linux/drivers/mtd/nand/diskonchip.c
<<
>>
Prefs
   1/*
   2 * drivers/mtd/nand/diskonchip.c
   3 *
   4 * (C) 2003 Red Hat, Inc.
   5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
   6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
   7 *
   8 * Author: David Woodhouse <dwmw2@infradead.org>
   9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
  10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
  11 *
  12 * Error correction code lifted from the old docecc code
  13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
  14 * Copyright (C) 2000 Netgem S.A.
  15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
  16 *
  17 * Interface to generic NAND code for M-Systems DiskOnChip devices
  18 */
  19
  20#include <linux/kernel.h>
  21#include <linux/init.h>
  22#include <linux/sched.h>
  23#include <linux/delay.h>
  24#include <linux/rslib.h>
  25#include <linux/moduleparam.h>
  26#include <linux/slab.h>
  27#include <asm/io.h>
  28
  29#include <linux/mtd/mtd.h>
  30#include <linux/mtd/nand.h>
  31#include <linux/mtd/doc2000.h>
  32#include <linux/mtd/partitions.h>
  33#include <linux/mtd/inftl.h>
  34#include <linux/module.h>
  35
  36/* Where to look for the devices? */
  37#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
  38#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
  39#endif
  40
  41static unsigned long doc_locations[] __initdata = {
  42#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
  43#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
  44        0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
  45        0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
  46        0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
  47        0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
  48        0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
  49#else
  50        0xc8000, 0xca000, 0xcc000, 0xce000,
  51        0xd0000, 0xd2000, 0xd4000, 0xd6000,
  52        0xd8000, 0xda000, 0xdc000, 0xde000,
  53        0xe0000, 0xe2000, 0xe4000, 0xe6000,
  54        0xe8000, 0xea000, 0xec000, 0xee000,
  55#endif
  56#endif
  57        0xffffffff };
  58
  59static struct mtd_info *doclist = NULL;
  60
  61struct doc_priv {
  62        void __iomem *virtadr;
  63        unsigned long physadr;
  64        u_char ChipID;
  65        u_char CDSNControl;
  66        int chips_per_floor;    /* The number of chips detected on each floor */
  67        int curfloor;
  68        int curchip;
  69        int mh0_page;
  70        int mh1_page;
  71        struct mtd_info *nextdoc;
  72};
  73
  74/* This is the syndrome computed by the HW ecc generator upon reading an empty
  75   page, one with all 0xff for data and stored ecc code. */
  76static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
  77
  78/* This is the ecc value computed by the HW ecc generator upon writing an empty
  79   page, one with all 0xff for data. */
  80static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
  81
  82#define INFTL_BBT_RESERVED_BLOCKS 4
  83
  84#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
  85#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
  86#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
  87
  88static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
  89                              unsigned int bitmask);
  90static void doc200x_select_chip(struct mtd_info *mtd, int chip);
  91
  92static int debug = 0;
  93module_param(debug, int, 0);
  94
  95static int try_dword = 1;
  96module_param(try_dword, int, 0);
  97
  98static int no_ecc_failures = 0;
  99module_param(no_ecc_failures, int, 0);
 100
 101static int no_autopart = 0;
 102module_param(no_autopart, int, 0);
 103
 104static int show_firmware_partition = 0;
 105module_param(show_firmware_partition, int, 0);
 106
 107#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
 108static int inftl_bbt_write = 1;
 109#else
 110static int inftl_bbt_write = 0;
 111#endif
 112module_param(inftl_bbt_write, int, 0);
 113
 114static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
 115module_param(doc_config_location, ulong, 0);
 116MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
 117
 118/* Sector size for HW ECC */
 119#define SECTOR_SIZE 512
 120/* The sector bytes are packed into NB_DATA 10 bit words */
 121#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
 122/* Number of roots */
 123#define NROOTS 4
 124/* First consective root */
 125#define FCR 510
 126/* Number of symbols */
 127#define NN 1023
 128
 129/* the Reed Solomon control structure */
 130static struct rs_control *rs_decoder;
 131
 132/*
 133 * The HW decoder in the DoC ASIC's provides us a error syndrome,
 134 * which we must convert to a standard syndrome usable by the generic
 135 * Reed-Solomon library code.
 136 *
 137 * Fabrice Bellard figured this out in the old docecc code. I added
 138 * some comments, improved a minor bit and converted it to make use
 139 * of the generic Reed-Solomon library. tglx
 140 */
 141static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
 142{
 143        int i, j, nerr, errpos[8];
 144        uint8_t parity;
 145        uint16_t ds[4], s[5], tmp, errval[8], syn[4];
 146
 147        memset(syn, 0, sizeof(syn));
 148        /* Convert the ecc bytes into words */
 149        ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
 150        ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
 151        ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
 152        ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
 153        parity = ecc[1];
 154
 155        /* Initialize the syndrome buffer */
 156        for (i = 0; i < NROOTS; i++)
 157                s[i] = ds[0];
 158        /*
 159         *  Evaluate
 160         *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
 161         *  where x = alpha^(FCR + i)
 162         */
 163        for (j = 1; j < NROOTS; j++) {
 164                if (ds[j] == 0)
 165                        continue;
 166                tmp = rs->index_of[ds[j]];
 167                for (i = 0; i < NROOTS; i++)
 168                        s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
 169        }
 170
 171        /* Calc syn[i] = s[i] / alpha^(v + i) */
 172        for (i = 0; i < NROOTS; i++) {
 173                if (s[i])
 174                        syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
 175        }
 176        /* Call the decoder library */
 177        nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
 178
 179        /* Incorrectable errors ? */
 180        if (nerr < 0)
 181                return nerr;
 182
 183        /*
 184         * Correct the errors. The bitpositions are a bit of magic,
 185         * but they are given by the design of the de/encoder circuit
 186         * in the DoC ASIC's.
 187         */
 188        for (i = 0; i < nerr; i++) {
 189                int index, bitpos, pos = 1015 - errpos[i];
 190                uint8_t val;
 191                if (pos >= NB_DATA && pos < 1019)
 192                        continue;
 193                if (pos < NB_DATA) {
 194                        /* extract bit position (MSB first) */
 195                        pos = 10 * (NB_DATA - 1 - pos) - 6;
 196                        /* now correct the following 10 bits. At most two bytes
 197                           can be modified since pos is even */
 198                        index = (pos >> 3) ^ 1;
 199                        bitpos = pos & 7;
 200                        if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
 201                                val = (uint8_t) (errval[i] >> (2 + bitpos));
 202                                parity ^= val;
 203                                if (index < SECTOR_SIZE)
 204                                        data[index] ^= val;
 205                        }
 206                        index = ((pos >> 3) + 1) ^ 1;
 207                        bitpos = (bitpos + 10) & 7;
 208                        if (bitpos == 0)
 209                                bitpos = 8;
 210                        if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
 211                                val = (uint8_t) (errval[i] << (8 - bitpos));
 212                                parity ^= val;
 213                                if (index < SECTOR_SIZE)
 214                                        data[index] ^= val;
 215                        }
 216                }
 217        }
 218        /* If the parity is wrong, no rescue possible */
 219        return parity ? -EBADMSG : nerr;
 220}
 221
 222static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
 223{
 224        volatile char dummy;
 225        int i;
 226
 227        for (i = 0; i < cycles; i++) {
 228                if (DoC_is_Millennium(doc))
 229                        dummy = ReadDOC(doc->virtadr, NOP);
 230                else if (DoC_is_MillenniumPlus(doc))
 231                        dummy = ReadDOC(doc->virtadr, Mplus_NOP);
 232                else
 233                        dummy = ReadDOC(doc->virtadr, DOCStatus);
 234        }
 235
 236}
 237
 238#define CDSN_CTRL_FR_B_MASK     (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
 239
 240/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
 241static int _DoC_WaitReady(struct doc_priv *doc)
 242{
 243        void __iomem *docptr = doc->virtadr;
 244        unsigned long timeo = jiffies + (HZ * 10);
 245
 246        if (debug)
 247                printk("_DoC_WaitReady...\n");
 248        /* Out-of-line routine to wait for chip response */
 249        if (DoC_is_MillenniumPlus(doc)) {
 250                while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
 251                        if (time_after(jiffies, timeo)) {
 252                                printk("_DoC_WaitReady timed out.\n");
 253                                return -EIO;
 254                        }
 255                        udelay(1);
 256                        cond_resched();
 257                }
 258        } else {
 259                while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 260                        if (time_after(jiffies, timeo)) {
 261                                printk("_DoC_WaitReady timed out.\n");
 262                                return -EIO;
 263                        }
 264                        udelay(1);
 265                        cond_resched();
 266                }
 267        }
 268
 269        return 0;
 270}
 271
 272static inline int DoC_WaitReady(struct doc_priv *doc)
 273{
 274        void __iomem *docptr = doc->virtadr;
 275        int ret = 0;
 276
 277        if (DoC_is_MillenniumPlus(doc)) {
 278                DoC_Delay(doc, 4);
 279
 280                if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
 281                        /* Call the out-of-line routine to wait */
 282                        ret = _DoC_WaitReady(doc);
 283        } else {
 284                DoC_Delay(doc, 4);
 285
 286                if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
 287                        /* Call the out-of-line routine to wait */
 288                        ret = _DoC_WaitReady(doc);
 289                DoC_Delay(doc, 2);
 290        }
 291
 292        if (debug)
 293                printk("DoC_WaitReady OK\n");
 294        return ret;
 295}
 296
 297static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
 298{
 299        struct nand_chip *this = mtd->priv;
 300        struct doc_priv *doc = this->priv;
 301        void __iomem *docptr = doc->virtadr;
 302
 303        if (debug)
 304                printk("write_byte %02x\n", datum);
 305        WriteDOC(datum, docptr, CDSNSlowIO);
 306        WriteDOC(datum, docptr, 2k_CDSN_IO);
 307}
 308
 309static u_char doc2000_read_byte(struct mtd_info *mtd)
 310{
 311        struct nand_chip *this = mtd->priv;
 312        struct doc_priv *doc = this->priv;
 313        void __iomem *docptr = doc->virtadr;
 314        u_char ret;
 315
 316        ReadDOC(docptr, CDSNSlowIO);
 317        DoC_Delay(doc, 2);
 318        ret = ReadDOC(docptr, 2k_CDSN_IO);
 319        if (debug)
 320                printk("read_byte returns %02x\n", ret);
 321        return ret;
 322}
 323
 324static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 325{
 326        struct nand_chip *this = mtd->priv;
 327        struct doc_priv *doc = this->priv;
 328        void __iomem *docptr = doc->virtadr;
 329        int i;
 330        if (debug)
 331                printk("writebuf of %d bytes: ", len);
 332        for (i = 0; i < len; i++) {
 333                WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
 334                if (debug && i < 16)
 335                        printk("%02x ", buf[i]);
 336        }
 337        if (debug)
 338                printk("\n");
 339}
 340
 341static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 342{
 343        struct nand_chip *this = mtd->priv;
 344        struct doc_priv *doc = this->priv;
 345        void __iomem *docptr = doc->virtadr;
 346        int i;
 347
 348        if (debug)
 349                printk("readbuf of %d bytes: ", len);
 350
 351        for (i = 0; i < len; i++) {
 352                buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
 353        }
 354}
 355
 356static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
 357{
 358        struct nand_chip *this = mtd->priv;
 359        struct doc_priv *doc = this->priv;
 360        void __iomem *docptr = doc->virtadr;
 361        int i;
 362
 363        if (debug)
 364                printk("readbuf_dword of %d bytes: ", len);
 365
 366        if (unlikely((((unsigned long)buf) | len) & 3)) {
 367                for (i = 0; i < len; i++) {
 368                        *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
 369                }
 370        } else {
 371                for (i = 0; i < len; i += 4) {
 372                        *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
 373                }
 374        }
 375}
 376
 377static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
 378{
 379        struct nand_chip *this = mtd->priv;
 380        struct doc_priv *doc = this->priv;
 381        uint16_t ret;
 382
 383        doc200x_select_chip(mtd, nr);
 384        doc200x_hwcontrol(mtd, NAND_CMD_READID,
 385                          NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 386        doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 387        doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 388
 389        /* We can't use dev_ready here, but at least we wait for the
 390         * command to complete
 391         */
 392        udelay(50);
 393
 394        ret = this->read_byte(mtd) << 8;
 395        ret |= this->read_byte(mtd);
 396
 397        if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
 398                /* First chip probe. See if we get same results by 32-bit access */
 399                union {
 400                        uint32_t dword;
 401                        uint8_t byte[4];
 402                } ident;
 403                void __iomem *docptr = doc->virtadr;
 404
 405                doc200x_hwcontrol(mtd, NAND_CMD_READID,
 406                                  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 407                doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 408                doc200x_hwcontrol(mtd, NAND_CMD_NONE,
 409                                  NAND_NCE | NAND_CTRL_CHANGE);
 410
 411                udelay(50);
 412
 413                ident.dword = readl(docptr + DoC_2k_CDSN_IO);
 414                if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
 415                        printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
 416                        this->read_buf = &doc2000_readbuf_dword;
 417                }
 418        }
 419
 420        return ret;
 421}
 422
 423static void __init doc2000_count_chips(struct mtd_info *mtd)
 424{
 425        struct nand_chip *this = mtd->priv;
 426        struct doc_priv *doc = this->priv;
 427        uint16_t mfrid;
 428        int i;
 429
 430        /* Max 4 chips per floor on DiskOnChip 2000 */
 431        doc->chips_per_floor = 4;
 432
 433        /* Find out what the first chip is */
 434        mfrid = doc200x_ident_chip(mtd, 0);
 435
 436        /* Find how many chips in each floor. */
 437        for (i = 1; i < 4; i++) {
 438                if (doc200x_ident_chip(mtd, i) != mfrid)
 439                        break;
 440        }
 441        doc->chips_per_floor = i;
 442        printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
 443}
 444
 445static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
 446{
 447        struct doc_priv *doc = this->priv;
 448
 449        int status;
 450
 451        DoC_WaitReady(doc);
 452        this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 453        DoC_WaitReady(doc);
 454        status = (int)this->read_byte(mtd);
 455
 456        return status;
 457}
 458
 459static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
 460{
 461        struct nand_chip *this = mtd->priv;
 462        struct doc_priv *doc = this->priv;
 463        void __iomem *docptr = doc->virtadr;
 464
 465        WriteDOC(datum, docptr, CDSNSlowIO);
 466        WriteDOC(datum, docptr, Mil_CDSN_IO);
 467        WriteDOC(datum, docptr, WritePipeTerm);
 468}
 469
 470static u_char doc2001_read_byte(struct mtd_info *mtd)
 471{
 472        struct nand_chip *this = mtd->priv;
 473        struct doc_priv *doc = this->priv;
 474        void __iomem *docptr = doc->virtadr;
 475
 476        //ReadDOC(docptr, CDSNSlowIO);
 477        /* 11.4.5 -- delay twice to allow extended length cycle */
 478        DoC_Delay(doc, 2);
 479        ReadDOC(docptr, ReadPipeInit);
 480        //return ReadDOC(docptr, Mil_CDSN_IO);
 481        return ReadDOC(docptr, LastDataRead);
 482}
 483
 484static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 485{
 486        struct nand_chip *this = mtd->priv;
 487        struct doc_priv *doc = this->priv;
 488        void __iomem *docptr = doc->virtadr;
 489        int i;
 490
 491        for (i = 0; i < len; i++)
 492                WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
 493        /* Terminate write pipeline */
 494        WriteDOC(0x00, docptr, WritePipeTerm);
 495}
 496
 497static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 498{
 499        struct nand_chip *this = mtd->priv;
 500        struct doc_priv *doc = this->priv;
 501        void __iomem *docptr = doc->virtadr;
 502        int i;
 503
 504        /* Start read pipeline */
 505        ReadDOC(docptr, ReadPipeInit);
 506
 507        for (i = 0; i < len - 1; i++)
 508                buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
 509
 510        /* Terminate read pipeline */
 511        buf[i] = ReadDOC(docptr, LastDataRead);
 512}
 513
 514static u_char doc2001plus_read_byte(struct mtd_info *mtd)
 515{
 516        struct nand_chip *this = mtd->priv;
 517        struct doc_priv *doc = this->priv;
 518        void __iomem *docptr = doc->virtadr;
 519        u_char ret;
 520
 521        ReadDOC(docptr, Mplus_ReadPipeInit);
 522        ReadDOC(docptr, Mplus_ReadPipeInit);
 523        ret = ReadDOC(docptr, Mplus_LastDataRead);
 524        if (debug)
 525                printk("read_byte returns %02x\n", ret);
 526        return ret;
 527}
 528
 529static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 530{
 531        struct nand_chip *this = mtd->priv;
 532        struct doc_priv *doc = this->priv;
 533        void __iomem *docptr = doc->virtadr;
 534        int i;
 535
 536        if (debug)
 537                printk("writebuf of %d bytes: ", len);
 538        for (i = 0; i < len; i++) {
 539                WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
 540                if (debug && i < 16)
 541                        printk("%02x ", buf[i]);
 542        }
 543        if (debug)
 544                printk("\n");
 545}
 546
 547static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 548{
 549        struct nand_chip *this = mtd->priv;
 550        struct doc_priv *doc = this->priv;
 551        void __iomem *docptr = doc->virtadr;
 552        int i;
 553
 554        if (debug)
 555                printk("readbuf of %d bytes: ", len);
 556
 557        /* Start read pipeline */
 558        ReadDOC(docptr, Mplus_ReadPipeInit);
 559        ReadDOC(docptr, Mplus_ReadPipeInit);
 560
 561        for (i = 0; i < len - 2; i++) {
 562                buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
 563                if (debug && i < 16)
 564                        printk("%02x ", buf[i]);
 565        }
 566
 567        /* Terminate read pipeline */
 568        buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
 569        if (debug && i < 16)
 570                printk("%02x ", buf[len - 2]);
 571        buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
 572        if (debug && i < 16)
 573                printk("%02x ", buf[len - 1]);
 574        if (debug)
 575                printk("\n");
 576}
 577
 578static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
 579{
 580        struct nand_chip *this = mtd->priv;
 581        struct doc_priv *doc = this->priv;
 582        void __iomem *docptr = doc->virtadr;
 583        int floor = 0;
 584
 585        if (debug)
 586                printk("select chip (%d)\n", chip);
 587
 588        if (chip == -1) {
 589                /* Disable flash internally */
 590                WriteDOC(0, docptr, Mplus_FlashSelect);
 591                return;
 592        }
 593
 594        floor = chip / doc->chips_per_floor;
 595        chip -= (floor * doc->chips_per_floor);
 596
 597        /* Assert ChipEnable and deassert WriteProtect */
 598        WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
 599        this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
 600
 601        doc->curchip = chip;
 602        doc->curfloor = floor;
 603}
 604
 605static void doc200x_select_chip(struct mtd_info *mtd, int chip)
 606{
 607        struct nand_chip *this = mtd->priv;
 608        struct doc_priv *doc = this->priv;
 609        void __iomem *docptr = doc->virtadr;
 610        int floor = 0;
 611
 612        if (debug)
 613                printk("select chip (%d)\n", chip);
 614
 615        if (chip == -1)
 616                return;
 617
 618        floor = chip / doc->chips_per_floor;
 619        chip -= (floor * doc->chips_per_floor);
 620
 621        /* 11.4.4 -- deassert CE before changing chip */
 622        doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 623
 624        WriteDOC(floor, docptr, FloorSelect);
 625        WriteDOC(chip, docptr, CDSNDeviceSelect);
 626
 627        doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 628
 629        doc->curchip = chip;
 630        doc->curfloor = floor;
 631}
 632
 633#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
 634
 635static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
 636                              unsigned int ctrl)
 637{
 638        struct nand_chip *this = mtd->priv;
 639        struct doc_priv *doc = this->priv;
 640        void __iomem *docptr = doc->virtadr;
 641
 642        if (ctrl & NAND_CTRL_CHANGE) {
 643                doc->CDSNControl &= ~CDSN_CTRL_MSK;
 644                doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
 645                if (debug)
 646                        printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
 647                WriteDOC(doc->CDSNControl, docptr, CDSNControl);
 648                /* 11.4.3 -- 4 NOPs after CSDNControl write */
 649                DoC_Delay(doc, 4);
 650        }
 651        if (cmd != NAND_CMD_NONE) {
 652                if (DoC_is_2000(doc))
 653                        doc2000_write_byte(mtd, cmd);
 654                else
 655                        doc2001_write_byte(mtd, cmd);
 656        }
 657}
 658
 659static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
 660{
 661        struct nand_chip *this = mtd->priv;
 662        struct doc_priv *doc = this->priv;
 663        void __iomem *docptr = doc->virtadr;
 664
 665        /*
 666         * Must terminate write pipeline before sending any commands
 667         * to the device.
 668         */
 669        if (command == NAND_CMD_PAGEPROG) {
 670                WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
 671                WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
 672        }
 673
 674        /*
 675         * Write out the command to the device.
 676         */
 677        if (command == NAND_CMD_SEQIN) {
 678                int readcmd;
 679
 680                if (column >= mtd->writesize) {
 681                        /* OOB area */
 682                        column -= mtd->writesize;
 683                        readcmd = NAND_CMD_READOOB;
 684                } else if (column < 256) {
 685                        /* First 256 bytes --> READ0 */
 686                        readcmd = NAND_CMD_READ0;
 687                } else {
 688                        column -= 256;
 689                        readcmd = NAND_CMD_READ1;
 690                }
 691                WriteDOC(readcmd, docptr, Mplus_FlashCmd);
 692        }
 693        WriteDOC(command, docptr, Mplus_FlashCmd);
 694        WriteDOC(0, docptr, Mplus_WritePipeTerm);
 695        WriteDOC(0, docptr, Mplus_WritePipeTerm);
 696
 697        if (column != -1 || page_addr != -1) {
 698                /* Serially input address */
 699                if (column != -1) {
 700                        /* Adjust columns for 16 bit buswidth */
 701                        if (this->options & NAND_BUSWIDTH_16 &&
 702                                        !nand_opcode_8bits(command))
 703                                column >>= 1;
 704                        WriteDOC(column, docptr, Mplus_FlashAddress);
 705                }
 706                if (page_addr != -1) {
 707                        WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
 708                        WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
 709                        /* One more address cycle for higher density devices */
 710                        if (this->chipsize & 0x0c000000) {
 711                                WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
 712                                printk("high density\n");
 713                        }
 714                }
 715                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 716                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 717                /* deassert ALE */
 718                if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
 719                    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
 720                        WriteDOC(0, docptr, Mplus_FlashControl);
 721        }
 722
 723        /*
 724         * program and erase have their own busy handlers
 725         * status and sequential in needs no delay
 726         */
 727        switch (command) {
 728
 729        case NAND_CMD_PAGEPROG:
 730        case NAND_CMD_ERASE1:
 731        case NAND_CMD_ERASE2:
 732        case NAND_CMD_SEQIN:
 733        case NAND_CMD_STATUS:
 734                return;
 735
 736        case NAND_CMD_RESET:
 737                if (this->dev_ready)
 738                        break;
 739                udelay(this->chip_delay);
 740                WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
 741                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 742                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 743                while (!(this->read_byte(mtd) & 0x40)) ;
 744                return;
 745
 746                /* This applies to read commands */
 747        default:
 748                /*
 749                 * If we don't have access to the busy pin, we apply the given
 750                 * command delay
 751                 */
 752                if (!this->dev_ready) {
 753                        udelay(this->chip_delay);
 754                        return;
 755                }
 756        }
 757
 758        /* Apply this short delay always to ensure that we do wait tWB in
 759         * any case on any machine. */
 760        ndelay(100);
 761        /* wait until command is processed */
 762        while (!this->dev_ready(mtd)) ;
 763}
 764
 765static int doc200x_dev_ready(struct mtd_info *mtd)
 766{
 767        struct nand_chip *this = mtd->priv;
 768        struct doc_priv *doc = this->priv;
 769        void __iomem *docptr = doc->virtadr;
 770
 771        if (DoC_is_MillenniumPlus(doc)) {
 772                /* 11.4.2 -- must NOP four times before checking FR/B# */
 773                DoC_Delay(doc, 4);
 774                if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
 775                        if (debug)
 776                                printk("not ready\n");
 777                        return 0;
 778                }
 779                if (debug)
 780                        printk("was ready\n");
 781                return 1;
 782        } else {
 783                /* 11.4.2 -- must NOP four times before checking FR/B# */
 784                DoC_Delay(doc, 4);
 785                if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 786                        if (debug)
 787                                printk("not ready\n");
 788                        return 0;
 789                }
 790                /* 11.4.2 -- Must NOP twice if it's ready */
 791                DoC_Delay(doc, 2);
 792                if (debug)
 793                        printk("was ready\n");
 794                return 1;
 795        }
 796}
 797
 798static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
 799{
 800        /* This is our last resort if we couldn't find or create a BBT.  Just
 801           pretend all blocks are good. */
 802        return 0;
 803}
 804
 805static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
 806{
 807        struct nand_chip *this = mtd->priv;
 808        struct doc_priv *doc = this->priv;
 809        void __iomem *docptr = doc->virtadr;
 810
 811        /* Prime the ECC engine */
 812        switch (mode) {
 813        case NAND_ECC_READ:
 814                WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 815                WriteDOC(DOC_ECC_EN, docptr, ECCConf);
 816                break;
 817        case NAND_ECC_WRITE:
 818                WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 819                WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
 820                break;
 821        }
 822}
 823
 824static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
 825{
 826        struct nand_chip *this = mtd->priv;
 827        struct doc_priv *doc = this->priv;
 828        void __iomem *docptr = doc->virtadr;
 829
 830        /* Prime the ECC engine */
 831        switch (mode) {
 832        case NAND_ECC_READ:
 833                WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
 834                WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
 835                break;
 836        case NAND_ECC_WRITE:
 837                WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
 838                WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
 839                break;
 840        }
 841}
 842
 843/* This code is only called on write */
 844static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
 845{
 846        struct nand_chip *this = mtd->priv;
 847        struct doc_priv *doc = this->priv;
 848        void __iomem *docptr = doc->virtadr;
 849        int i;
 850        int emptymatch = 1;
 851
 852        /* flush the pipeline */
 853        if (DoC_is_2000(doc)) {
 854                WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
 855                WriteDOC(0, docptr, 2k_CDSN_IO);
 856                WriteDOC(0, docptr, 2k_CDSN_IO);
 857                WriteDOC(0, docptr, 2k_CDSN_IO);
 858                WriteDOC(doc->CDSNControl, docptr, CDSNControl);
 859        } else if (DoC_is_MillenniumPlus(doc)) {
 860                WriteDOC(0, docptr, Mplus_NOP);
 861                WriteDOC(0, docptr, Mplus_NOP);
 862                WriteDOC(0, docptr, Mplus_NOP);
 863        } else {
 864                WriteDOC(0, docptr, NOP);
 865                WriteDOC(0, docptr, NOP);
 866                WriteDOC(0, docptr, NOP);
 867        }
 868
 869        for (i = 0; i < 6; i++) {
 870                if (DoC_is_MillenniumPlus(doc))
 871                        ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
 872                else
 873                        ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
 874                if (ecc_code[i] != empty_write_ecc[i])
 875                        emptymatch = 0;
 876        }
 877        if (DoC_is_MillenniumPlus(doc))
 878                WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
 879        else
 880                WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
 881#if 0
 882        /* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
 883        if (emptymatch) {
 884                /* Note: this somewhat expensive test should not be triggered
 885                   often.  It could be optimized away by examining the data in
 886                   the writebuf routine, and remembering the result. */
 887                for (i = 0; i < 512; i++) {
 888                        if (dat[i] == 0xff)
 889                                continue;
 890                        emptymatch = 0;
 891                        break;
 892                }
 893        }
 894        /* If emptymatch still =1, we do have an all-0xff data buffer.
 895           Return all-0xff ecc value instead of the computed one, so
 896           it'll look just like a freshly-erased page. */
 897        if (emptymatch)
 898                memset(ecc_code, 0xff, 6);
 899#endif
 900        return 0;
 901}
 902
 903static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
 904                                u_char *read_ecc, u_char *isnull)
 905{
 906        int i, ret = 0;
 907        struct nand_chip *this = mtd->priv;
 908        struct doc_priv *doc = this->priv;
 909        void __iomem *docptr = doc->virtadr;
 910        uint8_t calc_ecc[6];
 911        volatile u_char dummy;
 912        int emptymatch = 1;
 913
 914        /* flush the pipeline */
 915        if (DoC_is_2000(doc)) {
 916                dummy = ReadDOC(docptr, 2k_ECCStatus);
 917                dummy = ReadDOC(docptr, 2k_ECCStatus);
 918                dummy = ReadDOC(docptr, 2k_ECCStatus);
 919        } else if (DoC_is_MillenniumPlus(doc)) {
 920                dummy = ReadDOC(docptr, Mplus_ECCConf);
 921                dummy = ReadDOC(docptr, Mplus_ECCConf);
 922                dummy = ReadDOC(docptr, Mplus_ECCConf);
 923        } else {
 924                dummy = ReadDOC(docptr, ECCConf);
 925                dummy = ReadDOC(docptr, ECCConf);
 926                dummy = ReadDOC(docptr, ECCConf);
 927        }
 928
 929        /* Error occurred ? */
 930        if (dummy & 0x80) {
 931                for (i = 0; i < 6; i++) {
 932                        if (DoC_is_MillenniumPlus(doc))
 933                                calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
 934                        else
 935                                calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
 936                        if (calc_ecc[i] != empty_read_syndrome[i])
 937                                emptymatch = 0;
 938                }
 939                /* If emptymatch=1, the read syndrome is consistent with an
 940                   all-0xff data and stored ecc block.  Check the stored ecc. */
 941                if (emptymatch) {
 942                        for (i = 0; i < 6; i++) {
 943                                if (read_ecc[i] == 0xff)
 944                                        continue;
 945                                emptymatch = 0;
 946                                break;
 947                        }
 948                }
 949                /* If emptymatch still =1, check the data block. */
 950                if (emptymatch) {
 951                        /* Note: this somewhat expensive test should not be triggered
 952                           often.  It could be optimized away by examining the data in
 953                           the readbuf routine, and remembering the result. */
 954                        for (i = 0; i < 512; i++) {
 955                                if (dat[i] == 0xff)
 956                                        continue;
 957                                emptymatch = 0;
 958                                break;
 959                        }
 960                }
 961                /* If emptymatch still =1, this is almost certainly a freshly-
 962                   erased block, in which case the ECC will not come out right.
 963                   We'll suppress the error and tell the caller everything's
 964                   OK.  Because it is. */
 965                if (!emptymatch)
 966                        ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
 967                if (ret > 0)
 968                        printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
 969        }
 970        if (DoC_is_MillenniumPlus(doc))
 971                WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
 972        else
 973                WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
 974        if (no_ecc_failures && mtd_is_eccerr(ret)) {
 975                printk(KERN_ERR "suppressing ECC failure\n");
 976                ret = 0;
 977        }
 978        return ret;
 979}
 980
 981//u_char mydatabuf[528];
 982
 983/* The strange out-of-order .oobfree list below is a (possibly unneeded)
 984 * attempt to retain compatibility.  It used to read:
 985 *      .oobfree = { {8, 8} }
 986 * Since that leaves two bytes unusable, it was changed.  But the following
 987 * scheme might affect existing jffs2 installs by moving the cleanmarker:
 988 *      .oobfree = { {6, 10} }
 989 * jffs2 seems to handle the above gracefully, but the current scheme seems
 990 * safer.  The only problem with it is that any code that parses oobfree must
 991 * be able to handle out-of-order segments.
 992 */
 993static struct nand_ecclayout doc200x_oobinfo = {
 994        .eccbytes = 6,
 995        .eccpos = {0, 1, 2, 3, 4, 5},
 996        .oobfree = {{8, 8}, {6, 2}}
 997};
 998
 999/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1000   On successful return, buf will contain a copy of the media header for
1001   further processing.  id is the string to scan for, and will presumably be
1002   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
1003   header.  The page #s of the found media headers are placed in mh0_page and
1004   mh1_page in the DOC private structure. */
1005static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1006{
1007        struct nand_chip *this = mtd->priv;
1008        struct doc_priv *doc = this->priv;
1009        unsigned offs;
1010        int ret;
1011        size_t retlen;
1012
1013        for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1014                ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1015                if (retlen != mtd->writesize)
1016                        continue;
1017                if (ret) {
1018                        printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1019                }
1020                if (memcmp(buf, id, 6))
1021                        continue;
1022                printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1023                if (doc->mh0_page == -1) {
1024                        doc->mh0_page = offs >> this->page_shift;
1025                        if (!findmirror)
1026                                return 1;
1027                        continue;
1028                }
1029                doc->mh1_page = offs >> this->page_shift;
1030                return 2;
1031        }
1032        if (doc->mh0_page == -1) {
1033                printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1034                return 0;
1035        }
1036        /* Only one mediaheader was found.  We want buf to contain a
1037           mediaheader on return, so we'll have to re-read the one we found. */
1038        offs = doc->mh0_page << this->page_shift;
1039        ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1040        if (retlen != mtd->writesize) {
1041                /* Insanity.  Give up. */
1042                printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1043                return 0;
1044        }
1045        return 1;
1046}
1047
1048static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1049{
1050        struct nand_chip *this = mtd->priv;
1051        struct doc_priv *doc = this->priv;
1052        int ret = 0;
1053        u_char *buf;
1054        struct NFTLMediaHeader *mh;
1055        const unsigned psize = 1 << this->page_shift;
1056        int numparts = 0;
1057        unsigned blocks, maxblocks;
1058        int offs, numheaders;
1059
1060        buf = kmalloc(mtd->writesize, GFP_KERNEL);
1061        if (!buf) {
1062                return 0;
1063        }
1064        if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1065                goto out;
1066        mh = (struct NFTLMediaHeader *)buf;
1067
1068        le16_to_cpus(&mh->NumEraseUnits);
1069        le16_to_cpus(&mh->FirstPhysicalEUN);
1070        le32_to_cpus(&mh->FormattedSize);
1071
1072        printk(KERN_INFO "    DataOrgID        = %s\n"
1073                         "    NumEraseUnits    = %d\n"
1074                         "    FirstPhysicalEUN = %d\n"
1075                         "    FormattedSize    = %d\n"
1076                         "    UnitSizeFactor   = %d\n",
1077                mh->DataOrgID, mh->NumEraseUnits,
1078                mh->FirstPhysicalEUN, mh->FormattedSize,
1079                mh->UnitSizeFactor);
1080
1081        blocks = mtd->size >> this->phys_erase_shift;
1082        maxblocks = min(32768U, mtd->erasesize - psize);
1083
1084        if (mh->UnitSizeFactor == 0x00) {
1085                /* Auto-determine UnitSizeFactor.  The constraints are:
1086                   - There can be at most 32768 virtual blocks.
1087                   - There can be at most (virtual block size - page size)
1088                   virtual blocks (because MediaHeader+BBT must fit in 1).
1089                 */
1090                mh->UnitSizeFactor = 0xff;
1091                while (blocks > maxblocks) {
1092                        blocks >>= 1;
1093                        maxblocks = min(32768U, (maxblocks << 1) + psize);
1094                        mh->UnitSizeFactor--;
1095                }
1096                printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1097        }
1098
1099        /* NOTE: The lines below modify internal variables of the NAND and MTD
1100           layers; variables with have already been configured by nand_scan.
1101           Unfortunately, we didn't know before this point what these values
1102           should be.  Thus, this code is somewhat dependent on the exact
1103           implementation of the NAND layer.  */
1104        if (mh->UnitSizeFactor != 0xff) {
1105                this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1106                mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1107                printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1108                blocks = mtd->size >> this->bbt_erase_shift;
1109                maxblocks = min(32768U, mtd->erasesize - psize);
1110        }
1111
1112        if (blocks > maxblocks) {
1113                printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
1114                goto out;
1115        }
1116
1117        /* Skip past the media headers. */
1118        offs = max(doc->mh0_page, doc->mh1_page);
1119        offs <<= this->page_shift;
1120        offs += mtd->erasesize;
1121
1122        if (show_firmware_partition == 1) {
1123                parts[0].name = " DiskOnChip Firmware / Media Header partition";
1124                parts[0].offset = 0;
1125                parts[0].size = offs;
1126                numparts = 1;
1127        }
1128
1129        parts[numparts].name = " DiskOnChip BDTL partition";
1130        parts[numparts].offset = offs;
1131        parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1132
1133        offs += parts[numparts].size;
1134        numparts++;
1135
1136        if (offs < mtd->size) {
1137                parts[numparts].name = " DiskOnChip Remainder partition";
1138                parts[numparts].offset = offs;
1139                parts[numparts].size = mtd->size - offs;
1140                numparts++;
1141        }
1142
1143        ret = numparts;
1144 out:
1145        kfree(buf);
1146        return ret;
1147}
1148
1149/* This is a stripped-down copy of the code in inftlmount.c */
1150static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1151{
1152        struct nand_chip *this = mtd->priv;
1153        struct doc_priv *doc = this->priv;
1154        int ret = 0;
1155        u_char *buf;
1156        struct INFTLMediaHeader *mh;
1157        struct INFTLPartition *ip;
1158        int numparts = 0;
1159        int blocks;
1160        int vshift, lastvunit = 0;
1161        int i;
1162        int end = mtd->size;
1163
1164        if (inftl_bbt_write)
1165                end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1166
1167        buf = kmalloc(mtd->writesize, GFP_KERNEL);
1168        if (!buf) {
1169                return 0;
1170        }
1171
1172        if (!find_media_headers(mtd, buf, "BNAND", 0))
1173                goto out;
1174        doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1175        mh = (struct INFTLMediaHeader *)buf;
1176
1177        le32_to_cpus(&mh->NoOfBootImageBlocks);
1178        le32_to_cpus(&mh->NoOfBinaryPartitions);
1179        le32_to_cpus(&mh->NoOfBDTLPartitions);
1180        le32_to_cpus(&mh->BlockMultiplierBits);
1181        le32_to_cpus(&mh->FormatFlags);
1182        le32_to_cpus(&mh->PercentUsed);
1183
1184        printk(KERN_INFO "    bootRecordID          = %s\n"
1185                         "    NoOfBootImageBlocks   = %d\n"
1186                         "    NoOfBinaryPartitions  = %d\n"
1187                         "    NoOfBDTLPartitions    = %d\n"
1188                         "    BlockMultiplerBits    = %d\n"
1189                         "    FormatFlgs            = %d\n"
1190                         "    OsakVersion           = %d.%d.%d.%d\n"
1191                         "    PercentUsed           = %d\n",
1192                mh->bootRecordID, mh->NoOfBootImageBlocks,
1193                mh->NoOfBinaryPartitions,
1194                mh->NoOfBDTLPartitions,
1195                mh->BlockMultiplierBits, mh->FormatFlags,
1196                ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1197                ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1198                ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1199                ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1200                mh->PercentUsed);
1201
1202        vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1203
1204        blocks = mtd->size >> vshift;
1205        if (blocks > 32768) {
1206                printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
1207                goto out;
1208        }
1209
1210        blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1211        if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1212                printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
1213                goto out;
1214        }
1215
1216        /* Scan the partitions */
1217        for (i = 0; (i < 4); i++) {
1218                ip = &(mh->Partitions[i]);
1219                le32_to_cpus(&ip->virtualUnits);
1220                le32_to_cpus(&ip->firstUnit);
1221                le32_to_cpus(&ip->lastUnit);
1222                le32_to_cpus(&ip->flags);
1223                le32_to_cpus(&ip->spareUnits);
1224                le32_to_cpus(&ip->Reserved0);
1225
1226                printk(KERN_INFO        "    PARTITION[%d] ->\n"
1227                        "        virtualUnits    = %d\n"
1228                        "        firstUnit       = %d\n"
1229                        "        lastUnit        = %d\n"
1230                        "        flags           = 0x%x\n"
1231                        "        spareUnits      = %d\n",
1232                        i, ip->virtualUnits, ip->firstUnit,
1233                        ip->lastUnit, ip->flags,
1234                        ip->spareUnits);
1235
1236                if ((show_firmware_partition == 1) &&
1237                    (i == 0) && (ip->firstUnit > 0)) {
1238                        parts[0].name = " DiskOnChip IPL / Media Header partition";
1239                        parts[0].offset = 0;
1240                        parts[0].size = mtd->erasesize * ip->firstUnit;
1241                        numparts = 1;
1242                }
1243
1244                if (ip->flags & INFTL_BINARY)
1245                        parts[numparts].name = " DiskOnChip BDK partition";
1246                else
1247                        parts[numparts].name = " DiskOnChip BDTL partition";
1248                parts[numparts].offset = ip->firstUnit << vshift;
1249                parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1250                numparts++;
1251                if (ip->lastUnit > lastvunit)
1252                        lastvunit = ip->lastUnit;
1253                if (ip->flags & INFTL_LAST)
1254                        break;
1255        }
1256        lastvunit++;
1257        if ((lastvunit << vshift) < end) {
1258                parts[numparts].name = " DiskOnChip Remainder partition";
1259                parts[numparts].offset = lastvunit << vshift;
1260                parts[numparts].size = end - parts[numparts].offset;
1261                numparts++;
1262        }
1263        ret = numparts;
1264 out:
1265        kfree(buf);
1266        return ret;
1267}
1268
1269static int __init nftl_scan_bbt(struct mtd_info *mtd)
1270{
1271        int ret, numparts;
1272        struct nand_chip *this = mtd->priv;
1273        struct doc_priv *doc = this->priv;
1274        struct mtd_partition parts[2];
1275
1276        memset((char *)parts, 0, sizeof(parts));
1277        /* On NFTL, we have to find the media headers before we can read the
1278           BBTs, since they're stored in the media header eraseblocks. */
1279        numparts = nftl_partscan(mtd, parts);
1280        if (!numparts)
1281                return -EIO;
1282        this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1283                                NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1284                                NAND_BBT_VERSION;
1285        this->bbt_td->veroffs = 7;
1286        this->bbt_td->pages[0] = doc->mh0_page + 1;
1287        if (doc->mh1_page != -1) {
1288                this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1289                                        NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1290                                        NAND_BBT_VERSION;
1291                this->bbt_md->veroffs = 7;
1292                this->bbt_md->pages[0] = doc->mh1_page + 1;
1293        } else {
1294                this->bbt_md = NULL;
1295        }
1296
1297        /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1298           At least as nand_bbt.c is currently written. */
1299        if ((ret = nand_scan_bbt(mtd, NULL)))
1300                return ret;
1301        mtd_device_register(mtd, NULL, 0);
1302        if (!no_autopart)
1303                mtd_device_register(mtd, parts, numparts);
1304        return 0;
1305}
1306
1307static int __init inftl_scan_bbt(struct mtd_info *mtd)
1308{
1309        int ret, numparts;
1310        struct nand_chip *this = mtd->priv;
1311        struct doc_priv *doc = this->priv;
1312        struct mtd_partition parts[5];
1313
1314        if (this->numchips > doc->chips_per_floor) {
1315                printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1316                return -EIO;
1317        }
1318
1319        if (DoC_is_MillenniumPlus(doc)) {
1320                this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1321                if (inftl_bbt_write)
1322                        this->bbt_td->options |= NAND_BBT_WRITE;
1323                this->bbt_td->pages[0] = 2;
1324                this->bbt_md = NULL;
1325        } else {
1326                this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1327                if (inftl_bbt_write)
1328                        this->bbt_td->options |= NAND_BBT_WRITE;
1329                this->bbt_td->offs = 8;
1330                this->bbt_td->len = 8;
1331                this->bbt_td->veroffs = 7;
1332                this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1333                this->bbt_td->reserved_block_code = 0x01;
1334                this->bbt_td->pattern = "MSYS_BBT";
1335
1336                this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1337                if (inftl_bbt_write)
1338                        this->bbt_md->options |= NAND_BBT_WRITE;
1339                this->bbt_md->offs = 8;
1340                this->bbt_md->len = 8;
1341                this->bbt_md->veroffs = 7;
1342                this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1343                this->bbt_md->reserved_block_code = 0x01;
1344                this->bbt_md->pattern = "TBB_SYSM";
1345        }
1346
1347        /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1348           At least as nand_bbt.c is currently written. */
1349        if ((ret = nand_scan_bbt(mtd, NULL)))
1350                return ret;
1351        memset((char *)parts, 0, sizeof(parts));
1352        numparts = inftl_partscan(mtd, parts);
1353        /* At least for now, require the INFTL Media Header.  We could probably
1354           do without it for non-INFTL use, since all it gives us is
1355           autopartitioning, but I want to give it more thought. */
1356        if (!numparts)
1357                return -EIO;
1358        mtd_device_register(mtd, NULL, 0);
1359        if (!no_autopart)
1360                mtd_device_register(mtd, parts, numparts);
1361        return 0;
1362}
1363
1364static inline int __init doc2000_init(struct mtd_info *mtd)
1365{
1366        struct nand_chip *this = mtd->priv;
1367        struct doc_priv *doc = this->priv;
1368
1369        this->read_byte = doc2000_read_byte;
1370        this->write_buf = doc2000_writebuf;
1371        this->read_buf = doc2000_readbuf;
1372        this->scan_bbt = nftl_scan_bbt;
1373
1374        doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1375        doc2000_count_chips(mtd);
1376        mtd->name = "DiskOnChip 2000 (NFTL Model)";
1377        return (4 * doc->chips_per_floor);
1378}
1379
1380static inline int __init doc2001_init(struct mtd_info *mtd)
1381{
1382        struct nand_chip *this = mtd->priv;
1383        struct doc_priv *doc = this->priv;
1384
1385        this->read_byte = doc2001_read_byte;
1386        this->write_buf = doc2001_writebuf;
1387        this->read_buf = doc2001_readbuf;
1388
1389        ReadDOC(doc->virtadr, ChipID);
1390        ReadDOC(doc->virtadr, ChipID);
1391        ReadDOC(doc->virtadr, ChipID);
1392        if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1393                /* It's not a Millennium; it's one of the newer
1394                   DiskOnChip 2000 units with a similar ASIC.
1395                   Treat it like a Millennium, except that it
1396                   can have multiple chips. */
1397                doc2000_count_chips(mtd);
1398                mtd->name = "DiskOnChip 2000 (INFTL Model)";
1399                this->scan_bbt = inftl_scan_bbt;
1400                return (4 * doc->chips_per_floor);
1401        } else {
1402                /* Bog-standard Millennium */
1403                doc->chips_per_floor = 1;
1404                mtd->name = "DiskOnChip Millennium";
1405                this->scan_bbt = nftl_scan_bbt;
1406                return 1;
1407        }
1408}
1409
1410static inline int __init doc2001plus_init(struct mtd_info *mtd)
1411{
1412        struct nand_chip *this = mtd->priv;
1413        struct doc_priv *doc = this->priv;
1414
1415        this->read_byte = doc2001plus_read_byte;
1416        this->write_buf = doc2001plus_writebuf;
1417        this->read_buf = doc2001plus_readbuf;
1418        this->scan_bbt = inftl_scan_bbt;
1419        this->cmd_ctrl = NULL;
1420        this->select_chip = doc2001plus_select_chip;
1421        this->cmdfunc = doc2001plus_command;
1422        this->ecc.hwctl = doc2001plus_enable_hwecc;
1423
1424        doc->chips_per_floor = 1;
1425        mtd->name = "DiskOnChip Millennium Plus";
1426
1427        return 1;
1428}
1429
1430static int __init doc_probe(unsigned long physadr)
1431{
1432        unsigned char ChipID;
1433        struct mtd_info *mtd;
1434        struct nand_chip *nand;
1435        struct doc_priv *doc;
1436        void __iomem *virtadr;
1437        unsigned char save_control;
1438        unsigned char tmp, tmpb, tmpc;
1439        int reg, len, numchips;
1440        int ret = 0;
1441
1442        if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip"))
1443                return -EBUSY;
1444        virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1445        if (!virtadr) {
1446                printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1447                ret = -EIO;
1448                goto error_ioremap;
1449        }
1450
1451        /* It's not possible to cleanly detect the DiskOnChip - the
1452         * bootup procedure will put the device into reset mode, and
1453         * it's not possible to talk to it without actually writing
1454         * to the DOCControl register. So we store the current contents
1455         * of the DOCControl register's location, in case we later decide
1456         * that it's not a DiskOnChip, and want to put it back how we
1457         * found it.
1458         */
1459        save_control = ReadDOC(virtadr, DOCControl);
1460
1461        /* Reset the DiskOnChip ASIC */
1462        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1463        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1464
1465        /* Enable the DiskOnChip ASIC */
1466        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1467        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1468
1469        ChipID = ReadDOC(virtadr, ChipID);
1470
1471        switch (ChipID) {
1472        case DOC_ChipID_Doc2k:
1473                reg = DoC_2k_ECCStatus;
1474                break;
1475        case DOC_ChipID_DocMil:
1476                reg = DoC_ECCConf;
1477                break;
1478        case DOC_ChipID_DocMilPlus16:
1479        case DOC_ChipID_DocMilPlus32:
1480        case 0:
1481                /* Possible Millennium Plus, need to do more checks */
1482                /* Possibly release from power down mode */
1483                for (tmp = 0; (tmp < 4); tmp++)
1484                        ReadDOC(virtadr, Mplus_Power);
1485
1486                /* Reset the Millennium Plus ASIC */
1487                tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1488                WriteDOC(tmp, virtadr, Mplus_DOCControl);
1489                WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1490
1491                mdelay(1);
1492                /* Enable the Millennium Plus ASIC */
1493                tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1494                WriteDOC(tmp, virtadr, Mplus_DOCControl);
1495                WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1496                mdelay(1);
1497
1498                ChipID = ReadDOC(virtadr, ChipID);
1499
1500                switch (ChipID) {
1501                case DOC_ChipID_DocMilPlus16:
1502                        reg = DoC_Mplus_Toggle;
1503                        break;
1504                case DOC_ChipID_DocMilPlus32:
1505                        printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1506                default:
1507                        ret = -ENODEV;
1508                        goto notfound;
1509                }
1510                break;
1511
1512        default:
1513                ret = -ENODEV;
1514                goto notfound;
1515        }
1516        /* Check the TOGGLE bit in the ECC register */
1517        tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1518        tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1519        tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1520        if ((tmp == tmpb) || (tmp != tmpc)) {
1521                printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1522                ret = -ENODEV;
1523                goto notfound;
1524        }
1525
1526        for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1527                unsigned char oldval;
1528                unsigned char newval;
1529                nand = mtd->priv;
1530                doc = nand->priv;
1531                /* Use the alias resolution register to determine if this is
1532                   in fact the same DOC aliased to a new address.  If writes
1533                   to one chip's alias resolution register change the value on
1534                   the other chip, they're the same chip. */
1535                if (ChipID == DOC_ChipID_DocMilPlus16) {
1536                        oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1537                        newval = ReadDOC(virtadr, Mplus_AliasResolution);
1538                } else {
1539                        oldval = ReadDOC(doc->virtadr, AliasResolution);
1540                        newval = ReadDOC(virtadr, AliasResolution);
1541                }
1542                if (oldval != newval)
1543                        continue;
1544                if (ChipID == DOC_ChipID_DocMilPlus16) {
1545                        WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1546                        oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1547                        WriteDOC(newval, virtadr, Mplus_AliasResolution);       // restore it
1548                } else {
1549                        WriteDOC(~newval, virtadr, AliasResolution);
1550                        oldval = ReadDOC(doc->virtadr, AliasResolution);
1551                        WriteDOC(newval, virtadr, AliasResolution);     // restore it
1552                }
1553                newval = ~newval;
1554                if (oldval == newval) {
1555                        printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1556                        goto notfound;
1557                }
1558        }
1559
1560        printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1561
1562        len = sizeof(struct mtd_info) +
1563            sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1564        mtd = kzalloc(len, GFP_KERNEL);
1565        if (!mtd) {
1566                ret = -ENOMEM;
1567                goto fail;
1568        }
1569
1570        nand                    = (struct nand_chip *) (mtd + 1);
1571        doc                     = (struct doc_priv *) (nand + 1);
1572        nand->bbt_td            = (struct nand_bbt_descr *) (doc + 1);
1573        nand->bbt_md            = nand->bbt_td + 1;
1574
1575        mtd->priv               = nand;
1576        mtd->owner              = THIS_MODULE;
1577
1578        nand->priv              = doc;
1579        nand->select_chip       = doc200x_select_chip;
1580        nand->cmd_ctrl          = doc200x_hwcontrol;
1581        nand->dev_ready         = doc200x_dev_ready;
1582        nand->waitfunc          = doc200x_wait;
1583        nand->block_bad         = doc200x_block_bad;
1584        nand->ecc.hwctl         = doc200x_enable_hwecc;
1585        nand->ecc.calculate     = doc200x_calculate_ecc;
1586        nand->ecc.correct       = doc200x_correct_data;
1587
1588        nand->ecc.layout        = &doc200x_oobinfo;
1589        nand->ecc.mode          = NAND_ECC_HW_SYNDROME;
1590        nand->ecc.size          = 512;
1591        nand->ecc.bytes         = 6;
1592        nand->ecc.strength      = 2;
1593        nand->bbt_options       = NAND_BBT_USE_FLASH;
1594
1595        doc->physadr            = physadr;
1596        doc->virtadr            = virtadr;
1597        doc->ChipID             = ChipID;
1598        doc->curfloor           = -1;
1599        doc->curchip            = -1;
1600        doc->mh0_page           = -1;
1601        doc->mh1_page           = -1;
1602        doc->nextdoc            = doclist;
1603
1604        if (ChipID == DOC_ChipID_Doc2k)
1605                numchips = doc2000_init(mtd);
1606        else if (ChipID == DOC_ChipID_DocMilPlus16)
1607                numchips = doc2001plus_init(mtd);
1608        else
1609                numchips = doc2001_init(mtd);
1610
1611        if ((ret = nand_scan(mtd, numchips))) {
1612                /* DBB note: i believe nand_release is necessary here, as
1613                   buffers may have been allocated in nand_base.  Check with
1614                   Thomas. FIX ME! */
1615                /* nand_release will call mtd_device_unregister, but we
1616                   haven't yet added it.  This is handled without incident by
1617                   mtd_device_unregister, as far as I can tell. */
1618                nand_release(mtd);
1619                kfree(mtd);
1620                goto fail;
1621        }
1622
1623        /* Success! */
1624        doclist = mtd;
1625        return 0;
1626
1627 notfound:
1628        /* Put back the contents of the DOCControl register, in case it's not
1629           actually a DiskOnChip.  */
1630        WriteDOC(save_control, virtadr, DOCControl);
1631 fail:
1632        iounmap(virtadr);
1633
1634error_ioremap:
1635        release_mem_region(physadr, DOC_IOREMAP_LEN);
1636
1637        return ret;
1638}
1639
1640static void release_nanddoc(void)
1641{
1642        struct mtd_info *mtd, *nextmtd;
1643        struct nand_chip *nand;
1644        struct doc_priv *doc;
1645
1646        for (mtd = doclist; mtd; mtd = nextmtd) {
1647                nand = mtd->priv;
1648                doc = nand->priv;
1649
1650                nextmtd = doc->nextdoc;
1651                nand_release(mtd);
1652                iounmap(doc->virtadr);
1653                release_mem_region(doc->physadr, DOC_IOREMAP_LEN);
1654                kfree(mtd);
1655        }
1656}
1657
1658static int __init init_nanddoc(void)
1659{
1660        int i, ret = 0;
1661
1662        /* We could create the decoder on demand, if memory is a concern.
1663         * This way we have it handy, if an error happens
1664         *
1665         * Symbolsize is 10 (bits)
1666         * Primitve polynomial is x^10+x^3+1
1667         * first consecutive root is 510
1668         * primitve element to generate roots = 1
1669         * generator polinomial degree = 4
1670         */
1671        rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1672        if (!rs_decoder) {
1673                printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1674                return -ENOMEM;
1675        }
1676
1677        if (doc_config_location) {
1678                printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1679                ret = doc_probe(doc_config_location);
1680                if (ret < 0)
1681                        goto outerr;
1682        } else {
1683                for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1684                        doc_probe(doc_locations[i]);
1685                }
1686        }
1687        /* No banner message any more. Print a message if no DiskOnChip
1688           found, so the user knows we at least tried. */
1689        if (!doclist) {
1690                printk(KERN_INFO "No valid DiskOnChip devices found\n");
1691                ret = -ENODEV;
1692                goto outerr;
1693        }
1694        return 0;
1695 outerr:
1696        free_rs(rs_decoder);
1697        return ret;
1698}
1699
1700static void __exit cleanup_nanddoc(void)
1701{
1702        /* Cleanup the nand/DoC resources */
1703        release_nanddoc();
1704
1705        /* Free the reed solomon resources */
1706        if (rs_decoder) {
1707                free_rs(rs_decoder);
1708        }
1709}
1710
1711module_init(init_nanddoc);
1712module_exit(cleanup_nanddoc);
1713
1714MODULE_LICENSE("GPL");
1715MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1716MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");
1717