linux/drivers/gpu/drm/vmwgfx/vmwgfx_buffer.c
<<
>>
Prefs
   1/**************************************************************************
   2 *
   3 * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27
  28#include "vmwgfx_drv.h"
  29#include <drm/ttm/ttm_bo_driver.h>
  30#include <drm/ttm/ttm_placement.h>
  31#include <drm/ttm/ttm_page_alloc.h>
  32
  33static struct ttm_place vram_placement_flags = {
  34        .fpfn = 0,
  35        .lpfn = 0,
  36        .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
  37};
  38
  39static struct ttm_place vram_ne_placement_flags = {
  40        .fpfn = 0,
  41        .lpfn = 0,
  42        .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
  43};
  44
  45static struct ttm_place sys_placement_flags = {
  46        .fpfn = 0,
  47        .lpfn = 0,
  48        .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
  49};
  50
  51static struct ttm_place sys_ne_placement_flags = {
  52        .fpfn = 0,
  53        .lpfn = 0,
  54        .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
  55};
  56
  57static struct ttm_place gmr_placement_flags = {
  58        .fpfn = 0,
  59        .lpfn = 0,
  60        .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
  61};
  62
  63static struct ttm_place gmr_ne_placement_flags = {
  64        .fpfn = 0,
  65        .lpfn = 0,
  66        .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
  67};
  68
  69static struct ttm_place mob_placement_flags = {
  70        .fpfn = 0,
  71        .lpfn = 0,
  72        .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
  73};
  74
  75struct ttm_placement vmw_vram_placement = {
  76        .num_placement = 1,
  77        .placement = &vram_placement_flags,
  78        .num_busy_placement = 1,
  79        .busy_placement = &vram_placement_flags
  80};
  81
  82static struct ttm_place vram_gmr_placement_flags[] = {
  83        {
  84                .fpfn = 0,
  85                .lpfn = 0,
  86                .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
  87        }, {
  88                .fpfn = 0,
  89                .lpfn = 0,
  90                .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
  91        }
  92};
  93
  94static struct ttm_place gmr_vram_placement_flags[] = {
  95        {
  96                .fpfn = 0,
  97                .lpfn = 0,
  98                .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
  99        }, {
 100                .fpfn = 0,
 101                .lpfn = 0,
 102                .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
 103        }
 104};
 105
 106struct ttm_placement vmw_vram_gmr_placement = {
 107        .num_placement = 2,
 108        .placement = vram_gmr_placement_flags,
 109        .num_busy_placement = 1,
 110        .busy_placement = &gmr_placement_flags
 111};
 112
 113static struct ttm_place vram_gmr_ne_placement_flags[] = {
 114        {
 115                .fpfn = 0,
 116                .lpfn = 0,
 117                .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED |
 118                         TTM_PL_FLAG_NO_EVICT
 119        }, {
 120                .fpfn = 0,
 121                .lpfn = 0,
 122                .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED |
 123                         TTM_PL_FLAG_NO_EVICT
 124        }
 125};
 126
 127struct ttm_placement vmw_vram_gmr_ne_placement = {
 128        .num_placement = 2,
 129        .placement = vram_gmr_ne_placement_flags,
 130        .num_busy_placement = 1,
 131        .busy_placement = &gmr_ne_placement_flags
 132};
 133
 134struct ttm_placement vmw_vram_sys_placement = {
 135        .num_placement = 1,
 136        .placement = &vram_placement_flags,
 137        .num_busy_placement = 1,
 138        .busy_placement = &sys_placement_flags
 139};
 140
 141struct ttm_placement vmw_vram_ne_placement = {
 142        .num_placement = 1,
 143        .placement = &vram_ne_placement_flags,
 144        .num_busy_placement = 1,
 145        .busy_placement = &vram_ne_placement_flags
 146};
 147
 148struct ttm_placement vmw_sys_placement = {
 149        .num_placement = 1,
 150        .placement = &sys_placement_flags,
 151        .num_busy_placement = 1,
 152        .busy_placement = &sys_placement_flags
 153};
 154
 155struct ttm_placement vmw_sys_ne_placement = {
 156        .num_placement = 1,
 157        .placement = &sys_ne_placement_flags,
 158        .num_busy_placement = 1,
 159        .busy_placement = &sys_ne_placement_flags
 160};
 161
 162static struct ttm_place evictable_placement_flags[] = {
 163        {
 164                .fpfn = 0,
 165                .lpfn = 0,
 166                .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
 167        }, {
 168                .fpfn = 0,
 169                .lpfn = 0,
 170                .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
 171        }, {
 172                .fpfn = 0,
 173                .lpfn = 0,
 174                .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
 175        }, {
 176                .fpfn = 0,
 177                .lpfn = 0,
 178                .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
 179        }
 180};
 181
 182struct ttm_placement vmw_evictable_placement = {
 183        .num_placement = 4,
 184        .placement = evictable_placement_flags,
 185        .num_busy_placement = 1,
 186        .busy_placement = &sys_placement_flags
 187};
 188
 189struct ttm_placement vmw_srf_placement = {
 190        .num_placement = 1,
 191        .num_busy_placement = 2,
 192        .placement = &gmr_placement_flags,
 193        .busy_placement = gmr_vram_placement_flags
 194};
 195
 196struct ttm_placement vmw_mob_placement = {
 197        .num_placement = 1,
 198        .num_busy_placement = 1,
 199        .placement = &mob_placement_flags,
 200        .busy_placement = &mob_placement_flags
 201};
 202
 203struct vmw_ttm_tt {
 204        struct ttm_dma_tt dma_ttm;
 205        struct vmw_private *dev_priv;
 206        int gmr_id;
 207        struct vmw_mob *mob;
 208        int mem_type;
 209        struct sg_table sgt;
 210        struct vmw_sg_table vsgt;
 211        uint64_t sg_alloc_size;
 212        bool mapped;
 213};
 214
 215const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
 216
 217/**
 218 * Helper functions to advance a struct vmw_piter iterator.
 219 *
 220 * @viter: Pointer to the iterator.
 221 *
 222 * These functions return false if past the end of the list,
 223 * true otherwise. Functions are selected depending on the current
 224 * DMA mapping mode.
 225 */
 226static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
 227{
 228        return ++(viter->i) < viter->num_pages;
 229}
 230
 231static bool __vmw_piter_sg_next(struct vmw_piter *viter)
 232{
 233        return __sg_page_iter_next(&viter->iter);
 234}
 235
 236
 237/**
 238 * Helper functions to return a pointer to the current page.
 239 *
 240 * @viter: Pointer to the iterator
 241 *
 242 * These functions return a pointer to the page currently
 243 * pointed to by @viter. Functions are selected depending on the
 244 * current mapping mode.
 245 */
 246static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
 247{
 248        return viter->pages[viter->i];
 249}
 250
 251static struct page *__vmw_piter_sg_page(struct vmw_piter *viter)
 252{
 253        return sg_page_iter_page(&viter->iter);
 254}
 255
 256
 257/**
 258 * Helper functions to return the DMA address of the current page.
 259 *
 260 * @viter: Pointer to the iterator
 261 *
 262 * These functions return the DMA address of the page currently
 263 * pointed to by @viter. Functions are selected depending on the
 264 * current mapping mode.
 265 */
 266static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
 267{
 268        return page_to_phys(viter->pages[viter->i]);
 269}
 270
 271static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
 272{
 273        return viter->addrs[viter->i];
 274}
 275
 276static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
 277{
 278        return sg_page_iter_dma_address(&viter->iter);
 279}
 280
 281
 282/**
 283 * vmw_piter_start - Initialize a struct vmw_piter.
 284 *
 285 * @viter: Pointer to the iterator to initialize
 286 * @vsgt: Pointer to a struct vmw_sg_table to initialize from
 287 *
 288 * Note that we're following the convention of __sg_page_iter_start, so that
 289 * the iterator doesn't point to a valid page after initialization; it has
 290 * to be advanced one step first.
 291 */
 292void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
 293                     unsigned long p_offset)
 294{
 295        viter->i = p_offset - 1;
 296        viter->num_pages = vsgt->num_pages;
 297        switch (vsgt->mode) {
 298        case vmw_dma_phys:
 299                viter->next = &__vmw_piter_non_sg_next;
 300                viter->dma_address = &__vmw_piter_phys_addr;
 301                viter->page = &__vmw_piter_non_sg_page;
 302                viter->pages = vsgt->pages;
 303                break;
 304        case vmw_dma_alloc_coherent:
 305                viter->next = &__vmw_piter_non_sg_next;
 306                viter->dma_address = &__vmw_piter_dma_addr;
 307                viter->page = &__vmw_piter_non_sg_page;
 308                viter->addrs = vsgt->addrs;
 309                viter->pages = vsgt->pages;
 310                break;
 311        case vmw_dma_map_populate:
 312        case vmw_dma_map_bind:
 313                viter->next = &__vmw_piter_sg_next;
 314                viter->dma_address = &__vmw_piter_sg_addr;
 315                viter->page = &__vmw_piter_sg_page;
 316                __sg_page_iter_start(&viter->iter, vsgt->sgt->sgl,
 317                                     vsgt->sgt->orig_nents, p_offset);
 318                break;
 319        default:
 320                BUG();
 321        }
 322}
 323
 324/**
 325 * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
 326 * TTM pages
 327 *
 328 * @vmw_tt: Pointer to a struct vmw_ttm_backend
 329 *
 330 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
 331 */
 332static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
 333{
 334        struct device *dev = vmw_tt->dev_priv->dev->dev;
 335
 336        dma_unmap_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.nents,
 337                DMA_BIDIRECTIONAL);
 338        vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
 339}
 340
 341/**
 342 * vmw_ttm_map_for_dma - map TTM pages to get device addresses
 343 *
 344 * @vmw_tt: Pointer to a struct vmw_ttm_backend
 345 *
 346 * This function is used to get device addresses from the kernel DMA layer.
 347 * However, it's violating the DMA API in that when this operation has been
 348 * performed, it's illegal for the CPU to write to the pages without first
 349 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
 350 * therefore only legal to call this function if we know that the function
 351 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
 352 * a CPU write buffer flush.
 353 */
 354static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
 355{
 356        struct device *dev = vmw_tt->dev_priv->dev->dev;
 357        int ret;
 358
 359        ret = dma_map_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.orig_nents,
 360                         DMA_BIDIRECTIONAL);
 361        if (unlikely(ret == 0))
 362                return -ENOMEM;
 363
 364        vmw_tt->sgt.nents = ret;
 365
 366        return 0;
 367}
 368
 369/**
 370 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
 371 *
 372 * @vmw_tt: Pointer to a struct vmw_ttm_tt
 373 *
 374 * Select the correct function for and make sure the TTM pages are
 375 * visible to the device. Allocate storage for the device mappings.
 376 * If a mapping has already been performed, indicated by the storage
 377 * pointer being non NULL, the function returns success.
 378 */
 379static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
 380{
 381        struct vmw_private *dev_priv = vmw_tt->dev_priv;
 382        struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
 383        struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
 384        struct vmw_piter iter;
 385        dma_addr_t old;
 386        int ret = 0;
 387        static size_t sgl_size;
 388        static size_t sgt_size;
 389
 390        if (vmw_tt->mapped)
 391                return 0;
 392
 393        vsgt->mode = dev_priv->map_mode;
 394        vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
 395        vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
 396        vsgt->addrs = vmw_tt->dma_ttm.dma_address;
 397        vsgt->sgt = &vmw_tt->sgt;
 398
 399        switch (dev_priv->map_mode) {
 400        case vmw_dma_map_bind:
 401        case vmw_dma_map_populate:
 402                if (unlikely(!sgl_size)) {
 403                        sgl_size = ttm_round_pot(sizeof(struct scatterlist));
 404                        sgt_size = ttm_round_pot(sizeof(struct sg_table));
 405                }
 406                vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
 407                ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, false,
 408                                           true);
 409                if (unlikely(ret != 0))
 410                        return ret;
 411
 412                ret = sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
 413                                                vsgt->num_pages, 0,
 414                                                (unsigned long)
 415                                                vsgt->num_pages << PAGE_SHIFT,
 416                                                GFP_KERNEL);
 417                if (unlikely(ret != 0))
 418                        goto out_sg_alloc_fail;
 419
 420                if (vsgt->num_pages > vmw_tt->sgt.nents) {
 421                        uint64_t over_alloc =
 422                                sgl_size * (vsgt->num_pages -
 423                                            vmw_tt->sgt.nents);
 424
 425                        ttm_mem_global_free(glob, over_alloc);
 426                        vmw_tt->sg_alloc_size -= over_alloc;
 427                }
 428
 429                ret = vmw_ttm_map_for_dma(vmw_tt);
 430                if (unlikely(ret != 0))
 431                        goto out_map_fail;
 432
 433                break;
 434        default:
 435                break;
 436        }
 437
 438        old = ~((dma_addr_t) 0);
 439        vmw_tt->vsgt.num_regions = 0;
 440        for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
 441                dma_addr_t cur = vmw_piter_dma_addr(&iter);
 442
 443                if (cur != old + PAGE_SIZE)
 444                        vmw_tt->vsgt.num_regions++;
 445                old = cur;
 446        }
 447
 448        vmw_tt->mapped = true;
 449        return 0;
 450
 451out_map_fail:
 452        sg_free_table(vmw_tt->vsgt.sgt);
 453        vmw_tt->vsgt.sgt = NULL;
 454out_sg_alloc_fail:
 455        ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
 456        return ret;
 457}
 458
 459/**
 460 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
 461 *
 462 * @vmw_tt: Pointer to a struct vmw_ttm_tt
 463 *
 464 * Tear down any previously set up device DMA mappings and free
 465 * any storage space allocated for them. If there are no mappings set up,
 466 * this function is a NOP.
 467 */
 468static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
 469{
 470        struct vmw_private *dev_priv = vmw_tt->dev_priv;
 471
 472        if (!vmw_tt->vsgt.sgt)
 473                return;
 474
 475        switch (dev_priv->map_mode) {
 476        case vmw_dma_map_bind:
 477        case vmw_dma_map_populate:
 478                vmw_ttm_unmap_from_dma(vmw_tt);
 479                sg_free_table(vmw_tt->vsgt.sgt);
 480                vmw_tt->vsgt.sgt = NULL;
 481                ttm_mem_global_free(vmw_mem_glob(dev_priv),
 482                                    vmw_tt->sg_alloc_size);
 483                break;
 484        default:
 485                break;
 486        }
 487        vmw_tt->mapped = false;
 488}
 489
 490
 491/**
 492 * vmw_bo_map_dma - Make sure buffer object pages are visible to the device
 493 *
 494 * @bo: Pointer to a struct ttm_buffer_object
 495 *
 496 * Wrapper around vmw_ttm_map_dma, that takes a TTM buffer object pointer
 497 * instead of a pointer to a struct vmw_ttm_backend as argument.
 498 * Note that the buffer object must be either pinned or reserved before
 499 * calling this function.
 500 */
 501int vmw_bo_map_dma(struct ttm_buffer_object *bo)
 502{
 503        struct vmw_ttm_tt *vmw_tt =
 504                container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
 505
 506        return vmw_ttm_map_dma(vmw_tt);
 507}
 508
 509
 510/**
 511 * vmw_bo_unmap_dma - Make sure buffer object pages are visible to the device
 512 *
 513 * @bo: Pointer to a struct ttm_buffer_object
 514 *
 515 * Wrapper around vmw_ttm_unmap_dma, that takes a TTM buffer object pointer
 516 * instead of a pointer to a struct vmw_ttm_backend as argument.
 517 */
 518void vmw_bo_unmap_dma(struct ttm_buffer_object *bo)
 519{
 520        struct vmw_ttm_tt *vmw_tt =
 521                container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
 522
 523        vmw_ttm_unmap_dma(vmw_tt);
 524}
 525
 526
 527/**
 528 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
 529 * TTM buffer object
 530 *
 531 * @bo: Pointer to a struct ttm_buffer_object
 532 *
 533 * Returns a pointer to a struct vmw_sg_table object. The object should
 534 * not be freed after use.
 535 * Note that for the device addresses to be valid, the buffer object must
 536 * either be reserved or pinned.
 537 */
 538const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
 539{
 540        struct vmw_ttm_tt *vmw_tt =
 541                container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
 542
 543        return &vmw_tt->vsgt;
 544}
 545
 546
 547static int vmw_ttm_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
 548{
 549        struct vmw_ttm_tt *vmw_be =
 550                container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
 551        int ret;
 552
 553        ret = vmw_ttm_map_dma(vmw_be);
 554        if (unlikely(ret != 0))
 555                return ret;
 556
 557        vmw_be->gmr_id = bo_mem->start;
 558        vmw_be->mem_type = bo_mem->mem_type;
 559
 560        switch (bo_mem->mem_type) {
 561        case VMW_PL_GMR:
 562                return vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
 563                                    ttm->num_pages, vmw_be->gmr_id);
 564        case VMW_PL_MOB:
 565                if (unlikely(vmw_be->mob == NULL)) {
 566                        vmw_be->mob =
 567                                vmw_mob_create(ttm->num_pages);
 568                        if (unlikely(vmw_be->mob == NULL))
 569                                return -ENOMEM;
 570                }
 571
 572                return vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
 573                                    &vmw_be->vsgt, ttm->num_pages,
 574                                    vmw_be->gmr_id);
 575        default:
 576                BUG();
 577        }
 578        return 0;
 579}
 580
 581static int vmw_ttm_unbind(struct ttm_tt *ttm)
 582{
 583        struct vmw_ttm_tt *vmw_be =
 584                container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
 585
 586        switch (vmw_be->mem_type) {
 587        case VMW_PL_GMR:
 588                vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
 589                break;
 590        case VMW_PL_MOB:
 591                vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
 592                break;
 593        default:
 594                BUG();
 595        }
 596
 597        if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
 598                vmw_ttm_unmap_dma(vmw_be);
 599
 600        return 0;
 601}
 602
 603
 604static void vmw_ttm_destroy(struct ttm_tt *ttm)
 605{
 606        struct vmw_ttm_tt *vmw_be =
 607                container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
 608
 609        vmw_ttm_unmap_dma(vmw_be);
 610        if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
 611                ttm_dma_tt_fini(&vmw_be->dma_ttm);
 612        else
 613                ttm_tt_fini(ttm);
 614
 615        if (vmw_be->mob)
 616                vmw_mob_destroy(vmw_be->mob);
 617
 618        kfree(vmw_be);
 619}
 620
 621
 622static int vmw_ttm_populate(struct ttm_tt *ttm)
 623{
 624        struct vmw_ttm_tt *vmw_tt =
 625                container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
 626        struct vmw_private *dev_priv = vmw_tt->dev_priv;
 627        struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
 628        int ret;
 629
 630        if (ttm->state != tt_unpopulated)
 631                return 0;
 632
 633        if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
 634                size_t size =
 635                        ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
 636                ret = ttm_mem_global_alloc(glob, size, false, true);
 637                if (unlikely(ret != 0))
 638                        return ret;
 639
 640                ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
 641                if (unlikely(ret != 0))
 642                        ttm_mem_global_free(glob, size);
 643        } else
 644                ret = ttm_pool_populate(ttm);
 645
 646        return ret;
 647}
 648
 649static void vmw_ttm_unpopulate(struct ttm_tt *ttm)
 650{
 651        struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
 652                                                 dma_ttm.ttm);
 653        struct vmw_private *dev_priv = vmw_tt->dev_priv;
 654        struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
 655
 656
 657        if (vmw_tt->mob) {
 658                vmw_mob_destroy(vmw_tt->mob);
 659                vmw_tt->mob = NULL;
 660        }
 661
 662        vmw_ttm_unmap_dma(vmw_tt);
 663        if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
 664                size_t size =
 665                        ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
 666
 667                ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
 668                ttm_mem_global_free(glob, size);
 669        } else
 670                ttm_pool_unpopulate(ttm);
 671}
 672
 673static struct ttm_backend_func vmw_ttm_func = {
 674        .bind = vmw_ttm_bind,
 675        .unbind = vmw_ttm_unbind,
 676        .destroy = vmw_ttm_destroy,
 677};
 678
 679static struct ttm_tt *vmw_ttm_tt_create(struct ttm_bo_device *bdev,
 680                                 unsigned long size, uint32_t page_flags,
 681                                 struct page *dummy_read_page)
 682{
 683        struct vmw_ttm_tt *vmw_be;
 684        int ret;
 685
 686        vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
 687        if (!vmw_be)
 688                return NULL;
 689
 690        vmw_be->dma_ttm.ttm.func = &vmw_ttm_func;
 691        vmw_be->dev_priv = container_of(bdev, struct vmw_private, bdev);
 692        vmw_be->mob = NULL;
 693
 694        if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
 695                ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bdev, size, page_flags,
 696                                      dummy_read_page);
 697        else
 698                ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bdev, size, page_flags,
 699                                  dummy_read_page);
 700        if (unlikely(ret != 0))
 701                goto out_no_init;
 702
 703        return &vmw_be->dma_ttm.ttm;
 704out_no_init:
 705        kfree(vmw_be);
 706        return NULL;
 707}
 708
 709static int vmw_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
 710{
 711        return 0;
 712}
 713
 714static int vmw_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
 715                      struct ttm_mem_type_manager *man)
 716{
 717        switch (type) {
 718        case TTM_PL_SYSTEM:
 719                /* System memory */
 720
 721                man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
 722                man->available_caching = TTM_PL_FLAG_CACHED;
 723                man->default_caching = TTM_PL_FLAG_CACHED;
 724                break;
 725        case TTM_PL_VRAM:
 726                /* "On-card" video ram */
 727                man->func = &ttm_bo_manager_func;
 728                man->gpu_offset = 0;
 729                man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_MAPPABLE;
 730                man->available_caching = TTM_PL_FLAG_CACHED;
 731                man->default_caching = TTM_PL_FLAG_CACHED;
 732                break;
 733        case VMW_PL_GMR:
 734        case VMW_PL_MOB:
 735                /*
 736                 * "Guest Memory Regions" is an aperture like feature with
 737                 *  one slot per bo. There is an upper limit of the number of
 738                 *  slots as well as the bo size.
 739                 */
 740                man->func = &vmw_gmrid_manager_func;
 741                man->gpu_offset = 0;
 742                man->flags = TTM_MEMTYPE_FLAG_CMA | TTM_MEMTYPE_FLAG_MAPPABLE;
 743                man->available_caching = TTM_PL_FLAG_CACHED;
 744                man->default_caching = TTM_PL_FLAG_CACHED;
 745                break;
 746        default:
 747                DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
 748                return -EINVAL;
 749        }
 750        return 0;
 751}
 752
 753static void vmw_evict_flags(struct ttm_buffer_object *bo,
 754                     struct ttm_placement *placement)
 755{
 756        *placement = vmw_sys_placement;
 757}
 758
 759static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
 760{
 761        struct ttm_object_file *tfile =
 762                vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
 763
 764        return vmw_user_dmabuf_verify_access(bo, tfile);
 765}
 766
 767static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
 768{
 769        struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
 770        struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
 771
 772        mem->bus.addr = NULL;
 773        mem->bus.is_iomem = false;
 774        mem->bus.offset = 0;
 775        mem->bus.size = mem->num_pages << PAGE_SHIFT;
 776        mem->bus.base = 0;
 777        if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
 778                return -EINVAL;
 779        switch (mem->mem_type) {
 780        case TTM_PL_SYSTEM:
 781        case VMW_PL_GMR:
 782        case VMW_PL_MOB:
 783                return 0;
 784        case TTM_PL_VRAM:
 785                mem->bus.offset = mem->start << PAGE_SHIFT;
 786                mem->bus.base = dev_priv->vram_start;
 787                mem->bus.is_iomem = true;
 788                break;
 789        default:
 790                return -EINVAL;
 791        }
 792        return 0;
 793}
 794
 795static void vmw_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
 796{
 797}
 798
 799static int vmw_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
 800{
 801        return 0;
 802}
 803
 804/**
 805 * vmw_move_notify - TTM move_notify_callback
 806 *
 807 * @bo:             The TTM buffer object about to move.
 808 * @mem:            The truct ttm_mem_reg indicating to what memory
 809 *                  region the move is taking place.
 810 *
 811 * Calls move_notify for all subsystems needing it.
 812 * (currently only resources).
 813 */
 814static void vmw_move_notify(struct ttm_buffer_object *bo,
 815                            struct ttm_mem_reg *mem)
 816{
 817        vmw_resource_move_notify(bo, mem);
 818}
 819
 820
 821/**
 822 * vmw_swap_notify - TTM move_notify_callback
 823 *
 824 * @bo:             The TTM buffer object about to be swapped out.
 825 */
 826static void vmw_swap_notify(struct ttm_buffer_object *bo)
 827{
 828        ttm_bo_wait(bo, false, false, false);
 829}
 830
 831
 832struct ttm_bo_driver vmw_bo_driver = {
 833        .ttm_tt_create = &vmw_ttm_tt_create,
 834        .ttm_tt_populate = &vmw_ttm_populate,
 835        .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
 836        .invalidate_caches = vmw_invalidate_caches,
 837        .init_mem_type = vmw_init_mem_type,
 838        .evict_flags = vmw_evict_flags,
 839        .move = NULL,
 840        .verify_access = vmw_verify_access,
 841        .move_notify = vmw_move_notify,
 842        .swap_notify = vmw_swap_notify,
 843        .fault_reserve_notify = &vmw_ttm_fault_reserve_notify,
 844        .io_mem_reserve = &vmw_ttm_io_mem_reserve,
 845        .io_mem_free = &vmw_ttm_io_mem_free,
 846};
 847