
6338        I915_WRITE(MI_ARB_STATE,
6339                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6340
6341        /* WaDisable_RenderCache_OperationalFlush:gen4 */
6342        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6343}
6344
6345static void gen3_init_clock_gating(struct drm_device *dev)
6346{
6347        struct drm_i915_private *dev_priv = dev->dev_private;
6348        u32 dstate = I915_READ(D_STATE);
6349
6350        dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6351                DSTATE_DOT_CLOCK_GATING;
6352        I915_WRITE(D_STATE, dstate);
6353
6354        if (IS_PINEVIEW(dev))
6355                I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6356
6357        /* IIR "flip pending" means done if this bit is set */
6358        I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6359
6360        /* interrupts should cause a wake up from C3 */
6361        I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6362
6363        /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6364        I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6365
6366        I915_WRITE(MI_ARB_STATE,
6367                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6368}
6369
6370static void i85x_init_clock_gating(struct drm_device *dev)
6371{
6372        struct drm_i915_private *dev_priv = dev->dev_private;
6373
6374        I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6375
6376        /* interrupts should cause a wake up from C3 */
6377        I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6378                   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6379
6380        I915_WRITE(MEM_MODE,
6381                   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6382}
6383
6384static void i830_init_clock_gating(struct drm_device *dev)
6385{
6386        struct drm_i915_private *dev_priv = dev->dev_private;
6387
6388        I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6389
6390        I915_WRITE(MEM_MODE,
6391                   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6392                   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6393}
6394
6395void intel_init_clock_gating(struct drm_device *dev)
6396{
6397        struct drm_i915_private *dev_priv = dev->dev_private;
6398
6399        dev_priv->display.init_clock_gating(dev);
6400}
6401
6402void intel_suspend_hw(struct drm_device *dev)
6403{
6404        if (HAS_PCH_LPT(dev))
6405                lpt_suspend_hw(dev);
6406}
6407
6408/* Set up chip specific power management-related functions */
6409void intel_init_pm(struct drm_device *dev)
6410{
6411        struct drm_i915_private *dev_priv = dev->dev_private;
6412
6413        intel_fbc_init(dev_priv);
6414
6415        /* For cxsr */
6416        if (IS_PINEVIEW(dev))
6417                i915_pineview_get_mem_freq(dev);
6418        else if (IS_GEN5(dev))
6419                i915_ironlake_get_mem_freq(dev);
6420
6421        /* For FIFO watermark updates */
6422        if (INTEL_INFO(dev)->gen >= 9) {
6423                skl_setup_wm_latency(dev);
6424
6425                dev_priv->display.init_clock_gating = gen9_init_clock_gating;
6426                dev_priv->display.update_wm = skl_update_wm;
6427                dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6428        } else if (HAS_PCH_SPLIT(dev)) {
6429                ilk_setup_wm_latency(dev);
6430
6431                if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6432                     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6433                    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6434                     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6435                        dev_priv->display.update_wm = ilk_update_wm;
6436                        dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6437                } else {
6438                        DRM_DEBUG_KMS("Failed to read display plane latency. "
6439                                      "Disable CxSR\n");
6440                }
6441
6442                if (IS_GEN5(dev))
6443                        dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6444                else if (IS_GEN6(dev))
6445                        dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6446                else if (IS_IVYBRIDGE(dev))
6447                        dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6448                else if (IS_HASWELL(dev))
6449                        dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6450                else if (INTEL_INFO(dev)->gen == 8)
6451                        dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6452        } else if (IS_CHERRYVIEW(dev)) {
6453                dev_priv->display.update_wm = cherryview_update_wm;
6454                dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6455                dev_priv->display.init_clock_gating =
6456                        cherryview_init_clock_gating;
6457        } else if (IS_VALLEYVIEW(dev)) {
6458                dev_priv->display.update_wm = valleyview_update_wm;
6459                dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6460                dev_priv->display.init_clock_gating =
6461                        valleyview_init_clock_gating;
6462        } else if (IS_PINEVIEW(dev)) {
6463                if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6464                                            dev_priv->is_ddr3,
6465                                            dev_priv->fsb_freq,
6466                                            dev_priv->mem_freq)) {
6467                        DRM_INFO("failed to find known CxSR latency "
6468                                 "(found ddr%s fsb freq %d, mem freq %d), "
6469                                 "disabling CxSR\n",
6470                                 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6471                                 dev_priv->fsb_freq, dev_priv->mem_freq);
6472                        /* Disable CxSR and never update its watermark again */
6473                        intel_set_memory_cxsr(dev_priv, false);
6474                        dev_priv->display.update_wm = NULL;
6475                } else
6476                        dev_priv->display.update_wm = pineview_update_wm;
6477                dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6478        } else if (IS_G4X(dev)) {
6479                dev_priv->display.update_wm = g4x_update_wm;
6480                dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6481        } else if (IS_GEN4(dev)) {
6482                dev_priv->display.update_wm = i965_update_wm;
6483                if (IS_CRESTLINE(dev))
6484                        dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6485                else if (IS_BROADWATER(dev))
6486                        dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6487        } else if (IS_GEN3(dev)) {
6488                dev_priv->display.update_wm = i9xx_update_wm;
6489                dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6490                dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6491        } else if (IS_GEN2(dev)) {
6492                if (INTEL_INFO(dev)->num_pipes == 1) {
6493                        dev_priv->display.update_wm = i845_update_wm;
6494                        dev_priv->display.get_fifo_size = i845_get_fifo_size;
6495                } else {
6496                        dev_priv->display.update_wm = i9xx_update_wm;
6497                        dev_priv->display.get_fifo_size = i830_get_fifo_size;
6498                }
6499
6500                if (IS_I85X(dev) || IS_I865G(dev))
6501                        dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6502                else
6503                        dev_priv->display.init_clock_gating = i830_init_clock_gating;
6504        } else {
6505                DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6506        }
6507}
6508
6509int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
6510{
6511        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6512
6513        if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6514                DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6515                return -EAGAIN;
6516        }
6517
6518        I915_WRITE(GEN6_PCODE_DATA, *val);
6519        I915_WRITE(GEN6_PCODE_DATA1, 0);
6520        I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6521
6522        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6523                     500)) {
6524                DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6525                return -ETIMEDOUT;
6526        }
6527
6528        *val = I915_READ(GEN6_PCODE_DATA);
6529        I915_WRITE(GEN6_PCODE_DATA, 0);
6530
6531        return 0;
6532}
6533
6534int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
6535{
6536        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6537
6538        if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6539                DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6540                return -EAGAIN;
6541        }
6542
6543        I915_WRITE(GEN6_PCODE_DATA, val);
6544        I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6545
6546        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6547                     500)) {
6548                DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6549                return -ETIMEDOUT;
6550        }
6551
6552        I915_WRITE(GEN6_PCODE_DATA, 0);
6553
6554        return 0;
6555}
6556
6557static int vlv_gpu_freq_div(unsigned int czclk_freq)
6558{
6559        switch (czclk_freq) {
6560        case 200:
6561                return 10;
6562        case 267:
6563                return 12;
6564        case 320:
6565        case 333:
6566                return 16;
6567        case 400:
6568                return 20;
6569        default:
6570                return -1;
6571        }
6572}
6573
6574static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6575{
6576        int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6577
6578        div = vlv_gpu_freq_div(czclk_freq);
6579        if (div < 0)
6580                return div;
6581
6582        return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6583}
6584
6585static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6586{
6587        int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6588
6589        mul = vlv_gpu_freq_div(czclk_freq);
6590        if (mul < 0)
6591                return mul;
6592
6593        return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6594}
6595
6596static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6597{
6598        int div, czclk_freq = dev_priv->rps.cz_freq;
6599
6600        div = vlv_gpu_freq_div(czclk_freq) / 2;
6601        if (div < 0)
6602                return div;
6603
6604        return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6605}
6606
6607static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6608{
6609        int mul, czclk_freq = dev_priv->rps.cz_freq;
6610
6611        mul = vlv_gpu_freq_div(czclk_freq) / 2;
6612        if (mul < 0)
6613                return mul;
6614
6615        /* CHV needs even values */
6616        return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6617}
6618
6619int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6620{
6621        if (IS_CHERRYVIEW(dev_priv->dev))
6622                return chv_gpu_freq(dev_priv, val);
6623        else if (IS_VALLEYVIEW(dev_priv->dev))
6624                return byt_gpu_freq(dev_priv, val);
6625        else
6626                return val * GT_FREQUENCY_MULTIPLIER;
6627}
6628
6629int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
6630{
6631        if (IS_CHERRYVIEW(dev_priv->dev))
6632                return chv_freq_opcode(dev_priv, val);
6633        else if (IS_VALLEYVIEW(dev_priv->dev))
6634                return byt_freq_opcode(dev_priv, val);
6635        else
6636                return val / GT_FREQUENCY_MULTIPLIER;
6637}
6638
6639void intel_pm_setup(struct drm_device *dev)
6640{
6641        struct drm_i915_private *dev_priv = dev->dev_private;
6642
6643        mutex_init(&dev_priv->rps.hw_lock);
6644
6645        INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6646                          intel_gen6_powersave_work);
6647
6648        dev_priv->pm.suspended = false;
6649}
6650