linux/drivers/mtd/nand/sunxi_nand.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
   3 *
   4 * Derived from:
   5 *      https://github.com/yuq/sunxi-nfc-mtd
   6 *      Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
   7 *
   8 *      https://github.com/hno/Allwinner-Info
   9 *      Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
  10 *
  11 *      Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
  12 *      Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the terms of the GNU General Public License as published by
  16 * the Free Software Foundation; either version 2 of the License, or
  17 * (at your option) any later version.
  18 *
  19 * This program is distributed in the hope that it will be useful,
  20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  22 * GNU General Public License for more details.
  23 */
  24
  25#include <linux/dma-mapping.h>
  26#include <linux/slab.h>
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/platform_device.h>
  30#include <linux/of.h>
  31#include <linux/of_device.h>
  32#include <linux/of_gpio.h>
  33#include <linux/of_mtd.h>
  34#include <linux/mtd/mtd.h>
  35#include <linux/mtd/nand.h>
  36#include <linux/mtd/partitions.h>
  37#include <linux/clk.h>
  38#include <linux/delay.h>
  39#include <linux/dmaengine.h>
  40#include <linux/gpio.h>
  41#include <linux/interrupt.h>
  42#include <linux/io.h>
  43
  44#define NFC_REG_CTL             0x0000
  45#define NFC_REG_ST              0x0004
  46#define NFC_REG_INT             0x0008
  47#define NFC_REG_TIMING_CTL      0x000C
  48#define NFC_REG_TIMING_CFG      0x0010
  49#define NFC_REG_ADDR_LOW        0x0014
  50#define NFC_REG_ADDR_HIGH       0x0018
  51#define NFC_REG_SECTOR_NUM      0x001C
  52#define NFC_REG_CNT             0x0020
  53#define NFC_REG_CMD             0x0024
  54#define NFC_REG_RCMD_SET        0x0028
  55#define NFC_REG_WCMD_SET        0x002C
  56#define NFC_REG_IO_DATA         0x0030
  57#define NFC_REG_ECC_CTL         0x0034
  58#define NFC_REG_ECC_ST          0x0038
  59#define NFC_REG_DEBUG           0x003C
  60#define NFC_REG_ECC_CNT0        0x0040
  61#define NFC_REG_ECC_CNT1        0x0044
  62#define NFC_REG_ECC_CNT2        0x0048
  63#define NFC_REG_ECC_CNT3        0x004c
  64#define NFC_REG_USER_DATA_BASE  0x0050
  65#define NFC_REG_SPARE_AREA      0x00A0
  66#define NFC_RAM0_BASE           0x0400
  67#define NFC_RAM1_BASE           0x0800
  68
  69/* define bit use in NFC_CTL */
  70#define NFC_EN                  BIT(0)
  71#define NFC_RESET               BIT(1)
  72#define NFC_BUS_WIDYH           BIT(2)
  73#define NFC_RB_SEL              BIT(3)
  74#define NFC_CE_SEL              GENMASK(26, 24)
  75#define NFC_CE_CTL              BIT(6)
  76#define NFC_CE_CTL1             BIT(7)
  77#define NFC_PAGE_SIZE           GENMASK(11, 8)
  78#define NFC_SAM                 BIT(12)
  79#define NFC_RAM_METHOD          BIT(14)
  80#define NFC_DEBUG_CTL           BIT(31)
  81
  82/* define bit use in NFC_ST */
  83#define NFC_RB_B2R              BIT(0)
  84#define NFC_CMD_INT_FLAG        BIT(1)
  85#define NFC_DMA_INT_FLAG        BIT(2)
  86#define NFC_CMD_FIFO_STATUS     BIT(3)
  87#define NFC_STA                 BIT(4)
  88#define NFC_NATCH_INT_FLAG      BIT(5)
  89#define NFC_RB_STATE0           BIT(8)
  90#define NFC_RB_STATE1           BIT(9)
  91#define NFC_RB_STATE2           BIT(10)
  92#define NFC_RB_STATE3           BIT(11)
  93
  94/* define bit use in NFC_INT */
  95#define NFC_B2R_INT_ENABLE      BIT(0)
  96#define NFC_CMD_INT_ENABLE      BIT(1)
  97#define NFC_DMA_INT_ENABLE      BIT(2)
  98#define NFC_INT_MASK            (NFC_B2R_INT_ENABLE | \
  99                                 NFC_CMD_INT_ENABLE | \
 100                                 NFC_DMA_INT_ENABLE)
 101
 102/* define bit use in NFC_CMD */
 103#define NFC_CMD_LOW_BYTE        GENMASK(7, 0)
 104#define NFC_CMD_HIGH_BYTE       GENMASK(15, 8)
 105#define NFC_ADR_NUM             GENMASK(18, 16)
 106#define NFC_SEND_ADR            BIT(19)
 107#define NFC_ACCESS_DIR          BIT(20)
 108#define NFC_DATA_TRANS          BIT(21)
 109#define NFC_SEND_CMD1           BIT(22)
 110#define NFC_WAIT_FLAG           BIT(23)
 111#define NFC_SEND_CMD2           BIT(24)
 112#define NFC_SEQ                 BIT(25)
 113#define NFC_DATA_SWAP_METHOD    BIT(26)
 114#define NFC_ROW_AUTO_INC        BIT(27)
 115#define NFC_SEND_CMD3           BIT(28)
 116#define NFC_SEND_CMD4           BIT(29)
 117#define NFC_CMD_TYPE            GENMASK(31, 30)
 118
 119/* define bit use in NFC_RCMD_SET */
 120#define NFC_READ_CMD            GENMASK(7, 0)
 121#define NFC_RANDOM_READ_CMD0    GENMASK(15, 8)
 122#define NFC_RANDOM_READ_CMD1    GENMASK(23, 16)
 123
 124/* define bit use in NFC_WCMD_SET */
 125#define NFC_PROGRAM_CMD         GENMASK(7, 0)
 126#define NFC_RANDOM_WRITE_CMD    GENMASK(15, 8)
 127#define NFC_READ_CMD0           GENMASK(23, 16)
 128#define NFC_READ_CMD1           GENMASK(31, 24)
 129
 130/* define bit use in NFC_ECC_CTL */
 131#define NFC_ECC_EN              BIT(0)
 132#define NFC_ECC_PIPELINE        BIT(3)
 133#define NFC_ECC_EXCEPTION       BIT(4)
 134#define NFC_ECC_BLOCK_SIZE      BIT(5)
 135#define NFC_RANDOM_EN           BIT(9)
 136#define NFC_RANDOM_DIRECTION    BIT(10)
 137#define NFC_ECC_MODE_SHIFT      12
 138#define NFC_ECC_MODE            GENMASK(15, 12)
 139#define NFC_RANDOM_SEED         GENMASK(30, 16)
 140
 141#define NFC_DEFAULT_TIMEOUT_MS  1000
 142
 143#define NFC_SRAM_SIZE           1024
 144
 145#define NFC_MAX_CS              7
 146
 147/*
 148 * Ready/Busy detection type: describes the Ready/Busy detection modes
 149 *
 150 * @RB_NONE:    no external detection available, rely on STATUS command
 151 *              and software timeouts
 152 * @RB_NATIVE:  use sunxi NAND controller Ready/Busy support. The Ready/Busy
 153 *              pin of the NAND flash chip must be connected to one of the
 154 *              native NAND R/B pins (those which can be muxed to the NAND
 155 *              Controller)
 156 * @RB_GPIO:    use a simple GPIO to handle Ready/Busy status. The Ready/Busy
 157 *              pin of the NAND flash chip must be connected to a GPIO capable
 158 *              pin.
 159 */
 160enum sunxi_nand_rb_type {
 161        RB_NONE,
 162        RB_NATIVE,
 163        RB_GPIO,
 164};
 165
 166/*
 167 * Ready/Busy structure: stores information related to Ready/Busy detection
 168 *
 169 * @type:       the Ready/Busy detection mode
 170 * @info:       information related to the R/B detection mode. Either a gpio
 171 *              id or a native R/B id (those supported by the NAND controller).
 172 */
 173struct sunxi_nand_rb {
 174        enum sunxi_nand_rb_type type;
 175        union {
 176                int gpio;
 177                int nativeid;
 178        } info;
 179};
 180
 181/*
 182 * Chip Select structure: stores information related to NAND Chip Select
 183 *
 184 * @cs:         the NAND CS id used to communicate with a NAND Chip
 185 * @rb:         the Ready/Busy description
 186 */
 187struct sunxi_nand_chip_sel {
 188        u8 cs;
 189        struct sunxi_nand_rb rb;
 190};
 191
 192/*
 193 * sunxi HW ECC infos: stores information related to HW ECC support
 194 *
 195 * @mode:       the sunxi ECC mode field deduced from ECC requirements
 196 * @layout:     the OOB layout depending on the ECC requirements and the
 197 *              selected ECC mode
 198 */
 199struct sunxi_nand_hw_ecc {
 200        int mode;
 201        struct nand_ecclayout layout;
 202};
 203
 204/*
 205 * NAND chip structure: stores NAND chip device related information
 206 *
 207 * @node:               used to store NAND chips into a list
 208 * @nand:               base NAND chip structure
 209 * @mtd:                base MTD structure
 210 * @clk_rate:           clk_rate required for this NAND chip
 211 * @selected:           current active CS
 212 * @nsels:              number of CS lines required by the NAND chip
 213 * @sels:               array of CS lines descriptions
 214 */
 215struct sunxi_nand_chip {
 216        struct list_head node;
 217        struct nand_chip nand;
 218        struct mtd_info mtd;
 219        unsigned long clk_rate;
 220        int selected;
 221        int nsels;
 222        struct sunxi_nand_chip_sel sels[0];
 223};
 224
 225static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
 226{
 227        return container_of(nand, struct sunxi_nand_chip, nand);
 228}
 229
 230/*
 231 * NAND Controller structure: stores sunxi NAND controller information
 232 *
 233 * @controller:         base controller structure
 234 * @dev:                parent device (used to print error messages)
 235 * @regs:               NAND controller registers
 236 * @ahb_clk:            NAND Controller AHB clock
 237 * @mod_clk:            NAND Controller mod clock
 238 * @assigned_cs:        bitmask describing already assigned CS lines
 239 * @clk_rate:           NAND controller current clock rate
 240 * @chips:              a list containing all the NAND chips attached to
 241 *                      this NAND controller
 242 * @complete:           a completion object used to wait for NAND
 243 *                      controller events
 244 */
 245struct sunxi_nfc {
 246        struct nand_hw_control controller;
 247        struct device *dev;
 248        void __iomem *regs;
 249        struct clk *ahb_clk;
 250        struct clk *mod_clk;
 251        unsigned long assigned_cs;
 252        unsigned long clk_rate;
 253        struct list_head chips;
 254        struct completion complete;
 255};
 256
 257static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
 258{
 259        return container_of(ctrl, struct sunxi_nfc, controller);
 260}
 261
 262static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
 263{
 264        struct sunxi_nfc *nfc = dev_id;
 265        u32 st = readl(nfc->regs + NFC_REG_ST);
 266        u32 ien = readl(nfc->regs + NFC_REG_INT);
 267
 268        if (!(ien & st))
 269                return IRQ_NONE;
 270
 271        if ((ien & st) == ien)
 272                complete(&nfc->complete);
 273
 274        writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
 275        writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);
 276
 277        return IRQ_HANDLED;
 278}
 279
 280static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags,
 281                              unsigned int timeout_ms)
 282{
 283        init_completion(&nfc->complete);
 284
 285        writel(flags, nfc->regs + NFC_REG_INT);
 286
 287        if (!timeout_ms)
 288                timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
 289
 290        if (!wait_for_completion_timeout(&nfc->complete,
 291                                         msecs_to_jiffies(timeout_ms))) {
 292                dev_err(nfc->dev, "wait interrupt timedout\n");
 293                return -ETIMEDOUT;
 294        }
 295
 296        return 0;
 297}
 298
 299static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
 300{
 301        unsigned long timeout = jiffies +
 302                                msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
 303
 304        do {
 305                if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS))
 306                        return 0;
 307        } while (time_before(jiffies, timeout));
 308
 309        dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
 310        return -ETIMEDOUT;
 311}
 312
 313static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
 314{
 315        unsigned long timeout = jiffies +
 316                                msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
 317
 318        writel(0, nfc->regs + NFC_REG_ECC_CTL);
 319        writel(NFC_RESET, nfc->regs + NFC_REG_CTL);
 320
 321        do {
 322                if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET))
 323                        return 0;
 324        } while (time_before(jiffies, timeout));
 325
 326        dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
 327        return -ETIMEDOUT;
 328}
 329
 330static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
 331{
 332        struct nand_chip *nand = mtd->priv;
 333        struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 334        struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 335        struct sunxi_nand_rb *rb;
 336        unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20);
 337        int ret;
 338
 339        if (sunxi_nand->selected < 0)
 340                return 0;
 341
 342        rb = &sunxi_nand->sels[sunxi_nand->selected].rb;
 343
 344        switch (rb->type) {
 345        case RB_NATIVE:
 346                ret = !!(readl(nfc->regs + NFC_REG_ST) &
 347                         (NFC_RB_STATE0 << rb->info.nativeid));
 348                if (ret)
 349                        break;
 350
 351                sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo);
 352                ret = !!(readl(nfc->regs + NFC_REG_ST) &
 353                         (NFC_RB_STATE0 << rb->info.nativeid));
 354                break;
 355        case RB_GPIO:
 356                ret = gpio_get_value(rb->info.gpio);
 357                break;
 358        case RB_NONE:
 359        default:
 360                ret = 0;
 361                dev_err(nfc->dev, "cannot check R/B NAND status!\n");
 362                break;
 363        }
 364
 365        return ret;
 366}
 367
 368static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
 369{
 370        struct nand_chip *nand = mtd->priv;
 371        struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 372        struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 373        struct sunxi_nand_chip_sel *sel;
 374        u32 ctl;
 375
 376        if (chip > 0 && chip >= sunxi_nand->nsels)
 377                return;
 378
 379        if (chip == sunxi_nand->selected)
 380                return;
 381
 382        ctl = readl(nfc->regs + NFC_REG_CTL) &
 383              ~(NFC_CE_SEL | NFC_RB_SEL | NFC_EN);
 384
 385        if (chip >= 0) {
 386                sel = &sunxi_nand->sels[chip];
 387
 388                ctl |= (sel->cs << 24) | NFC_EN |
 389                       (((nand->page_shift - 10) & 0xf) << 8);
 390                if (sel->rb.type == RB_NONE) {
 391                        nand->dev_ready = NULL;
 392                } else {
 393                        nand->dev_ready = sunxi_nfc_dev_ready;
 394                        if (sel->rb.type == RB_NATIVE)
 395                                ctl |= (sel->rb.info.nativeid << 3);
 396                }
 397
 398                writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
 399
 400                if (nfc->clk_rate != sunxi_nand->clk_rate) {
 401                        clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
 402                        nfc->clk_rate = sunxi_nand->clk_rate;
 403                }
 404        }
 405
 406        writel(ctl, nfc->regs + NFC_REG_CTL);
 407
 408        sunxi_nand->selected = chip;
 409}
 410
 411static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 412{
 413        struct nand_chip *nand = mtd->priv;
 414        struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 415        struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 416        int ret;
 417        int cnt;
 418        int offs = 0;
 419        u32 tmp;
 420
 421        while (len > offs) {
 422                cnt = min(len - offs, NFC_SRAM_SIZE);
 423
 424                ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 425                if (ret)
 426                        break;
 427
 428                writel(cnt, nfc->regs + NFC_REG_CNT);
 429                tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
 430                writel(tmp, nfc->regs + NFC_REG_CMD);
 431
 432                ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 433                if (ret)
 434                        break;
 435
 436                if (buf)
 437                        memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
 438                                      cnt);
 439                offs += cnt;
 440        }
 441}
 442
 443static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
 444                                int len)
 445{
 446        struct nand_chip *nand = mtd->priv;
 447        struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 448        struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 449        int ret;
 450        int cnt;
 451        int offs = 0;
 452        u32 tmp;
 453
 454        while (len > offs) {
 455                cnt = min(len - offs, NFC_SRAM_SIZE);
 456
 457                ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 458                if (ret)
 459                        break;
 460
 461                writel(cnt, nfc->regs + NFC_REG_CNT);
 462                memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
 463                tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
 464                      NFC_ACCESS_DIR;
 465                writel(tmp, nfc->regs + NFC_REG_CMD);
 466
 467                ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 468                if (ret)
 469                        break;
 470
 471                offs += cnt;
 472        }
 473}
 474
 475static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
 476{
 477        uint8_t ret;
 478
 479        sunxi_nfc_read_buf(mtd, &ret, 1);
 480
 481        return ret;
 482}
 483
 484static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
 485                               unsigned int ctrl)
 486{
 487        struct nand_chip *nand = mtd->priv;
 488        struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 489        struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 490        int ret;
 491        u32 tmp;
 492
 493        ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 494        if (ret)
 495                return;
 496
 497        if (ctrl & NAND_CTRL_CHANGE) {
 498                tmp = readl(nfc->regs + NFC_REG_CTL);
 499                if (ctrl & NAND_NCE)
 500                        tmp |= NFC_CE_CTL;
 501                else
 502                        tmp &= ~NFC_CE_CTL;
 503                writel(tmp, nfc->regs + NFC_REG_CTL);
 504        }
 505
 506        if (dat == NAND_CMD_NONE)
 507                return;
 508
 509        if (ctrl & NAND_CLE) {
 510                writel(NFC_SEND_CMD1 | dat, nfc->regs + NFC_REG_CMD);
 511        } else {
 512                writel(dat, nfc->regs + NFC_REG_ADDR_LOW);
 513                writel(NFC_SEND_ADR, nfc->regs + NFC_REG_CMD);
 514        }
 515
 516        sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 517}
 518
 519static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
 520                                      struct nand_chip *chip, uint8_t *buf,
 521                                      int oob_required, int page)
 522{
 523        struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
 524        struct nand_ecc_ctrl *ecc = &chip->ecc;
 525        struct nand_ecclayout *layout = ecc->layout;
 526        struct sunxi_nand_hw_ecc *data = ecc->priv;
 527        unsigned int max_bitflips = 0;
 528        int offset;
 529        int ret;
 530        u32 tmp;
 531        int i;
 532        int cnt;
 533
 534        tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
 535        tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
 536        tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
 537               NFC_ECC_EXCEPTION;
 538
 539        writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
 540
 541        for (i = 0; i < ecc->steps; i++) {
 542                if (i)
 543                        chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i * ecc->size, -1);
 544
 545                offset = mtd->writesize + layout->eccpos[i * ecc->bytes] - 4;
 546
 547                chip->read_buf(mtd, NULL, ecc->size);
 548
 549                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
 550
 551                ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 552                if (ret)
 553                        return ret;
 554
 555                tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30);
 556                writel(tmp, nfc->regs + NFC_REG_CMD);
 557
 558                ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 559                if (ret)
 560                        return ret;
 561
 562                memcpy_fromio(buf + (i * ecc->size),
 563                              nfc->regs + NFC_RAM0_BASE, ecc->size);
 564
 565                if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) {
 566                        mtd->ecc_stats.failed++;
 567                } else {
 568                        tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff;
 569                        mtd->ecc_stats.corrected += tmp;
 570                        max_bitflips = max_t(unsigned int, max_bitflips, tmp);
 571                }
 572
 573                if (oob_required) {
 574                        chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
 575
 576                        ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 577                        if (ret)
 578                                return ret;
 579
 580                        offset -= mtd->writesize;
 581                        chip->read_buf(mtd, chip->oob_poi + offset,
 582                                      ecc->bytes + 4);
 583                }
 584        }
 585
 586        if (oob_required) {
 587                cnt = ecc->layout->oobfree[ecc->steps].length;
 588                if (cnt > 0) {
 589                        offset = mtd->writesize +
 590                                 ecc->layout->oobfree[ecc->steps].offset;
 591                        chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
 592                        offset -= mtd->writesize;
 593                        chip->read_buf(mtd, chip->oob_poi + offset, cnt);
 594                }
 595        }
 596
 597        tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
 598        tmp &= ~NFC_ECC_EN;
 599
 600        writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
 601
 602        return max_bitflips;
 603}
 604
 605static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
 606                                       struct nand_chip *chip,
 607                                       const uint8_t *buf, int oob_required)
 608{
 609        struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
 610        struct nand_ecc_ctrl *ecc = &chip->ecc;
 611        struct nand_ecclayout *layout = ecc->layout;
 612        struct sunxi_nand_hw_ecc *data = ecc->priv;
 613        int offset;
 614        int ret;
 615        u32 tmp;
 616        int i;
 617        int cnt;
 618
 619        tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
 620        tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
 621        tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
 622               NFC_ECC_EXCEPTION;
 623
 624        writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
 625
 626        for (i = 0; i < ecc->steps; i++) {
 627                if (i)
 628                        chip->cmdfunc(mtd, NAND_CMD_RNDIN, i * ecc->size, -1);
 629
 630                chip->write_buf(mtd, buf + (i * ecc->size), ecc->size);
 631
 632                offset = layout->eccpos[i * ecc->bytes] - 4 + mtd->writesize;
 633
 634                /* Fill OOB data in */
 635                if (oob_required) {
 636                        tmp = 0xffffffff;
 637                        memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, &tmp,
 638                                    4);
 639                } else {
 640                        memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE,
 641                                    chip->oob_poi + offset - mtd->writesize,
 642                                    4);
 643                }
 644
 645                chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
 646
 647                ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 648                if (ret)
 649                        return ret;
 650
 651                tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR |
 652                      (1 << 30);
 653                writel(tmp, nfc->regs + NFC_REG_CMD);
 654                ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 655                if (ret)
 656                        return ret;
 657        }
 658
 659        if (oob_required) {
 660                cnt = ecc->layout->oobfree[i].length;
 661                if (cnt > 0) {
 662                        offset = mtd->writesize +
 663                                 ecc->layout->oobfree[i].offset;
 664                        chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
 665                        offset -= mtd->writesize;
 666                        chip->write_buf(mtd, chip->oob_poi + offset, cnt);
 667                }
 668        }
 669
 670        tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
 671        tmp &= ~NFC_ECC_EN;
 672
 673        writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
 674
 675        return 0;
 676}
 677
 678static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
 679                                               struct nand_chip *chip,
 680                                               uint8_t *buf, int oob_required,
 681                                               int page)
 682{
 683        struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
 684        struct nand_ecc_ctrl *ecc = &chip->ecc;
 685        struct sunxi_nand_hw_ecc *data = ecc->priv;
 686        unsigned int max_bitflips = 0;
 687        uint8_t *oob = chip->oob_poi;
 688        int offset = 0;
 689        int ret;
 690        int cnt;
 691        u32 tmp;
 692        int i;
 693
 694        tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
 695        tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
 696        tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
 697               NFC_ECC_EXCEPTION;
 698
 699        writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
 700
 701        for (i = 0; i < ecc->steps; i++) {
 702                chip->read_buf(mtd, NULL, ecc->size);
 703
 704                tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30);
 705                writel(tmp, nfc->regs + NFC_REG_CMD);
 706
 707                ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 708                if (ret)
 709                        return ret;
 710
 711                memcpy_fromio(buf, nfc->regs + NFC_RAM0_BASE, ecc->size);
 712                buf += ecc->size;
 713                offset += ecc->size;
 714
 715                if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) {
 716                        mtd->ecc_stats.failed++;
 717                } else {
 718                        tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff;
 719                        mtd->ecc_stats.corrected += tmp;
 720                        max_bitflips = max_t(unsigned int, max_bitflips, tmp);
 721                }
 722
 723                if (oob_required) {
 724                        chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
 725                        chip->read_buf(mtd, oob, ecc->bytes + ecc->prepad);
 726                        oob += ecc->bytes + ecc->prepad;
 727                }
 728
 729                offset += ecc->bytes + ecc->prepad;
 730        }
 731
 732        if (oob_required) {
 733                cnt = mtd->oobsize - (oob - chip->oob_poi);
 734                if (cnt > 0) {
 735                        chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
 736                        chip->read_buf(mtd, oob, cnt);
 737                }
 738        }
 739
 740        writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
 741               nfc->regs + NFC_REG_ECC_CTL);
 742
 743        return max_bitflips;
 744}
 745
 746static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
 747                                                struct nand_chip *chip,
 748                                                const uint8_t *buf,
 749                                                int oob_required)
 750{
 751        struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
 752        struct nand_ecc_ctrl *ecc = &chip->ecc;
 753        struct sunxi_nand_hw_ecc *data = ecc->priv;
 754        uint8_t *oob = chip->oob_poi;
 755        int offset = 0;
 756        int ret;
 757        int cnt;
 758        u32 tmp;
 759        int i;
 760
 761        tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
 762        tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
 763        tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
 764               NFC_ECC_EXCEPTION;
 765
 766        writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
 767
 768        for (i = 0; i < ecc->steps; i++) {
 769                chip->write_buf(mtd, buf + (i * ecc->size), ecc->size);
 770                offset += ecc->size;
 771
 772                /* Fill OOB data in */
 773                if (oob_required) {
 774                        tmp = 0xffffffff;
 775                        memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, &tmp,
 776                                    4);
 777                } else {
 778                        memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, oob,
 779                                    4);
 780                }
 781
 782                tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR |
 783                      (1 << 30);
 784                writel(tmp, nfc->regs + NFC_REG_CMD);
 785
 786                ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
 787                if (ret)
 788                        return ret;
 789
 790                offset += ecc->bytes + ecc->prepad;
 791                oob += ecc->bytes + ecc->prepad;
 792        }
 793
 794        if (oob_required) {
 795                cnt = mtd->oobsize - (oob - chip->oob_poi);
 796                if (cnt > 0) {
 797                        chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
 798                        chip->write_buf(mtd, oob, cnt);
 799                }
 800        }
 801
 802        tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
 803        tmp &= ~NFC_ECC_EN;
 804
 805        writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
 806
 807        return 0;
 808}
 809
 810static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip,
 811                                       const struct nand_sdr_timings *timings)
 812{
 813        u32 min_clk_period = 0;
 814
 815        /* T1 <=> tCLS */
 816        if (timings->tCLS_min > min_clk_period)
 817                min_clk_period = timings->tCLS_min;
 818
 819        /* T2 <=> tCLH */
 820        if (timings->tCLH_min > min_clk_period)
 821                min_clk_period = timings->tCLH_min;
 822
 823        /* T3 <=> tCS */
 824        if (timings->tCS_min > min_clk_period)
 825                min_clk_period = timings->tCS_min;
 826
 827        /* T4 <=> tCH */
 828        if (timings->tCH_min > min_clk_period)
 829                min_clk_period = timings->tCH_min;
 830
 831        /* T5 <=> tWP */
 832        if (timings->tWP_min > min_clk_period)
 833                min_clk_period = timings->tWP_min;
 834
 835        /* T6 <=> tWH */
 836        if (timings->tWH_min > min_clk_period)
 837                min_clk_period = timings->tWH_min;
 838
 839        /* T7 <=> tALS */
 840        if (timings->tALS_min > min_clk_period)
 841                min_clk_period = timings->tALS_min;
 842
 843        /* T8 <=> tDS */
 844        if (timings->tDS_min > min_clk_period)
 845                min_clk_period = timings->tDS_min;
 846
 847        /* T9 <=> tDH */
 848        if (timings->tDH_min > min_clk_period)
 849                min_clk_period = timings->tDH_min;
 850
 851        /* T10 <=> tRR */
 852        if (timings->tRR_min > (min_clk_period * 3))
 853                min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
 854
 855        /* T11 <=> tALH */
 856        if (timings->tALH_min > min_clk_period)
 857                min_clk_period = timings->tALH_min;
 858
 859        /* T12 <=> tRP */
 860        if (timings->tRP_min > min_clk_period)
 861                min_clk_period = timings->tRP_min;
 862
 863        /* T13 <=> tREH */
 864        if (timings->tREH_min > min_clk_period)
 865                min_clk_period = timings->tREH_min;
 866
 867        /* T14 <=> tRC */
 868        if (timings->tRC_min > (min_clk_period * 2))
 869                min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
 870
 871        /* T15 <=> tWC */
 872        if (timings->tWC_min > (min_clk_period * 2))
 873                min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
 874
 875
 876        /* Convert min_clk_period from picoseconds to nanoseconds */
 877        min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
 878
 879        /*
 880         * Convert min_clk_period into a clk frequency, then get the
 881         * appropriate rate for the NAND controller IP given this formula
 882         * (specified in the datasheet):
 883         * nand clk_rate = 2 * min_clk_rate
 884         */
 885        chip->clk_rate = (2 * NSEC_PER_SEC) / min_clk_period;
 886
 887        /* TODO: configure T16-T19 */
 888
 889        return 0;
 890}
 891
 892static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip,
 893                                        struct device_node *np)
 894{
 895        const struct nand_sdr_timings *timings;
 896        int ret;
 897        int mode;
 898
 899        mode = onfi_get_async_timing_mode(&chip->nand);
 900        if (mode == ONFI_TIMING_MODE_UNKNOWN) {
 901                mode = chip->nand.onfi_timing_mode_default;
 902        } else {
 903                uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
 904
 905                mode = fls(mode) - 1;
 906                if (mode < 0)
 907                        mode = 0;
 908
 909                feature[0] = mode;
 910                ret = chip->nand.onfi_set_features(&chip->mtd, &chip->nand,
 911                                                ONFI_FEATURE_ADDR_TIMING_MODE,
 912                                                feature);
 913                if (ret)
 914                        return ret;
 915        }
 916
 917        timings = onfi_async_timing_mode_to_sdr_timings(mode);
 918        if (IS_ERR(timings))
 919                return PTR_ERR(timings);
 920
 921        return sunxi_nand_chip_set_timings(chip, timings);
 922}
 923
 924static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
 925                                              struct nand_ecc_ctrl *ecc,
 926                                              struct device_node *np)
 927{
 928        static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
 929        struct nand_chip *nand = mtd->priv;
 930        struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 931        struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 932        struct sunxi_nand_hw_ecc *data;
 933        struct nand_ecclayout *layout;
 934        int nsectors;
 935        int ret;
 936        int i;
 937
 938        data = kzalloc(sizeof(*data), GFP_KERNEL);
 939        if (!data)
 940                return -ENOMEM;
 941
 942        /* Add ECC info retrieval from DT */
 943        for (i = 0; i < ARRAY_SIZE(strengths); i++) {
 944                if (ecc->strength <= strengths[i])
 945                        break;
 946        }
 947
 948        if (i >= ARRAY_SIZE(strengths)) {
 949                dev_err(nfc->dev, "unsupported strength\n");
 950                ret = -ENOTSUPP;
 951                goto err;
 952        }
 953
 954        data->mode = i;
 955
 956        /* HW ECC always request ECC bytes for 1024 bytes blocks */
 957        ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
 958
 959        /* HW ECC always work with even numbers of ECC bytes */
 960        ecc->bytes = ALIGN(ecc->bytes, 2);
 961
 962        layout = &data->layout;
 963        nsectors = mtd->writesize / ecc->size;
 964
 965        if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
 966                ret = -EINVAL;
 967                goto err;
 968        }
 969
 970        layout->eccbytes = (ecc->bytes * nsectors);
 971
 972        ecc->layout = layout;
 973        ecc->priv = data;
 974
 975        return 0;
 976
 977err:
 978        kfree(data);
 979
 980        return ret;
 981}
 982
 983static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
 984{
 985        kfree(ecc->priv);
 986}
 987
 988static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
 989                                       struct nand_ecc_ctrl *ecc,
 990                                       struct device_node *np)
 991{
 992        struct nand_ecclayout *layout;
 993        int nsectors;
 994        int i, j;
 995        int ret;
 996
 997        ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
 998        if (ret)
 999                return ret;
1000
1001        ecc->read_page = sunxi_nfc_hw_ecc_read_page;
1002        ecc->write_page = sunxi_nfc_hw_ecc_write_page;
1003        layout = ecc->layout;
1004        nsectors = mtd->writesize / ecc->size;
1005
1006        for (i = 0; i < nsectors; i++) {
1007                if (i) {
1008                        layout->oobfree[i].offset =
1009                                layout->oobfree[i - 1].offset +
1010                                layout->oobfree[i - 1].length +
1011                                ecc->bytes;
1012                        layout->oobfree[i].length = 4;
1013                } else {
1014                        /*
1015                         * The first 2 bytes are used for BB markers, hence we
1016                         * only have 2 bytes available in the first user data
1017                         * section.
1018                         */
1019                        layout->oobfree[i].length = 2;
1020                        layout->oobfree[i].offset = 2;
1021                }
1022
1023                for (j = 0; j < ecc->bytes; j++)
1024                        layout->eccpos[(ecc->bytes * i) + j] =
1025                                        layout->oobfree[i].offset +
1026                                        layout->oobfree[i].length + j;
1027        }
1028
1029        if (mtd->oobsize > (ecc->bytes + 4) * nsectors) {
1030                layout->oobfree[nsectors].offset =
1031                                layout->oobfree[nsectors - 1].offset +
1032                                layout->oobfree[nsectors - 1].length +
1033                                ecc->bytes;
1034                layout->oobfree[nsectors].length = mtd->oobsize -
1035                                ((ecc->bytes + 4) * nsectors);
1036        }
1037
1038        return 0;
1039}
1040
1041static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
1042                                                struct nand_ecc_ctrl *ecc,
1043                                                struct device_node *np)
1044{
1045        struct nand_ecclayout *layout;
1046        int nsectors;
1047        int i;
1048        int ret;
1049
1050        ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
1051        if (ret)
1052                return ret;
1053
1054        ecc->prepad = 4;
1055        ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
1056        ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
1057
1058        layout = ecc->layout;
1059        nsectors = mtd->writesize / ecc->size;
1060
1061        for (i = 0; i < (ecc->bytes * nsectors); i++)
1062                layout->eccpos[i] = i;
1063
1064        layout->oobfree[0].length = mtd->oobsize - i;
1065        layout->oobfree[0].offset = i;
1066
1067        return 0;
1068}
1069
1070static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
1071{
1072        switch (ecc->mode) {
1073        case NAND_ECC_HW:
1074        case NAND_ECC_HW_SYNDROME:
1075                sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
1076                break;
1077        case NAND_ECC_NONE:
1078                kfree(ecc->layout);
1079        default:
1080                break;
1081        }
1082}
1083
1084static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
1085                               struct device_node *np)
1086{
1087        struct nand_chip *nand = mtd->priv;
1088        int strength;
1089        int blk_size;
1090        int ret;
1091
1092        blk_size = of_get_nand_ecc_step_size(np);
1093        strength = of_get_nand_ecc_strength(np);
1094        if (blk_size > 0 && strength > 0) {
1095                ecc->size = blk_size;
1096                ecc->strength = strength;
1097        } else {
1098                ecc->size = nand->ecc_step_ds;
1099                ecc->strength = nand->ecc_strength_ds;
1100        }
1101
1102        if (!ecc->size || !ecc->strength)
1103                return -EINVAL;
1104
1105        ecc->mode = NAND_ECC_HW;
1106
1107        ret = of_get_nand_ecc_mode(np);
1108        if (ret >= 0)
1109                ecc->mode = ret;
1110
1111        switch (ecc->mode) {
1112        case NAND_ECC_SOFT_BCH:
1113                break;
1114        case NAND_ECC_HW:
1115                ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
1116                if (ret)
1117                        return ret;
1118                break;
1119        case NAND_ECC_HW_SYNDROME:
1120                ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
1121                if (ret)
1122                        return ret;
1123                break;
1124        case NAND_ECC_NONE:
1125                ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
1126                if (!ecc->layout)
1127                        return -ENOMEM;
1128                ecc->layout->oobfree[0].length = mtd->oobsize;
1129        case NAND_ECC_SOFT:
1130                break;
1131        default:
1132                return -EINVAL;
1133        }
1134
1135        return 0;
1136}
1137
1138static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
1139                                struct device_node *np)
1140{
1141        const struct nand_sdr_timings *timings;
1142        struct sunxi_nand_chip *chip;
1143        struct mtd_part_parser_data ppdata;
1144        struct mtd_info *mtd;
1145        struct nand_chip *nand;
1146        int nsels;
1147        int ret;
1148        int i;
1149        u32 tmp;
1150
1151        if (!of_get_property(np, "reg", &nsels))
1152                return -EINVAL;
1153
1154        nsels /= sizeof(u32);
1155        if (!nsels) {
1156                dev_err(dev, "invalid reg property size\n");
1157                return -EINVAL;
1158        }
1159
1160        chip = devm_kzalloc(dev,
1161                            sizeof(*chip) +
1162                            (nsels * sizeof(struct sunxi_nand_chip_sel)),
1163                            GFP_KERNEL);
1164        if (!chip) {
1165                dev_err(dev, "could not allocate chip\n");
1166                return -ENOMEM;
1167        }
1168
1169        chip->nsels = nsels;
1170        chip->selected = -1;
1171
1172        for (i = 0; i < nsels; i++) {
1173                ret = of_property_read_u32_index(np, "reg", i, &tmp);
1174                if (ret) {
1175                        dev_err(dev, "could not retrieve reg property: %d\n",
1176                                ret);
1177                        return ret;
1178                }
1179
1180                if (tmp > NFC_MAX_CS) {
1181                        dev_err(dev,
1182                                "invalid reg value: %u (max CS = 7)\n",
1183                                tmp);
1184                        return -EINVAL;
1185                }
1186
1187                if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1188                        dev_err(dev, "CS %d already assigned\n", tmp);
1189                        return -EINVAL;
1190                }
1191
1192                chip->sels[i].cs = tmp;
1193
1194                if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
1195                    tmp < 2) {
1196                        chip->sels[i].rb.type = RB_NATIVE;
1197                        chip->sels[i].rb.info.nativeid = tmp;
1198                } else {
1199                        ret = of_get_named_gpio(np, "rb-gpios", i);
1200                        if (ret >= 0) {
1201                                tmp = ret;
1202                                chip->sels[i].rb.type = RB_GPIO;
1203                                chip->sels[i].rb.info.gpio = tmp;
1204                                ret = devm_gpio_request(dev, tmp, "nand-rb");
1205                                if (ret)
1206                                        return ret;
1207
1208                                ret = gpio_direction_input(tmp);
1209                                if (ret)
1210                                        return ret;
1211                        } else {
1212                                chip->sels[i].rb.type = RB_NONE;
1213                        }
1214                }
1215        }
1216
1217        timings = onfi_async_timing_mode_to_sdr_timings(0);
1218        if (IS_ERR(timings)) {
1219                ret = PTR_ERR(timings);
1220                dev_err(dev,
1221                        "could not retrieve timings for ONFI mode 0: %d\n",
1222                        ret);
1223                return ret;
1224        }
1225
1226        ret = sunxi_nand_chip_set_timings(chip, timings);
1227        if (ret) {
1228                dev_err(dev, "could not configure chip timings: %d\n", ret);
1229                return ret;
1230        }
1231
1232        nand = &chip->nand;
1233        /* Default tR value specified in the ONFI spec (chapter 4.15.1) */
1234        nand->chip_delay = 200;
1235        nand->controller = &nfc->controller;
1236        nand->select_chip = sunxi_nfc_select_chip;
1237        nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
1238        nand->read_buf = sunxi_nfc_read_buf;
1239        nand->write_buf = sunxi_nfc_write_buf;
1240        nand->read_byte = sunxi_nfc_read_byte;
1241
1242        if (of_get_nand_on_flash_bbt(np))
1243                nand->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1244
1245        mtd = &chip->mtd;
1246        mtd->dev.parent = dev;
1247        mtd->priv = nand;
1248        mtd->owner = THIS_MODULE;
1249
1250        ret = nand_scan_ident(mtd, nsels, NULL);
1251        if (ret)
1252                return ret;
1253
1254        ret = sunxi_nand_chip_init_timings(chip, np);
1255        if (ret) {
1256                dev_err(dev, "could not configure chip timings: %d\n", ret);
1257                return ret;
1258        }
1259
1260        ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np);
1261        if (ret) {
1262                dev_err(dev, "ECC init failed: %d\n", ret);
1263                return ret;
1264        }
1265
1266        ret = nand_scan_tail(mtd);
1267        if (ret) {
1268                dev_err(dev, "nand_scan_tail failed: %d\n", ret);
1269                return ret;
1270        }
1271
1272        ppdata.of_node = np;
1273        ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
1274        if (ret) {
1275                dev_err(dev, "failed to register mtd device: %d\n", ret);
1276                nand_release(mtd);
1277                return ret;
1278        }
1279
1280        list_add_tail(&chip->node, &nfc->chips);
1281
1282        return 0;
1283}
1284
1285static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
1286{
1287        struct device_node *np = dev->of_node;
1288        struct device_node *nand_np;
1289        int nchips = of_get_child_count(np);
1290        int ret;
1291
1292        if (nchips > 8) {
1293                dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
1294                return -EINVAL;
1295        }
1296
1297        for_each_child_of_node(np, nand_np) {
1298                ret = sunxi_nand_chip_init(dev, nfc, nand_np);
1299                if (ret)
1300                        return ret;
1301        }
1302
1303        return 0;
1304}
1305
1306static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
1307{
1308        struct sunxi_nand_chip *chip;
1309
1310        while (!list_empty(&nfc->chips)) {
1311                chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
1312                                        node);
1313                nand_release(&chip->mtd);
1314                sunxi_nand_ecc_cleanup(&chip->nand.ecc);
1315        }
1316}
1317
1318static int sunxi_nfc_probe(struct platform_device *pdev)
1319{
1320        struct device *dev = &pdev->dev;
1321        struct resource *r;
1322        struct sunxi_nfc *nfc;
1323        int irq;
1324        int ret;
1325
1326        nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1327        if (!nfc)
1328                return -ENOMEM;
1329
1330        nfc->dev = dev;
1331        spin_lock_init(&nfc->controller.lock);
1332        init_waitqueue_head(&nfc->controller.wq);
1333        INIT_LIST_HEAD(&nfc->chips);
1334
1335        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1336        nfc->regs = devm_ioremap_resource(dev, r);
1337        if (IS_ERR(nfc->regs))
1338                return PTR_ERR(nfc->regs);
1339
1340        irq = platform_get_irq(pdev, 0);
1341        if (irq < 0) {
1342                dev_err(dev, "failed to retrieve irq\n");
1343                return irq;
1344        }
1345
1346        nfc->ahb_clk = devm_clk_get(dev, "ahb");
1347        if (IS_ERR(nfc->ahb_clk)) {
1348                dev_err(dev, "failed to retrieve ahb clk\n");
1349                return PTR_ERR(nfc->ahb_clk);
1350        }
1351
1352        ret = clk_prepare_enable(nfc->ahb_clk);
1353        if (ret)
1354                return ret;
1355
1356        nfc->mod_clk = devm_clk_get(dev, "mod");
1357        if (IS_ERR(nfc->mod_clk)) {
1358                dev_err(dev, "failed to retrieve mod clk\n");
1359                ret = PTR_ERR(nfc->mod_clk);
1360                goto out_ahb_clk_unprepare;
1361        }
1362
1363        ret = clk_prepare_enable(nfc->mod_clk);
1364        if (ret)
1365                goto out_ahb_clk_unprepare;
1366
1367        ret = sunxi_nfc_rst(nfc);
1368        if (ret)
1369                goto out_mod_clk_unprepare;
1370
1371        writel(0, nfc->regs + NFC_REG_INT);
1372        ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
1373                               0, "sunxi-nand", nfc);
1374        if (ret)
1375                goto out_mod_clk_unprepare;
1376
1377        platform_set_drvdata(pdev, nfc);
1378
1379        /*
1380         * TODO: replace these magic values with proper flags as soon as we
1381         * know what they are encoding.
1382         */
1383        writel(0x100, nfc->regs + NFC_REG_TIMING_CTL);
1384        writel(0x7ff, nfc->regs + NFC_REG_TIMING_CFG);
1385
1386        ret = sunxi_nand_chips_init(dev, nfc);
1387        if (ret) {
1388                dev_err(dev, "failed to init nand chips\n");
1389                goto out_mod_clk_unprepare;
1390        }
1391
1392        return 0;
1393
1394out_mod_clk_unprepare:
1395        clk_disable_unprepare(nfc->mod_clk);
1396out_ahb_clk_unprepare:
1397        clk_disable_unprepare(nfc->ahb_clk);
1398
1399        return ret;
1400}
1401
1402static int sunxi_nfc_remove(struct platform_device *pdev)
1403{
1404        struct sunxi_nfc *nfc = platform_get_drvdata(pdev);
1405
1406        sunxi_nand_chips_cleanup(nfc);
1407
1408        return 0;
1409}
1410
1411static const struct of_device_id sunxi_nfc_ids[] = {
1412        { .compatible = "allwinner,sun4i-a10-nand" },
1413        { /* sentinel */ }
1414};
1415MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);
1416
1417static struct platform_driver sunxi_nfc_driver = {
1418        .driver = {
1419                .name = "sunxi_nand",
1420                .of_match_table = sunxi_nfc_ids,
1421        },
1422        .probe = sunxi_nfc_probe,
1423        .remove = sunxi_nfc_remove,
1424};
1425module_platform_driver(sunxi_nfc_driver);
1426
1427MODULE_LICENSE("GPL v2");
1428MODULE_AUTHOR("Boris BREZILLON");
1429MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
1430MODULE_ALIAS("platform:sunxi_nand");
1431