linux/drivers/md/dm-thin.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/sort.h>
  22#include <linux/rbtree.h>
  23
  24#define DM_MSG_PREFIX   "thin"
  25
  26/*
  27 * Tunable constants
  28 */
  29#define ENDIO_HOOK_POOL_SIZE 1024
  30#define MAPPING_POOL_SIZE 1024
  31#define COMMIT_PERIOD HZ
  32#define NO_SPACE_TIMEOUT_SECS 60
  33
  34static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  35
  36DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  37                "A percentage of time allocated for copy on write");
  38
  39/*
  40 * The block size of the device holding pool data must be
  41 * between 64KB and 1GB.
  42 */
  43#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  44#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  45
  46/*
  47 * Device id is restricted to 24 bits.
  48 */
  49#define MAX_DEV_ID ((1 << 24) - 1)
  50
  51/*
  52 * How do we handle breaking sharing of data blocks?
  53 * =================================================
  54 *
  55 * We use a standard copy-on-write btree to store the mappings for the
  56 * devices (note I'm talking about copy-on-write of the metadata here, not
  57 * the data).  When you take an internal snapshot you clone the root node
  58 * of the origin btree.  After this there is no concept of an origin or a
  59 * snapshot.  They are just two device trees that happen to point to the
  60 * same data blocks.
  61 *
  62 * When we get a write in we decide if it's to a shared data block using
  63 * some timestamp magic.  If it is, we have to break sharing.
  64 *
  65 * Let's say we write to a shared block in what was the origin.  The
  66 * steps are:
  67 *
  68 * i) plug io further to this physical block. (see bio_prison code).
  69 *
  70 * ii) quiesce any read io to that shared data block.  Obviously
  71 * including all devices that share this block.  (see dm_deferred_set code)
  72 *
  73 * iii) copy the data block to a newly allocate block.  This step can be
  74 * missed out if the io covers the block. (schedule_copy).
  75 *
  76 * iv) insert the new mapping into the origin's btree
  77 * (process_prepared_mapping).  This act of inserting breaks some
  78 * sharing of btree nodes between the two devices.  Breaking sharing only
  79 * effects the btree of that specific device.  Btrees for the other
  80 * devices that share the block never change.  The btree for the origin
  81 * device as it was after the last commit is untouched, ie. we're using
  82 * persistent data structures in the functional programming sense.
  83 *
  84 * v) unplug io to this physical block, including the io that triggered
  85 * the breaking of sharing.
  86 *
  87 * Steps (ii) and (iii) occur in parallel.
  88 *
  89 * The metadata _doesn't_ need to be committed before the io continues.  We
  90 * get away with this because the io is always written to a _new_ block.
  91 * If there's a crash, then:
  92 *
  93 * - The origin mapping will point to the old origin block (the shared
  94 * one).  This will contain the data as it was before the io that triggered
  95 * the breaking of sharing came in.
  96 *
  97 * - The snap mapping still points to the old block.  As it would after
  98 * the commit.
  99 *
 100 * The downside of this scheme is the timestamp magic isn't perfect, and
 101 * will continue to think that data block in the snapshot device is shared
 102 * even after the write to the origin has broken sharing.  I suspect data
 103 * blocks will typically be shared by many different devices, so we're
 104 * breaking sharing n + 1 times, rather than n, where n is the number of
 105 * devices that reference this data block.  At the moment I think the
 106 * benefits far, far outweigh the disadvantages.
 107 */
 108
 109/*----------------------------------------------------------------*/
 110
 111/*
 112 * Key building.
 113 */
 114static void build_data_key(struct dm_thin_device *td,
 115                           dm_block_t b, struct dm_cell_key *key)
 116{
 117        key->virtual = 0;
 118        key->dev = dm_thin_dev_id(td);
 119        key->block_begin = b;
 120        key->block_end = b + 1ULL;
 121}
 122
 123static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 124                              struct dm_cell_key *key)
 125{
 126        key->virtual = 1;
 127        key->dev = dm_thin_dev_id(td);
 128        key->block_begin = b;
 129        key->block_end = b + 1ULL;
 130}
 131
 132/*----------------------------------------------------------------*/
 133
 134#define THROTTLE_THRESHOLD (1 * HZ)
 135
 136struct throttle {
 137        struct rw_semaphore lock;
 138        unsigned long threshold;
 139        bool throttle_applied;
 140};
 141
 142static void throttle_init(struct throttle *t)
 143{
 144        init_rwsem(&t->lock);
 145        t->throttle_applied = false;
 146}
 147
 148static void throttle_work_start(struct throttle *t)
 149{
 150        t->threshold = jiffies + THROTTLE_THRESHOLD;
 151}
 152
 153static void throttle_work_update(struct throttle *t)
 154{
 155        if (!t->throttle_applied && jiffies > t->threshold) {
 156                down_write(&t->lock);
 157                t->throttle_applied = true;
 158        }
 159}
 160
 161static void throttle_work_complete(struct throttle *t)
 162{
 163        if (t->throttle_applied) {
 164                t->throttle_applied = false;
 165                up_write(&t->lock);
 166        }
 167}
 168
 169static void throttle_lock(struct throttle *t)
 170{
 171        down_read(&t->lock);
 172}
 173
 174static void throttle_unlock(struct throttle *t)
 175{
 176        up_read(&t->lock);
 177}
 178
 179/*----------------------------------------------------------------*/
 180
 181/*
 182 * A pool device ties together a metadata device and a data device.  It
 183 * also provides the interface for creating and destroying internal
 184 * devices.
 185 */
 186struct dm_thin_new_mapping;
 187
 188/*
 189 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
 190 */
 191enum pool_mode {
 192        PM_WRITE,               /* metadata may be changed */
 193        PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
 194        PM_READ_ONLY,           /* metadata may not be changed */
 195        PM_FAIL,                /* all I/O fails */
 196};
 197
 198struct pool_features {
 199        enum pool_mode mode;
 200
 201        bool zero_new_blocks:1;
 202        bool discard_enabled:1;
 203        bool discard_passdown:1;
 204        bool error_if_no_space:1;
 205};
 206
 207struct thin_c;
 208typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 209typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 210typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 211
 212#define CELL_SORT_ARRAY_SIZE 8192
 213
 214struct pool {
 215        struct list_head list;
 216        struct dm_target *ti;   /* Only set if a pool target is bound */
 217
 218        struct mapped_device *pool_md;
 219        struct block_device *md_dev;
 220        struct dm_pool_metadata *pmd;
 221
 222        dm_block_t low_water_blocks;
 223        uint32_t sectors_per_block;
 224        int sectors_per_block_shift;
 225
 226        struct pool_features pf;
 227        bool low_water_triggered:1;     /* A dm event has been sent */
 228        bool suspended:1;
 229
 230        struct dm_bio_prison *prison;
 231        struct dm_kcopyd_client *copier;
 232
 233        struct workqueue_struct *wq;
 234        struct throttle throttle;
 235        struct work_struct worker;
 236        struct delayed_work waker;
 237        struct delayed_work no_space_timeout;
 238
 239        unsigned long last_commit_jiffies;
 240        unsigned ref_count;
 241
 242        spinlock_t lock;
 243        struct bio_list deferred_flush_bios;
 244        struct list_head prepared_mappings;
 245        struct list_head prepared_discards;
 246        struct list_head active_thins;
 247
 248        struct dm_deferred_set *shared_read_ds;
 249        struct dm_deferred_set *all_io_ds;
 250
 251        struct dm_thin_new_mapping *next_mapping;
 252        mempool_t *mapping_pool;
 253
 254        process_bio_fn process_bio;
 255        process_bio_fn process_discard;
 256
 257        process_cell_fn process_cell;
 258        process_cell_fn process_discard_cell;
 259
 260        process_mapping_fn process_prepared_mapping;
 261        process_mapping_fn process_prepared_discard;
 262
 263        struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE];
 264};
 265
 266static enum pool_mode get_pool_mode(struct pool *pool);
 267static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 268
 269/*
 270 * Target context for a pool.
 271 */
 272struct pool_c {
 273        struct dm_target *ti;
 274        struct pool *pool;
 275        struct dm_dev *data_dev;
 276        struct dm_dev *metadata_dev;
 277        struct dm_target_callbacks callbacks;
 278
 279        dm_block_t low_water_blocks;
 280        struct pool_features requested_pf; /* Features requested during table load */
 281        struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 282};
 283
 284/*
 285 * Target context for a thin.
 286 */
 287struct thin_c {
 288        struct list_head list;
 289        struct dm_dev *pool_dev;
 290        struct dm_dev *origin_dev;
 291        sector_t origin_size;
 292        dm_thin_id dev_id;
 293
 294        struct pool *pool;
 295        struct dm_thin_device *td;
 296        struct mapped_device *thin_md;
 297
 298        bool requeue_mode:1;
 299        spinlock_t lock;
 300        struct list_head deferred_cells;
 301        struct bio_list deferred_bio_list;
 302        struct bio_list retry_on_resume_list;
 303        struct rb_root sort_bio_list; /* sorted list of deferred bios */
 304
 305        /*
 306         * Ensures the thin is not destroyed until the worker has finished
 307         * iterating the active_thins list.
 308         */
 309        atomic_t refcount;
 310        struct completion can_destroy;
 311};
 312
 313/*----------------------------------------------------------------*/
 314
 315/*
 316 * wake_worker() is used when new work is queued and when pool_resume is
 317 * ready to continue deferred IO processing.
 318 */
 319static void wake_worker(struct pool *pool)
 320{
 321        queue_work(pool->wq, &pool->worker);
 322}
 323
 324/*----------------------------------------------------------------*/
 325
 326static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 327                      struct dm_bio_prison_cell **cell_result)
 328{
 329        int r;
 330        struct dm_bio_prison_cell *cell_prealloc;
 331
 332        /*
 333         * Allocate a cell from the prison's mempool.
 334         * This might block but it can't fail.
 335         */
 336        cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 337
 338        r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 339        if (r)
 340                /*
 341                 * We reused an old cell; we can get rid of
 342                 * the new one.
 343                 */
 344                dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 345
 346        return r;
 347}
 348
 349static void cell_release(struct pool *pool,
 350                         struct dm_bio_prison_cell *cell,
 351                         struct bio_list *bios)
 352{
 353        dm_cell_release(pool->prison, cell, bios);
 354        dm_bio_prison_free_cell(pool->prison, cell);
 355}
 356
 357static void cell_visit_release(struct pool *pool,
 358                               void (*fn)(void *, struct dm_bio_prison_cell *),
 359                               void *context,
 360                               struct dm_bio_prison_cell *cell)
 361{
 362        dm_cell_visit_release(pool->prison, fn, context, cell);
 363        dm_bio_prison_free_cell(pool->prison, cell);
 364}
 365
 366static void cell_release_no_holder(struct pool *pool,
 367                                   struct dm_bio_prison_cell *cell,
 368                                   struct bio_list *bios)
 369{
 370        dm_cell_release_no_holder(pool->prison, cell, bios);
 371        dm_bio_prison_free_cell(pool->prison, cell);
 372}
 373
 374static void cell_error_with_code(struct pool *pool,
 375                                 struct dm_bio_prison_cell *cell, int error_code)
 376{
 377        dm_cell_error(pool->prison, cell, error_code);
 378        dm_bio_prison_free_cell(pool->prison, cell);
 379}
 380
 381static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 382{
 383        cell_error_with_code(pool, cell, -EIO);
 384}
 385
 386static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 387{
 388        cell_error_with_code(pool, cell, 0);
 389}
 390
 391static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 392{
 393        cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
 394}
 395
 396/*----------------------------------------------------------------*/
 397
 398/*
 399 * A global list of pools that uses a struct mapped_device as a key.
 400 */
 401static struct dm_thin_pool_table {
 402        struct mutex mutex;
 403        struct list_head pools;
 404} dm_thin_pool_table;
 405
 406static void pool_table_init(void)
 407{
 408        mutex_init(&dm_thin_pool_table.mutex);
 409        INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 410}
 411
 412static void __pool_table_insert(struct pool *pool)
 413{
 414        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 415        list_add(&pool->list, &dm_thin_pool_table.pools);
 416}
 417
 418static void __pool_table_remove(struct pool *pool)
 419{
 420        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 421        list_del(&pool->list);
 422}
 423
 424static struct pool *__pool_table_lookup(struct mapped_device *md)
 425{
 426        struct pool *pool = NULL, *tmp;
 427
 428        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 429
 430        list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 431                if (tmp->pool_md == md) {
 432                        pool = tmp;
 433                        break;
 434                }
 435        }
 436
 437        return pool;
 438}
 439
 440static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 441{
 442        struct pool *pool = NULL, *tmp;
 443
 444        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 445
 446        list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 447                if (tmp->md_dev == md_dev) {
 448                        pool = tmp;
 449                        break;
 450                }
 451        }
 452
 453        return pool;
 454}
 455
 456/*----------------------------------------------------------------*/
 457
 458struct dm_thin_endio_hook {
 459        struct thin_c *tc;
 460        struct dm_deferred_entry *shared_read_entry;
 461        struct dm_deferred_entry *all_io_entry;
 462        struct dm_thin_new_mapping *overwrite_mapping;
 463        struct rb_node rb_node;
 464};
 465
 466static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 467{
 468        bio_list_merge(bios, master);
 469        bio_list_init(master);
 470}
 471
 472static void error_bio_list(struct bio_list *bios, int error)
 473{
 474        struct bio *bio;
 475
 476        while ((bio = bio_list_pop(bios)))
 477                bio_endio(bio, error);
 478}
 479
 480static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
 481{
 482        struct bio_list bios;
 483        unsigned long flags;
 484
 485        bio_list_init(&bios);
 486
 487        spin_lock_irqsave(&tc->lock, flags);
 488        __merge_bio_list(&bios, master);
 489        spin_unlock_irqrestore(&tc->lock, flags);
 490
 491        error_bio_list(&bios, error);
 492}
 493
 494static void requeue_deferred_cells(struct thin_c *tc)
 495{
 496        struct pool *pool = tc->pool;
 497        unsigned long flags;
 498        struct list_head cells;
 499        struct dm_bio_prison_cell *cell, *tmp;
 500
 501        INIT_LIST_HEAD(&cells);
 502
 503        spin_lock_irqsave(&tc->lock, flags);
 504        list_splice_init(&tc->deferred_cells, &cells);
 505        spin_unlock_irqrestore(&tc->lock, flags);
 506
 507        list_for_each_entry_safe(cell, tmp, &cells, user_list)
 508                cell_requeue(pool, cell);
 509}
 510
 511static void requeue_io(struct thin_c *tc)
 512{
 513        struct bio_list bios;
 514        unsigned long flags;
 515
 516        bio_list_init(&bios);
 517
 518        spin_lock_irqsave(&tc->lock, flags);
 519        __merge_bio_list(&bios, &tc->deferred_bio_list);
 520        __merge_bio_list(&bios, &tc->retry_on_resume_list);
 521        spin_unlock_irqrestore(&tc->lock, flags);
 522
 523        error_bio_list(&bios, DM_ENDIO_REQUEUE);
 524        requeue_deferred_cells(tc);
 525}
 526
 527static void error_retry_list(struct pool *pool)
 528{
 529        struct thin_c *tc;
 530
 531        rcu_read_lock();
 532        list_for_each_entry_rcu(tc, &pool->active_thins, list)
 533                error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
 534        rcu_read_unlock();
 535}
 536
 537/*
 538 * This section of code contains the logic for processing a thin device's IO.
 539 * Much of the code depends on pool object resources (lists, workqueues, etc)
 540 * but most is exclusively called from the thin target rather than the thin-pool
 541 * target.
 542 */
 543
 544static bool block_size_is_power_of_two(struct pool *pool)
 545{
 546        return pool->sectors_per_block_shift >= 0;
 547}
 548
 549static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 550{
 551        struct pool *pool = tc->pool;
 552        sector_t block_nr = bio->bi_iter.bi_sector;
 553
 554        if (block_size_is_power_of_two(pool))
 555                block_nr >>= pool->sectors_per_block_shift;
 556        else
 557                (void) sector_div(block_nr, pool->sectors_per_block);
 558
 559        return block_nr;
 560}
 561
 562static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 563{
 564        struct pool *pool = tc->pool;
 565        sector_t bi_sector = bio->bi_iter.bi_sector;
 566
 567        bio->bi_bdev = tc->pool_dev->bdev;
 568        if (block_size_is_power_of_two(pool))
 569                bio->bi_iter.bi_sector =
 570                        (block << pool->sectors_per_block_shift) |
 571                        (bi_sector & (pool->sectors_per_block - 1));
 572        else
 573                bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 574                                 sector_div(bi_sector, pool->sectors_per_block);
 575}
 576
 577static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 578{
 579        bio->bi_bdev = tc->origin_dev->bdev;
 580}
 581
 582static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 583{
 584        return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
 585                dm_thin_changed_this_transaction(tc->td);
 586}
 587
 588static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 589{
 590        struct dm_thin_endio_hook *h;
 591
 592        if (bio->bi_rw & REQ_DISCARD)
 593                return;
 594
 595        h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 596        h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 597}
 598
 599static void issue(struct thin_c *tc, struct bio *bio)
 600{
 601        struct pool *pool = tc->pool;
 602        unsigned long flags;
 603
 604        if (!bio_triggers_commit(tc, bio)) {
 605                generic_make_request(bio);
 606                return;
 607        }
 608
 609        /*
 610         * Complete bio with an error if earlier I/O caused changes to
 611         * the metadata that can't be committed e.g, due to I/O errors
 612         * on the metadata device.
 613         */
 614        if (dm_thin_aborted_changes(tc->td)) {
 615                bio_io_error(bio);
 616                return;
 617        }
 618
 619        /*
 620         * Batch together any bios that trigger commits and then issue a
 621         * single commit for them in process_deferred_bios().
 622         */
 623        spin_lock_irqsave(&pool->lock, flags);
 624        bio_list_add(&pool->deferred_flush_bios, bio);
 625        spin_unlock_irqrestore(&pool->lock, flags);
 626}
 627
 628static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 629{
 630        remap_to_origin(tc, bio);
 631        issue(tc, bio);
 632}
 633
 634static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 635                            dm_block_t block)
 636{
 637        remap(tc, bio, block);
 638        issue(tc, bio);
 639}
 640
 641/*----------------------------------------------------------------*/
 642
 643/*
 644 * Bio endio functions.
 645 */
 646struct dm_thin_new_mapping {
 647        struct list_head list;
 648
 649        bool pass_discard:1;
 650        bool definitely_not_shared:1;
 651
 652        /*
 653         * Track quiescing, copying and zeroing preparation actions.  When this
 654         * counter hits zero the block is prepared and can be inserted into the
 655         * btree.
 656         */
 657        atomic_t prepare_actions;
 658
 659        int err;
 660        struct thin_c *tc;
 661        dm_block_t virt_block;
 662        dm_block_t data_block;
 663        struct dm_bio_prison_cell *cell, *cell2;
 664
 665        /*
 666         * If the bio covers the whole area of a block then we can avoid
 667         * zeroing or copying.  Instead this bio is hooked.  The bio will
 668         * still be in the cell, so care has to be taken to avoid issuing
 669         * the bio twice.
 670         */
 671        struct bio *bio;
 672        bio_end_io_t *saved_bi_end_io;
 673};
 674
 675static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 676{
 677        struct pool *pool = m->tc->pool;
 678
 679        if (atomic_dec_and_test(&m->prepare_actions)) {
 680                list_add_tail(&m->list, &pool->prepared_mappings);
 681                wake_worker(pool);
 682        }
 683}
 684
 685static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 686{
 687        unsigned long flags;
 688        struct pool *pool = m->tc->pool;
 689
 690        spin_lock_irqsave(&pool->lock, flags);
 691        __complete_mapping_preparation(m);
 692        spin_unlock_irqrestore(&pool->lock, flags);
 693}
 694
 695static void copy_complete(int read_err, unsigned long write_err, void *context)
 696{
 697        struct dm_thin_new_mapping *m = context;
 698
 699        m->err = read_err || write_err ? -EIO : 0;
 700        complete_mapping_preparation(m);
 701}
 702
 703static void overwrite_endio(struct bio *bio, int err)
 704{
 705        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 706        struct dm_thin_new_mapping *m = h->overwrite_mapping;
 707
 708        m->err = err;
 709        complete_mapping_preparation(m);
 710}
 711
 712/*----------------------------------------------------------------*/
 713
 714/*
 715 * Workqueue.
 716 */
 717
 718/*
 719 * Prepared mapping jobs.
 720 */
 721
 722/*
 723 * This sends the bios in the cell, except the original holder, back
 724 * to the deferred_bios list.
 725 */
 726static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 727{
 728        struct pool *pool = tc->pool;
 729        unsigned long flags;
 730
 731        spin_lock_irqsave(&tc->lock, flags);
 732        cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 733        spin_unlock_irqrestore(&tc->lock, flags);
 734
 735        wake_worker(pool);
 736}
 737
 738static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 739
 740struct remap_info {
 741        struct thin_c *tc;
 742        struct bio_list defer_bios;
 743        struct bio_list issue_bios;
 744};
 745
 746static void __inc_remap_and_issue_cell(void *context,
 747                                       struct dm_bio_prison_cell *cell)
 748{
 749        struct remap_info *info = context;
 750        struct bio *bio;
 751
 752        while ((bio = bio_list_pop(&cell->bios))) {
 753                if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
 754                        bio_list_add(&info->defer_bios, bio);
 755                else {
 756                        inc_all_io_entry(info->tc->pool, bio);
 757
 758                        /*
 759                         * We can't issue the bios with the bio prison lock
 760                         * held, so we add them to a list to issue on
 761                         * return from this function.
 762                         */
 763                        bio_list_add(&info->issue_bios, bio);
 764                }
 765        }
 766}
 767
 768static void inc_remap_and_issue_cell(struct thin_c *tc,
 769                                     struct dm_bio_prison_cell *cell,
 770                                     dm_block_t block)
 771{
 772        struct bio *bio;
 773        struct remap_info info;
 774
 775        info.tc = tc;
 776        bio_list_init(&info.defer_bios);
 777        bio_list_init(&info.issue_bios);
 778
 779        /*
 780         * We have to be careful to inc any bios we're about to issue
 781         * before the cell is released, and avoid a race with new bios
 782         * being added to the cell.
 783         */
 784        cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 785                           &info, cell);
 786
 787        while ((bio = bio_list_pop(&info.defer_bios)))
 788                thin_defer_bio(tc, bio);
 789
 790        while ((bio = bio_list_pop(&info.issue_bios)))
 791                remap_and_issue(info.tc, bio, block);
 792}
 793
 794static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 795{
 796        if (m->bio) {
 797                m->bio->bi_end_io = m->saved_bi_end_io;
 798                atomic_inc(&m->bio->bi_remaining);
 799        }
 800        cell_error(m->tc->pool, m->cell);
 801        list_del(&m->list);
 802        mempool_free(m, m->tc->pool->mapping_pool);
 803}
 804
 805static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 806{
 807        struct thin_c *tc = m->tc;
 808        struct pool *pool = tc->pool;
 809        struct bio *bio;
 810        int r;
 811
 812        bio = m->bio;
 813        if (bio) {
 814                bio->bi_end_io = m->saved_bi_end_io;
 815                atomic_inc(&bio->bi_remaining);
 816        }
 817
 818        if (m->err) {
 819                cell_error(pool, m->cell);
 820                goto out;
 821        }
 822
 823        /*
 824         * Commit the prepared block into the mapping btree.
 825         * Any I/O for this block arriving after this point will get
 826         * remapped to it directly.
 827         */
 828        r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
 829        if (r) {
 830                metadata_operation_failed(pool, "dm_thin_insert_block", r);
 831                cell_error(pool, m->cell);
 832                goto out;
 833        }
 834
 835        /*
 836         * Release any bios held while the block was being provisioned.
 837         * If we are processing a write bio that completely covers the block,
 838         * we already processed it so can ignore it now when processing
 839         * the bios in the cell.
 840         */
 841        if (bio) {
 842                inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 843                bio_endio(bio, 0);
 844        } else {
 845                inc_all_io_entry(tc->pool, m->cell->holder);
 846                remap_and_issue(tc, m->cell->holder, m->data_block);
 847                inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 848        }
 849
 850out:
 851        list_del(&m->list);
 852        mempool_free(m, pool->mapping_pool);
 853}
 854
 855static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
 856{
 857        struct thin_c *tc = m->tc;
 858
 859        bio_io_error(m->bio);
 860        cell_defer_no_holder(tc, m->cell);
 861        cell_defer_no_holder(tc, m->cell2);
 862        mempool_free(m, tc->pool->mapping_pool);
 863}
 864
 865static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
 866{
 867        struct thin_c *tc = m->tc;
 868
 869        inc_all_io_entry(tc->pool, m->bio);
 870        cell_defer_no_holder(tc, m->cell);
 871        cell_defer_no_holder(tc, m->cell2);
 872
 873        if (m->pass_discard)
 874                if (m->definitely_not_shared)
 875                        remap_and_issue(tc, m->bio, m->data_block);
 876                else {
 877                        bool used = false;
 878                        if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
 879                                bio_endio(m->bio, 0);
 880                        else
 881                                remap_and_issue(tc, m->bio, m->data_block);
 882                }
 883        else
 884                bio_endio(m->bio, 0);
 885
 886        mempool_free(m, tc->pool->mapping_pool);
 887}
 888
 889static void process_prepared_discard(struct dm_thin_new_mapping *m)
 890{
 891        int r;
 892        struct thin_c *tc = m->tc;
 893
 894        r = dm_thin_remove_block(tc->td, m->virt_block);
 895        if (r)
 896                DMERR_LIMIT("dm_thin_remove_block() failed");
 897
 898        process_prepared_discard_passdown(m);
 899}
 900
 901static void process_prepared(struct pool *pool, struct list_head *head,
 902                             process_mapping_fn *fn)
 903{
 904        unsigned long flags;
 905        struct list_head maps;
 906        struct dm_thin_new_mapping *m, *tmp;
 907
 908        INIT_LIST_HEAD(&maps);
 909        spin_lock_irqsave(&pool->lock, flags);
 910        list_splice_init(head, &maps);
 911        spin_unlock_irqrestore(&pool->lock, flags);
 912
 913        list_for_each_entry_safe(m, tmp, &maps, list)
 914                (*fn)(m);
 915}
 916
 917/*
 918 * Deferred bio jobs.
 919 */
 920static int io_overlaps_block(struct pool *pool, struct bio *bio)
 921{
 922        return bio->bi_iter.bi_size ==
 923                (pool->sectors_per_block << SECTOR_SHIFT);
 924}
 925
 926static int io_overwrites_block(struct pool *pool, struct bio *bio)
 927{
 928        return (bio_data_dir(bio) == WRITE) &&
 929                io_overlaps_block(pool, bio);
 930}
 931
 932static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
 933                               bio_end_io_t *fn)
 934{
 935        *save = bio->bi_end_io;
 936        bio->bi_end_io = fn;
 937}
 938
 939static int ensure_next_mapping(struct pool *pool)
 940{
 941        if (pool->next_mapping)
 942                return 0;
 943
 944        pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
 945
 946        return pool->next_mapping ? 0 : -ENOMEM;
 947}
 948
 949static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
 950{
 951        struct dm_thin_new_mapping *m = pool->next_mapping;
 952
 953        BUG_ON(!pool->next_mapping);
 954
 955        memset(m, 0, sizeof(struct dm_thin_new_mapping));
 956        INIT_LIST_HEAD(&m->list);
 957        m->bio = NULL;
 958
 959        pool->next_mapping = NULL;
 960
 961        return m;
 962}
 963
 964static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
 965                    sector_t begin, sector_t end)
 966{
 967        int r;
 968        struct dm_io_region to;
 969
 970        to.bdev = tc->pool_dev->bdev;
 971        to.sector = begin;
 972        to.count = end - begin;
 973
 974        r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
 975        if (r < 0) {
 976                DMERR_LIMIT("dm_kcopyd_zero() failed");
 977                copy_complete(1, 1, m);
 978        }
 979}
 980
 981static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
 982                                      dm_block_t data_block,
 983                                      struct dm_thin_new_mapping *m)
 984{
 985        struct pool *pool = tc->pool;
 986        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 987
 988        h->overwrite_mapping = m;
 989        m->bio = bio;
 990        save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
 991        inc_all_io_entry(pool, bio);
 992        remap_and_issue(tc, bio, data_block);
 993}
 994
 995/*
 996 * A partial copy also needs to zero the uncopied region.
 997 */
 998static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
 999                          struct dm_dev *origin, dm_block_t data_origin,
1000                          dm_block_t data_dest,
1001                          struct dm_bio_prison_cell *cell, struct bio *bio,
1002                          sector_t len)
1003{
1004        int r;
1005        struct pool *pool = tc->pool;
1006        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1007
1008        m->tc = tc;
1009        m->virt_block = virt_block;
1010        m->data_block = data_dest;
1011        m->cell = cell;
1012
1013        /*
1014         * quiesce action + copy action + an extra reference held for the
1015         * duration of this function (we may need to inc later for a
1016         * partial zero).
1017         */
1018        atomic_set(&m->prepare_actions, 3);
1019
1020        if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1021                complete_mapping_preparation(m); /* already quiesced */
1022
1023        /*
1024         * IO to pool_dev remaps to the pool target's data_dev.
1025         *
1026         * If the whole block of data is being overwritten, we can issue the
1027         * bio immediately. Otherwise we use kcopyd to clone the data first.
1028         */
1029        if (io_overwrites_block(pool, bio))
1030                remap_and_issue_overwrite(tc, bio, data_dest, m);
1031        else {
1032                struct dm_io_region from, to;
1033
1034                from.bdev = origin->bdev;
1035                from.sector = data_origin * pool->sectors_per_block;
1036                from.count = len;
1037
1038                to.bdev = tc->pool_dev->bdev;
1039                to.sector = data_dest * pool->sectors_per_block;
1040                to.count = len;
1041
1042                r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1043                                   0, copy_complete, m);
1044                if (r < 0) {
1045                        DMERR_LIMIT("dm_kcopyd_copy() failed");
1046                        copy_complete(1, 1, m);
1047
1048                        /*
1049                         * We allow the zero to be issued, to simplify the
1050                         * error path.  Otherwise we'd need to start
1051                         * worrying about decrementing the prepare_actions
1052                         * counter.
1053                         */
1054                }
1055
1056                /*
1057                 * Do we need to zero a tail region?
1058                 */
1059                if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1060                        atomic_inc(&m->prepare_actions);
1061                        ll_zero(tc, m,
1062                                data_dest * pool->sectors_per_block + len,
1063                                (data_dest + 1) * pool->sectors_per_block);
1064                }
1065        }
1066
1067        complete_mapping_preparation(m); /* drop our ref */
1068}
1069
1070static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1071                                   dm_block_t data_origin, dm_block_t data_dest,
1072                                   struct dm_bio_prison_cell *cell, struct bio *bio)
1073{
1074        schedule_copy(tc, virt_block, tc->pool_dev,
1075                      data_origin, data_dest, cell, bio,
1076                      tc->pool->sectors_per_block);
1077}
1078
1079static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1080                          dm_block_t data_block, struct dm_bio_prison_cell *cell,
1081                          struct bio *bio)
1082{
1083        struct pool *pool = tc->pool;
1084        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1085
1086        atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1087        m->tc = tc;
1088        m->virt_block = virt_block;
1089        m->data_block = data_block;
1090        m->cell = cell;
1091
1092        /*
1093         * If the whole block of data is being overwritten or we are not
1094         * zeroing pre-existing data, we can issue the bio immediately.
1095         * Otherwise we use kcopyd to zero the data first.
1096         */
1097        if (!pool->pf.zero_new_blocks)
1098                process_prepared_mapping(m);
1099
1100        else if (io_overwrites_block(pool, bio))
1101                remap_and_issue_overwrite(tc, bio, data_block, m);
1102
1103        else
1104                ll_zero(tc, m,
1105                        data_block * pool->sectors_per_block,
1106                        (data_block + 1) * pool->sectors_per_block);
1107}
1108
1109static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1110                                   dm_block_t data_dest,
1111                                   struct dm_bio_prison_cell *cell, struct bio *bio)
1112{
1113        struct pool *pool = tc->pool;
1114        sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1115        sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1116
1117        if (virt_block_end <= tc->origin_size)
1118                schedule_copy(tc, virt_block, tc->origin_dev,
1119                              virt_block, data_dest, cell, bio,
1120                              pool->sectors_per_block);
1121
1122        else if (virt_block_begin < tc->origin_size)
1123                schedule_copy(tc, virt_block, tc->origin_dev,
1124                              virt_block, data_dest, cell, bio,
1125                              tc->origin_size - virt_block_begin);
1126
1127        else
1128                schedule_zero(tc, virt_block, data_dest, cell, bio);
1129}
1130
1131static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1132
1133static void check_for_space(struct pool *pool)
1134{
1135        int r;
1136        dm_block_t nr_free;
1137
1138        if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1139                return;
1140
1141        r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1142        if (r)
1143                return;
1144
1145        if (nr_free)
1146                set_pool_mode(pool, PM_WRITE);
1147}
1148
1149/*
1150 * A non-zero return indicates read_only or fail_io mode.
1151 * Many callers don't care about the return value.
1152 */
1153static int commit(struct pool *pool)
1154{
1155        int r;
1156
1157        if (get_pool_mode(pool) >= PM_READ_ONLY)
1158                return -EINVAL;
1159
1160        r = dm_pool_commit_metadata(pool->pmd);
1161        if (r)
1162                metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1163        else
1164                check_for_space(pool);
1165
1166        return r;
1167}
1168
1169static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1170{
1171        unsigned long flags;
1172
1173        if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1174                DMWARN("%s: reached low water mark for data device: sending event.",
1175                       dm_device_name(pool->pool_md));
1176                spin_lock_irqsave(&pool->lock, flags);
1177                pool->low_water_triggered = true;
1178                spin_unlock_irqrestore(&pool->lock, flags);
1179                dm_table_event(pool->ti->table);
1180        }
1181}
1182
1183static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1184{
1185        int r;
1186        dm_block_t free_blocks;
1187        struct pool *pool = tc->pool;
1188
1189        if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1190                return -EINVAL;
1191
1192        r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1193        if (r) {
1194                metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1195                return r;
1196        }
1197
1198        check_low_water_mark(pool, free_blocks);
1199
1200        if (!free_blocks) {
1201                /*
1202                 * Try to commit to see if that will free up some
1203                 * more space.
1204                 */
1205                r = commit(pool);
1206                if (r)
1207                        return r;
1208
1209                r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1210                if (r) {
1211                        metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1212                        return r;
1213                }
1214
1215                if (!free_blocks) {
1216                        set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1217                        return -ENOSPC;
1218                }
1219        }
1220
1221        r = dm_pool_alloc_data_block(pool->pmd, result);
1222        if (r) {
1223                metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1224                return r;
1225        }
1226
1227        return 0;
1228}
1229
1230/*
1231 * If we have run out of space, queue bios until the device is
1232 * resumed, presumably after having been reloaded with more space.
1233 */
1234static void retry_on_resume(struct bio *bio)
1235{
1236        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1237        struct thin_c *tc = h->tc;
1238        unsigned long flags;
1239
1240        spin_lock_irqsave(&tc->lock, flags);
1241        bio_list_add(&tc->retry_on_resume_list, bio);
1242        spin_unlock_irqrestore(&tc->lock, flags);
1243}
1244
1245static int should_error_unserviceable_bio(struct pool *pool)
1246{
1247        enum pool_mode m = get_pool_mode(pool);
1248
1249        switch (m) {
1250        case PM_WRITE:
1251                /* Shouldn't get here */
1252                DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1253                return -EIO;
1254
1255        case PM_OUT_OF_DATA_SPACE:
1256                return pool->pf.error_if_no_space ? -ENOSPC : 0;
1257
1258        case PM_READ_ONLY:
1259        case PM_FAIL:
1260                return -EIO;
1261        default:
1262                /* Shouldn't get here */
1263                DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1264                return -EIO;
1265        }
1266}
1267
1268static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1269{
1270        int error = should_error_unserviceable_bio(pool);
1271
1272        if (error)
1273                bio_endio(bio, error);
1274        else
1275                retry_on_resume(bio);
1276}
1277
1278static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1279{
1280        struct bio *bio;
1281        struct bio_list bios;
1282        int error;
1283
1284        error = should_error_unserviceable_bio(pool);
1285        if (error) {
1286                cell_error_with_code(pool, cell, error);
1287                return;
1288        }
1289
1290        bio_list_init(&bios);
1291        cell_release(pool, cell, &bios);
1292
1293        while ((bio = bio_list_pop(&bios)))
1294                retry_on_resume(bio);
1295}
1296
1297static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1298{
1299        int r;
1300        struct bio *bio = cell->holder;
1301        struct pool *pool = tc->pool;
1302        struct dm_bio_prison_cell *cell2;
1303        struct dm_cell_key key2;
1304        dm_block_t block = get_bio_block(tc, bio);
1305        struct dm_thin_lookup_result lookup_result;
1306        struct dm_thin_new_mapping *m;
1307
1308        if (tc->requeue_mode) {
1309                cell_requeue(pool, cell);
1310                return;
1311        }
1312
1313        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1314        switch (r) {
1315        case 0:
1316                /*
1317                 * Check nobody is fiddling with this pool block.  This can
1318                 * happen if someone's in the process of breaking sharing
1319                 * on this block.
1320                 */
1321                build_data_key(tc->td, lookup_result.block, &key2);
1322                if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1323                        cell_defer_no_holder(tc, cell);
1324                        break;
1325                }
1326
1327                if (io_overlaps_block(pool, bio)) {
1328                        /*
1329                         * IO may still be going to the destination block.  We must
1330                         * quiesce before we can do the removal.
1331                         */
1332                        m = get_next_mapping(pool);
1333                        m->tc = tc;
1334                        m->pass_discard = pool->pf.discard_passdown;
1335                        m->definitely_not_shared = !lookup_result.shared;
1336                        m->virt_block = block;
1337                        m->data_block = lookup_result.block;
1338                        m->cell = cell;
1339                        m->cell2 = cell2;
1340                        m->bio = bio;
1341
1342                        if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1343                                pool->process_prepared_discard(m);
1344
1345                } else {
1346                        inc_all_io_entry(pool, bio);
1347                        cell_defer_no_holder(tc, cell);
1348                        cell_defer_no_holder(tc, cell2);
1349
1350                        /*
1351                         * The DM core makes sure that the discard doesn't span
1352                         * a block boundary.  So we submit the discard of a
1353                         * partial block appropriately.
1354                         */
1355                        if ((!lookup_result.shared) && pool->pf.discard_passdown)
1356                                remap_and_issue(tc, bio, lookup_result.block);
1357                        else
1358                                bio_endio(bio, 0);
1359                }
1360                break;
1361
1362        case -ENODATA:
1363                /*
1364                 * It isn't provisioned, just forget it.
1365                 */
1366                cell_defer_no_holder(tc, cell);
1367                bio_endio(bio, 0);
1368                break;
1369
1370        default:
1371                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1372                            __func__, r);
1373                cell_defer_no_holder(tc, cell);
1374                bio_io_error(bio);
1375                break;
1376        }
1377}
1378
1379static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1380{
1381        struct dm_bio_prison_cell *cell;
1382        struct dm_cell_key key;
1383        dm_block_t block = get_bio_block(tc, bio);
1384
1385        build_virtual_key(tc->td, block, &key);
1386        if (bio_detain(tc->pool, &key, bio, &cell))
1387                return;
1388
1389        process_discard_cell(tc, cell);
1390}
1391
1392static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1393                          struct dm_cell_key *key,
1394                          struct dm_thin_lookup_result *lookup_result,
1395                          struct dm_bio_prison_cell *cell)
1396{
1397        int r;
1398        dm_block_t data_block;
1399        struct pool *pool = tc->pool;
1400
1401        r = alloc_data_block(tc, &data_block);
1402        switch (r) {
1403        case 0:
1404                schedule_internal_copy(tc, block, lookup_result->block,
1405                                       data_block, cell, bio);
1406                break;
1407
1408        case -ENOSPC:
1409                retry_bios_on_resume(pool, cell);
1410                break;
1411
1412        default:
1413                DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1414                            __func__, r);
1415                cell_error(pool, cell);
1416                break;
1417        }
1418}
1419
1420static void __remap_and_issue_shared_cell(void *context,
1421                                          struct dm_bio_prison_cell *cell)
1422{
1423        struct remap_info *info = context;
1424        struct bio *bio;
1425
1426        while ((bio = bio_list_pop(&cell->bios))) {
1427                if ((bio_data_dir(bio) == WRITE) ||
1428                    (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1429                        bio_list_add(&info->defer_bios, bio);
1430                else {
1431                        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1432
1433                        h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1434                        inc_all_io_entry(info->tc->pool, bio);
1435                        bio_list_add(&info->issue_bios, bio);
1436                }
1437        }
1438}
1439
1440static void remap_and_issue_shared_cell(struct thin_c *tc,
1441                                        struct dm_bio_prison_cell *cell,
1442                                        dm_block_t block)
1443{
1444        struct bio *bio;
1445        struct remap_info info;
1446
1447        info.tc = tc;
1448        bio_list_init(&info.defer_bios);
1449        bio_list_init(&info.issue_bios);
1450
1451        cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1452                           &info, cell);
1453
1454        while ((bio = bio_list_pop(&info.defer_bios)))
1455                thin_defer_bio(tc, bio);
1456
1457        while ((bio = bio_list_pop(&info.issue_bios)))
1458                remap_and_issue(tc, bio, block);
1459}
1460
1461static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1462                               dm_block_t block,
1463                               struct dm_thin_lookup_result *lookup_result,
1464                               struct dm_bio_prison_cell *virt_cell)
1465{
1466        struct dm_bio_prison_cell *data_cell;
1467        struct pool *pool = tc->pool;
1468        struct dm_cell_key key;
1469
1470        /*
1471         * If cell is already occupied, then sharing is already in the process
1472         * of being broken so we have nothing further to do here.
1473         */
1474        build_data_key(tc->td, lookup_result->block, &key);
1475        if (bio_detain(pool, &key, bio, &data_cell)) {
1476                cell_defer_no_holder(tc, virt_cell);
1477                return;
1478        }
1479
1480        if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1481                break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1482                cell_defer_no_holder(tc, virt_cell);
1483        } else {
1484                struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1485
1486                h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1487                inc_all_io_entry(pool, bio);
1488                remap_and_issue(tc, bio, lookup_result->block);
1489
1490                remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1491                remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1492        }
1493}
1494
1495static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1496                            struct dm_bio_prison_cell *cell)
1497{
1498        int r;
1499        dm_block_t data_block;
1500        struct pool *pool = tc->pool;
1501
1502        /*
1503         * Remap empty bios (flushes) immediately, without provisioning.
1504         */
1505        if (!bio->bi_iter.bi_size) {
1506                inc_all_io_entry(pool, bio);
1507                cell_defer_no_holder(tc, cell);
1508
1509                remap_and_issue(tc, bio, 0);
1510                return;
1511        }
1512
1513        /*
1514         * Fill read bios with zeroes and complete them immediately.
1515         */
1516        if (bio_data_dir(bio) == READ) {
1517                zero_fill_bio(bio);
1518                cell_defer_no_holder(tc, cell);
1519                bio_endio(bio, 0);
1520                return;
1521        }
1522
1523        r = alloc_data_block(tc, &data_block);
1524        switch (r) {
1525        case 0:
1526                if (tc->origin_dev)
1527                        schedule_external_copy(tc, block, data_block, cell, bio);
1528                else
1529                        schedule_zero(tc, block, data_block, cell, bio);
1530                break;
1531
1532        case -ENOSPC:
1533                retry_bios_on_resume(pool, cell);
1534                break;
1535
1536        default:
1537                DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1538                            __func__, r);
1539                cell_error(pool, cell);
1540                break;
1541        }
1542}
1543
1544static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1545{
1546        int r;
1547        struct pool *pool = tc->pool;
1548        struct bio *bio = cell->holder;
1549        dm_block_t block = get_bio_block(tc, bio);
1550        struct dm_thin_lookup_result lookup_result;
1551
1552        if (tc->requeue_mode) {
1553                cell_requeue(pool, cell);
1554                return;
1555        }
1556
1557        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1558        switch (r) {
1559        case 0:
1560                if (lookup_result.shared)
1561                        process_shared_bio(tc, bio, block, &lookup_result, cell);
1562                else {
1563                        inc_all_io_entry(pool, bio);
1564                        remap_and_issue(tc, bio, lookup_result.block);
1565                        inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1566                }
1567                break;
1568
1569        case -ENODATA:
1570                if (bio_data_dir(bio) == READ && tc->origin_dev) {
1571                        inc_all_io_entry(pool, bio);
1572                        cell_defer_no_holder(tc, cell);
1573
1574                        if (bio_end_sector(bio) <= tc->origin_size)
1575                                remap_to_origin_and_issue(tc, bio);
1576
1577                        else if (bio->bi_iter.bi_sector < tc->origin_size) {
1578                                zero_fill_bio(bio);
1579                                bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1580                                remap_to_origin_and_issue(tc, bio);
1581
1582                        } else {
1583                                zero_fill_bio(bio);
1584                                bio_endio(bio, 0);
1585                        }
1586                } else
1587                        provision_block(tc, bio, block, cell);
1588                break;
1589
1590        default:
1591                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1592                            __func__, r);
1593                cell_defer_no_holder(tc, cell);
1594                bio_io_error(bio);
1595                break;
1596        }
1597}
1598
1599static void process_bio(struct thin_c *tc, struct bio *bio)
1600{
1601        struct pool *pool = tc->pool;
1602        dm_block_t block = get_bio_block(tc, bio);
1603        struct dm_bio_prison_cell *cell;
1604        struct dm_cell_key key;
1605
1606        /*
1607         * If cell is already occupied, then the block is already
1608         * being provisioned so we have nothing further to do here.
1609         */
1610        build_virtual_key(tc->td, block, &key);
1611        if (bio_detain(pool, &key, bio, &cell))
1612                return;
1613
1614        process_cell(tc, cell);
1615}
1616
1617static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1618                                    struct dm_bio_prison_cell *cell)
1619{
1620        int r;
1621        int rw = bio_data_dir(bio);
1622        dm_block_t block = get_bio_block(tc, bio);
1623        struct dm_thin_lookup_result lookup_result;
1624
1625        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1626        switch (r) {
1627        case 0:
1628                if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1629                        handle_unserviceable_bio(tc->pool, bio);
1630                        if (cell)
1631                                cell_defer_no_holder(tc, cell);
1632                } else {
1633                        inc_all_io_entry(tc->pool, bio);
1634                        remap_and_issue(tc, bio, lookup_result.block);
1635                        if (cell)
1636                                inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1637                }
1638                break;
1639
1640        case -ENODATA:
1641                if (cell)
1642                        cell_defer_no_holder(tc, cell);
1643                if (rw != READ) {
1644                        handle_unserviceable_bio(tc->pool, bio);
1645                        break;
1646                }
1647
1648                if (tc->origin_dev) {
1649                        inc_all_io_entry(tc->pool, bio);
1650                        remap_to_origin_and_issue(tc, bio);
1651                        break;
1652                }
1653
1654                zero_fill_bio(bio);
1655                bio_endio(bio, 0);
1656                break;
1657
1658        default:
1659                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1660                            __func__, r);
1661                if (cell)
1662                        cell_defer_no_holder(tc, cell);
1663                bio_io_error(bio);
1664                break;
1665        }
1666}
1667
1668static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1669{
1670        __process_bio_read_only(tc, bio, NULL);
1671}
1672
1673static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1674{
1675        __process_bio_read_only(tc, cell->holder, cell);
1676}
1677
1678static void process_bio_success(struct thin_c *tc, struct bio *bio)
1679{
1680        bio_endio(bio, 0);
1681}
1682
1683static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1684{
1685        bio_io_error(bio);
1686}
1687
1688static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1689{
1690        cell_success(tc->pool, cell);
1691}
1692
1693static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1694{
1695        cell_error(tc->pool, cell);
1696}
1697
1698/*
1699 * FIXME: should we also commit due to size of transaction, measured in
1700 * metadata blocks?
1701 */
1702static int need_commit_due_to_time(struct pool *pool)
1703{
1704        return !time_in_range(jiffies, pool->last_commit_jiffies,
1705                              pool->last_commit_jiffies + COMMIT_PERIOD);
1706}
1707
1708#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1709#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1710
1711static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1712{
1713        struct rb_node **rbp, *parent;
1714        struct dm_thin_endio_hook *pbd;
1715        sector_t bi_sector = bio->bi_iter.bi_sector;
1716
1717        rbp = &tc->sort_bio_list.rb_node;
1718        parent = NULL;
1719        while (*rbp) {
1720                parent = *rbp;
1721                pbd = thin_pbd(parent);
1722
1723                if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1724                        rbp = &(*rbp)->rb_left;
1725                else
1726                        rbp = &(*rbp)->rb_right;
1727        }
1728
1729        pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1730        rb_link_node(&pbd->rb_node, parent, rbp);
1731        rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1732}
1733
1734static void __extract_sorted_bios(struct thin_c *tc)
1735{
1736        struct rb_node *node;
1737        struct dm_thin_endio_hook *pbd;
1738        struct bio *bio;
1739
1740        for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1741                pbd = thin_pbd(node);
1742                bio = thin_bio(pbd);
1743
1744                bio_list_add(&tc->deferred_bio_list, bio);
1745                rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1746        }
1747
1748        WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1749}
1750
1751static void __sort_thin_deferred_bios(struct thin_c *tc)
1752{
1753        struct bio *bio;
1754        struct bio_list bios;
1755
1756        bio_list_init(&bios);
1757        bio_list_merge(&bios, &tc->deferred_bio_list);
1758        bio_list_init(&tc->deferred_bio_list);
1759
1760        /* Sort deferred_bio_list using rb-tree */
1761        while ((bio = bio_list_pop(&bios)))
1762                __thin_bio_rb_add(tc, bio);
1763
1764        /*
1765         * Transfer the sorted bios in sort_bio_list back to
1766         * deferred_bio_list to allow lockless submission of
1767         * all bios.
1768         */
1769        __extract_sorted_bios(tc);
1770}
1771
1772static void process_thin_deferred_bios(struct thin_c *tc)
1773{
1774        struct pool *pool = tc->pool;
1775        unsigned long flags;
1776        struct bio *bio;
1777        struct bio_list bios;
1778        struct blk_plug plug;
1779        unsigned count = 0;
1780
1781        if (tc->requeue_mode) {
1782                error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
1783                return;
1784        }
1785
1786        bio_list_init(&bios);
1787
1788        spin_lock_irqsave(&tc->lock, flags);
1789
1790        if (bio_list_empty(&tc->deferred_bio_list)) {
1791                spin_unlock_irqrestore(&tc->lock, flags);
1792                return;
1793        }
1794
1795        __sort_thin_deferred_bios(tc);
1796
1797        bio_list_merge(&bios, &tc->deferred_bio_list);
1798        bio_list_init(&tc->deferred_bio_list);
1799
1800        spin_unlock_irqrestore(&tc->lock, flags);
1801
1802        blk_start_plug(&plug);
1803        while ((bio = bio_list_pop(&bios))) {
1804                /*
1805                 * If we've got no free new_mapping structs, and processing
1806                 * this bio might require one, we pause until there are some
1807                 * prepared mappings to process.
1808                 */
1809                if (ensure_next_mapping(pool)) {
1810                        spin_lock_irqsave(&tc->lock, flags);
1811                        bio_list_add(&tc->deferred_bio_list, bio);
1812                        bio_list_merge(&tc->deferred_bio_list, &bios);
1813                        spin_unlock_irqrestore(&tc->lock, flags);
1814                        break;
1815                }
1816
1817                if (bio->bi_rw & REQ_DISCARD)
1818                        pool->process_discard(tc, bio);
1819                else
1820                        pool->process_bio(tc, bio);
1821
1822                if ((count++ & 127) == 0) {
1823                        throttle_work_update(&pool->throttle);
1824                        dm_pool_issue_prefetches(pool->pmd);
1825                }
1826        }
1827        blk_finish_plug(&plug);
1828}
1829
1830static int cmp_cells(const void *lhs, const void *rhs)
1831{
1832        struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
1833        struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
1834
1835        BUG_ON(!lhs_cell->holder);
1836        BUG_ON(!rhs_cell->holder);
1837
1838        if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
1839                return -1;
1840
1841        if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
1842                return 1;
1843
1844        return 0;
1845}
1846
1847static unsigned sort_cells(struct pool *pool, struct list_head *cells)
1848{
1849        unsigned count = 0;
1850        struct dm_bio_prison_cell *cell, *tmp;
1851
1852        list_for_each_entry_safe(cell, tmp, cells, user_list) {
1853                if (count >= CELL_SORT_ARRAY_SIZE)
1854                        break;
1855
1856                pool->cell_sort_array[count++] = cell;
1857                list_del(&cell->user_list);
1858        }
1859
1860        sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
1861
1862        return count;
1863}
1864
1865static void process_thin_deferred_cells(struct thin_c *tc)
1866{
1867        struct pool *pool = tc->pool;
1868        unsigned long flags;
1869        struct list_head cells;
1870        struct dm_bio_prison_cell *cell;
1871        unsigned i, j, count;
1872
1873        INIT_LIST_HEAD(&cells);
1874
1875        spin_lock_irqsave(&tc->lock, flags);
1876        list_splice_init(&tc->deferred_cells, &cells);
1877        spin_unlock_irqrestore(&tc->lock, flags);
1878
1879        if (list_empty(&cells))
1880                return;
1881
1882        do {
1883                count = sort_cells(tc->pool, &cells);
1884
1885                for (i = 0; i < count; i++) {
1886                        cell = pool->cell_sort_array[i];
1887                        BUG_ON(!cell->holder);
1888
1889                        /*
1890                         * If we've got no free new_mapping structs, and processing
1891                         * this bio might require one, we pause until there are some
1892                         * prepared mappings to process.
1893                         */
1894                        if (ensure_next_mapping(pool)) {
1895                                for (j = i; j < count; j++)
1896                                        list_add(&pool->cell_sort_array[j]->user_list, &cells);
1897
1898                                spin_lock_irqsave(&tc->lock, flags);
1899                                list_splice(&cells, &tc->deferred_cells);
1900                                spin_unlock_irqrestore(&tc->lock, flags);
1901                                return;
1902                        }
1903
1904                        if (cell->holder->bi_rw & REQ_DISCARD)
1905                                pool->process_discard_cell(tc, cell);
1906                        else
1907                                pool->process_cell(tc, cell);
1908                }
1909        } while (!list_empty(&cells));
1910}
1911
1912static void thin_get(struct thin_c *tc);
1913static void thin_put(struct thin_c *tc);
1914
1915/*
1916 * We can't hold rcu_read_lock() around code that can block.  So we
1917 * find a thin with the rcu lock held; bump a refcount; then drop
1918 * the lock.
1919 */
1920static struct thin_c *get_first_thin(struct pool *pool)
1921{
1922        struct thin_c *tc = NULL;
1923
1924        rcu_read_lock();
1925        if (!list_empty(&pool->active_thins)) {
1926                tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1927                thin_get(tc);
1928        }
1929        rcu_read_unlock();
1930
1931        return tc;
1932}
1933
1934static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1935{
1936        struct thin_c *old_tc = tc;
1937
1938        rcu_read_lock();
1939        list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1940                thin_get(tc);
1941                thin_put(old_tc);
1942                rcu_read_unlock();
1943                return tc;
1944        }
1945        thin_put(old_tc);
1946        rcu_read_unlock();
1947
1948        return NULL;
1949}
1950
1951static void process_deferred_bios(struct pool *pool)
1952{
1953        unsigned long flags;
1954        struct bio *bio;
1955        struct bio_list bios;
1956        struct thin_c *tc;
1957
1958        tc = get_first_thin(pool);
1959        while (tc) {
1960                process_thin_deferred_cells(tc);
1961                process_thin_deferred_bios(tc);
1962                tc = get_next_thin(pool, tc);
1963        }
1964
1965        /*
1966         * If there are any deferred flush bios, we must commit
1967         * the metadata before issuing them.
1968         */
1969        bio_list_init(&bios);
1970        spin_lock_irqsave(&pool->lock, flags);
1971        bio_list_merge(&bios, &pool->deferred_flush_bios);
1972        bio_list_init(&pool->deferred_flush_bios);
1973        spin_unlock_irqrestore(&pool->lock, flags);
1974
1975        if (bio_list_empty(&bios) &&
1976            !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1977                return;
1978
1979        if (commit(pool)) {
1980                while ((bio = bio_list_pop(&bios)))
1981                        bio_io_error(bio);
1982                return;
1983        }
1984        pool->last_commit_jiffies = jiffies;
1985
1986        while ((bio = bio_list_pop(&bios)))
1987                generic_make_request(bio);
1988}
1989
1990static void do_worker(struct work_struct *ws)
1991{
1992        struct pool *pool = container_of(ws, struct pool, worker);
1993
1994        throttle_work_start(&pool->throttle);
1995        dm_pool_issue_prefetches(pool->pmd);
1996        throttle_work_update(&pool->throttle);
1997        process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1998        throttle_work_update(&pool->throttle);
1999        process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2000        throttle_work_update(&pool->throttle);
2001        process_deferred_bios(pool);
2002        throttle_work_complete(&pool->throttle);
2003}
2004
2005/*
2006 * We want to commit periodically so that not too much
2007 * unwritten data builds up.
2008 */
2009static void do_waker(struct work_struct *ws)
2010{
2011        struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2012        wake_worker(pool);
2013        queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2014}
2015
2016/*
2017 * We're holding onto IO to allow userland time to react.  After the
2018 * timeout either the pool will have been resized (and thus back in
2019 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
2020 */
2021static void do_no_space_timeout(struct work_struct *ws)
2022{
2023        struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2024                                         no_space_timeout);
2025
2026        if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
2027                set_pool_mode(pool, PM_READ_ONLY);
2028}
2029
2030/*----------------------------------------------------------------*/
2031
2032struct pool_work {
2033        struct work_struct worker;
2034        struct completion complete;
2035};
2036
2037static struct pool_work *to_pool_work(struct work_struct *ws)
2038{
2039        return container_of(ws, struct pool_work, worker);
2040}
2041
2042static void pool_work_complete(struct pool_work *pw)
2043{
2044        complete(&pw->complete);
2045}
2046
2047static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2048                           void (*fn)(struct work_struct *))
2049{
2050        INIT_WORK_ONSTACK(&pw->worker, fn);
2051        init_completion(&pw->complete);
2052        queue_work(pool->wq, &pw->worker);
2053        wait_for_completion(&pw->complete);
2054}
2055
2056/*----------------------------------------------------------------*/
2057
2058struct noflush_work {
2059        struct pool_work pw;
2060        struct thin_c *tc;
2061};
2062
2063static struct noflush_work *to_noflush(struct work_struct *ws)
2064{
2065        return container_of(to_pool_work(ws), struct noflush_work, pw);
2066}
2067
2068static void do_noflush_start(struct work_struct *ws)
2069{
2070        struct noflush_work *w = to_noflush(ws);
2071        w->tc->requeue_mode = true;
2072        requeue_io(w->tc);
2073        pool_work_complete(&w->pw);
2074}
2075
2076static void do_noflush_stop(struct work_struct *ws)
2077{
2078        struct noflush_work *w = to_noflush(ws);
2079        w->tc->requeue_mode = false;
2080        pool_work_complete(&w->pw);
2081}
2082
2083static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2084{
2085        struct noflush_work w;
2086
2087        w.tc = tc;
2088        pool_work_wait(&w.pw, tc->pool, fn);
2089}
2090
2091/*----------------------------------------------------------------*/
2092
2093static enum pool_mode get_pool_mode(struct pool *pool)
2094{
2095        return pool->pf.mode;
2096}
2097
2098static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2099{
2100        dm_table_event(pool->ti->table);
2101        DMINFO("%s: switching pool to %s mode",
2102               dm_device_name(pool->pool_md), new_mode);
2103}
2104
2105static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2106{
2107        struct pool_c *pt = pool->ti->private;
2108        bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2109        enum pool_mode old_mode = get_pool_mode(pool);
2110        unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2111
2112        /*
2113         * Never allow the pool to transition to PM_WRITE mode if user
2114         * intervention is required to verify metadata and data consistency.
2115         */
2116        if (new_mode == PM_WRITE && needs_check) {
2117                DMERR("%s: unable to switch pool to write mode until repaired.",
2118                      dm_device_name(pool->pool_md));
2119                if (old_mode != new_mode)
2120                        new_mode = old_mode;
2121                else
2122                        new_mode = PM_READ_ONLY;
2123        }
2124        /*
2125         * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2126         * not going to recover without a thin_repair.  So we never let the
2127         * pool move out of the old mode.
2128         */
2129        if (old_mode == PM_FAIL)
2130                new_mode = old_mode;
2131
2132        switch (new_mode) {
2133        case PM_FAIL:
2134                if (old_mode != new_mode)
2135                        notify_of_pool_mode_change(pool, "failure");
2136                dm_pool_metadata_read_only(pool->pmd);
2137                pool->process_bio = process_bio_fail;
2138                pool->process_discard = process_bio_fail;
2139                pool->process_cell = process_cell_fail;
2140                pool->process_discard_cell = process_cell_fail;
2141                pool->process_prepared_mapping = process_prepared_mapping_fail;
2142                pool->process_prepared_discard = process_prepared_discard_fail;
2143
2144                error_retry_list(pool);
2145                break;
2146
2147        case PM_READ_ONLY:
2148                if (old_mode != new_mode)
2149                        notify_of_pool_mode_change(pool, "read-only");
2150                dm_pool_metadata_read_only(pool->pmd);
2151                pool->process_bio = process_bio_read_only;
2152                pool->process_discard = process_bio_success;
2153                pool->process_cell = process_cell_read_only;
2154                pool->process_discard_cell = process_cell_success;
2155                pool->process_prepared_mapping = process_prepared_mapping_fail;
2156                pool->process_prepared_discard = process_prepared_discard_passdown;
2157
2158                error_retry_list(pool);
2159                break;
2160
2161        case PM_OUT_OF_DATA_SPACE:
2162                /*
2163                 * Ideally we'd never hit this state; the low water mark
2164                 * would trigger userland to extend the pool before we
2165                 * completely run out of data space.  However, many small
2166                 * IOs to unprovisioned space can consume data space at an
2167                 * alarming rate.  Adjust your low water mark if you're
2168                 * frequently seeing this mode.
2169                 */
2170                if (old_mode != new_mode)
2171                        notify_of_pool_mode_change(pool, "out-of-data-space");
2172                pool->process_bio = process_bio_read_only;
2173                pool->process_discard = process_discard_bio;
2174                pool->process_cell = process_cell_read_only;
2175                pool->process_discard_cell = process_discard_cell;
2176                pool->process_prepared_mapping = process_prepared_mapping;
2177                pool->process_prepared_discard = process_prepared_discard;
2178
2179                if (!pool->pf.error_if_no_space && no_space_timeout)
2180                        queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2181                break;
2182
2183        case PM_WRITE:
2184                if (old_mode != new_mode)
2185                        notify_of_pool_mode_change(pool, "write");
2186                dm_pool_metadata_read_write(pool->pmd);
2187                pool->process_bio = process_bio;
2188                pool->process_discard = process_discard_bio;
2189                pool->process_cell = process_cell;
2190                pool->process_discard_cell = process_discard_cell;
2191                pool->process_prepared_mapping = process_prepared_mapping;
2192                pool->process_prepared_discard = process_prepared_discard;
2193                break;
2194        }
2195
2196        pool->pf.mode = new_mode;
2197        /*
2198         * The pool mode may have changed, sync it so bind_control_target()
2199         * doesn't cause an unexpected mode transition on resume.
2200         */
2201        pt->adjusted_pf.mode = new_mode;
2202}
2203
2204static void abort_transaction(struct pool *pool)
2205{
2206        const char *dev_name = dm_device_name(pool->pool_md);
2207
2208        DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2209        if (dm_pool_abort_metadata(pool->pmd)) {
2210                DMERR("%s: failed to abort metadata transaction", dev_name);
2211                set_pool_mode(pool, PM_FAIL);
2212        }
2213
2214        if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2215                DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2216                set_pool_mode(pool, PM_FAIL);
2217        }
2218}
2219
2220static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2221{
2222        DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2223                    dm_device_name(pool->pool_md), op, r);
2224
2225        abort_transaction(pool);
2226        set_pool_mode(pool, PM_READ_ONLY);
2227}
2228
2229/*----------------------------------------------------------------*/
2230
2231/*
2232 * Mapping functions.
2233 */
2234
2235/*
2236 * Called only while mapping a thin bio to hand it over to the workqueue.
2237 */
2238static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2239{
2240        unsigned long flags;
2241        struct pool *pool = tc->pool;
2242
2243        spin_lock_irqsave(&tc->lock, flags);
2244        bio_list_add(&tc->deferred_bio_list, bio);
2245        spin_unlock_irqrestore(&tc->lock, flags);
2246
2247        wake_worker(pool);
2248}
2249
2250static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2251{
2252        struct pool *pool = tc->pool;
2253
2254        throttle_lock(&pool->throttle);
2255        thin_defer_bio(tc, bio);
2256        throttle_unlock(&pool->throttle);
2257}
2258
2259static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2260{
2261        unsigned long flags;
2262        struct pool *pool = tc->pool;
2263
2264        throttle_lock(&pool->throttle);
2265        spin_lock_irqsave(&tc->lock, flags);
2266        list_add_tail(&cell->user_list, &tc->deferred_cells);
2267        spin_unlock_irqrestore(&tc->lock, flags);
2268        throttle_unlock(&pool->throttle);
2269
2270        wake_worker(pool);
2271}
2272
2273static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2274{
2275        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2276
2277        h->tc = tc;
2278        h->shared_read_entry = NULL;
2279        h->all_io_entry = NULL;
2280        h->overwrite_mapping = NULL;
2281}
2282
2283/*
2284 * Non-blocking function called from the thin target's map function.
2285 */
2286static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2287{
2288        int r;
2289        struct thin_c *tc = ti->private;
2290        dm_block_t block = get_bio_block(tc, bio);
2291        struct dm_thin_device *td = tc->td;
2292        struct dm_thin_lookup_result result;
2293        struct dm_bio_prison_cell *virt_cell, *data_cell;
2294        struct dm_cell_key key;
2295
2296        thin_hook_bio(tc, bio);
2297
2298        if (tc->requeue_mode) {
2299                bio_endio(bio, DM_ENDIO_REQUEUE);
2300                return DM_MAPIO_SUBMITTED;
2301        }
2302
2303        if (get_pool_mode(tc->pool) == PM_FAIL) {
2304                bio_io_error(bio);
2305                return DM_MAPIO_SUBMITTED;
2306        }
2307
2308        if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2309                thin_defer_bio_with_throttle(tc, bio);
2310                return DM_MAPIO_SUBMITTED;
2311        }
2312
2313        /*
2314         * We must hold the virtual cell before doing the lookup, otherwise
2315         * there's a race with discard.
2316         */
2317        build_virtual_key(tc->td, block, &key);
2318        if (bio_detain(tc->pool, &key, bio, &virt_cell))
2319                return DM_MAPIO_SUBMITTED;
2320
2321        r = dm_thin_find_block(td, block, 0, &result);
2322
2323        /*
2324         * Note that we defer readahead too.
2325         */
2326        switch (r) {
2327        case 0:
2328                if (unlikely(result.shared)) {
2329                        /*
2330                         * We have a race condition here between the
2331                         * result.shared value returned by the lookup and
2332                         * snapshot creation, which may cause new
2333                         * sharing.
2334                         *
2335                         * To avoid this always quiesce the origin before
2336                         * taking the snap.  You want to do this anyway to
2337                         * ensure a consistent application view
2338                         * (i.e. lockfs).
2339                         *
2340                         * More distant ancestors are irrelevant. The
2341                         * shared flag will be set in their case.
2342                         */
2343                        thin_defer_cell(tc, virt_cell);
2344                        return DM_MAPIO_SUBMITTED;
2345                }
2346
2347                build_data_key(tc->td, result.block, &key);
2348                if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2349                        cell_defer_no_holder(tc, virt_cell);
2350                        return DM_MAPIO_SUBMITTED;
2351                }
2352
2353                inc_all_io_entry(tc->pool, bio);
2354                cell_defer_no_holder(tc, data_cell);
2355                cell_defer_no_holder(tc, virt_cell);
2356
2357                remap(tc, bio, result.block);
2358                return DM_MAPIO_REMAPPED;
2359
2360        case -ENODATA:
2361        case -EWOULDBLOCK:
2362                thin_defer_cell(tc, virt_cell);
2363                return DM_MAPIO_SUBMITTED;
2364
2365        default:
2366                /*
2367                 * Must always call bio_io_error on failure.
2368                 * dm_thin_find_block can fail with -EINVAL if the
2369                 * pool is switched to fail-io mode.
2370                 */
2371                bio_io_error(bio);
2372                cell_defer_no_holder(tc, virt_cell);
2373                return DM_MAPIO_SUBMITTED;
2374        }
2375}
2376
2377static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2378{
2379        struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2380        struct request_queue *q;
2381
2382        if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2383                return 1;
2384
2385        q = bdev_get_queue(pt->data_dev->bdev);
2386        return bdi_congested(&q->backing_dev_info, bdi_bits);
2387}
2388
2389static void requeue_bios(struct pool *pool)
2390{
2391        unsigned long flags;
2392        struct thin_c *tc;
2393
2394        rcu_read_lock();
2395        list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2396                spin_lock_irqsave(&tc->lock, flags);
2397                bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2398                bio_list_init(&tc->retry_on_resume_list);
2399                spin_unlock_irqrestore(&tc->lock, flags);
2400        }
2401        rcu_read_unlock();
2402}
2403
2404/*----------------------------------------------------------------
2405 * Binding of control targets to a pool object
2406 *--------------------------------------------------------------*/
2407static bool data_dev_supports_discard(struct pool_c *pt)
2408{
2409        struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2410
2411        return q && blk_queue_discard(q);
2412}
2413
2414static bool is_factor(sector_t block_size, uint32_t n)
2415{
2416        return !sector_div(block_size, n);
2417}
2418
2419/*
2420 * If discard_passdown was enabled verify that the data device
2421 * supports discards.  Disable discard_passdown if not.
2422 */
2423static void disable_passdown_if_not_supported(struct pool_c *pt)
2424{
2425        struct pool *pool = pt->pool;
2426        struct block_device *data_bdev = pt->data_dev->bdev;
2427        struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2428        sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2429        const char *reason = NULL;
2430        char buf[BDEVNAME_SIZE];
2431
2432        if (!pt->adjusted_pf.discard_passdown)
2433                return;
2434
2435        if (!data_dev_supports_discard(pt))
2436                reason = "discard unsupported";
2437
2438        else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2439                reason = "max discard sectors smaller than a block";
2440
2441        else if (data_limits->discard_granularity > block_size)
2442                reason = "discard granularity larger than a block";
2443
2444        else if (!is_factor(block_size, data_limits->discard_granularity))
2445                reason = "discard granularity not a factor of block size";
2446
2447        if (reason) {
2448                DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2449                pt->adjusted_pf.discard_passdown = false;
2450        }
2451}
2452
2453static int bind_control_target(struct pool *pool, struct dm_target *ti)
2454{
2455        struct pool_c *pt = ti->private;
2456
2457        /*
2458         * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2459         */
2460        enum pool_mode old_mode = get_pool_mode(pool);
2461        enum pool_mode new_mode = pt->adjusted_pf.mode;
2462
2463        /*
2464         * Don't change the pool's mode until set_pool_mode() below.
2465         * Otherwise the pool's process_* function pointers may
2466         * not match the desired pool mode.
2467         */
2468        pt->adjusted_pf.mode = old_mode;
2469
2470        pool->ti = ti;
2471        pool->pf = pt->adjusted_pf;
2472        pool->low_water_blocks = pt->low_water_blocks;
2473
2474        set_pool_mode(pool, new_mode);
2475
2476        return 0;
2477}
2478
2479static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2480{
2481        if (pool->ti == ti)
2482                pool->ti = NULL;
2483}
2484
2485/*----------------------------------------------------------------
2486 * Pool creation
2487 *--------------------------------------------------------------*/
2488/* Initialize pool features. */
2489static void pool_features_init(struct pool_features *pf)
2490{
2491        pf->mode = PM_WRITE;
2492        pf->zero_new_blocks = true;
2493        pf->discard_enabled = true;
2494        pf->discard_passdown = true;
2495        pf->error_if_no_space = false;
2496}
2497
2498static void __pool_destroy(struct pool *pool)
2499{
2500        __pool_table_remove(pool);
2501
2502        if (dm_pool_metadata_close(pool->pmd) < 0)
2503                DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2504
2505        dm_bio_prison_destroy(pool->prison);
2506        dm_kcopyd_client_destroy(pool->copier);
2507
2508        if (pool->wq)
2509                destroy_workqueue(pool->wq);
2510
2511        if (pool->next_mapping)
2512                mempool_free(pool->next_mapping, pool->mapping_pool);
2513        mempool_destroy(pool->mapping_pool);
2514        dm_deferred_set_destroy(pool->shared_read_ds);
2515        dm_deferred_set_destroy(pool->all_io_ds);
2516        kfree(pool);
2517}
2518
2519static struct kmem_cache *_new_mapping_cache;
2520
2521static struct pool *pool_create(struct mapped_device *pool_md,
2522                                struct block_device *metadata_dev,
2523                                unsigned long block_size,
2524                                int read_only, char **error)
2525{
2526        int r;
2527        void *err_p;
2528        struct pool *pool;
2529        struct dm_pool_metadata *pmd;
2530        bool format_device = read_only ? false : true;
2531
2532        pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2533        if (IS_ERR(pmd)) {
2534                *error = "Error creating metadata object";
2535                return (struct pool *)pmd;
2536        }
2537
2538        pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2539        if (!pool) {
2540                *error = "Error allocating memory for pool";
2541                err_p = ERR_PTR(-ENOMEM);
2542                goto bad_pool;
2543        }
2544
2545        pool->pmd = pmd;
2546        pool->sectors_per_block = block_size;
2547        if (block_size & (block_size - 1))
2548                pool->sectors_per_block_shift = -1;
2549        else
2550                pool->sectors_per_block_shift = __ffs(block_size);
2551        pool->low_water_blocks = 0;
2552        pool_features_init(&pool->pf);
2553        pool->prison = dm_bio_prison_create();
2554        if (!pool->prison) {
2555                *error = "Error creating pool's bio prison";
2556                err_p = ERR_PTR(-ENOMEM);
2557                goto bad_prison;
2558        }
2559
2560        pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2561        if (IS_ERR(pool->copier)) {
2562                r = PTR_ERR(pool->copier);
2563                *error = "Error creating pool's kcopyd client";
2564                err_p = ERR_PTR(r);
2565                goto bad_kcopyd_client;
2566        }
2567
2568        /*
2569         * Create singlethreaded workqueue that will service all devices
2570         * that use this metadata.
2571         */
2572        pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2573        if (!pool->wq) {
2574                *error = "Error creating pool's workqueue";
2575                err_p = ERR_PTR(-ENOMEM);
2576                goto bad_wq;
2577        }
2578
2579        throttle_init(&pool->throttle);
2580        INIT_WORK(&pool->worker, do_worker);
2581        INIT_DELAYED_WORK(&pool->waker, do_waker);
2582        INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2583        spin_lock_init(&pool->lock);
2584        bio_list_init(&pool->deferred_flush_bios);
2585        INIT_LIST_HEAD(&pool->prepared_mappings);
2586        INIT_LIST_HEAD(&pool->prepared_discards);
2587        INIT_LIST_HEAD(&pool->active_thins);
2588        pool->low_water_triggered = false;
2589        pool->suspended = true;
2590
2591        pool->shared_read_ds = dm_deferred_set_create();
2592        if (!pool->shared_read_ds) {
2593                *error = "Error creating pool's shared read deferred set";
2594                err_p = ERR_PTR(-ENOMEM);
2595                goto bad_shared_read_ds;
2596        }
2597
2598        pool->all_io_ds = dm_deferred_set_create();
2599        if (!pool->all_io_ds) {
2600                *error = "Error creating pool's all io deferred set";
2601                err_p = ERR_PTR(-ENOMEM);
2602                goto bad_all_io_ds;
2603        }
2604
2605        pool->next_mapping = NULL;
2606        pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2607                                                      _new_mapping_cache);
2608        if (!pool->mapping_pool) {
2609                *error = "Error creating pool's mapping mempool";
2610                err_p = ERR_PTR(-ENOMEM);
2611                goto bad_mapping_pool;
2612        }
2613
2614        pool->ref_count = 1;
2615        pool->last_commit_jiffies = jiffies;
2616        pool->pool_md = pool_md;
2617        pool->md_dev = metadata_dev;
2618        __pool_table_insert(pool);
2619
2620        return pool;
2621
2622bad_mapping_pool:
2623        dm_deferred_set_destroy(pool->all_io_ds);
2624bad_all_io_ds:
2625        dm_deferred_set_destroy(pool->shared_read_ds);
2626bad_shared_read_ds:
2627        destroy_workqueue(pool->wq);
2628bad_wq:
2629        dm_kcopyd_client_destroy(pool->copier);
2630bad_kcopyd_client:
2631        dm_bio_prison_destroy(pool->prison);
2632bad_prison:
2633        kfree(pool);
2634bad_pool:
2635        if (dm_pool_metadata_close(pmd))
2636                DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2637
2638        return err_p;
2639}
2640
2641static void __pool_inc(struct pool *pool)
2642{
2643        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2644        pool->ref_count++;
2645}
2646
2647static void __pool_dec(struct pool *pool)
2648{
2649        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2650        BUG_ON(!pool->ref_count);
2651        if (!--pool->ref_count)
2652                __pool_destroy(pool);
2653}
2654
2655static struct pool *__pool_find(struct mapped_device *pool_md,
2656                                struct block_device *metadata_dev,
2657                                unsigned long block_size, int read_only,
2658                                char **error, int *created)
2659{
2660        struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2661
2662        if (pool) {
2663                if (pool->pool_md != pool_md) {
2664                        *error = "metadata device already in use by a pool";
2665                        return ERR_PTR(-EBUSY);
2666                }
2667                __pool_inc(pool);
2668
2669        } else {
2670                pool = __pool_table_lookup(pool_md);
2671                if (pool) {
2672                        if (pool->md_dev != metadata_dev) {
2673                                *error = "different pool cannot replace a pool";
2674                                return ERR_PTR(-EINVAL);
2675                        }
2676                        __pool_inc(pool);
2677
2678                } else {
2679                        pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2680                        *created = 1;
2681                }
2682        }
2683
2684        return pool;
2685}
2686
2687/*----------------------------------------------------------------
2688 * Pool target methods
2689 *--------------------------------------------------------------*/
2690static void pool_dtr(struct dm_target *ti)
2691{
2692        struct pool_c *pt = ti->private;
2693
2694        mutex_lock(&dm_thin_pool_table.mutex);
2695
2696        unbind_control_target(pt->pool, ti);
2697        __pool_dec(pt->pool);
2698        dm_put_device(ti, pt->metadata_dev);
2699        dm_put_device(ti, pt->data_dev);
2700        kfree(pt);
2701
2702        mutex_unlock(&dm_thin_pool_table.mutex);
2703}
2704
2705static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2706                               struct dm_target *ti)
2707{
2708        int r;
2709        unsigned argc;
2710        const char *arg_name;
2711
2712        static struct dm_arg _args[] = {
2713                {0, 4, "Invalid number of pool feature arguments"},
2714        };
2715
2716        /*
2717         * No feature arguments supplied.
2718         */
2719        if (!as->argc)
2720                return 0;
2721
2722        r = dm_read_arg_group(_args, as, &argc, &ti->error);
2723        if (r)
2724                return -EINVAL;
2725
2726        while (argc && !r) {
2727                arg_name = dm_shift_arg(as);
2728                argc--;
2729
2730                if (!strcasecmp(arg_name, "skip_block_zeroing"))
2731                        pf->zero_new_blocks = false;
2732
2733                else if (!strcasecmp(arg_name, "ignore_discard"))
2734                        pf->discard_enabled = false;
2735
2736                else if (!strcasecmp(arg_name, "no_discard_passdown"))
2737                        pf->discard_passdown = false;
2738
2739                else if (!strcasecmp(arg_name, "read_only"))
2740                        pf->mode = PM_READ_ONLY;
2741
2742                else if (!strcasecmp(arg_name, "error_if_no_space"))
2743                        pf->error_if_no_space = true;
2744
2745                else {
2746                        ti->error = "Unrecognised pool feature requested";
2747                        r = -EINVAL;
2748                        break;
2749                }
2750        }
2751
2752        return r;
2753}
2754
2755static void metadata_low_callback(void *context)
2756{
2757        struct pool *pool = context;
2758
2759        DMWARN("%s: reached low water mark for metadata device: sending event.",
2760               dm_device_name(pool->pool_md));
2761
2762        dm_table_event(pool->ti->table);
2763}
2764
2765static sector_t get_dev_size(struct block_device *bdev)
2766{
2767        return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2768}
2769
2770static void warn_if_metadata_device_too_big(struct block_device *bdev)
2771{
2772        sector_t metadata_dev_size = get_dev_size(bdev);
2773        char buffer[BDEVNAME_SIZE];
2774
2775        if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2776                DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2777                       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2778}
2779
2780static sector_t get_metadata_dev_size(struct block_device *bdev)
2781{
2782        sector_t metadata_dev_size = get_dev_size(bdev);
2783
2784        if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2785                metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2786
2787        return metadata_dev_size;
2788}
2789
2790static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2791{
2792        sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2793
2794        sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2795
2796        return metadata_dev_size;
2797}
2798
2799/*
2800 * When a metadata threshold is crossed a dm event is triggered, and
2801 * userland should respond by growing the metadata device.  We could let
2802 * userland set the threshold, like we do with the data threshold, but I'm
2803 * not sure they know enough to do this well.
2804 */
2805static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2806{
2807        /*
2808         * 4M is ample for all ops with the possible exception of thin
2809         * device deletion which is harmless if it fails (just retry the
2810         * delete after you've grown the device).
2811         */
2812        dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2813        return min((dm_block_t)1024ULL /* 4M */, quarter);
2814}
2815
2816/*
2817 * thin-pool <metadata dev> <data dev>
2818 *           <data block size (sectors)>
2819 *           <low water mark (blocks)>
2820 *           [<#feature args> [<arg>]*]
2821 *
2822 * Optional feature arguments are:
2823 *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2824 *           ignore_discard: disable discard
2825 *           no_discard_passdown: don't pass discards down to the data device
2826 *           read_only: Don't allow any changes to be made to the pool metadata.
2827 *           error_if_no_space: error IOs, instead of queueing, if no space.
2828 */
2829static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2830{
2831        int r, pool_created = 0;
2832        struct pool_c *pt;
2833        struct pool *pool;
2834        struct pool_features pf;
2835        struct dm_arg_set as;
2836        struct dm_dev *data_dev;
2837        unsigned long block_size;
2838        dm_block_t low_water_blocks;
2839        struct dm_dev *metadata_dev;
2840        fmode_t metadata_mode;
2841
2842        /*
2843         * FIXME Remove validation from scope of lock.
2844         */
2845        mutex_lock(&dm_thin_pool_table.mutex);
2846
2847        if (argc < 4) {
2848                ti->error = "Invalid argument count";
2849                r = -EINVAL;
2850                goto out_unlock;
2851        }
2852
2853        as.argc = argc;
2854        as.argv = argv;
2855
2856        /*
2857         * Set default pool features.
2858         */
2859        pool_features_init(&pf);
2860
2861        dm_consume_args(&as, 4);
2862        r = parse_pool_features(&as, &pf, ti);
2863        if (r)
2864                goto out_unlock;
2865
2866        metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2867        r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2868        if (r) {
2869                ti->error = "Error opening metadata block device";
2870                goto out_unlock;
2871        }
2872        warn_if_metadata_device_too_big(metadata_dev->bdev);
2873
2874        r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2875        if (r) {
2876                ti->error = "Error getting data device";
2877                goto out_metadata;
2878        }
2879
2880        if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2881            block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2882            block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2883            block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2884                ti->error = "Invalid block size";
2885                r = -EINVAL;
2886                goto out;
2887        }
2888
2889        if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2890                ti->error = "Invalid low water mark";
2891                r = -EINVAL;
2892                goto out;
2893        }
2894
2895        pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2896        if (!pt) {
2897                r = -ENOMEM;
2898                goto out;
2899        }
2900
2901        pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2902                           block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2903        if (IS_ERR(pool)) {
2904                r = PTR_ERR(pool);
2905                goto out_free_pt;
2906        }
2907
2908        /*
2909         * 'pool_created' reflects whether this is the first table load.
2910         * Top level discard support is not allowed to be changed after
2911         * initial load.  This would require a pool reload to trigger thin
2912         * device changes.
2913         */
2914        if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2915                ti->error = "Discard support cannot be disabled once enabled";
2916                r = -EINVAL;
2917                goto out_flags_changed;
2918        }
2919
2920        pt->pool = pool;
2921        pt->ti = ti;
2922        pt->metadata_dev = metadata_dev;
2923        pt->data_dev = data_dev;
2924        pt->low_water_blocks = low_water_blocks;
2925        pt->adjusted_pf = pt->requested_pf = pf;
2926        ti->num_flush_bios = 1;
2927
2928        /*
2929         * Only need to enable discards if the pool should pass
2930         * them down to the data device.  The thin device's discard
2931         * processing will cause mappings to be removed from the btree.
2932         */
2933        ti->discard_zeroes_data_unsupported = true;
2934        if (pf.discard_enabled && pf.discard_passdown) {
2935                ti->num_discard_bios = 1;
2936
2937                /*
2938                 * Setting 'discards_supported' circumvents the normal
2939                 * stacking of discard limits (this keeps the pool and
2940                 * thin devices' discard limits consistent).
2941                 */
2942                ti->discards_supported = true;
2943        }
2944        ti->private = pt;
2945
2946        r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2947                                                calc_metadata_threshold(pt),
2948                                                metadata_low_callback,
2949                                                pool);
2950        if (r)
2951                goto out_free_pt;
2952
2953        pt->callbacks.congested_fn = pool_is_congested;
2954        dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2955
2956        mutex_unlock(&dm_thin_pool_table.mutex);
2957
2958        return 0;
2959
2960out_flags_changed:
2961        __pool_dec(pool);
2962out_free_pt:
2963        kfree(pt);
2964out:
2965        dm_put_device(ti, data_dev);
2966out_metadata:
2967        dm_put_device(ti, metadata_dev);
2968out_unlock:
2969        mutex_unlock(&dm_thin_pool_table.mutex);
2970
2971        return r;
2972}
2973
2974static int pool_map(struct dm_target *ti, struct bio *bio)
2975{
2976        int r;
2977        struct pool_c *pt = ti->private;
2978        struct pool *pool = pt->pool;
2979        unsigned long flags;
2980
2981        /*
2982         * As this is a singleton target, ti->begin is always zero.
2983         */
2984        spin_lock_irqsave(&pool->lock, flags);
2985        bio->bi_bdev = pt->data_dev->bdev;
2986        r = DM_MAPIO_REMAPPED;
2987        spin_unlock_irqrestore(&pool->lock, flags);
2988
2989        return r;
2990}
2991
2992static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2993{
2994        int r;
2995        struct pool_c *pt = ti->private;
2996        struct pool *pool = pt->pool;
2997        sector_t data_size = ti->len;
2998        dm_block_t sb_data_size;
2999
3000        *need_commit = false;
3001
3002        (void) sector_div(data_size, pool->sectors_per_block);
3003
3004        r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3005        if (r) {
3006                DMERR("%s: failed to retrieve data device size",
3007                      dm_device_name(pool->pool_md));
3008                return r;
3009        }
3010
3011        if (data_size < sb_data_size) {
3012                DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3013                      dm_device_name(pool->pool_md),
3014                      (unsigned long long)data_size, sb_data_size);
3015                return -EINVAL;
3016
3017        } else if (data_size > sb_data_size) {
3018                if (dm_pool_metadata_needs_check(pool->pmd)) {
3019                        DMERR("%s: unable to grow the data device until repaired.",
3020                              dm_device_name(pool->pool_md));
3021                        return 0;
3022                }
3023
3024                if (sb_data_size)
3025                        DMINFO("%s: growing the data device from %llu to %llu blocks",
3026                               dm_device_name(pool->pool_md),
3027                               sb_data_size, (unsigned long long)data_size);
3028                r = dm_pool_resize_data_dev(pool->pmd, data_size);
3029                if (r) {
3030                        metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3031                        return r;
3032                }
3033
3034                *need_commit = true;
3035        }
3036
3037        return 0;
3038}
3039
3040static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3041{
3042        int r;
3043        struct pool_c *pt = ti->private;
3044        struct pool *pool = pt->pool;
3045        dm_block_t metadata_dev_size, sb_metadata_dev_size;
3046
3047        *need_commit = false;
3048
3049        metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3050
3051        r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3052        if (r) {
3053                DMERR("%s: failed to retrieve metadata device size",
3054                      dm_device_name(pool->pool_md));
3055                return r;
3056        }
3057
3058        if (metadata_dev_size < sb_metadata_dev_size) {
3059                DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3060                      dm_device_name(pool->pool_md),
3061                      metadata_dev_size, sb_metadata_dev_size);
3062                return -EINVAL;
3063
3064        } else if (metadata_dev_size > sb_metadata_dev_size) {
3065                if (dm_pool_metadata_needs_check(pool->pmd)) {
3066                        DMERR("%s: unable to grow the metadata device until repaired.",
3067                              dm_device_name(pool->pool_md));
3068                        return 0;
3069                }
3070
3071                warn_if_metadata_device_too_big(pool->md_dev);
3072                DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3073                       dm_device_name(pool->pool_md),
3074                       sb_metadata_dev_size, metadata_dev_size);
3075                r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3076                if (r) {
3077                        metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3078                        return r;
3079                }
3080
3081                *need_commit = true;
3082        }
3083
3084        return 0;
3085}
3086
3087/*
3088 * Retrieves the number of blocks of the data device from
3089 * the superblock and compares it to the actual device size,
3090 * thus resizing the data device in case it has grown.
3091 *
3092 * This both copes with opening preallocated data devices in the ctr
3093 * being followed by a resume
3094 * -and-
3095 * calling the resume method individually after userspace has
3096 * grown the data device in reaction to a table event.
3097 */
3098static int pool_preresume(struct dm_target *ti)
3099{
3100        int r;
3101        bool need_commit1, need_commit2;
3102        struct pool_c *pt = ti->private;
3103        struct pool *pool = pt->pool;
3104
3105        /*
3106         * Take control of the pool object.
3107         */
3108        r = bind_control_target(pool, ti);
3109        if (r)
3110                return r;
3111
3112        r = maybe_resize_data_dev(ti, &need_commit1);
3113        if (r)
3114                return r;
3115
3116        r = maybe_resize_metadata_dev(ti, &need_commit2);
3117        if (r)
3118                return r;
3119
3120        if (need_commit1 || need_commit2)
3121                (void) commit(pool);
3122
3123        return 0;
3124}
3125
3126static void pool_suspend_active_thins(struct pool *pool)
3127{
3128        struct thin_c *tc;
3129
3130        /* Suspend all active thin devices */
3131        tc = get_first_thin(pool);
3132        while (tc) {
3133                dm_internal_suspend_noflush(tc->thin_md);
3134                tc = get_next_thin(pool, tc);
3135        }
3136}
3137
3138static void pool_resume_active_thins(struct pool *pool)
3139{
3140        struct thin_c *tc;
3141
3142        /* Resume all active thin devices */
3143        tc = get_first_thin(pool);
3144        while (tc) {
3145                dm_internal_resume(tc->thin_md);
3146                tc = get_next_thin(pool, tc);
3147        }
3148}
3149
3150static void pool_resume(struct dm_target *ti)
3151{
3152        struct pool_c *pt = ti->private;
3153        struct pool *pool = pt->pool;
3154        unsigned long flags;
3155
3156        /*
3157         * Must requeue active_thins' bios and then resume
3158         * active_thins _before_ clearing 'suspend' flag.
3159         */
3160        requeue_bios(pool);
3161        pool_resume_active_thins(pool);
3162
3163        spin_lock_irqsave(&pool->lock, flags);
3164        pool->low_water_triggered = false;
3165        pool->suspended = false;
3166        spin_unlock_irqrestore(&pool->lock, flags);
3167
3168        do_waker(&pool->waker.work);
3169}
3170
3171static void pool_presuspend(struct dm_target *ti)
3172{
3173        struct pool_c *pt = ti->private;
3174        struct pool *pool = pt->pool;
3175        unsigned long flags;
3176
3177        spin_lock_irqsave(&pool->lock, flags);
3178        pool->suspended = true;
3179        spin_unlock_irqrestore(&pool->lock, flags);
3180
3181        pool_suspend_active_thins(pool);
3182}
3183
3184static void pool_presuspend_undo(struct dm_target *ti)
3185{
3186        struct pool_c *pt = ti->private;
3187        struct pool *pool = pt->pool;
3188        unsigned long flags;
3189
3190        pool_resume_active_thins(pool);
3191
3192        spin_lock_irqsave(&pool->lock, flags);
3193        pool->suspended = false;
3194        spin_unlock_irqrestore(&pool->lock, flags);
3195}
3196
3197static void pool_postsuspend(struct dm_target *ti)
3198{
3199        struct pool_c *pt = ti->private;
3200        struct pool *pool = pt->pool;
3201
3202        cancel_delayed_work(&pool->waker);
3203        cancel_delayed_work(&pool->no_space_timeout);
3204        flush_workqueue(pool->wq);
3205        (void) commit(pool);
3206}
3207
3208static int check_arg_count(unsigned argc, unsigned args_required)
3209{
3210        if (argc != args_required) {
3211                DMWARN("Message received with %u arguments instead of %u.",
3212                       argc, args_required);
3213                return -EINVAL;
3214        }
3215
3216        return 0;
3217}
3218
3219static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3220{
3221        if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3222            *dev_id <= MAX_DEV_ID)
3223                return 0;
3224
3225        if (warning)
3226                DMWARN("Message received with invalid device id: %s", arg);
3227
3228        return -EINVAL;
3229}
3230
3231static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3232{
3233        dm_thin_id dev_id;
3234        int r;
3235
3236        r = check_arg_count(argc, 2);
3237        if (r)
3238                return r;
3239
3240        r = read_dev_id(argv[1], &dev_id, 1);
3241        if (r)
3242                return r;
3243
3244        r = dm_pool_create_thin(pool->pmd, dev_id);
3245        if (r) {
3246                DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3247                       argv[1]);
3248                return r;
3249        }
3250
3251        return 0;
3252}
3253
3254static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3255{
3256        dm_thin_id dev_id;
3257        dm_thin_id origin_dev_id;
3258        int r;
3259
3260        r = check_arg_count(argc, 3);
3261        if (r)
3262                return r;
3263
3264        r = read_dev_id(argv[1], &dev_id, 1);
3265        if (r)
3266                return r;
3267
3268        r = read_dev_id(argv[2], &origin_dev_id, 1);
3269        if (r)
3270                return r;
3271
3272        r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3273        if (r) {
3274                DMWARN("Creation of new snapshot %s of device %s failed.",
3275                       argv[1], argv[2]);
3276                return r;
3277        }
3278
3279        return 0;
3280}
3281
3282static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3283{
3284        dm_thin_id dev_id;
3285        int r;
3286
3287        r = check_arg_count(argc, 2);
3288        if (r)
3289                return r;
3290
3291        r = read_dev_id(argv[1], &dev_id, 1);
3292        if (r)
3293                return r;
3294
3295        r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3296        if (r)
3297                DMWARN("Deletion of thin device %s failed.", argv[1]);
3298
3299        return r;
3300}
3301
3302static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3303{
3304        dm_thin_id old_id, new_id;
3305        int r;
3306
3307        r = check_arg_count(argc, 3);
3308        if (r)
3309                return r;
3310
3311        if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3312                DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3313                return -EINVAL;
3314        }
3315
3316        if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3317                DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3318                return -EINVAL;
3319        }
3320
3321        r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3322        if (r) {
3323                DMWARN("Failed to change transaction id from %s to %s.",
3324                       argv[1], argv[2]);
3325                return r;
3326        }
3327
3328        return 0;
3329}
3330
3331static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3332{
3333        int r;
3334
3335        r = check_arg_count(argc, 1);
3336        if (r)
3337                return r;
3338
3339        (void) commit(pool);
3340
3341        r = dm_pool_reserve_metadata_snap(pool->pmd);
3342        if (r)
3343                DMWARN("reserve_metadata_snap message failed.");
3344
3345        return r;
3346}
3347
3348static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3349{
3350        int r;
3351
3352        r = check_arg_count(argc, 1);
3353        if (r)
3354                return r;
3355
3356        r = dm_pool_release_metadata_snap(pool->pmd);
3357        if (r)
3358                DMWARN("release_metadata_snap message failed.");
3359
3360        return r;
3361}
3362
3363/*
3364 * Messages supported:
3365 *   create_thin        <dev_id>
3366 *   create_snap        <dev_id> <origin_id>
3367 *   delete             <dev_id>
3368 *   set_transaction_id <current_trans_id> <new_trans_id>
3369 *   reserve_metadata_snap
3370 *   release_metadata_snap
3371 */
3372static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3373{
3374        int r = -EINVAL;
3375        struct pool_c *pt = ti->private;
3376        struct pool *pool = pt->pool;
3377
3378        if (get_pool_mode(pool) >= PM_READ_ONLY) {
3379                DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3380                      dm_device_name(pool->pool_md));
3381                return -EINVAL;
3382        }
3383
3384        if (!strcasecmp(argv[0], "create_thin"))
3385                r = process_create_thin_mesg(argc, argv, pool);
3386
3387        else if (!strcasecmp(argv[0], "create_snap"))
3388                r = process_create_snap_mesg(argc, argv, pool);
3389
3390        else if (!strcasecmp(argv[0], "delete"))
3391                r = process_delete_mesg(argc, argv, pool);
3392
3393        else if (!strcasecmp(argv[0], "set_transaction_id"))
3394                r = process_set_transaction_id_mesg(argc, argv, pool);
3395
3396        else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3397                r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3398
3399        else if (!strcasecmp(argv[0], "release_metadata_snap"))
3400                r = process_release_metadata_snap_mesg(argc, argv, pool);
3401
3402        else
3403                DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3404
3405        if (!r)
3406                (void) commit(pool);
3407
3408        return r;
3409}
3410
3411static void emit_flags(struct pool_features *pf, char *result,
3412                       unsigned sz, unsigned maxlen)
3413{
3414        unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3415                !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3416                pf->error_if_no_space;
3417        DMEMIT("%u ", count);
3418
3419        if (!pf->zero_new_blocks)
3420                DMEMIT("skip_block_zeroing ");
3421
3422        if (!pf->discard_enabled)
3423                DMEMIT("ignore_discard ");
3424
3425        if (!pf->discard_passdown)
3426                DMEMIT("no_discard_passdown ");
3427
3428        if (pf->mode == PM_READ_ONLY)
3429                DMEMIT("read_only ");
3430
3431        if (pf->error_if_no_space)
3432                DMEMIT("error_if_no_space ");
3433}
3434
3435/*
3436 * Status line is:
3437 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3438 *    <used data sectors>/<total data sectors> <held metadata root>
3439 */
3440static void pool_status(struct dm_target *ti, status_type_t type,
3441                        unsigned status_flags, char *result, unsigned maxlen)
3442{
3443        int r;
3444        unsigned sz = 0;
3445        uint64_t transaction_id;
3446        dm_block_t nr_free_blocks_data;
3447        dm_block_t nr_free_blocks_metadata;
3448        dm_block_t nr_blocks_data;
3449        dm_block_t nr_blocks_metadata;
3450        dm_block_t held_root;
3451        char buf[BDEVNAME_SIZE];
3452        char buf2[BDEVNAME_SIZE];
3453        struct pool_c *pt = ti->private;
3454        struct pool *pool = pt->pool;
3455
3456        switch (type) {
3457        case STATUSTYPE_INFO:
3458                if (get_pool_mode(pool) == PM_FAIL) {
3459                        DMEMIT("Fail");
3460                        break;
3461                }
3462
3463                /* Commit to ensure statistics aren't out-of-date */
3464                if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3465                        (void) commit(pool);
3466
3467                r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3468                if (r) {
3469                        DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3470                              dm_device_name(pool->pool_md), r);
3471                        goto err;
3472                }
3473
3474                r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3475                if (r) {
3476                        DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3477                              dm_device_name(pool->pool_md), r);
3478                        goto err;
3479                }
3480
3481                r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3482                if (r) {
3483                        DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3484                              dm_device_name(pool->pool_md), r);
3485                        goto err;
3486                }
3487
3488                r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3489                if (r) {
3490                        DMERR("%s: dm_pool_get_free_block_count returned %d",
3491                              dm_device_name(pool->pool_md), r);
3492                        goto err;
3493                }
3494
3495                r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3496                if (r) {
3497                        DMERR("%s: dm_pool_get_data_dev_size returned %d",
3498                              dm_device_name(pool->pool_md), r);
3499                        goto err;
3500                }
3501
3502                r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3503                if (r) {
3504                        DMERR("%s: dm_pool_get_metadata_snap returned %d",
3505                              dm_device_name(pool->pool_md), r);
3506                        goto err;
3507                }
3508
3509                DMEMIT("%llu %llu/%llu %llu/%llu ",
3510                       (unsigned long long)transaction_id,
3511                       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3512                       (unsigned long long)nr_blocks_metadata,
3513                       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3514                       (unsigned long long)nr_blocks_data);
3515
3516                if (held_root)
3517                        DMEMIT("%llu ", held_root);
3518                else
3519                        DMEMIT("- ");
3520
3521                if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3522                        DMEMIT("out_of_data_space ");
3523                else if (pool->pf.mode == PM_READ_ONLY)
3524                        DMEMIT("ro ");
3525                else
3526                        DMEMIT("rw ");
3527
3528                if (!pool->pf.discard_enabled)
3529                        DMEMIT("ignore_discard ");
3530                else if (pool->pf.discard_passdown)
3531                        DMEMIT("discard_passdown ");
3532                else
3533                        DMEMIT("no_discard_passdown ");
3534
3535                if (pool->pf.error_if_no_space)
3536                        DMEMIT("error_if_no_space ");
3537                else
3538                        DMEMIT("queue_if_no_space ");
3539
3540                break;
3541
3542        case STATUSTYPE_TABLE:
3543                DMEMIT("%s %s %lu %llu ",
3544                       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3545                       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3546                       (unsigned long)pool->sectors_per_block,
3547                       (unsigned long long)pt->low_water_blocks);
3548                emit_flags(&pt->requested_pf, result, sz, maxlen);
3549                break;
3550        }
3551        return;
3552
3553err:
3554        DMEMIT("Error");
3555}
3556
3557static int pool_iterate_devices(struct dm_target *ti,
3558                                iterate_devices_callout_fn fn, void *data)
3559{
3560        struct pool_c *pt = ti->private;
3561
3562        return fn(ti, pt->data_dev, 0, ti->len, data);
3563}
3564
3565static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3566                      struct bio_vec *biovec, int max_size)
3567{
3568        struct pool_c *pt = ti->private;
3569        struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3570
3571        if (!q->merge_bvec_fn)
3572                return max_size;
3573
3574        bvm->bi_bdev = pt->data_dev->bdev;
3575
3576        return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3577}
3578
3579static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3580{
3581        struct pool *pool = pt->pool;
3582        struct queue_limits *data_limits;
3583
3584        limits->max_discard_sectors = pool->sectors_per_block;
3585
3586        /*
3587         * discard_granularity is just a hint, and not enforced.
3588         */
3589        if (pt->adjusted_pf.discard_passdown) {
3590                data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3591                limits->discard_granularity = max(data_limits->discard_granularity,
3592                                                  pool->sectors_per_block << SECTOR_SHIFT);
3593        } else
3594                limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3595}
3596
3597static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3598{
3599        struct pool_c *pt = ti->private;
3600        struct pool *pool = pt->pool;
3601        sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3602
3603        /*
3604         * If max_sectors is smaller than pool->sectors_per_block adjust it
3605         * to the highest possible power-of-2 factor of pool->sectors_per_block.
3606         * This is especially beneficial when the pool's data device is a RAID
3607         * device that has a full stripe width that matches pool->sectors_per_block
3608         * -- because even though partial RAID stripe-sized IOs will be issued to a
3609         *    single RAID stripe; when aggregated they will end on a full RAID stripe
3610         *    boundary.. which avoids additional partial RAID stripe writes cascading
3611         */
3612        if (limits->max_sectors < pool->sectors_per_block) {
3613                while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3614                        if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3615                                limits->max_sectors--;
3616                        limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3617                }
3618        }
3619
3620        /*
3621         * If the system-determined stacked limits are compatible with the
3622         * pool's blocksize (io_opt is a factor) do not override them.
3623         */
3624        if (io_opt_sectors < pool->sectors_per_block ||
3625            !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3626                if (is_factor(pool->sectors_per_block, limits->max_sectors))
3627                        blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3628                else
3629                        blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3630                blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3631        }
3632
3633        /*
3634         * pt->adjusted_pf is a staging area for the actual features to use.
3635         * They get transferred to the live pool in bind_control_target()
3636         * called from pool_preresume().
3637         */
3638        if (!pt->adjusted_pf.discard_enabled) {
3639                /*
3640                 * Must explicitly disallow stacking discard limits otherwise the
3641                 * block layer will stack them if pool's data device has support.
3642                 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3643                 * user to see that, so make sure to set all discard limits to 0.
3644                 */
3645                limits->discard_granularity = 0;
3646                return;
3647        }
3648
3649        disable_passdown_if_not_supported(pt);
3650
3651        set_discard_limits(pt, limits);
3652}
3653
3654static struct target_type pool_target = {
3655        .name = "thin-pool",
3656        .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3657                    DM_TARGET_IMMUTABLE,
3658        .version = {1, 14, 0},
3659        .module = THIS_MODULE,
3660        .ctr = pool_ctr,
3661        .dtr = pool_dtr,
3662        .map = pool_map,
3663        .presuspend = pool_presuspend,
3664        .presuspend_undo = pool_presuspend_undo,
3665        .postsuspend = pool_postsuspend,
3666        .preresume = pool_preresume,
3667        .resume = pool_resume,
3668        .message = pool_message,
3669        .status = pool_status,
3670        .merge = pool_merge,
3671        .iterate_devices = pool_iterate_devices,
3672        .io_hints = pool_io_hints,
3673};
3674
3675/*----------------------------------------------------------------
3676 * Thin target methods
3677 *--------------------------------------------------------------*/
3678static void thin_get(struct thin_c *tc)
3679{
3680        atomic_inc(&tc->refcount);
3681}
3682
3683static void thin_put(struct thin_c *tc)
3684{
3685        if (atomic_dec_and_test(&tc->refcount))
3686                complete(&tc->can_destroy);
3687}
3688
3689static void thin_dtr(struct dm_target *ti)
3690{
3691        struct thin_c *tc = ti->private;
3692        unsigned long flags;
3693
3694        spin_lock_irqsave(&tc->pool->lock, flags);
3695        list_del_rcu(&tc->list);
3696        spin_unlock_irqrestore(&tc->pool->lock, flags);
3697        synchronize_rcu();
3698
3699        thin_put(tc);
3700        wait_for_completion(&tc->can_destroy);
3701
3702        mutex_lock(&dm_thin_pool_table.mutex);
3703
3704        __pool_dec(tc->pool);
3705        dm_pool_close_thin_device(tc->td);
3706        dm_put_device(ti, tc->pool_dev);
3707        if (tc->origin_dev)
3708                dm_put_device(ti, tc->origin_dev);
3709        kfree(tc);
3710
3711        mutex_unlock(&dm_thin_pool_table.mutex);
3712}
3713
3714/*
3715 * Thin target parameters:
3716 *
3717 * <pool_dev> <dev_id> [origin_dev]
3718 *
3719 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3720 * dev_id: the internal device identifier
3721 * origin_dev: a device external to the pool that should act as the origin
3722 *
3723 * If the pool device has discards disabled, they get disabled for the thin
3724 * device as well.
3725 */
3726static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3727{
3728        int r;
3729        struct thin_c *tc;
3730        struct dm_dev *pool_dev, *origin_dev;
3731        struct mapped_device *pool_md;
3732        unsigned long flags;
3733
3734        mutex_lock(&dm_thin_pool_table.mutex);
3735
3736        if (argc != 2 && argc != 3) {
3737                ti->error = "Invalid argument count";
3738                r = -EINVAL;
3739                goto out_unlock;
3740        }
3741
3742        tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3743        if (!tc) {
3744                ti->error = "Out of memory";
3745                r = -ENOMEM;
3746                goto out_unlock;
3747        }
3748        tc->thin_md = dm_table_get_md(ti->table);
3749        spin_lock_init(&tc->lock);
3750        INIT_LIST_HEAD(&tc->deferred_cells);
3751        bio_list_init(&tc->deferred_bio_list);
3752        bio_list_init(&tc->retry_on_resume_list);
3753        tc->sort_bio_list = RB_ROOT;
3754
3755        if (argc == 3) {
3756                r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3757                if (r) {
3758                        ti->error = "Error opening origin device";
3759                        goto bad_origin_dev;
3760                }
3761                tc->origin_dev = origin_dev;
3762        }
3763
3764        r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3765        if (r) {
3766                ti->error = "Error opening pool device";
3767                goto bad_pool_dev;
3768        }
3769        tc->pool_dev = pool_dev;
3770
3771        if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3772                ti->error = "Invalid device id";
3773                r = -EINVAL;
3774                goto bad_common;
3775        }
3776
3777        pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3778        if (!pool_md) {
3779                ti->error = "Couldn't get pool mapped device";
3780                r = -EINVAL;
3781                goto bad_common;
3782        }
3783
3784        tc->pool = __pool_table_lookup(pool_md);
3785        if (!tc->pool) {
3786                ti->error = "Couldn't find pool object";
3787                r = -EINVAL;
3788                goto bad_pool_lookup;
3789        }
3790        __pool_inc(tc->pool);
3791
3792        if (get_pool_mode(tc->pool) == PM_FAIL) {
3793                ti->error = "Couldn't open thin device, Pool is in fail mode";
3794                r = -EINVAL;
3795                goto bad_pool;
3796        }
3797
3798        r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3799        if (r) {
3800                ti->error = "Couldn't open thin internal device";
3801                goto bad_pool;
3802        }
3803
3804        r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3805        if (r)
3806                goto bad;
3807
3808        ti->num_flush_bios = 1;
3809        ti->flush_supported = true;
3810        ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3811
3812        /* In case the pool supports discards, pass them on. */
3813        ti->discard_zeroes_data_unsupported = true;
3814        if (tc->pool->pf.discard_enabled) {
3815                ti->discards_supported = true;
3816                ti->num_discard_bios = 1;
3817                /* Discard bios must be split on a block boundary */
3818                ti->split_discard_bios = true;
3819        }
3820
3821        mutex_unlock(&dm_thin_pool_table.mutex);
3822
3823        spin_lock_irqsave(&tc->pool->lock, flags);
3824        if (tc->pool->suspended) {
3825                spin_unlock_irqrestore(&tc->pool->lock, flags);
3826                mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
3827                ti->error = "Unable to activate thin device while pool is suspended";
3828                r = -EINVAL;
3829                goto bad;
3830        }
3831        atomic_set(&tc->refcount, 1);
3832        init_completion(&tc->can_destroy);
3833        list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3834        spin_unlock_irqrestore(&tc->pool->lock, flags);
3835        /*
3836         * This synchronize_rcu() call is needed here otherwise we risk a
3837         * wake_worker() call finding no bios to process (because the newly
3838         * added tc isn't yet visible).  So this reduces latency since we
3839         * aren't then dependent on the periodic commit to wake_worker().
3840         */
3841        synchronize_rcu();
3842
3843        dm_put(pool_md);
3844
3845        return 0;
3846
3847bad:
3848        dm_pool_close_thin_device(tc->td);
3849bad_pool:
3850        __pool_dec(tc->pool);
3851bad_pool_lookup:
3852        dm_put(pool_md);
3853bad_common:
3854        dm_put_device(ti, tc->pool_dev);
3855bad_pool_dev:
3856        if (tc->origin_dev)
3857                dm_put_device(ti, tc->origin_dev);
3858bad_origin_dev:
3859        kfree(tc);
3860out_unlock:
3861        mutex_unlock(&dm_thin_pool_table.mutex);
3862
3863        return r;
3864}
3865
3866static int thin_map(struct dm_target *ti, struct bio *bio)
3867{
3868        bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3869
3870        return thin_bio_map(ti, bio);
3871}
3872
3873static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3874{
3875        unsigned long flags;
3876        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3877        struct list_head work;
3878        struct dm_thin_new_mapping *m, *tmp;
3879        struct pool *pool = h->tc->pool;
3880
3881        if (h->shared_read_entry) {
3882                INIT_LIST_HEAD(&work);
3883                dm_deferred_entry_dec(h->shared_read_entry, &work);
3884
3885                spin_lock_irqsave(&pool->lock, flags);
3886                list_for_each_entry_safe(m, tmp, &work, list) {
3887                        list_del(&m->list);
3888                        __complete_mapping_preparation(m);
3889                }
3890                spin_unlock_irqrestore(&pool->lock, flags);
3891        }
3892
3893        if (h->all_io_entry) {
3894                INIT_LIST_HEAD(&work);
3895                dm_deferred_entry_dec(h->all_io_entry, &work);
3896                if (!list_empty(&work)) {
3897                        spin_lock_irqsave(&pool->lock, flags);
3898                        list_for_each_entry_safe(m, tmp, &work, list)
3899                                list_add_tail(&m->list, &pool->prepared_discards);
3900                        spin_unlock_irqrestore(&pool->lock, flags);
3901                        wake_worker(pool);
3902                }
3903        }
3904
3905        return 0;
3906}
3907
3908static void thin_presuspend(struct dm_target *ti)
3909{
3910        struct thin_c *tc = ti->private;
3911
3912        if (dm_noflush_suspending(ti))
3913                noflush_work(tc, do_noflush_start);
3914}
3915
3916static void thin_postsuspend(struct dm_target *ti)
3917{
3918        struct thin_c *tc = ti->private;
3919
3920        /*
3921         * The dm_noflush_suspending flag has been cleared by now, so
3922         * unfortunately we must always run this.
3923         */
3924        noflush_work(tc, do_noflush_stop);
3925}
3926
3927static int thin_preresume(struct dm_target *ti)
3928{
3929        struct thin_c *tc = ti->private;
3930
3931        if (tc->origin_dev)
3932                tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3933
3934        return 0;
3935}
3936
3937/*
3938 * <nr mapped sectors> <highest mapped sector>
3939 */
3940static void thin_status(struct dm_target *ti, status_type_t type,
3941                        unsigned status_flags, char *result, unsigned maxlen)
3942{
3943        int r;
3944        ssize_t sz = 0;
3945        dm_block_t mapped, highest;
3946        char buf[BDEVNAME_SIZE];
3947        struct thin_c *tc = ti->private;
3948
3949        if (get_pool_mode(tc->pool) == PM_FAIL) {
3950                DMEMIT("Fail");
3951                return;
3952        }
3953
3954        if (!tc->td)
3955                DMEMIT("-");
3956        else {
3957                switch (type) {
3958                case STATUSTYPE_INFO:
3959                        r = dm_thin_get_mapped_count(tc->td, &mapped);
3960                        if (r) {
3961                                DMERR("dm_thin_get_mapped_count returned %d", r);
3962                                goto err;
3963                        }
3964
3965                        r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3966                        if (r < 0) {
3967                                DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3968                                goto err;
3969                        }
3970
3971                        DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3972                        if (r)
3973                                DMEMIT("%llu", ((highest + 1) *
3974                                                tc->pool->sectors_per_block) - 1);
3975                        else
3976                                DMEMIT("-");
3977                        break;
3978
3979                case STATUSTYPE_TABLE:
3980                        DMEMIT("%s %lu",
3981                               format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3982                               (unsigned long) tc->dev_id);
3983                        if (tc->origin_dev)
3984                                DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3985                        break;
3986                }
3987        }
3988
3989        return;
3990
3991err:
3992        DMEMIT("Error");
3993}
3994
3995static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3996                      struct bio_vec *biovec, int max_size)
3997{
3998        struct thin_c *tc = ti->private;
3999        struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4000
4001        if (!q->merge_bvec_fn)
4002                return max_size;
4003
4004        bvm->bi_bdev = tc->pool_dev->bdev;
4005        bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4006
4007        return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4008}
4009
4010static int thin_iterate_devices(struct dm_target *ti,
4011                                iterate_devices_callout_fn fn, void *data)
4012{
4013        sector_t blocks;
4014        struct thin_c *tc = ti->private;
4015        struct pool *pool = tc->pool;
4016
4017        /*
4018         * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4019         * we follow a more convoluted path through to the pool's target.
4020         */
4021        if (!pool->ti)
4022                return 0;       /* nothing is bound */
4023
4024        blocks = pool->ti->len;
4025        (void) sector_div(blocks, pool->sectors_per_block);
4026        if (blocks)
4027                return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4028
4029        return 0;
4030}
4031
4032static struct target_type thin_target = {
4033        .name = "thin",
4034        .version = {1, 14, 0},
4035        .module = THIS_MODULE,
4036        .ctr = thin_ctr,
4037        .dtr = thin_dtr,
4038        .map = thin_map,
4039        .end_io = thin_endio,
4040        .preresume = thin_preresume,
4041        .presuspend = thin_presuspend,
4042        .postsuspend = thin_postsuspend,
4043        .status = thin_status,
4044        .merge = thin_merge,
4045        .iterate_devices = thin_iterate_devices,
4046};
4047
4048/*----------------------------------------------------------------*/
4049
4050static int __init dm_thin_init(void)
4051{
4052        int r;
4053
4054        pool_table_init();
4055
4056        r = dm_register_target(&thin_target);
4057        if (r)
4058                return r;
4059
4060        r = dm_register_target(&pool_target);
4061        if (r)
4062                goto bad_pool_target;
4063
4064        r = -ENOMEM;
4065
4066        _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4067        if (!_new_mapping_cache)
4068                goto bad_new_mapping_cache;
4069
4070        return 0;
4071
4072bad_new_mapping_cache:
4073        dm_unregister_target(&pool_target);
4074bad_pool_target:
4075        dm_unregister_target(&thin_target);
4076
4077        return r;
4078}
4079
4080static void dm_thin_exit(void)
4081{
4082        dm_unregister_target(&thin_target);
4083        dm_unregister_target(&pool_target);
4084
4085        kmem_cache_destroy(_new_mapping_cache);
4086}
4087
4088module_init(dm_thin_init);
4089module_exit(dm_thin_exit);
4090
4091module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4092MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4093
4094MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4095MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4096MODULE_LICENSE("GPL");
4097