linux/drivers/md/dm-raid.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2010-2011 Neil Brown
   3 * Copyright (C) 2010-2014 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include <linux/slab.h>
   9#include <linux/module.h>
  10
  11#include "md.h"
  12#include "raid1.h"
  13#include "raid5.h"
  14#include "raid10.h"
  15#include "bitmap.h"
  16
  17#include <linux/device-mapper.h>
  18
  19#define DM_MSG_PREFIX "raid"
  20
  21static bool devices_handle_discard_safely = false;
  22
  23/*
  24 * The following flags are used by dm-raid.c to set up the array state.
  25 * They must be cleared before md_run is called.
  26 */
  27#define FirstUse 10             /* rdev flag */
  28
  29struct raid_dev {
  30        /*
  31         * Two DM devices, one to hold metadata and one to hold the
  32         * actual data/parity.  The reason for this is to not confuse
  33         * ti->len and give more flexibility in altering size and
  34         * characteristics.
  35         *
  36         * While it is possible for this device to be associated
  37         * with a different physical device than the data_dev, it
  38         * is intended for it to be the same.
  39         *    |--------- Physical Device ---------|
  40         *    |- meta_dev -|------ data_dev ------|
  41         */
  42        struct dm_dev *meta_dev;
  43        struct dm_dev *data_dev;
  44        struct md_rdev rdev;
  45};
  46
  47/*
  48 * Flags for rs->print_flags field.
  49 */
  50#define DMPF_SYNC              0x1
  51#define DMPF_NOSYNC            0x2
  52#define DMPF_REBUILD           0x4
  53#define DMPF_DAEMON_SLEEP      0x8
  54#define DMPF_MIN_RECOVERY_RATE 0x10
  55#define DMPF_MAX_RECOVERY_RATE 0x20
  56#define DMPF_MAX_WRITE_BEHIND  0x40
  57#define DMPF_STRIPE_CACHE      0x80
  58#define DMPF_REGION_SIZE       0x100
  59#define DMPF_RAID10_COPIES     0x200
  60#define DMPF_RAID10_FORMAT     0x400
  61
  62struct raid_set {
  63        struct dm_target *ti;
  64
  65        uint32_t bitmap_loaded;
  66        uint32_t print_flags;
  67
  68        struct mddev md;
  69        struct raid_type *raid_type;
  70        struct dm_target_callbacks callbacks;
  71
  72        struct raid_dev dev[0];
  73};
  74
  75/* Supported raid types and properties. */
  76static struct raid_type {
  77        const char *name;               /* RAID algorithm. */
  78        const char *descr;              /* Descriptor text for logging. */
  79        const unsigned parity_devs;     /* # of parity devices. */
  80        const unsigned minimal_devs;    /* minimal # of devices in set. */
  81        const unsigned level;           /* RAID level. */
  82        const unsigned algorithm;       /* RAID algorithm. */
  83} raid_types[] = {
  84        {"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
  85        {"raid10",   "RAID10 (striped mirrors)",        0, 2, 10, UINT_MAX /* Varies */},
  86        {"raid4",    "RAID4 (dedicated parity disk)",   1, 2, 5, ALGORITHM_PARITY_0},
  87        {"raid5_la", "RAID5 (left asymmetric)",         1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
  88        {"raid5_ra", "RAID5 (right asymmetric)",        1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
  89        {"raid5_ls", "RAID5 (left symmetric)",          1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
  90        {"raid5_rs", "RAID5 (right symmetric)",         1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
  91        {"raid6_zr", "RAID6 (zero restart)",            2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
  92        {"raid6_nr", "RAID6 (N restart)",               2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
  93        {"raid6_nc", "RAID6 (N continue)",              2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
  94};
  95
  96static char *raid10_md_layout_to_format(int layout)
  97{
  98        /*
  99         * Bit 16 and 17 stand for "offset" and "use_far_sets"
 100         * Refer to MD's raid10.c for details
 101         */
 102        if ((layout & 0x10000) && (layout & 0x20000))
 103                return "offset";
 104
 105        if ((layout & 0xFF) > 1)
 106                return "near";
 107
 108        return "far";
 109}
 110
 111static unsigned raid10_md_layout_to_copies(int layout)
 112{
 113        if ((layout & 0xFF) > 1)
 114                return layout & 0xFF;
 115        return (layout >> 8) & 0xFF;
 116}
 117
 118static int raid10_format_to_md_layout(char *format, unsigned copies)
 119{
 120        unsigned n = 1, f = 1;
 121
 122        if (!strcmp("near", format))
 123                n = copies;
 124        else
 125                f = copies;
 126
 127        if (!strcmp("offset", format))
 128                return 0x30000 | (f << 8) | n;
 129
 130        if (!strcmp("far", format))
 131                return 0x20000 | (f << 8) | n;
 132
 133        return (f << 8) | n;
 134}
 135
 136static struct raid_type *get_raid_type(char *name)
 137{
 138        int i;
 139
 140        for (i = 0; i < ARRAY_SIZE(raid_types); i++)
 141                if (!strcmp(raid_types[i].name, name))
 142                        return &raid_types[i];
 143
 144        return NULL;
 145}
 146
 147static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
 148{
 149        unsigned i;
 150        struct raid_set *rs;
 151
 152        if (raid_devs <= raid_type->parity_devs) {
 153                ti->error = "Insufficient number of devices";
 154                return ERR_PTR(-EINVAL);
 155        }
 156
 157        rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
 158        if (!rs) {
 159                ti->error = "Cannot allocate raid context";
 160                return ERR_PTR(-ENOMEM);
 161        }
 162
 163        mddev_init(&rs->md);
 164
 165        rs->ti = ti;
 166        rs->raid_type = raid_type;
 167        rs->md.raid_disks = raid_devs;
 168        rs->md.level = raid_type->level;
 169        rs->md.new_level = rs->md.level;
 170        rs->md.layout = raid_type->algorithm;
 171        rs->md.new_layout = rs->md.layout;
 172        rs->md.delta_disks = 0;
 173        rs->md.recovery_cp = 0;
 174
 175        for (i = 0; i < raid_devs; i++)
 176                md_rdev_init(&rs->dev[i].rdev);
 177
 178        /*
 179         * Remaining items to be initialized by further RAID params:
 180         *  rs->md.persistent
 181         *  rs->md.external
 182         *  rs->md.chunk_sectors
 183         *  rs->md.new_chunk_sectors
 184         *  rs->md.dev_sectors
 185         */
 186
 187        return rs;
 188}
 189
 190static void context_free(struct raid_set *rs)
 191{
 192        int i;
 193
 194        for (i = 0; i < rs->md.raid_disks; i++) {
 195                if (rs->dev[i].meta_dev)
 196                        dm_put_device(rs->ti, rs->dev[i].meta_dev);
 197                md_rdev_clear(&rs->dev[i].rdev);
 198                if (rs->dev[i].data_dev)
 199                        dm_put_device(rs->ti, rs->dev[i].data_dev);
 200        }
 201
 202        kfree(rs);
 203}
 204
 205/*
 206 * For every device we have two words
 207 *  <meta_dev>: meta device name or '-' if missing
 208 *  <data_dev>: data device name or '-' if missing
 209 *
 210 * The following are permitted:
 211 *    - -
 212 *    - <data_dev>
 213 *    <meta_dev> <data_dev>
 214 *
 215 * The following is not allowed:
 216 *    <meta_dev> -
 217 *
 218 * This code parses those words.  If there is a failure,
 219 * the caller must use context_free to unwind the operations.
 220 */
 221static int dev_parms(struct raid_set *rs, char **argv)
 222{
 223        int i;
 224        int rebuild = 0;
 225        int metadata_available = 0;
 226        int ret = 0;
 227
 228        for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
 229                rs->dev[i].rdev.raid_disk = i;
 230
 231                rs->dev[i].meta_dev = NULL;
 232                rs->dev[i].data_dev = NULL;
 233
 234                /*
 235                 * There are no offsets, since there is a separate device
 236                 * for data and metadata.
 237                 */
 238                rs->dev[i].rdev.data_offset = 0;
 239                rs->dev[i].rdev.mddev = &rs->md;
 240
 241                if (strcmp(argv[0], "-")) {
 242                        ret = dm_get_device(rs->ti, argv[0],
 243                                            dm_table_get_mode(rs->ti->table),
 244                                            &rs->dev[i].meta_dev);
 245                        rs->ti->error = "RAID metadata device lookup failure";
 246                        if (ret)
 247                                return ret;
 248
 249                        rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
 250                        if (!rs->dev[i].rdev.sb_page)
 251                                return -ENOMEM;
 252                }
 253
 254                if (!strcmp(argv[1], "-")) {
 255                        if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
 256                            (!rs->dev[i].rdev.recovery_offset)) {
 257                                rs->ti->error = "Drive designated for rebuild not specified";
 258                                return -EINVAL;
 259                        }
 260
 261                        rs->ti->error = "No data device supplied with metadata device";
 262                        if (rs->dev[i].meta_dev)
 263                                return -EINVAL;
 264
 265                        continue;
 266                }
 267
 268                ret = dm_get_device(rs->ti, argv[1],
 269                                    dm_table_get_mode(rs->ti->table),
 270                                    &rs->dev[i].data_dev);
 271                if (ret) {
 272                        rs->ti->error = "RAID device lookup failure";
 273                        return ret;
 274                }
 275
 276                if (rs->dev[i].meta_dev) {
 277                        metadata_available = 1;
 278                        rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
 279                }
 280                rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
 281                list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
 282                if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
 283                        rebuild++;
 284        }
 285
 286        if (metadata_available) {
 287                rs->md.external = 0;
 288                rs->md.persistent = 1;
 289                rs->md.major_version = 2;
 290        } else if (rebuild && !rs->md.recovery_cp) {
 291                /*
 292                 * Without metadata, we will not be able to tell if the array
 293                 * is in-sync or not - we must assume it is not.  Therefore,
 294                 * it is impossible to rebuild a drive.
 295                 *
 296                 * Even if there is metadata, the on-disk information may
 297                 * indicate that the array is not in-sync and it will then
 298                 * fail at that time.
 299                 *
 300                 * User could specify 'nosync' option if desperate.
 301                 */
 302                DMERR("Unable to rebuild drive while array is not in-sync");
 303                rs->ti->error = "RAID device lookup failure";
 304                return -EINVAL;
 305        }
 306
 307        return 0;
 308}
 309
 310/*
 311 * validate_region_size
 312 * @rs
 313 * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
 314 *
 315 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
 316 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
 317 *
 318 * Returns: 0 on success, -EINVAL on failure.
 319 */
 320static int validate_region_size(struct raid_set *rs, unsigned long region_size)
 321{
 322        unsigned long min_region_size = rs->ti->len / (1 << 21);
 323
 324        if (!region_size) {
 325                /*
 326                 * Choose a reasonable default.  All figures in sectors.
 327                 */
 328                if (min_region_size > (1 << 13)) {
 329                        /* If not a power of 2, make it the next power of 2 */
 330                        if (min_region_size & (min_region_size - 1))
 331                                region_size = 1 << fls(region_size);
 332                        DMINFO("Choosing default region size of %lu sectors",
 333                               region_size);
 334                } else {
 335                        DMINFO("Choosing default region size of 4MiB");
 336                        region_size = 1 << 13; /* sectors */
 337                }
 338        } else {
 339                /*
 340                 * Validate user-supplied value.
 341                 */
 342                if (region_size > rs->ti->len) {
 343                        rs->ti->error = "Supplied region size is too large";
 344                        return -EINVAL;
 345                }
 346
 347                if (region_size < min_region_size) {
 348                        DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
 349                              region_size, min_region_size);
 350                        rs->ti->error = "Supplied region size is too small";
 351                        return -EINVAL;
 352                }
 353
 354                if (!is_power_of_2(region_size)) {
 355                        rs->ti->error = "Region size is not a power of 2";
 356                        return -EINVAL;
 357                }
 358
 359                if (region_size < rs->md.chunk_sectors) {
 360                        rs->ti->error = "Region size is smaller than the chunk size";
 361                        return -EINVAL;
 362                }
 363        }
 364
 365        /*
 366         * Convert sectors to bytes.
 367         */
 368        rs->md.bitmap_info.chunksize = (region_size << 9);
 369
 370        return 0;
 371}
 372
 373/*
 374 * validate_raid_redundancy
 375 * @rs
 376 *
 377 * Determine if there are enough devices in the array that haven't
 378 * failed (or are being rebuilt) to form a usable array.
 379 *
 380 * Returns: 0 on success, -EINVAL on failure.
 381 */
 382static int validate_raid_redundancy(struct raid_set *rs)
 383{
 384        unsigned i, rebuild_cnt = 0;
 385        unsigned rebuilds_per_group = 0, copies, d;
 386        unsigned group_size, last_group_start;
 387
 388        for (i = 0; i < rs->md.raid_disks; i++)
 389                if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
 390                    !rs->dev[i].rdev.sb_page)
 391                        rebuild_cnt++;
 392
 393        switch (rs->raid_type->level) {
 394        case 1:
 395                if (rebuild_cnt >= rs->md.raid_disks)
 396                        goto too_many;
 397                break;
 398        case 4:
 399        case 5:
 400        case 6:
 401                if (rebuild_cnt > rs->raid_type->parity_devs)
 402                        goto too_many;
 403                break;
 404        case 10:
 405                copies = raid10_md_layout_to_copies(rs->md.layout);
 406                if (rebuild_cnt < copies)
 407                        break;
 408
 409                /*
 410                 * It is possible to have a higher rebuild count for RAID10,
 411                 * as long as the failed devices occur in different mirror
 412                 * groups (i.e. different stripes).
 413                 *
 414                 * When checking "near" format, make sure no adjacent devices
 415                 * have failed beyond what can be handled.  In addition to the
 416                 * simple case where the number of devices is a multiple of the
 417                 * number of copies, we must also handle cases where the number
 418                 * of devices is not a multiple of the number of copies.
 419                 * E.g.    dev1 dev2 dev3 dev4 dev5
 420                 *          A    A    B    B    C
 421                 *          C    D    D    E    E
 422                 */
 423                if (!strcmp("near", raid10_md_layout_to_format(rs->md.layout))) {
 424                        for (i = 0; i < rs->md.raid_disks * copies; i++) {
 425                                if (!(i % copies))
 426                                        rebuilds_per_group = 0;
 427                                d = i % rs->md.raid_disks;
 428                                if ((!rs->dev[d].rdev.sb_page ||
 429                                     !test_bit(In_sync, &rs->dev[d].rdev.flags)) &&
 430                                    (++rebuilds_per_group >= copies))
 431                                        goto too_many;
 432                        }
 433                        break;
 434                }
 435
 436                /*
 437                 * When checking "far" and "offset" formats, we need to ensure
 438                 * that the device that holds its copy is not also dead or
 439                 * being rebuilt.  (Note that "far" and "offset" formats only
 440                 * support two copies right now.  These formats also only ever
 441                 * use the 'use_far_sets' variant.)
 442                 *
 443                 * This check is somewhat complicated by the need to account
 444                 * for arrays that are not a multiple of (far) copies.  This
 445                 * results in the need to treat the last (potentially larger)
 446                 * set differently.
 447                 */
 448                group_size = (rs->md.raid_disks / copies);
 449                last_group_start = (rs->md.raid_disks / group_size) - 1;
 450                last_group_start *= group_size;
 451                for (i = 0; i < rs->md.raid_disks; i++) {
 452                        if (!(i % copies) && !(i > last_group_start))
 453                                rebuilds_per_group = 0;
 454                        if ((!rs->dev[i].rdev.sb_page ||
 455                             !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
 456                            (++rebuilds_per_group >= copies))
 457                                        goto too_many;
 458                }
 459                break;
 460        default:
 461                if (rebuild_cnt)
 462                        return -EINVAL;
 463        }
 464
 465        return 0;
 466
 467too_many:
 468        return -EINVAL;
 469}
 470
 471/*
 472 * Possible arguments are...
 473 *      <chunk_size> [optional_args]
 474 *
 475 * Argument definitions
 476 *    <chunk_size>                      The number of sectors per disk that
 477 *                                      will form the "stripe"
 478 *    [[no]sync]                        Force or prevent recovery of the
 479 *                                      entire array
 480 *    [devices_handle_discard_safely]   Allow discards on RAID4/5/6; useful if RAID
 481 *                                      member device(s) properly support TRIM/UNMAP
 482 *    [rebuild <idx>]                   Rebuild the drive indicated by the index
 483 *    [daemon_sleep <ms>]               Time between bitmap daemon work to
 484 *                                      clear bits
 485 *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
 486 *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
 487 *    [write_mostly <idx>]              Indicate a write mostly drive via index
 488 *    [max_write_behind <sectors>]      See '-write-behind=' (man mdadm)
 489 *    [stripe_cache <sectors>]          Stripe cache size for higher RAIDs
 490 *    [region_size <sectors>]           Defines granularity of bitmap
 491 *
 492 * RAID10-only options:
 493 *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
 494 *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
 495 */
 496static int parse_raid_params(struct raid_set *rs, char **argv,
 497                             unsigned num_raid_params)
 498{
 499        char *raid10_format = "near";
 500        unsigned raid10_copies = 2;
 501        unsigned i;
 502        unsigned long value, region_size = 0;
 503        sector_t sectors_per_dev = rs->ti->len;
 504        sector_t max_io_len;
 505        char *key;
 506
 507        /*
 508         * First, parse the in-order required arguments
 509         * "chunk_size" is the only argument of this type.
 510         */
 511        if ((kstrtoul(argv[0], 10, &value) < 0)) {
 512                rs->ti->error = "Bad chunk size";
 513                return -EINVAL;
 514        } else if (rs->raid_type->level == 1) {
 515                if (value)
 516                        DMERR("Ignoring chunk size parameter for RAID 1");
 517                value = 0;
 518        } else if (!is_power_of_2(value)) {
 519                rs->ti->error = "Chunk size must be a power of 2";
 520                return -EINVAL;
 521        } else if (value < 8) {
 522                rs->ti->error = "Chunk size value is too small";
 523                return -EINVAL;
 524        }
 525
 526        rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
 527        argv++;
 528        num_raid_params--;
 529
 530        /*
 531         * We set each individual device as In_sync with a completed
 532         * 'recovery_offset'.  If there has been a device failure or
 533         * replacement then one of the following cases applies:
 534         *
 535         *   1) User specifies 'rebuild'.
 536         *      - Device is reset when param is read.
 537         *   2) A new device is supplied.
 538         *      - No matching superblock found, resets device.
 539         *   3) Device failure was transient and returns on reload.
 540         *      - Failure noticed, resets device for bitmap replay.
 541         *   4) Device hadn't completed recovery after previous failure.
 542         *      - Superblock is read and overrides recovery_offset.
 543         *
 544         * What is found in the superblocks of the devices is always
 545         * authoritative, unless 'rebuild' or '[no]sync' was specified.
 546         */
 547        for (i = 0; i < rs->md.raid_disks; i++) {
 548                set_bit(In_sync, &rs->dev[i].rdev.flags);
 549                rs->dev[i].rdev.recovery_offset = MaxSector;
 550        }
 551
 552        /*
 553         * Second, parse the unordered optional arguments
 554         */
 555        for (i = 0; i < num_raid_params; i++) {
 556                if (!strcasecmp(argv[i], "nosync")) {
 557                        rs->md.recovery_cp = MaxSector;
 558                        rs->print_flags |= DMPF_NOSYNC;
 559                        continue;
 560                }
 561                if (!strcasecmp(argv[i], "sync")) {
 562                        rs->md.recovery_cp = 0;
 563                        rs->print_flags |= DMPF_SYNC;
 564                        continue;
 565                }
 566
 567                /* The rest of the optional arguments come in key/value pairs */
 568                if ((i + 1) >= num_raid_params) {
 569                        rs->ti->error = "Wrong number of raid parameters given";
 570                        return -EINVAL;
 571                }
 572
 573                key = argv[i++];
 574
 575                /* Parameters that take a string value are checked here. */
 576                if (!strcasecmp(key, "raid10_format")) {
 577                        if (rs->raid_type->level != 10) {
 578                                rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
 579                                return -EINVAL;
 580                        }
 581                        if (strcmp("near", argv[i]) &&
 582                            strcmp("far", argv[i]) &&
 583                            strcmp("offset", argv[i])) {
 584                                rs->ti->error = "Invalid 'raid10_format' value given";
 585                                return -EINVAL;
 586                        }
 587                        raid10_format = argv[i];
 588                        rs->print_flags |= DMPF_RAID10_FORMAT;
 589                        continue;
 590                }
 591
 592                if (kstrtoul(argv[i], 10, &value) < 0) {
 593                        rs->ti->error = "Bad numerical argument given in raid params";
 594                        return -EINVAL;
 595                }
 596
 597                /* Parameters that take a numeric value are checked here */
 598                if (!strcasecmp(key, "rebuild")) {
 599                        if (value >= rs->md.raid_disks) {
 600                                rs->ti->error = "Invalid rebuild index given";
 601                                return -EINVAL;
 602                        }
 603                        clear_bit(In_sync, &rs->dev[value].rdev.flags);
 604                        rs->dev[value].rdev.recovery_offset = 0;
 605                        rs->print_flags |= DMPF_REBUILD;
 606                } else if (!strcasecmp(key, "write_mostly")) {
 607                        if (rs->raid_type->level != 1) {
 608                                rs->ti->error = "write_mostly option is only valid for RAID1";
 609                                return -EINVAL;
 610                        }
 611                        if (value >= rs->md.raid_disks) {
 612                                rs->ti->error = "Invalid write_mostly drive index given";
 613                                return -EINVAL;
 614                        }
 615                        set_bit(WriteMostly, &rs->dev[value].rdev.flags);
 616                } else if (!strcasecmp(key, "max_write_behind")) {
 617                        if (rs->raid_type->level != 1) {
 618                                rs->ti->error = "max_write_behind option is only valid for RAID1";
 619                                return -EINVAL;
 620                        }
 621                        rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
 622
 623                        /*
 624                         * In device-mapper, we specify things in sectors, but
 625                         * MD records this value in kB
 626                         */
 627                        value /= 2;
 628                        if (value > COUNTER_MAX) {
 629                                rs->ti->error = "Max write-behind limit out of range";
 630                                return -EINVAL;
 631                        }
 632                        rs->md.bitmap_info.max_write_behind = value;
 633                } else if (!strcasecmp(key, "daemon_sleep")) {
 634                        rs->print_flags |= DMPF_DAEMON_SLEEP;
 635                        if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
 636                                rs->ti->error = "daemon sleep period out of range";
 637                                return -EINVAL;
 638                        }
 639                        rs->md.bitmap_info.daemon_sleep = value;
 640                } else if (!strcasecmp(key, "stripe_cache")) {
 641                        rs->print_flags |= DMPF_STRIPE_CACHE;
 642
 643                        /*
 644                         * In device-mapper, we specify things in sectors, but
 645                         * MD records this value in kB
 646                         */
 647                        value /= 2;
 648
 649                        if ((rs->raid_type->level != 5) &&
 650                            (rs->raid_type->level != 6)) {
 651                                rs->ti->error = "Inappropriate argument: stripe_cache";
 652                                return -EINVAL;
 653                        }
 654                        if (raid5_set_cache_size(&rs->md, (int)value)) {
 655                                rs->ti->error = "Bad stripe_cache size";
 656                                return -EINVAL;
 657                        }
 658                } else if (!strcasecmp(key, "min_recovery_rate")) {
 659                        rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
 660                        if (value > INT_MAX) {
 661                                rs->ti->error = "min_recovery_rate out of range";
 662                                return -EINVAL;
 663                        }
 664                        rs->md.sync_speed_min = (int)value;
 665                } else if (!strcasecmp(key, "max_recovery_rate")) {
 666                        rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
 667                        if (value > INT_MAX) {
 668                                rs->ti->error = "max_recovery_rate out of range";
 669                                return -EINVAL;
 670                        }
 671                        rs->md.sync_speed_max = (int)value;
 672                } else if (!strcasecmp(key, "region_size")) {
 673                        rs->print_flags |= DMPF_REGION_SIZE;
 674                        region_size = value;
 675                } else if (!strcasecmp(key, "raid10_copies") &&
 676                           (rs->raid_type->level == 10)) {
 677                        if ((value < 2) || (value > 0xFF)) {
 678                                rs->ti->error = "Bad value for 'raid10_copies'";
 679                                return -EINVAL;
 680                        }
 681                        rs->print_flags |= DMPF_RAID10_COPIES;
 682                        raid10_copies = value;
 683                } else {
 684                        DMERR("Unable to parse RAID parameter: %s", key);
 685                        rs->ti->error = "Unable to parse RAID parameters";
 686                        return -EINVAL;
 687                }
 688        }
 689
 690        if (validate_region_size(rs, region_size))
 691                return -EINVAL;
 692
 693        if (rs->md.chunk_sectors)
 694                max_io_len = rs->md.chunk_sectors;
 695        else
 696                max_io_len = region_size;
 697
 698        if (dm_set_target_max_io_len(rs->ti, max_io_len))
 699                return -EINVAL;
 700
 701        if (rs->raid_type->level == 10) {
 702                if (raid10_copies > rs->md.raid_disks) {
 703                        rs->ti->error = "Not enough devices to satisfy specification";
 704                        return -EINVAL;
 705                }
 706
 707                /*
 708                 * If the format is not "near", we only support
 709                 * two copies at the moment.
 710                 */
 711                if (strcmp("near", raid10_format) && (raid10_copies > 2)) {
 712                        rs->ti->error = "Too many copies for given RAID10 format.";
 713                        return -EINVAL;
 714                }
 715
 716                /* (Len * #mirrors) / #devices */
 717                sectors_per_dev = rs->ti->len * raid10_copies;
 718                sector_div(sectors_per_dev, rs->md.raid_disks);
 719
 720                rs->md.layout = raid10_format_to_md_layout(raid10_format,
 721                                                           raid10_copies);
 722                rs->md.new_layout = rs->md.layout;
 723        } else if ((rs->raid_type->level > 1) &&
 724                   sector_div(sectors_per_dev,
 725                              (rs->md.raid_disks - rs->raid_type->parity_devs))) {
 726                rs->ti->error = "Target length not divisible by number of data devices";
 727                return -EINVAL;
 728        }
 729        rs->md.dev_sectors = sectors_per_dev;
 730
 731        /* Assume there are no metadata devices until the drives are parsed */
 732        rs->md.persistent = 0;
 733        rs->md.external = 1;
 734
 735        return 0;
 736}
 737
 738static void do_table_event(struct work_struct *ws)
 739{
 740        struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
 741
 742        dm_table_event(rs->ti->table);
 743}
 744
 745static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
 746{
 747        struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
 748
 749        return mddev_congested(&rs->md, bits);
 750}
 751
 752/*
 753 * This structure is never routinely used by userspace, unlike md superblocks.
 754 * Devices with this superblock should only ever be accessed via device-mapper.
 755 */
 756#define DM_RAID_MAGIC 0x64526D44
 757struct dm_raid_superblock {
 758        __le32 magic;           /* "DmRd" */
 759        __le32 features;        /* Used to indicate possible future changes */
 760
 761        __le32 num_devices;     /* Number of devices in this array. (Max 64) */
 762        __le32 array_position;  /* The position of this drive in the array */
 763
 764        __le64 events;          /* Incremented by md when superblock updated */
 765        __le64 failed_devices;  /* Bit field of devices to indicate failures */
 766
 767        /*
 768         * This offset tracks the progress of the repair or replacement of
 769         * an individual drive.
 770         */
 771        __le64 disk_recovery_offset;
 772
 773        /*
 774         * This offset tracks the progress of the initial array
 775         * synchronisation/parity calculation.
 776         */
 777        __le64 array_resync_offset;
 778
 779        /*
 780         * RAID characteristics
 781         */
 782        __le32 level;
 783        __le32 layout;
 784        __le32 stripe_sectors;
 785
 786        /* Remainder of a logical block is zero-filled when writing (see super_sync()). */
 787} __packed;
 788
 789static int read_disk_sb(struct md_rdev *rdev, int size)
 790{
 791        BUG_ON(!rdev->sb_page);
 792
 793        if (rdev->sb_loaded)
 794                return 0;
 795
 796        if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
 797                DMERR("Failed to read superblock of device at position %d",
 798                      rdev->raid_disk);
 799                md_error(rdev->mddev, rdev);
 800                return -EINVAL;
 801        }
 802
 803        rdev->sb_loaded = 1;
 804
 805        return 0;
 806}
 807
 808static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
 809{
 810        int i;
 811        uint64_t failed_devices;
 812        struct dm_raid_superblock *sb;
 813        struct raid_set *rs = container_of(mddev, struct raid_set, md);
 814
 815        sb = page_address(rdev->sb_page);
 816        failed_devices = le64_to_cpu(sb->failed_devices);
 817
 818        for (i = 0; i < mddev->raid_disks; i++)
 819                if (!rs->dev[i].data_dev ||
 820                    test_bit(Faulty, &(rs->dev[i].rdev.flags)))
 821                        failed_devices |= (1ULL << i);
 822
 823        memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
 824
 825        sb->magic = cpu_to_le32(DM_RAID_MAGIC);
 826        sb->features = cpu_to_le32(0);  /* No features yet */
 827
 828        sb->num_devices = cpu_to_le32(mddev->raid_disks);
 829        sb->array_position = cpu_to_le32(rdev->raid_disk);
 830
 831        sb->events = cpu_to_le64(mddev->events);
 832        sb->failed_devices = cpu_to_le64(failed_devices);
 833
 834        sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
 835        sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
 836
 837        sb->level = cpu_to_le32(mddev->level);
 838        sb->layout = cpu_to_le32(mddev->layout);
 839        sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
 840}
 841
 842/*
 843 * super_load
 844 *
 845 * This function creates a superblock if one is not found on the device
 846 * and will decide which superblock to use if there's a choice.
 847 *
 848 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
 849 */
 850static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
 851{
 852        int ret;
 853        struct dm_raid_superblock *sb;
 854        struct dm_raid_superblock *refsb;
 855        uint64_t events_sb, events_refsb;
 856
 857        rdev->sb_start = 0;
 858        rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
 859        if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
 860                DMERR("superblock size of a logical block is no longer valid");
 861                return -EINVAL;
 862        }
 863
 864        ret = read_disk_sb(rdev, rdev->sb_size);
 865        if (ret)
 866                return ret;
 867
 868        sb = page_address(rdev->sb_page);
 869
 870        /*
 871         * Two cases that we want to write new superblocks and rebuild:
 872         * 1) New device (no matching magic number)
 873         * 2) Device specified for rebuild (!In_sync w/ offset == 0)
 874         */
 875        if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
 876            (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
 877                super_sync(rdev->mddev, rdev);
 878
 879                set_bit(FirstUse, &rdev->flags);
 880
 881                /* Force writing of superblocks to disk */
 882                set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
 883
 884                /* Any superblock is better than none, choose that if given */
 885                return refdev ? 0 : 1;
 886        }
 887
 888        if (!refdev)
 889                return 1;
 890
 891        events_sb = le64_to_cpu(sb->events);
 892
 893        refsb = page_address(refdev->sb_page);
 894        events_refsb = le64_to_cpu(refsb->events);
 895
 896        return (events_sb > events_refsb) ? 1 : 0;
 897}
 898
 899static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
 900{
 901        int role;
 902        struct raid_set *rs = container_of(mddev, struct raid_set, md);
 903        uint64_t events_sb;
 904        uint64_t failed_devices;
 905        struct dm_raid_superblock *sb;
 906        uint32_t new_devs = 0;
 907        uint32_t rebuilds = 0;
 908        struct md_rdev *r;
 909        struct dm_raid_superblock *sb2;
 910
 911        sb = page_address(rdev->sb_page);
 912        events_sb = le64_to_cpu(sb->events);
 913        failed_devices = le64_to_cpu(sb->failed_devices);
 914
 915        /*
 916         * Initialise to 1 if this is a new superblock.
 917         */
 918        mddev->events = events_sb ? : 1;
 919
 920        /*
 921         * Reshaping is not currently allowed
 922         */
 923        if (le32_to_cpu(sb->level) != mddev->level) {
 924                DMERR("Reshaping arrays not yet supported. (RAID level change)");
 925                return -EINVAL;
 926        }
 927        if (le32_to_cpu(sb->layout) != mddev->layout) {
 928                DMERR("Reshaping arrays not yet supported. (RAID layout change)");
 929                DMERR("  0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
 930                DMERR("  Old layout: %s w/ %d copies",
 931                      raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
 932                      raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
 933                DMERR("  New layout: %s w/ %d copies",
 934                      raid10_md_layout_to_format(mddev->layout),
 935                      raid10_md_layout_to_copies(mddev->layout));
 936                return -EINVAL;
 937        }
 938        if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
 939                DMERR("Reshaping arrays not yet supported. (stripe sectors change)");
 940                return -EINVAL;
 941        }
 942
 943        /* We can only change the number of devices in RAID1 right now */
 944        if ((rs->raid_type->level != 1) &&
 945            (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
 946                DMERR("Reshaping arrays not yet supported. (device count change)");
 947                return -EINVAL;
 948        }
 949
 950        if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
 951                mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
 952
 953        /*
 954         * During load, we set FirstUse if a new superblock was written.
 955         * There are two reasons we might not have a superblock:
 956         * 1) The array is brand new - in which case, all of the
 957         *    devices must have their In_sync bit set.  Also,
 958         *    recovery_cp must be 0, unless forced.
 959         * 2) This is a new device being added to an old array
 960         *    and the new device needs to be rebuilt - in which
 961         *    case the In_sync bit will /not/ be set and
 962         *    recovery_cp must be MaxSector.
 963         */
 964        rdev_for_each(r, mddev) {
 965                if (!test_bit(In_sync, &r->flags)) {
 966                        DMINFO("Device %d specified for rebuild: "
 967                               "Clearing superblock", r->raid_disk);
 968                        rebuilds++;
 969                } else if (test_bit(FirstUse, &r->flags))
 970                        new_devs++;
 971        }
 972
 973        if (!rebuilds) {
 974                if (new_devs == mddev->raid_disks) {
 975                        DMINFO("Superblocks created for new array");
 976                        set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
 977                } else if (new_devs) {
 978                        DMERR("New device injected "
 979                              "into existing array without 'rebuild' "
 980                              "parameter specified");
 981                        return -EINVAL;
 982                }
 983        } else if (new_devs) {
 984                DMERR("'rebuild' devices cannot be "
 985                      "injected into an array with other first-time devices");
 986                return -EINVAL;
 987        } else if (mddev->recovery_cp != MaxSector) {
 988                DMERR("'rebuild' specified while array is not in-sync");
 989                return -EINVAL;
 990        }
 991
 992        /*
 993         * Now we set the Faulty bit for those devices that are
 994         * recorded in the superblock as failed.
 995         */
 996        rdev_for_each(r, mddev) {
 997                if (!r->sb_page)
 998                        continue;
 999                sb2 = page_address(r->sb_page);
1000                sb2->failed_devices = 0;
1001
1002                /*
1003                 * Check for any device re-ordering.
1004                 */
1005                if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
1006                        role = le32_to_cpu(sb2->array_position);
1007                        if (role != r->raid_disk) {
1008                                if (rs->raid_type->level != 1) {
1009                                        rs->ti->error = "Cannot change device "
1010                                                "positions in RAID array";
1011                                        return -EINVAL;
1012                                }
1013                                DMINFO("RAID1 device #%d now at position #%d",
1014                                       role, r->raid_disk);
1015                        }
1016
1017                        /*
1018                         * Partial recovery is performed on
1019                         * returning failed devices.
1020                         */
1021                        if (failed_devices & (1 << role))
1022                                set_bit(Faulty, &r->flags);
1023                }
1024        }
1025
1026        return 0;
1027}
1028
1029static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
1030{
1031        struct dm_raid_superblock *sb = page_address(rdev->sb_page);
1032
1033        /*
1034         * If mddev->events is not set, we know we have not yet initialized
1035         * the array.
1036         */
1037        if (!mddev->events && super_init_validation(mddev, rdev))
1038                return -EINVAL;
1039
1040        mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
1041        rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
1042        if (!test_bit(FirstUse, &rdev->flags)) {
1043                rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
1044                if (rdev->recovery_offset != MaxSector)
1045                        clear_bit(In_sync, &rdev->flags);
1046        }
1047
1048        /*
1049         * If a device comes back, set it as not In_sync and no longer faulty.
1050         */
1051        if (test_bit(Faulty, &rdev->flags)) {
1052                clear_bit(Faulty, &rdev->flags);
1053                clear_bit(In_sync, &rdev->flags);
1054                rdev->saved_raid_disk = rdev->raid_disk;
1055                rdev->recovery_offset = 0;
1056        }
1057
1058        clear_bit(FirstUse, &rdev->flags);
1059
1060        return 0;
1061}
1062
1063/*
1064 * Analyse superblocks and select the freshest.
1065 */
1066static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
1067{
1068        int ret;
1069        struct raid_dev *dev;
1070        struct md_rdev *rdev, *tmp, *freshest;
1071        struct mddev *mddev = &rs->md;
1072
1073        freshest = NULL;
1074        rdev_for_each_safe(rdev, tmp, mddev) {
1075                /*
1076                 * Skipping super_load due to DMPF_SYNC will cause
1077                 * the array to undergo initialization again as
1078                 * though it were new.  This is the intended effect
1079                 * of the "sync" directive.
1080                 *
1081                 * When reshaping capability is added, we must ensure
1082                 * that the "sync" directive is disallowed during the
1083                 * reshape.
1084                 */
1085                if (rs->print_flags & DMPF_SYNC)
1086                        continue;
1087
1088                if (!rdev->meta_bdev)
1089                        continue;
1090
1091                ret = super_load(rdev, freshest);
1092
1093                switch (ret) {
1094                case 1:
1095                        freshest = rdev;
1096                        break;
1097                case 0:
1098                        break;
1099                default:
1100                        dev = container_of(rdev, struct raid_dev, rdev);
1101                        if (dev->meta_dev)
1102                                dm_put_device(ti, dev->meta_dev);
1103
1104                        dev->meta_dev = NULL;
1105                        rdev->meta_bdev = NULL;
1106
1107                        if (rdev->sb_page)
1108                                put_page(rdev->sb_page);
1109
1110                        rdev->sb_page = NULL;
1111
1112                        rdev->sb_loaded = 0;
1113
1114                        /*
1115                         * We might be able to salvage the data device
1116                         * even though the meta device has failed.  For
1117                         * now, we behave as though '- -' had been
1118                         * set for this device in the table.
1119                         */
1120                        if (dev->data_dev)
1121                                dm_put_device(ti, dev->data_dev);
1122
1123                        dev->data_dev = NULL;
1124                        rdev->bdev = NULL;
1125
1126                        list_del(&rdev->same_set);
1127                }
1128        }
1129
1130        if (!freshest)
1131                return 0;
1132
1133        if (validate_raid_redundancy(rs)) {
1134                rs->ti->error = "Insufficient redundancy to activate array";
1135                return -EINVAL;
1136        }
1137
1138        /*
1139         * Validation of the freshest device provides the source of
1140         * validation for the remaining devices.
1141         */
1142        ti->error = "Unable to assemble array: Invalid superblocks";
1143        if (super_validate(mddev, freshest))
1144                return -EINVAL;
1145
1146        rdev_for_each(rdev, mddev)
1147                if ((rdev != freshest) && super_validate(mddev, rdev))
1148                        return -EINVAL;
1149
1150        return 0;
1151}
1152
1153/*
1154 * Enable/disable discard support on RAID set depending on
1155 * RAID level and discard properties of underlying RAID members.
1156 */
1157static void configure_discard_support(struct dm_target *ti, struct raid_set *rs)
1158{
1159        int i;
1160        bool raid456;
1161
1162        /* Assume discards not supported until after checks below. */
1163        ti->discards_supported = false;
1164
1165        /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
1166        raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
1167
1168        for (i = 0; i < rs->md.raid_disks; i++) {
1169                struct request_queue *q;
1170
1171                if (!rs->dev[i].rdev.bdev)
1172                        continue;
1173
1174                q = bdev_get_queue(rs->dev[i].rdev.bdev);
1175                if (!q || !blk_queue_discard(q))
1176                        return;
1177
1178                if (raid456) {
1179                        if (!q->limits.discard_zeroes_data)
1180                                return;
1181                        if (!devices_handle_discard_safely) {
1182                                DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
1183                                DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
1184                                return;
1185                        }
1186                }
1187        }
1188
1189        /* All RAID members properly support discards */
1190        ti->discards_supported = true;
1191
1192        /*
1193         * RAID1 and RAID10 personalities require bio splitting,
1194         * RAID0/4/5/6 don't and process large discard bios properly.
1195         */
1196        ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
1197        ti->num_discard_bios = 1;
1198}
1199
1200/*
1201 * Construct a RAID4/5/6 mapping:
1202 * Args:
1203 *      <raid_type> <#raid_params> <raid_params>                \
1204 *      <#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
1205 *
1206 * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
1207 * details on possible <raid_params>.
1208 */
1209static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
1210{
1211        int ret;
1212        struct raid_type *rt;
1213        unsigned long num_raid_params, num_raid_devs;
1214        struct raid_set *rs = NULL;
1215
1216        /* Must have at least <raid_type> <#raid_params> */
1217        if (argc < 2) {
1218                ti->error = "Too few arguments";
1219                return -EINVAL;
1220        }
1221
1222        /* raid type */
1223        rt = get_raid_type(argv[0]);
1224        if (!rt) {
1225                ti->error = "Unrecognised raid_type";
1226                return -EINVAL;
1227        }
1228        argc--;
1229        argv++;
1230
1231        /* number of RAID parameters */
1232        if (kstrtoul(argv[0], 10, &num_raid_params) < 0) {
1233                ti->error = "Cannot understand number of RAID parameters";
1234                return -EINVAL;
1235        }
1236        argc--;
1237        argv++;
1238
1239        /* Skip over RAID params for now and find out # of devices */
1240        if (num_raid_params >= argc) {
1241                ti->error = "Arguments do not agree with counts given";
1242                return -EINVAL;
1243        }
1244
1245        if ((kstrtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
1246            (num_raid_devs >= INT_MAX)) {
1247                ti->error = "Cannot understand number of raid devices";
1248                return -EINVAL;
1249        }
1250
1251        argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1252        if (argc != (num_raid_devs * 2)) {
1253                ti->error = "Supplied RAID devices does not match the count given";
1254                return -EINVAL;
1255        }
1256
1257        rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
1258        if (IS_ERR(rs))
1259                return PTR_ERR(rs);
1260
1261        ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1262        if (ret)
1263                goto bad;
1264
1265        argv += num_raid_params + 1;
1266
1267        ret = dev_parms(rs, argv);
1268        if (ret)
1269                goto bad;
1270
1271        rs->md.sync_super = super_sync;
1272        ret = analyse_superblocks(ti, rs);
1273        if (ret)
1274                goto bad;
1275
1276        INIT_WORK(&rs->md.event_work, do_table_event);
1277        ti->private = rs;
1278        ti->num_flush_bios = 1;
1279
1280        /*
1281         * Disable/enable discard support on RAID set.
1282         */
1283        configure_discard_support(ti, rs);
1284
1285        mutex_lock(&rs->md.reconfig_mutex);
1286        ret = md_run(&rs->md);
1287        rs->md.in_sync = 0; /* Assume already marked dirty */
1288        mutex_unlock(&rs->md.reconfig_mutex);
1289
1290        if (ret) {
1291                ti->error = "Fail to run raid array";
1292                goto bad;
1293        }
1294
1295        if (ti->len != rs->md.array_sectors) {
1296                ti->error = "Array size does not match requested target length";
1297                ret = -EINVAL;
1298                goto size_mismatch;
1299        }
1300        rs->callbacks.congested_fn = raid_is_congested;
1301        dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1302
1303        mddev_suspend(&rs->md);
1304        return 0;
1305
1306size_mismatch:
1307        md_stop(&rs->md);
1308bad:
1309        context_free(rs);
1310
1311        return ret;
1312}
1313
1314static void raid_dtr(struct dm_target *ti)
1315{
1316        struct raid_set *rs = ti->private;
1317
1318        list_del_init(&rs->callbacks.list);
1319        md_stop(&rs->md);
1320        context_free(rs);
1321}
1322
1323static int raid_map(struct dm_target *ti, struct bio *bio)
1324{
1325        struct raid_set *rs = ti->private;
1326        struct mddev *mddev = &rs->md;
1327
1328        mddev->pers->make_request(mddev, bio);
1329
1330        return DM_MAPIO_SUBMITTED;
1331}
1332
1333static const char *decipher_sync_action(struct mddev *mddev)
1334{
1335        if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
1336                return "frozen";
1337
1338        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1339            (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
1340                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1341                        return "reshape";
1342
1343                if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1344                        if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1345                                return "resync";
1346                        else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1347                                return "check";
1348                        return "repair";
1349                }
1350
1351                if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
1352                        return "recover";
1353        }
1354
1355        return "idle";
1356}
1357
1358static void raid_status(struct dm_target *ti, status_type_t type,
1359                        unsigned status_flags, char *result, unsigned maxlen)
1360{
1361        struct raid_set *rs = ti->private;
1362        unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1363        unsigned sz = 0;
1364        int i, array_in_sync = 0;
1365        sector_t sync;
1366
1367        switch (type) {
1368        case STATUSTYPE_INFO:
1369                DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1370
1371                if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1372                        sync = rs->md.curr_resync_completed;
1373                else
1374                        sync = rs->md.recovery_cp;
1375
1376                if (sync >= rs->md.resync_max_sectors) {
1377                        /*
1378                         * Sync complete.
1379                         */
1380                        array_in_sync = 1;
1381                        sync = rs->md.resync_max_sectors;
1382                } else if (test_bit(MD_RECOVERY_REQUESTED, &rs->md.recovery)) {
1383                        /*
1384                         * If "check" or "repair" is occurring, the array has
1385                         * undergone and initial sync and the health characters
1386                         * should not be 'a' anymore.
1387                         */
1388                        array_in_sync = 1;
1389                } else {
1390                        /*
1391                         * The array may be doing an initial sync, or it may
1392                         * be rebuilding individual components.  If all the
1393                         * devices are In_sync, then it is the array that is
1394                         * being initialized.
1395                         */
1396                        for (i = 0; i < rs->md.raid_disks; i++)
1397                                if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1398                                        array_in_sync = 1;
1399                }
1400
1401                /*
1402                 * Status characters:
1403                 *  'D' = Dead/Failed device
1404                 *  'a' = Alive but not in-sync
1405                 *  'A' = Alive and in-sync
1406                 */
1407                for (i = 0; i < rs->md.raid_disks; i++) {
1408                        if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1409                                DMEMIT("D");
1410                        else if (!array_in_sync ||
1411                                 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1412                                DMEMIT("a");
1413                        else
1414                                DMEMIT("A");
1415                }
1416
1417                /*
1418                 * In-sync ratio:
1419                 *  The in-sync ratio shows the progress of:
1420                 *   - Initializing the array
1421                 *   - Rebuilding a subset of devices of the array
1422                 *  The user can distinguish between the two by referring
1423                 *  to the status characters.
1424                 */
1425                DMEMIT(" %llu/%llu",
1426                       (unsigned long long) sync,
1427                       (unsigned long long) rs->md.resync_max_sectors);
1428
1429                /*
1430                 * Sync action:
1431                 *   See Documentation/device-mapper/dm-raid.c for
1432                 *   information on each of these states.
1433                 */
1434                DMEMIT(" %s", decipher_sync_action(&rs->md));
1435
1436                /*
1437                 * resync_mismatches/mismatch_cnt
1438                 *   This field shows the number of discrepancies found when
1439                 *   performing a "check" of the array.
1440                 */
1441                DMEMIT(" %llu",
1442                       (strcmp(rs->md.last_sync_action, "check")) ? 0 :
1443                       (unsigned long long)
1444                       atomic64_read(&rs->md.resync_mismatches));
1445                break;
1446        case STATUSTYPE_TABLE:
1447                /* The string you would use to construct this array */
1448                for (i = 0; i < rs->md.raid_disks; i++) {
1449                        if ((rs->print_flags & DMPF_REBUILD) &&
1450                            rs->dev[i].data_dev &&
1451                            !test_bit(In_sync, &rs->dev[i].rdev.flags))
1452                                raid_param_cnt += 2; /* for rebuilds */
1453                        if (rs->dev[i].data_dev &&
1454                            test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1455                                raid_param_cnt += 2;
1456                }
1457
1458                raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
1459                if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1460                        raid_param_cnt--;
1461
1462                DMEMIT("%s %u %u", rs->raid_type->name,
1463                       raid_param_cnt, rs->md.chunk_sectors);
1464
1465                if ((rs->print_flags & DMPF_SYNC) &&
1466                    (rs->md.recovery_cp == MaxSector))
1467                        DMEMIT(" sync");
1468                if (rs->print_flags & DMPF_NOSYNC)
1469                        DMEMIT(" nosync");
1470
1471                for (i = 0; i < rs->md.raid_disks; i++)
1472                        if ((rs->print_flags & DMPF_REBUILD) &&
1473                            rs->dev[i].data_dev &&
1474                            !test_bit(In_sync, &rs->dev[i].rdev.flags))
1475                                DMEMIT(" rebuild %u", i);
1476
1477                if (rs->print_flags & DMPF_DAEMON_SLEEP)
1478                        DMEMIT(" daemon_sleep %lu",
1479                               rs->md.bitmap_info.daemon_sleep);
1480
1481                if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1482                        DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1483
1484                if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1485                        DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1486
1487                for (i = 0; i < rs->md.raid_disks; i++)
1488                        if (rs->dev[i].data_dev &&
1489                            test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1490                                DMEMIT(" write_mostly %u", i);
1491
1492                if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1493                        DMEMIT(" max_write_behind %lu",
1494                               rs->md.bitmap_info.max_write_behind);
1495
1496                if (rs->print_flags & DMPF_STRIPE_CACHE) {
1497                        struct r5conf *conf = rs->md.private;
1498
1499                        /* convert from kiB to sectors */
1500                        DMEMIT(" stripe_cache %d",
1501                               conf ? conf->max_nr_stripes * 2 : 0);
1502                }
1503
1504                if (rs->print_flags & DMPF_REGION_SIZE)
1505                        DMEMIT(" region_size %lu",
1506                               rs->md.bitmap_info.chunksize >> 9);
1507
1508                if (rs->print_flags & DMPF_RAID10_COPIES)
1509                        DMEMIT(" raid10_copies %u",
1510                               raid10_md_layout_to_copies(rs->md.layout));
1511
1512                if (rs->print_flags & DMPF_RAID10_FORMAT)
1513                        DMEMIT(" raid10_format %s",
1514                               raid10_md_layout_to_format(rs->md.layout));
1515
1516                DMEMIT(" %d", rs->md.raid_disks);
1517                for (i = 0; i < rs->md.raid_disks; i++) {
1518                        if (rs->dev[i].meta_dev)
1519                                DMEMIT(" %s", rs->dev[i].meta_dev->name);
1520                        else
1521                                DMEMIT(" -");
1522
1523                        if (rs->dev[i].data_dev)
1524                                DMEMIT(" %s", rs->dev[i].data_dev->name);
1525                        else
1526                                DMEMIT(" -");
1527                }
1528        }
1529}
1530
1531static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
1532{
1533        struct raid_set *rs = ti->private;
1534        struct mddev *mddev = &rs->md;
1535
1536        if (!strcasecmp(argv[0], "reshape")) {
1537                DMERR("Reshape not supported.");
1538                return -EINVAL;
1539        }
1540
1541        if (!mddev->pers || !mddev->pers->sync_request)
1542                return -EINVAL;
1543
1544        if (!strcasecmp(argv[0], "frozen"))
1545                set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
1546        else
1547                clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
1548
1549        if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
1550                if (mddev->sync_thread) {
1551                        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1552                        md_reap_sync_thread(mddev);
1553                }
1554        } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1555                   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1556                return -EBUSY;
1557        else if (!strcasecmp(argv[0], "resync"))
1558                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1559        else if (!strcasecmp(argv[0], "recover")) {
1560                set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1561                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1562        } else {
1563                if (!strcasecmp(argv[0], "check"))
1564                        set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1565                else if (!!strcasecmp(argv[0], "repair"))
1566                        return -EINVAL;
1567                set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1568                set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1569        }
1570        if (mddev->ro == 2) {
1571                /* A write to sync_action is enough to justify
1572                 * canceling read-auto mode
1573                 */
1574                mddev->ro = 0;
1575                if (!mddev->suspended)
1576                        md_wakeup_thread(mddev->sync_thread);
1577        }
1578        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1579        if (!mddev->suspended)
1580                md_wakeup_thread(mddev->thread);
1581
1582        return 0;
1583}
1584
1585static int raid_iterate_devices(struct dm_target *ti,
1586                                iterate_devices_callout_fn fn, void *data)
1587{
1588        struct raid_set *rs = ti->private;
1589        unsigned i;
1590        int ret = 0;
1591
1592        for (i = 0; !ret && i < rs->md.raid_disks; i++)
1593                if (rs->dev[i].data_dev)
1594                        ret = fn(ti,
1595                                 rs->dev[i].data_dev,
1596                                 0, /* No offset on data devs */
1597                                 rs->md.dev_sectors,
1598                                 data);
1599
1600        return ret;
1601}
1602
1603static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1604{
1605        struct raid_set *rs = ti->private;
1606        unsigned chunk_size = rs->md.chunk_sectors << 9;
1607        struct r5conf *conf = rs->md.private;
1608
1609        blk_limits_io_min(limits, chunk_size);
1610        blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1611}
1612
1613static void raid_presuspend(struct dm_target *ti)
1614{
1615        struct raid_set *rs = ti->private;
1616
1617        md_stop_writes(&rs->md);
1618}
1619
1620static void raid_postsuspend(struct dm_target *ti)
1621{
1622        struct raid_set *rs = ti->private;
1623
1624        mddev_suspend(&rs->md);
1625}
1626
1627static void attempt_restore_of_faulty_devices(struct raid_set *rs)
1628{
1629        int i;
1630        uint64_t failed_devices, cleared_failed_devices = 0;
1631        unsigned long flags;
1632        struct dm_raid_superblock *sb;
1633        struct md_rdev *r;
1634
1635        for (i = 0; i < rs->md.raid_disks; i++) {
1636                r = &rs->dev[i].rdev;
1637                if (test_bit(Faulty, &r->flags) && r->sb_page &&
1638                    sync_page_io(r, 0, r->sb_size, r->sb_page, READ, 1)) {
1639                        DMINFO("Faulty %s device #%d has readable super block."
1640                               "  Attempting to revive it.",
1641                               rs->raid_type->name, i);
1642
1643                        /*
1644                         * Faulty bit may be set, but sometimes the array can
1645                         * be suspended before the personalities can respond
1646                         * by removing the device from the array (i.e. calling
1647                         * 'hot_remove_disk').  If they haven't yet removed
1648                         * the failed device, its 'raid_disk' number will be
1649                         * '>= 0' - meaning we must call this function
1650                         * ourselves.
1651                         */
1652                        if ((r->raid_disk >= 0) &&
1653                            (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
1654                                /* Failed to revive this device, try next */
1655                                continue;
1656
1657                        r->raid_disk = i;
1658                        r->saved_raid_disk = i;
1659                        flags = r->flags;
1660                        clear_bit(Faulty, &r->flags);
1661                        clear_bit(WriteErrorSeen, &r->flags);
1662                        clear_bit(In_sync, &r->flags);
1663                        if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
1664                                r->raid_disk = -1;
1665                                r->saved_raid_disk = -1;
1666                                r->flags = flags;
1667                        } else {
1668                                r->recovery_offset = 0;
1669                                cleared_failed_devices |= 1 << i;
1670                        }
1671                }
1672        }
1673        if (cleared_failed_devices) {
1674                rdev_for_each(r, &rs->md) {
1675                        sb = page_address(r->sb_page);
1676                        failed_devices = le64_to_cpu(sb->failed_devices);
1677                        failed_devices &= ~cleared_failed_devices;
1678                        sb->failed_devices = cpu_to_le64(failed_devices);
1679                }
1680        }
1681}
1682
1683static void raid_resume(struct dm_target *ti)
1684{
1685        struct raid_set *rs = ti->private;
1686
1687        set_bit(MD_CHANGE_DEVS, &rs->md.flags);
1688        if (!rs->bitmap_loaded) {
1689                bitmap_load(&rs->md);
1690                rs->bitmap_loaded = 1;
1691        } else {
1692                /*
1693                 * A secondary resume while the device is active.
1694                 * Take this opportunity to check whether any failed
1695                 * devices are reachable again.
1696                 */
1697                attempt_restore_of_faulty_devices(rs);
1698        }
1699
1700        clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
1701        mddev_resume(&rs->md);
1702}
1703
1704static struct target_type raid_target = {
1705        .name = "raid",
1706        .version = {1, 6, 0},
1707        .module = THIS_MODULE,
1708        .ctr = raid_ctr,
1709        .dtr = raid_dtr,
1710        .map = raid_map,
1711        .status = raid_status,
1712        .message = raid_message,
1713        .iterate_devices = raid_iterate_devices,
1714        .io_hints = raid_io_hints,
1715        .presuspend = raid_presuspend,
1716        .postsuspend = raid_postsuspend,
1717        .resume = raid_resume,
1718};
1719
1720static int __init dm_raid_init(void)
1721{
1722        DMINFO("Loading target version %u.%u.%u",
1723               raid_target.version[0],
1724               raid_target.version[1],
1725               raid_target.version[2]);
1726        return dm_register_target(&raid_target);
1727}
1728
1729static void __exit dm_raid_exit(void)
1730{
1731        dm_unregister_target(&raid_target);
1732}
1733
1734module_init(dm_raid_init);
1735module_exit(dm_raid_exit);
1736
1737module_param(devices_handle_discard_safely, bool, 0644);
1738MODULE_PARM_DESC(devices_handle_discard_safely,
1739                 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
1740
1741MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1742MODULE_ALIAS("dm-raid1");
1743MODULE_ALIAS("dm-raid10");
1744MODULE_ALIAS("dm-raid4");
1745MODULE_ALIAS("dm-raid5");
1746MODULE_ALIAS("dm-raid6");
1747MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1748MODULE_LICENSE("GPL");
1749