linux/drivers/mfd/ab8500-gpadc.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) ST-Ericsson SA 2010
   3 *
   4 * License Terms: GNU General Public License v2
   5 * Author: Arun R Murthy <arun.murthy@stericsson.com>
   6 * Author: Daniel Willerud <daniel.willerud@stericsson.com>
   7 * Author: Johan Palsson <johan.palsson@stericsson.com>
   8 */
   9#include <linux/init.h>
  10#include <linux/module.h>
  11#include <linux/device.h>
  12#include <linux/interrupt.h>
  13#include <linux/spinlock.h>
  14#include <linux/delay.h>
  15#include <linux/pm_runtime.h>
  16#include <linux/platform_device.h>
  17#include <linux/completion.h>
  18#include <linux/regulator/consumer.h>
  19#include <linux/err.h>
  20#include <linux/slab.h>
  21#include <linux/list.h>
  22#include <linux/mfd/abx500.h>
  23#include <linux/mfd/abx500/ab8500.h>
  24#include <linux/mfd/abx500/ab8500-gpadc.h>
  25
  26/*
  27 * GPADC register offsets
  28 * Bank : 0x0A
  29 */
  30#define AB8500_GPADC_CTRL1_REG          0x00
  31#define AB8500_GPADC_CTRL2_REG          0x01
  32#define AB8500_GPADC_CTRL3_REG          0x02
  33#define AB8500_GPADC_AUTO_TIMER_REG     0x03
  34#define AB8500_GPADC_STAT_REG           0x04
  35#define AB8500_GPADC_MANDATAL_REG       0x05
  36#define AB8500_GPADC_MANDATAH_REG       0x06
  37#define AB8500_GPADC_AUTODATAL_REG      0x07
  38#define AB8500_GPADC_AUTODATAH_REG      0x08
  39#define AB8500_GPADC_MUX_CTRL_REG       0x09
  40#define AB8540_GPADC_MANDATA2L_REG      0x09
  41#define AB8540_GPADC_MANDATA2H_REG      0x0A
  42#define AB8540_GPADC_APEAAX_REG         0x10
  43#define AB8540_GPADC_APEAAT_REG         0x11
  44#define AB8540_GPADC_APEAAM_REG         0x12
  45#define AB8540_GPADC_APEAAH_REG         0x13
  46#define AB8540_GPADC_APEAAL_REG         0x14
  47
  48/*
  49 * OTP register offsets
  50 * Bank : 0x15
  51 */
  52#define AB8500_GPADC_CAL_1              0x0F
  53#define AB8500_GPADC_CAL_2              0x10
  54#define AB8500_GPADC_CAL_3              0x11
  55#define AB8500_GPADC_CAL_4              0x12
  56#define AB8500_GPADC_CAL_5              0x13
  57#define AB8500_GPADC_CAL_6              0x14
  58#define AB8500_GPADC_CAL_7              0x15
  59/* New calibration for 8540 */
  60#define AB8540_GPADC_OTP4_REG_7 0x38
  61#define AB8540_GPADC_OTP4_REG_6 0x39
  62#define AB8540_GPADC_OTP4_REG_5 0x3A
  63
  64/* gpadc constants */
  65#define EN_VINTCORE12                   0x04
  66#define EN_VTVOUT                       0x02
  67#define EN_GPADC                        0x01
  68#define DIS_GPADC                       0x00
  69#define AVG_1                           0x00
  70#define AVG_4                           0x20
  71#define AVG_8                           0x40
  72#define AVG_16                          0x60
  73#define ADC_SW_CONV                     0x04
  74#define EN_ICHAR                        0x80
  75#define BTEMP_PULL_UP                   0x08
  76#define EN_BUF                          0x40
  77#define DIS_ZERO                        0x00
  78#define GPADC_BUSY                      0x01
  79#define EN_FALLING                      0x10
  80#define EN_TRIG_EDGE                    0x02
  81#define EN_VBIAS_XTAL_TEMP              0x02
  82
  83/* GPADC constants from AB8500 spec, UM0836 */
  84#define ADC_RESOLUTION                  1024
  85#define ADC_CH_BTEMP_MIN                0
  86#define ADC_CH_BTEMP_MAX                1350
  87#define ADC_CH_DIETEMP_MIN              0
  88#define ADC_CH_DIETEMP_MAX              1350
  89#define ADC_CH_CHG_V_MIN                0
  90#define ADC_CH_CHG_V_MAX                20030
  91#define ADC_CH_ACCDET2_MIN              0
  92#define ADC_CH_ACCDET2_MAX              2500
  93#define ADC_CH_VBAT_MIN                 2300
  94#define ADC_CH_VBAT_MAX                 4800
  95#define ADC_CH_CHG_I_MIN                0
  96#define ADC_CH_CHG_I_MAX                1500
  97#define ADC_CH_BKBAT_MIN                0
  98#define ADC_CH_BKBAT_MAX                3200
  99
 100/* GPADC constants from AB8540 spec */
 101#define ADC_CH_IBAT_MIN                 (-6000) /* mA range measured by ADC for ibat*/
 102#define ADC_CH_IBAT_MAX                 6000
 103#define ADC_CH_IBAT_MIN_V               (-60)   /* mV range measured by ADC for ibat*/
 104#define ADC_CH_IBAT_MAX_V               60
 105#define IBAT_VDROP_L                    (-56)  /* mV */
 106#define IBAT_VDROP_H                    56
 107
 108/* This is used to not lose precision when dividing to get gain and offset */
 109#define CALIB_SCALE             1000
 110/*
 111 * Number of bits shift used to not lose precision
 112 * when dividing to get ibat gain.
 113 */
 114#define CALIB_SHIFT_IBAT        20
 115
 116/* Time in ms before disabling regulator */
 117#define GPADC_AUDOSUSPEND_DELAY         1
 118
 119#define CONVERSION_TIME                 500 /* ms */
 120
 121enum cal_channels {
 122        ADC_INPUT_VMAIN = 0,
 123        ADC_INPUT_BTEMP,
 124        ADC_INPUT_VBAT,
 125        ADC_INPUT_IBAT,
 126        NBR_CAL_INPUTS,
 127};
 128
 129/**
 130 * struct adc_cal_data - Table for storing gain and offset for the calibrated
 131 * ADC channels
 132 * @gain:               Gain of the ADC channel
 133 * @offset:             Offset of the ADC channel
 134 */
 135struct adc_cal_data {
 136        s64 gain;
 137        s64 offset;
 138        u16 otp_calib_hi;
 139        u16 otp_calib_lo;
 140};
 141
 142/**
 143 * struct ab8500_gpadc - AB8500 GPADC device information
 144 * @dev:                        pointer to the struct device
 145 * @node:                       a list of AB8500 GPADCs, hence prepared for
 146                                reentrance
 147 * @parent:                     pointer to the struct ab8500
 148 * @ab8500_gpadc_complete:      pointer to the struct completion, to indicate
 149 *                              the completion of gpadc conversion
 150 * @ab8500_gpadc_lock:          structure of type mutex
 151 * @regu:                       pointer to the struct regulator
 152 * @irq_sw:                     interrupt number that is used by gpadc for Sw
 153 *                              conversion
 154 * @irq_hw:                     interrupt number that is used by gpadc for Hw
 155 *                              conversion
 156 * @cal_data                    array of ADC calibration data structs
 157 */
 158struct ab8500_gpadc {
 159        struct device *dev;
 160        struct list_head node;
 161        struct ab8500 *parent;
 162        struct completion ab8500_gpadc_complete;
 163        struct mutex ab8500_gpadc_lock;
 164        struct regulator *regu;
 165        int irq_sw;
 166        int irq_hw;
 167        struct adc_cal_data cal_data[NBR_CAL_INPUTS];
 168};
 169
 170static LIST_HEAD(ab8500_gpadc_list);
 171
 172/**
 173 * ab8500_gpadc_get() - returns a reference to the primary AB8500 GPADC
 174 * (i.e. the first GPADC in the instance list)
 175 */
 176struct ab8500_gpadc *ab8500_gpadc_get(char *name)
 177{
 178        struct ab8500_gpadc *gpadc;
 179
 180        list_for_each_entry(gpadc, &ab8500_gpadc_list, node) {
 181                if (!strcmp(name, dev_name(gpadc->dev)))
 182                    return gpadc;
 183        }
 184
 185        return ERR_PTR(-ENOENT);
 186}
 187EXPORT_SYMBOL(ab8500_gpadc_get);
 188
 189/**
 190 * ab8500_gpadc_ad_to_voltage() - Convert a raw ADC value to a voltage
 191 */
 192int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, u8 channel,
 193        int ad_value)
 194{
 195        int res;
 196
 197        switch (channel) {
 198        case MAIN_CHARGER_V:
 199                /* For some reason we don't have calibrated data */
 200                if (!gpadc->cal_data[ADC_INPUT_VMAIN].gain) {
 201                        res = ADC_CH_CHG_V_MIN + (ADC_CH_CHG_V_MAX -
 202                                ADC_CH_CHG_V_MIN) * ad_value /
 203                                ADC_RESOLUTION;
 204                        break;
 205                }
 206                /* Here we can use the calibrated data */
 207                res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VMAIN].gain +
 208                        gpadc->cal_data[ADC_INPUT_VMAIN].offset) / CALIB_SCALE;
 209                break;
 210
 211        case XTAL_TEMP:
 212        case BAT_CTRL:
 213        case BTEMP_BALL:
 214        case ACC_DETECT1:
 215        case ADC_AUX1:
 216        case ADC_AUX2:
 217                /* For some reason we don't have calibrated data */
 218                if (!gpadc->cal_data[ADC_INPUT_BTEMP].gain) {
 219                        res = ADC_CH_BTEMP_MIN + (ADC_CH_BTEMP_MAX -
 220                                ADC_CH_BTEMP_MIN) * ad_value /
 221                                ADC_RESOLUTION;
 222                        break;
 223                }
 224                /* Here we can use the calibrated data */
 225                res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_BTEMP].gain +
 226                        gpadc->cal_data[ADC_INPUT_BTEMP].offset) / CALIB_SCALE;
 227                break;
 228
 229        case MAIN_BAT_V:
 230        case VBAT_TRUE_MEAS:
 231                /* For some reason we don't have calibrated data */
 232                if (!gpadc->cal_data[ADC_INPUT_VBAT].gain) {
 233                        res = ADC_CH_VBAT_MIN + (ADC_CH_VBAT_MAX -
 234                                ADC_CH_VBAT_MIN) * ad_value /
 235                                ADC_RESOLUTION;
 236                        break;
 237                }
 238                /* Here we can use the calibrated data */
 239                res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VBAT].gain +
 240                        gpadc->cal_data[ADC_INPUT_VBAT].offset) / CALIB_SCALE;
 241                break;
 242
 243        case DIE_TEMP:
 244                res = ADC_CH_DIETEMP_MIN +
 245                        (ADC_CH_DIETEMP_MAX - ADC_CH_DIETEMP_MIN) * ad_value /
 246                        ADC_RESOLUTION;
 247                break;
 248
 249        case ACC_DETECT2:
 250                res = ADC_CH_ACCDET2_MIN +
 251                        (ADC_CH_ACCDET2_MAX - ADC_CH_ACCDET2_MIN) * ad_value /
 252                        ADC_RESOLUTION;
 253                break;
 254
 255        case VBUS_V:
 256                res = ADC_CH_CHG_V_MIN +
 257                        (ADC_CH_CHG_V_MAX - ADC_CH_CHG_V_MIN) * ad_value /
 258                        ADC_RESOLUTION;
 259                break;
 260
 261        case MAIN_CHARGER_C:
 262        case USB_CHARGER_C:
 263                res = ADC_CH_CHG_I_MIN +
 264                        (ADC_CH_CHG_I_MAX - ADC_CH_CHG_I_MIN) * ad_value /
 265                        ADC_RESOLUTION;
 266                break;
 267
 268        case BK_BAT_V:
 269                res = ADC_CH_BKBAT_MIN +
 270                        (ADC_CH_BKBAT_MAX - ADC_CH_BKBAT_MIN) * ad_value /
 271                        ADC_RESOLUTION;
 272                break;
 273
 274        case IBAT_VIRTUAL_CHANNEL:
 275                /* For some reason we don't have calibrated data */
 276                if (!gpadc->cal_data[ADC_INPUT_IBAT].gain) {
 277                        res = ADC_CH_IBAT_MIN + (ADC_CH_IBAT_MAX -
 278                                ADC_CH_IBAT_MIN) * ad_value /
 279                                ADC_RESOLUTION;
 280                        break;
 281                }
 282                /* Here we can use the calibrated data */
 283                res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_IBAT].gain +
 284                                gpadc->cal_data[ADC_INPUT_IBAT].offset)
 285                                >> CALIB_SHIFT_IBAT;
 286                break;
 287
 288        default:
 289                dev_err(gpadc->dev,
 290                        "unknown channel, not possible to convert\n");
 291                res = -EINVAL;
 292                break;
 293
 294        }
 295        return res;
 296}
 297EXPORT_SYMBOL(ab8500_gpadc_ad_to_voltage);
 298
 299/**
 300 * ab8500_gpadc_sw_hw_convert() - gpadc conversion
 301 * @channel:    analog channel to be converted to digital data
 302 * @avg_sample:  number of ADC sample to average
 303 * @trig_egde:  selected ADC trig edge
 304 * @trig_timer: selected ADC trigger delay timer
 305 * @conv_type: selected conversion type (HW or SW conversion)
 306 *
 307 * This function converts the selected analog i/p to digital
 308 * data.
 309 */
 310int ab8500_gpadc_sw_hw_convert(struct ab8500_gpadc *gpadc, u8 channel,
 311                u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type)
 312{
 313        int ad_value;
 314        int voltage;
 315
 316        ad_value = ab8500_gpadc_read_raw(gpadc, channel, avg_sample,
 317                        trig_edge, trig_timer, conv_type);
 318/* On failure retry a second time */
 319        if (ad_value < 0)
 320                ad_value = ab8500_gpadc_read_raw(gpadc, channel, avg_sample,
 321                        trig_edge, trig_timer, conv_type);
 322if (ad_value < 0) {
 323                dev_err(gpadc->dev, "GPADC raw value failed ch: %d\n",
 324                                channel);
 325                return ad_value;
 326        }
 327
 328        voltage = ab8500_gpadc_ad_to_voltage(gpadc, channel, ad_value);
 329        if (voltage < 0)
 330                dev_err(gpadc->dev, "GPADC to voltage conversion failed ch:"
 331                        " %d AD: 0x%x\n", channel, ad_value);
 332
 333        return voltage;
 334}
 335EXPORT_SYMBOL(ab8500_gpadc_sw_hw_convert);
 336
 337/**
 338 * ab8500_gpadc_read_raw() - gpadc read
 339 * @channel:    analog channel to be read
 340 * @avg_sample:  number of ADC sample to average
 341 * @trig_edge:  selected trig edge
 342 * @trig_timer: selected ADC trigger delay timer
 343 * @conv_type: selected conversion type (HW or SW conversion)
 344 *
 345 * This function obtains the raw ADC value for an hardware conversion,
 346 * this then needs to be converted by calling ab8500_gpadc_ad_to_voltage()
 347 */
 348int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel,
 349                u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type)
 350{
 351        int raw_data;
 352        raw_data = ab8500_gpadc_double_read_raw(gpadc, channel,
 353                        avg_sample, trig_edge, trig_timer, conv_type, NULL);
 354        return raw_data;
 355}
 356
 357int ab8500_gpadc_double_read_raw(struct ab8500_gpadc *gpadc, u8 channel,
 358                u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type,
 359                int *ibat)
 360{
 361        int ret;
 362        int looplimit = 0;
 363        unsigned long completion_timeout;
 364        u8 val, low_data, high_data, low_data2, high_data2;
 365        u8 val_reg1 = 0;
 366        unsigned int delay_min = 0;
 367        unsigned int delay_max = 0;
 368        u8 data_low_addr, data_high_addr;
 369
 370        if (!gpadc)
 371                return -ENODEV;
 372
 373        /* check if convertion is supported */
 374        if ((gpadc->irq_sw < 0) && (conv_type == ADC_SW))
 375                return -ENOTSUPP;
 376        if ((gpadc->irq_hw < 0) && (conv_type == ADC_HW))
 377                return -ENOTSUPP;
 378
 379        mutex_lock(&gpadc->ab8500_gpadc_lock);
 380        /* Enable VTVout LDO this is required for GPADC */
 381        pm_runtime_get_sync(gpadc->dev);
 382
 383        /* Check if ADC is not busy, lock and proceed */
 384        do {
 385                ret = abx500_get_register_interruptible(gpadc->dev,
 386                        AB8500_GPADC, AB8500_GPADC_STAT_REG, &val);
 387                if (ret < 0)
 388                        goto out;
 389                if (!(val & GPADC_BUSY))
 390                        break;
 391                msleep(10);
 392        } while (++looplimit < 10);
 393        if (looplimit >= 10 && (val & GPADC_BUSY)) {
 394                dev_err(gpadc->dev, "gpadc_conversion: GPADC busy");
 395                ret = -EINVAL;
 396                goto out;
 397        }
 398
 399        /* Enable GPADC */
 400        val_reg1 |= EN_GPADC;
 401
 402        /* Select the channel source and set average samples */
 403        switch (avg_sample) {
 404        case SAMPLE_1:
 405                val = channel | AVG_1;
 406                break;
 407        case SAMPLE_4:
 408                val = channel | AVG_4;
 409                break;
 410        case SAMPLE_8:
 411                val = channel | AVG_8;
 412                break;
 413        default:
 414                val = channel | AVG_16;
 415                break;
 416        }
 417
 418        if (conv_type == ADC_HW) {
 419                ret = abx500_set_register_interruptible(gpadc->dev,
 420                                AB8500_GPADC, AB8500_GPADC_CTRL3_REG, val);
 421                val_reg1 |= EN_TRIG_EDGE;
 422                if (trig_edge)
 423                        val_reg1 |= EN_FALLING;
 424        }
 425        else
 426                ret = abx500_set_register_interruptible(gpadc->dev,
 427                                AB8500_GPADC, AB8500_GPADC_CTRL2_REG, val);
 428        if (ret < 0) {
 429                dev_err(gpadc->dev,
 430                        "gpadc_conversion: set avg samples failed\n");
 431                goto out;
 432        }
 433
 434        /*
 435         * Enable ADC, buffering, select rising edge and enable ADC path
 436         * charging current sense if it needed, ABB 3.0 needs some special
 437         * treatment too.
 438         */
 439        switch (channel) {
 440        case MAIN_CHARGER_C:
 441        case USB_CHARGER_C:
 442                val_reg1 |= EN_BUF | EN_ICHAR;
 443                break;
 444        case BTEMP_BALL:
 445                if (!is_ab8500_2p0_or_earlier(gpadc->parent)) {
 446                        val_reg1 |= EN_BUF | BTEMP_PULL_UP;
 447                        /*
 448                        * Delay might be needed for ABB8500 cut 3.0, if not,
 449                        * remove when hardware will be availible
 450                        */
 451                        delay_min = 1000; /* Delay in micro seconds */
 452                        delay_max = 10000; /* large range to optimise sleep mode */
 453                        break;
 454                }
 455                /* Intentional fallthrough */
 456        default:
 457                val_reg1 |= EN_BUF;
 458                break;
 459        }
 460
 461        /* Write configuration to register */
 462        ret = abx500_set_register_interruptible(gpadc->dev,
 463                AB8500_GPADC, AB8500_GPADC_CTRL1_REG, val_reg1);
 464        if (ret < 0) {
 465                dev_err(gpadc->dev,
 466                        "gpadc_conversion: set Control register failed\n");
 467                goto out;
 468        }
 469
 470        if (delay_min != 0)
 471                usleep_range(delay_min, delay_max);
 472
 473        if (conv_type == ADC_HW) {
 474                /* Set trigger delay timer */
 475                ret = abx500_set_register_interruptible(gpadc->dev,
 476                        AB8500_GPADC, AB8500_GPADC_AUTO_TIMER_REG, trig_timer);
 477                if (ret < 0) {
 478                        dev_err(gpadc->dev,
 479                                "gpadc_conversion: trig timer failed\n");
 480                        goto out;
 481                }
 482                completion_timeout = 2 * HZ;
 483                data_low_addr = AB8500_GPADC_AUTODATAL_REG;
 484                data_high_addr = AB8500_GPADC_AUTODATAH_REG;
 485        } else {
 486                /* Start SW conversion */
 487                ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
 488                        AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
 489                        ADC_SW_CONV, ADC_SW_CONV);
 490                if (ret < 0) {
 491                        dev_err(gpadc->dev,
 492                                "gpadc_conversion: start s/w conv failed\n");
 493                        goto out;
 494                }
 495                completion_timeout = msecs_to_jiffies(CONVERSION_TIME);
 496                data_low_addr = AB8500_GPADC_MANDATAL_REG;
 497                data_high_addr = AB8500_GPADC_MANDATAH_REG;
 498        }
 499
 500        /* wait for completion of conversion */
 501        if (!wait_for_completion_timeout(&gpadc->ab8500_gpadc_complete,
 502                        completion_timeout)) {
 503                dev_err(gpadc->dev,
 504                        "timeout didn't receive GPADC conv interrupt\n");
 505                ret = -EINVAL;
 506                goto out;
 507        }
 508
 509        /* Read the converted RAW data */
 510        ret = abx500_get_register_interruptible(gpadc->dev,
 511                        AB8500_GPADC, data_low_addr, &low_data);
 512        if (ret < 0) {
 513                dev_err(gpadc->dev, "gpadc_conversion: read low data failed\n");
 514                goto out;
 515        }
 516
 517        ret = abx500_get_register_interruptible(gpadc->dev,
 518                AB8500_GPADC, data_high_addr, &high_data);
 519        if (ret < 0) {
 520                dev_err(gpadc->dev, "gpadc_conversion: read high data failed\n");
 521                goto out;
 522        }
 523
 524        /* Check if double convertion is required */
 525        if ((channel == BAT_CTRL_AND_IBAT) ||
 526                        (channel == VBAT_MEAS_AND_IBAT) ||
 527                        (channel == VBAT_TRUE_MEAS_AND_IBAT) ||
 528                        (channel == BAT_TEMP_AND_IBAT)) {
 529
 530                if (conv_type == ADC_HW) {
 531                        /* not supported */
 532                        ret = -ENOTSUPP;
 533                        dev_err(gpadc->dev,
 534                                "gpadc_conversion: only SW double conversion supported\n");
 535                        goto out;
 536                } else {
 537                        /* Read the converted RAW data 2 */
 538                        ret = abx500_get_register_interruptible(gpadc->dev,
 539                                AB8500_GPADC, AB8540_GPADC_MANDATA2L_REG,
 540                                &low_data2);
 541                        if (ret < 0) {
 542                                dev_err(gpadc->dev,
 543                                        "gpadc_conversion: read sw low data 2 failed\n");
 544                                goto out;
 545                        }
 546
 547                        ret = abx500_get_register_interruptible(gpadc->dev,
 548                                AB8500_GPADC, AB8540_GPADC_MANDATA2H_REG,
 549                                &high_data2);
 550                        if (ret < 0) {
 551                                dev_err(gpadc->dev,
 552                                        "gpadc_conversion: read sw high data 2 failed\n");
 553                                goto out;
 554                        }
 555                        if (ibat != NULL) {
 556                                *ibat = (high_data2 << 8) | low_data2;
 557                        } else {
 558                                dev_warn(gpadc->dev,
 559                                        "gpadc_conversion: ibat not stored\n");
 560                        }
 561
 562                }
 563        }
 564
 565        /* Disable GPADC */
 566        ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
 567                AB8500_GPADC_CTRL1_REG, DIS_GPADC);
 568        if (ret < 0) {
 569                dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n");
 570                goto out;
 571        }
 572
 573        /* Disable VTVout LDO this is required for GPADC */
 574        pm_runtime_mark_last_busy(gpadc->dev);
 575        pm_runtime_put_autosuspend(gpadc->dev);
 576
 577        mutex_unlock(&gpadc->ab8500_gpadc_lock);
 578
 579        return (high_data << 8) | low_data;
 580
 581out:
 582        /*
 583         * It has shown to be needed to turn off the GPADC if an error occurs,
 584         * otherwise we might have problem when waiting for the busy bit in the
 585         * GPADC status register to go low. In V1.1 there wait_for_completion
 586         * seems to timeout when waiting for an interrupt.. Not seen in V2.0
 587         */
 588        (void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
 589                AB8500_GPADC_CTRL1_REG, DIS_GPADC);
 590        pm_runtime_put(gpadc->dev);
 591        mutex_unlock(&gpadc->ab8500_gpadc_lock);
 592        dev_err(gpadc->dev,
 593                "gpadc_conversion: Failed to AD convert channel %d\n", channel);
 594        return ret;
 595}
 596EXPORT_SYMBOL(ab8500_gpadc_read_raw);
 597
 598/**
 599 * ab8500_bm_gpadcconvend_handler() - isr for gpadc conversion completion
 600 * @irq:        irq number
 601 * @data:       pointer to the data passed during request irq
 602 *
 603 * This is a interrupt service routine for gpadc conversion completion.
 604 * Notifies the gpadc completion is completed and the converted raw value
 605 * can be read from the registers.
 606 * Returns IRQ status(IRQ_HANDLED)
 607 */
 608static irqreturn_t ab8500_bm_gpadcconvend_handler(int irq, void *_gpadc)
 609{
 610        struct ab8500_gpadc *gpadc = _gpadc;
 611
 612        complete(&gpadc->ab8500_gpadc_complete);
 613
 614        return IRQ_HANDLED;
 615}
 616
 617static int otp_cal_regs[] = {
 618        AB8500_GPADC_CAL_1,
 619        AB8500_GPADC_CAL_2,
 620        AB8500_GPADC_CAL_3,
 621        AB8500_GPADC_CAL_4,
 622        AB8500_GPADC_CAL_5,
 623        AB8500_GPADC_CAL_6,
 624        AB8500_GPADC_CAL_7,
 625};
 626
 627static int otp4_cal_regs[] = {
 628        AB8540_GPADC_OTP4_REG_7,
 629        AB8540_GPADC_OTP4_REG_6,
 630        AB8540_GPADC_OTP4_REG_5,
 631};
 632
 633static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
 634{
 635        int i;
 636        int ret[ARRAY_SIZE(otp_cal_regs)];
 637        u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)];
 638        int ret_otp4[ARRAY_SIZE(otp4_cal_regs)];
 639        u8 gpadc_otp4[ARRAY_SIZE(otp4_cal_regs)];
 640        int vmain_high, vmain_low;
 641        int btemp_high, btemp_low;
 642        int vbat_high, vbat_low;
 643        int ibat_high, ibat_low;
 644        s64 V_gain, V_offset, V2A_gain, V2A_offset;
 645        struct ab8500 *ab8500;
 646
 647        ab8500 = gpadc->parent;
 648
 649        /* First we read all OTP registers and store the error code */
 650        for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) {
 651                ret[i] = abx500_get_register_interruptible(gpadc->dev,
 652                        AB8500_OTP_EMUL, otp_cal_regs[i],  &gpadc_cal[i]);
 653                if (ret[i] < 0)
 654                        dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n",
 655                                __func__, otp_cal_regs[i]);
 656        }
 657
 658        /*
 659         * The ADC calibration data is stored in OTP registers.
 660         * The layout of the calibration data is outlined below and a more
 661         * detailed description can be found in UM0836
 662         *
 663         * vm_h/l = vmain_high/low
 664         * bt_h/l = btemp_high/low
 665         * vb_h/l = vbat_high/low
 666         *
 667         * Data bits 8500/9540:
 668         * | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0
 669         * |.......|.......|.......|.......|.......|.......|.......|.......
 670         * |                                               | vm_h9 | vm_h8
 671         * |.......|.......|.......|.......|.......|.......|.......|.......
 672         * |               | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
 673         * |.......|.......|.......|.......|.......|.......|.......|.......
 674         * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
 675         * |.......|.......|.......|.......|.......|.......|.......|.......
 676         * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
 677         * |.......|.......|.......|.......|.......|.......|.......|.......
 678         * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
 679         * |.......|.......|.......|.......|.......|.......|.......|.......
 680         * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
 681         * |.......|.......|.......|.......|.......|.......|.......|.......
 682         * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
 683         * |.......|.......|.......|.......|.......|.......|.......|.......
 684         *
 685         * Data bits 8540:
 686         * OTP2
 687         * | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0
 688         * |.......|.......|.......|.......|.......|.......|.......|.......
 689         * |
 690         * |.......|.......|.......|.......|.......|.......|.......|.......
 691         * | vm_h9 | vm_h8 | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
 692         * |.......|.......|.......|.......|.......|.......|.......|.......
 693         * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
 694         * |.......|.......|.......|.......|.......|.......|.......|.......
 695         * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
 696         * |.......|.......|.......|.......|.......|.......|.......|.......
 697         * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
 698         * |.......|.......|.......|.......|.......|.......|.......|.......
 699         * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
 700         * |.......|.......|.......|.......|.......|.......|.......|.......
 701         * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
 702         * |.......|.......|.......|.......|.......|.......|.......|.......
 703         *
 704         * Data bits 8540:
 705         * OTP4
 706         * | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0
 707         * |.......|.......|.......|.......|.......|.......|.......|.......
 708         * |                                       | ib_h9 | ib_h8 | ib_h7
 709         * |.......|.......|.......|.......|.......|.......|.......|.......
 710         * | ib_h6 | ib_h5 | ib_h4 | ib_h3 | ib_h2 | ib_h1 | ib_h0 | ib_l5
 711         * |.......|.......|.......|.......|.......|.......|.......|.......
 712         * | ib_l4 | ib_l3 | ib_l2 | ib_l1 | ib_l0 |
 713         *
 714         *
 715         * Ideal output ADC codes corresponding to injected input voltages
 716         * during manufacturing is:
 717         *
 718         * vmain_high: Vin = 19500mV / ADC ideal code = 997
 719         * vmain_low:  Vin = 315mV   / ADC ideal code = 16
 720         * btemp_high: Vin = 1300mV  / ADC ideal code = 985
 721         * btemp_low:  Vin = 21mV    / ADC ideal code = 16
 722         * vbat_high:  Vin = 4700mV  / ADC ideal code = 982
 723         * vbat_low:   Vin = 2380mV  / ADC ideal code = 33
 724         */
 725
 726        if (is_ab8540(ab8500)) {
 727                /* Calculate gain and offset for VMAIN if all reads succeeded*/
 728                if (!(ret[1] < 0 || ret[2] < 0)) {
 729                        vmain_high = (((gpadc_cal[1] & 0xFF) << 2) |
 730                                ((gpadc_cal[2] & 0xC0) >> 6));
 731                        vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
 732
 733                        gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi =
 734                                (u16)vmain_high;
 735                        gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo =
 736                                (u16)vmain_low;
 737
 738                        gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE *
 739                                (19500 - 315) / (vmain_high - vmain_low);
 740                        gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE *
 741                                19500 - (CALIB_SCALE * (19500 - 315) /
 742                                (vmain_high - vmain_low)) * vmain_high;
 743                } else {
 744                gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0;
 745                }
 746
 747                /* Read IBAT calibration Data */
 748                for (i = 0; i < ARRAY_SIZE(otp4_cal_regs); i++) {
 749                        ret_otp4[i] = abx500_get_register_interruptible(
 750                                        gpadc->dev, AB8500_OTP_EMUL,
 751                                        otp4_cal_regs[i],  &gpadc_otp4[i]);
 752                        if (ret_otp4[i] < 0)
 753                                dev_err(gpadc->dev,
 754                                        "%s: read otp4 reg 0x%02x failed\n",
 755                                        __func__, otp4_cal_regs[i]);
 756                }
 757
 758                /* Calculate gain and offset for IBAT if all reads succeeded */
 759                if (!(ret_otp4[0] < 0 || ret_otp4[1] < 0 || ret_otp4[2] < 0)) {
 760                        ibat_high = (((gpadc_otp4[0] & 0x07) << 7) |
 761                                ((gpadc_otp4[1] & 0xFE) >> 1));
 762                        ibat_low = (((gpadc_otp4[1] & 0x01) << 5) |
 763                                ((gpadc_otp4[2] & 0xF8) >> 3));
 764
 765                        gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_hi =
 766                                (u16)ibat_high;
 767                        gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_lo =
 768                                (u16)ibat_low;
 769
 770                        V_gain = ((IBAT_VDROP_H - IBAT_VDROP_L)
 771                                << CALIB_SHIFT_IBAT) / (ibat_high - ibat_low);
 772
 773                        V_offset = (IBAT_VDROP_H << CALIB_SHIFT_IBAT) -
 774                                (((IBAT_VDROP_H - IBAT_VDROP_L) <<
 775                                CALIB_SHIFT_IBAT) / (ibat_high - ibat_low))
 776                                * ibat_high;
 777                        /*
 778                         * Result obtained is in mV (at a scale factor),
 779                         * we need to calculate gain and offset to get mA
 780                         */
 781                        V2A_gain = (ADC_CH_IBAT_MAX - ADC_CH_IBAT_MIN)/
 782                                (ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V);
 783                        V2A_offset = ((ADC_CH_IBAT_MAX_V * ADC_CH_IBAT_MIN -
 784                                ADC_CH_IBAT_MAX * ADC_CH_IBAT_MIN_V)
 785                                << CALIB_SHIFT_IBAT)
 786                                / (ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V);
 787
 788                        gpadc->cal_data[ADC_INPUT_IBAT].gain = V_gain * V2A_gain;
 789                        gpadc->cal_data[ADC_INPUT_IBAT].offset = V_offset *
 790                                V2A_gain + V2A_offset;
 791                } else {
 792                        gpadc->cal_data[ADC_INPUT_IBAT].gain = 0;
 793                }
 794
 795                dev_dbg(gpadc->dev, "IBAT gain %llu offset %llu\n",
 796                        gpadc->cal_data[ADC_INPUT_IBAT].gain,
 797                        gpadc->cal_data[ADC_INPUT_IBAT].offset);
 798        } else {
 799                /* Calculate gain and offset for VMAIN if all reads succeeded */
 800                if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) {
 801                        vmain_high = (((gpadc_cal[0] & 0x03) << 8) |
 802                                ((gpadc_cal[1] & 0x3F) << 2) |
 803                                ((gpadc_cal[2] & 0xC0) >> 6));
 804                        vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
 805
 806                        gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi =
 807                                (u16)vmain_high;
 808                        gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo =
 809                                (u16)vmain_low;
 810
 811                        gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE *
 812                                (19500 - 315) / (vmain_high - vmain_low);
 813
 814                        gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE *
 815                                19500 - (CALIB_SCALE * (19500 - 315) /
 816                                (vmain_high - vmain_low)) * vmain_high;
 817                } else {
 818                        gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0;
 819                }
 820        }
 821
 822        /* Calculate gain and offset for BTEMP if all reads succeeded */
 823        if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) {
 824                btemp_high = (((gpadc_cal[2] & 0x01) << 9) |
 825                        (gpadc_cal[3] << 1) | ((gpadc_cal[4] & 0x80) >> 7));
 826                btemp_low = ((gpadc_cal[4] & 0x7C) >> 2);
 827
 828                gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_hi = (u16)btemp_high;
 829                gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_lo = (u16)btemp_low;
 830
 831                gpadc->cal_data[ADC_INPUT_BTEMP].gain =
 832                        CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low);
 833                gpadc->cal_data[ADC_INPUT_BTEMP].offset = CALIB_SCALE * 1300 -
 834                        (CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low))
 835                        * btemp_high;
 836        } else {
 837                gpadc->cal_data[ADC_INPUT_BTEMP].gain = 0;
 838        }
 839
 840        /* Calculate gain and offset for VBAT if all reads succeeded */
 841        if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) {
 842                vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]);
 843                vbat_low = ((gpadc_cal[6] & 0xFC) >> 2);
 844
 845                gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_hi = (u16)vbat_high;
 846                gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_lo = (u16)vbat_low;
 847
 848                gpadc->cal_data[ADC_INPUT_VBAT].gain = CALIB_SCALE *
 849                        (4700 - 2380) / (vbat_high - vbat_low);
 850                gpadc->cal_data[ADC_INPUT_VBAT].offset = CALIB_SCALE * 4700 -
 851                        (CALIB_SCALE * (4700 - 2380) /
 852                        (vbat_high - vbat_low)) * vbat_high;
 853        } else {
 854                gpadc->cal_data[ADC_INPUT_VBAT].gain = 0;
 855        }
 856
 857        dev_dbg(gpadc->dev, "VMAIN gain %llu offset %llu\n",
 858                gpadc->cal_data[ADC_INPUT_VMAIN].gain,
 859                gpadc->cal_data[ADC_INPUT_VMAIN].offset);
 860
 861        dev_dbg(gpadc->dev, "BTEMP gain %llu offset %llu\n",
 862                gpadc->cal_data[ADC_INPUT_BTEMP].gain,
 863                gpadc->cal_data[ADC_INPUT_BTEMP].offset);
 864
 865        dev_dbg(gpadc->dev, "VBAT gain %llu offset %llu\n",
 866                gpadc->cal_data[ADC_INPUT_VBAT].gain,
 867                gpadc->cal_data[ADC_INPUT_VBAT].offset);
 868}
 869
 870#ifdef CONFIG_PM
 871static int ab8500_gpadc_runtime_suspend(struct device *dev)
 872{
 873        struct ab8500_gpadc *gpadc = dev_get_drvdata(dev);
 874
 875        regulator_disable(gpadc->regu);
 876        return 0;
 877}
 878
 879static int ab8500_gpadc_runtime_resume(struct device *dev)
 880{
 881        struct ab8500_gpadc *gpadc = dev_get_drvdata(dev);
 882        int ret;
 883
 884        ret = regulator_enable(gpadc->regu);
 885        if (ret)
 886                dev_err(dev, "Failed to enable vtvout LDO: %d\n", ret);
 887        return ret;
 888}
 889#endif
 890
 891#ifdef CONFIG_PM_SLEEP
 892static int ab8500_gpadc_suspend(struct device *dev)
 893{
 894        struct ab8500_gpadc *gpadc = dev_get_drvdata(dev);
 895
 896        mutex_lock(&gpadc->ab8500_gpadc_lock);
 897
 898        pm_runtime_get_sync(dev);
 899
 900        regulator_disable(gpadc->regu);
 901        return 0;
 902}
 903
 904static int ab8500_gpadc_resume(struct device *dev)
 905{
 906        struct ab8500_gpadc *gpadc = dev_get_drvdata(dev);
 907        int ret;
 908
 909        ret = regulator_enable(gpadc->regu);
 910        if (ret)
 911                dev_err(dev, "Failed to enable vtvout LDO: %d\n", ret);
 912
 913        pm_runtime_mark_last_busy(gpadc->dev);
 914        pm_runtime_put_autosuspend(gpadc->dev);
 915
 916        mutex_unlock(&gpadc->ab8500_gpadc_lock);
 917        return ret;
 918}
 919#endif
 920
 921static int ab8500_gpadc_probe(struct platform_device *pdev)
 922{
 923        int ret = 0;
 924        struct ab8500_gpadc *gpadc;
 925
 926        gpadc = devm_kzalloc(&pdev->dev, sizeof(struct ab8500_gpadc), GFP_KERNEL);
 927        if (!gpadc) {
 928                dev_err(&pdev->dev, "Error: No memory\n");
 929                return -ENOMEM;
 930        }
 931
 932        gpadc->irq_sw = platform_get_irq_byname(pdev, "SW_CONV_END");
 933        if (gpadc->irq_sw < 0)
 934                dev_err(gpadc->dev, "failed to get platform sw_conv_end irq\n");
 935
 936        gpadc->irq_hw = platform_get_irq_byname(pdev, "HW_CONV_END");
 937        if (gpadc->irq_hw < 0)
 938                dev_err(gpadc->dev, "failed to get platform hw_conv_end irq\n");
 939
 940        gpadc->dev = &pdev->dev;
 941        gpadc->parent = dev_get_drvdata(pdev->dev.parent);
 942        mutex_init(&gpadc->ab8500_gpadc_lock);
 943
 944        /* Initialize completion used to notify completion of conversion */
 945        init_completion(&gpadc->ab8500_gpadc_complete);
 946
 947        /* Register interrupts */
 948        if (gpadc->irq_sw >= 0) {
 949                ret = request_threaded_irq(gpadc->irq_sw, NULL,
 950                        ab8500_bm_gpadcconvend_handler,
 951                        IRQF_NO_SUSPEND | IRQF_SHARED, "ab8500-gpadc-sw",
 952                        gpadc);
 953                if (ret < 0) {
 954                        dev_err(gpadc->dev,
 955                                "Failed to register interrupt irq: %d\n",
 956                                gpadc->irq_sw);
 957                        goto fail;
 958                }
 959        }
 960
 961        if (gpadc->irq_hw >= 0) {
 962                ret = request_threaded_irq(gpadc->irq_hw, NULL,
 963                        ab8500_bm_gpadcconvend_handler,
 964                        IRQF_NO_SUSPEND | IRQF_SHARED, "ab8500-gpadc-hw",
 965                        gpadc);
 966                if (ret < 0) {
 967                        dev_err(gpadc->dev,
 968                                "Failed to register interrupt irq: %d\n",
 969                                gpadc->irq_hw);
 970                        goto fail_irq;
 971                }
 972        }
 973
 974        /* VTVout LDO used to power up ab8500-GPADC */
 975        gpadc->regu = devm_regulator_get(&pdev->dev, "vddadc");
 976        if (IS_ERR(gpadc->regu)) {
 977                ret = PTR_ERR(gpadc->regu);
 978                dev_err(gpadc->dev, "failed to get vtvout LDO\n");
 979                goto fail_irq;
 980        }
 981
 982        platform_set_drvdata(pdev, gpadc);
 983
 984        ret = regulator_enable(gpadc->regu);
 985        if (ret) {
 986                dev_err(gpadc->dev, "Failed to enable vtvout LDO: %d\n", ret);
 987                goto fail_enable;
 988        }
 989
 990        pm_runtime_set_autosuspend_delay(gpadc->dev, GPADC_AUDOSUSPEND_DELAY);
 991        pm_runtime_use_autosuspend(gpadc->dev);
 992        pm_runtime_set_active(gpadc->dev);
 993        pm_runtime_enable(gpadc->dev);
 994
 995        ab8500_gpadc_read_calibration_data(gpadc);
 996        list_add_tail(&gpadc->node, &ab8500_gpadc_list);
 997        dev_dbg(gpadc->dev, "probe success\n");
 998
 999        return 0;
1000
1001fail_enable:
1002fail_irq:
1003        free_irq(gpadc->irq_sw, gpadc);
1004        free_irq(gpadc->irq_hw, gpadc);
1005fail:
1006        return ret;
1007}
1008
1009static int ab8500_gpadc_remove(struct platform_device *pdev)
1010{
1011        struct ab8500_gpadc *gpadc = platform_get_drvdata(pdev);
1012
1013        /* remove this gpadc entry from the list */
1014        list_del(&gpadc->node);
1015        /* remove interrupt  - completion of Sw ADC conversion */
1016        if (gpadc->irq_sw >= 0)
1017                free_irq(gpadc->irq_sw, gpadc);
1018        if (gpadc->irq_hw >= 0)
1019                free_irq(gpadc->irq_hw, gpadc);
1020
1021        pm_runtime_get_sync(gpadc->dev);
1022        pm_runtime_disable(gpadc->dev);
1023
1024        regulator_disable(gpadc->regu);
1025
1026        pm_runtime_set_suspended(gpadc->dev);
1027
1028        pm_runtime_put_noidle(gpadc->dev);
1029
1030        return 0;
1031}
1032
1033static const struct dev_pm_ops ab8500_gpadc_pm_ops = {
1034        SET_RUNTIME_PM_OPS(ab8500_gpadc_runtime_suspend,
1035                           ab8500_gpadc_runtime_resume,
1036                           NULL)
1037        SET_SYSTEM_SLEEP_PM_OPS(ab8500_gpadc_suspend,
1038                                ab8500_gpadc_resume)
1039
1040};
1041
1042static struct platform_driver ab8500_gpadc_driver = {
1043        .probe = ab8500_gpadc_probe,
1044        .remove = ab8500_gpadc_remove,
1045        .driver = {
1046                .name = "ab8500-gpadc",
1047                .pm = &ab8500_gpadc_pm_ops,
1048        },
1049};
1050
1051static int __init ab8500_gpadc_init(void)
1052{
1053        return platform_driver_register(&ab8500_gpadc_driver);
1054}
1055
1056static void __exit ab8500_gpadc_exit(void)
1057{
1058        platform_driver_unregister(&ab8500_gpadc_driver);
1059}
1060
1061/**
1062 * ab8540_gpadc_get_otp() - returns OTP values
1063 *
1064 */
1065void ab8540_gpadc_get_otp(struct ab8500_gpadc *gpadc,
1066                        u16 *vmain_l, u16 *vmain_h, u16 *btemp_l, u16 *btemp_h,
1067                        u16 *vbat_l, u16 *vbat_h, u16 *ibat_l, u16 *ibat_h)
1068{
1069        *vmain_l = gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo;
1070        *vmain_h = gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi;
1071        *btemp_l = gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_lo;
1072        *btemp_h = gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_hi;
1073        *vbat_l = gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_lo;
1074        *vbat_h = gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_hi;
1075        *ibat_l = gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_lo;
1076        *ibat_h = gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_hi;
1077        return ;
1078}
1079
1080subsys_initcall_sync(ab8500_gpadc_init);
1081module_exit(ab8500_gpadc_exit);
1082
1083MODULE_LICENSE("GPL v2");
1084MODULE_AUTHOR("Arun R Murthy, Daniel Willerud, Johan Palsson,"
1085                "M'boumba Cedric Madianga");
1086MODULE_ALIAS("platform:ab8500_gpadc");
1087MODULE_DESCRIPTION("AB8500 GPADC driver");
1088