linux/drivers/net/ethernet/intel/e1000e/ich8lan.c
<<
>>
Prefs
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22/* 82562G 10/100 Network Connection
  23 * 82562G-2 10/100 Network Connection
  24 * 82562GT 10/100 Network Connection
  25 * 82562GT-2 10/100 Network Connection
  26 * 82562V 10/100 Network Connection
  27 * 82562V-2 10/100 Network Connection
  28 * 82566DC-2 Gigabit Network Connection
  29 * 82566DC Gigabit Network Connection
  30 * 82566DM-2 Gigabit Network Connection
  31 * 82566DM Gigabit Network Connection
  32 * 82566MC Gigabit Network Connection
  33 * 82566MM Gigabit Network Connection
  34 * 82567LM Gigabit Network Connection
  35 * 82567LF Gigabit Network Connection
  36 * 82567V Gigabit Network Connection
  37 * 82567LM-2 Gigabit Network Connection
  38 * 82567LF-2 Gigabit Network Connection
  39 * 82567V-2 Gigabit Network Connection
  40 * 82567LF-3 Gigabit Network Connection
  41 * 82567LM-3 Gigabit Network Connection
  42 * 82567LM-4 Gigabit Network Connection
  43 * 82577LM Gigabit Network Connection
  44 * 82577LC Gigabit Network Connection
  45 * 82578DM Gigabit Network Connection
  46 * 82578DC Gigabit Network Connection
  47 * 82579LM Gigabit Network Connection
  48 * 82579V Gigabit Network Connection
  49 * Ethernet Connection I217-LM
  50 * Ethernet Connection I217-V
  51 * Ethernet Connection I218-V
  52 * Ethernet Connection I218-LM
  53 * Ethernet Connection (2) I218-LM
  54 * Ethernet Connection (2) I218-V
  55 * Ethernet Connection (3) I218-LM
  56 * Ethernet Connection (3) I218-V
  57 */
  58
  59#include "e1000.h"
  60
  61/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  62/* Offset 04h HSFSTS */
  63union ich8_hws_flash_status {
  64        struct ich8_hsfsts {
  65                u16 flcdone:1;  /* bit 0 Flash Cycle Done */
  66                u16 flcerr:1;   /* bit 1 Flash Cycle Error */
  67                u16 dael:1;     /* bit 2 Direct Access error Log */
  68                u16 berasesz:2; /* bit 4:3 Sector Erase Size */
  69                u16 flcinprog:1;        /* bit 5 flash cycle in Progress */
  70                u16 reserved1:2;        /* bit 13:6 Reserved */
  71                u16 reserved2:6;        /* bit 13:6 Reserved */
  72                u16 fldesvalid:1;       /* bit 14 Flash Descriptor Valid */
  73                u16 flockdn:1;  /* bit 15 Flash Config Lock-Down */
  74        } hsf_status;
  75        u16 regval;
  76};
  77
  78/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  79/* Offset 06h FLCTL */
  80union ich8_hws_flash_ctrl {
  81        struct ich8_hsflctl {
  82                u16 flcgo:1;    /* 0 Flash Cycle Go */
  83                u16 flcycle:2;  /* 2:1 Flash Cycle */
  84                u16 reserved:5; /* 7:3 Reserved  */
  85                u16 fldbcount:2;        /* 9:8 Flash Data Byte Count */
  86                u16 flockdn:6;  /* 15:10 Reserved */
  87        } hsf_ctrl;
  88        u16 regval;
  89};
  90
  91/* ICH Flash Region Access Permissions */
  92union ich8_hws_flash_regacc {
  93        struct ich8_flracc {
  94                u32 grra:8;     /* 0:7 GbE region Read Access */
  95                u32 grwa:8;     /* 8:15 GbE region Write Access */
  96                u32 gmrag:8;    /* 23:16 GbE Master Read Access Grant */
  97                u32 gmwag:8;    /* 31:24 GbE Master Write Access Grant */
  98        } hsf_flregacc;
  99        u16 regval;
 100};
 101
 102/* ICH Flash Protected Region */
 103union ich8_flash_protected_range {
 104        struct ich8_pr {
 105                u32 base:13;    /* 0:12 Protected Range Base */
 106                u32 reserved1:2;        /* 13:14 Reserved */
 107                u32 rpe:1;      /* 15 Read Protection Enable */
 108                u32 limit:13;   /* 16:28 Protected Range Limit */
 109                u32 reserved2:2;        /* 29:30 Reserved */
 110                u32 wpe:1;      /* 31 Write Protection Enable */
 111        } range;
 112        u32 regval;
 113};
 114
 115static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
 116static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 118static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 119                                                u32 offset, u8 byte);
 120static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 121                                         u8 *data);
 122static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 123                                         u16 *data);
 124static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 125                                         u8 size, u16 *data);
 126static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 127static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 129static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 130static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 131static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 132static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 133static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 134static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 135static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 136static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 137static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 138static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 139static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 140static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 141static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 142static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 143static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 144static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 145static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 146static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 147static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 148static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 149static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 150
 151static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 152{
 153        return readw(hw->flash_address + reg);
 154}
 155
 156static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 157{
 158        return readl(hw->flash_address + reg);
 159}
 160
 161static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 162{
 163        writew(val, hw->flash_address + reg);
 164}
 165
 166static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 167{
 168        writel(val, hw->flash_address + reg);
 169}
 170
 171#define er16flash(reg)          __er16flash(hw, (reg))
 172#define er32flash(reg)          __er32flash(hw, (reg))
 173#define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
 174#define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
 175
 176/**
 177 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 178 *  @hw: pointer to the HW structure
 179 *
 180 *  Test access to the PHY registers by reading the PHY ID registers.  If
 181 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 182 *  otherwise assume the read PHY ID is correct if it is valid.
 183 *
 184 *  Assumes the sw/fw/hw semaphore is already acquired.
 185 **/
 186static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 187{
 188        u16 phy_reg = 0;
 189        u32 phy_id = 0;
 190        s32 ret_val = 0;
 191        u16 retry_count;
 192        u32 mac_reg = 0;
 193
 194        for (retry_count = 0; retry_count < 2; retry_count++) {
 195                ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 196                if (ret_val || (phy_reg == 0xFFFF))
 197                        continue;
 198                phy_id = (u32)(phy_reg << 16);
 199
 200                ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 201                if (ret_val || (phy_reg == 0xFFFF)) {
 202                        phy_id = 0;
 203                        continue;
 204                }
 205                phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 206                break;
 207        }
 208
 209        if (hw->phy.id) {
 210                if (hw->phy.id == phy_id)
 211                        goto out;
 212        } else if (phy_id) {
 213                hw->phy.id = phy_id;
 214                hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 215                goto out;
 216        }
 217
 218        /* In case the PHY needs to be in mdio slow mode,
 219         * set slow mode and try to get the PHY id again.
 220         */
 221        if (hw->mac.type < e1000_pch_lpt) {
 222                hw->phy.ops.release(hw);
 223                ret_val = e1000_set_mdio_slow_mode_hv(hw);
 224                if (!ret_val)
 225                        ret_val = e1000e_get_phy_id(hw);
 226                hw->phy.ops.acquire(hw);
 227        }
 228
 229        if (ret_val)
 230                return false;
 231out:
 232        if (hw->mac.type == e1000_pch_lpt) {
 233                /* Unforce SMBus mode in PHY */
 234                e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 235                phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 236                e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 237
 238                /* Unforce SMBus mode in MAC */
 239                mac_reg = er32(CTRL_EXT);
 240                mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 241                ew32(CTRL_EXT, mac_reg);
 242        }
 243
 244        return true;
 245}
 246
 247/**
 248 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 249 *  @hw: pointer to the HW structure
 250 *
 251 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 252 *  used to reset the PHY to a quiescent state when necessary.
 253 **/
 254static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 255{
 256        u32 mac_reg;
 257
 258        /* Set Phy Config Counter to 50msec */
 259        mac_reg = er32(FEXTNVM3);
 260        mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 261        mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 262        ew32(FEXTNVM3, mac_reg);
 263
 264        /* Toggle LANPHYPC Value bit */
 265        mac_reg = er32(CTRL);
 266        mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 267        mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 268        ew32(CTRL, mac_reg);
 269        e1e_flush();
 270        usleep_range(10, 20);
 271        mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 272        ew32(CTRL, mac_reg);
 273        e1e_flush();
 274
 275        if (hw->mac.type < e1000_pch_lpt) {
 276                msleep(50);
 277        } else {
 278                u16 count = 20;
 279
 280                do {
 281                        usleep_range(5000, 10000);
 282                } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 283
 284                msleep(30);
 285        }
 286}
 287
 288/**
 289 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 290 *  @hw: pointer to the HW structure
 291 *
 292 *  Workarounds/flow necessary for PHY initialization during driver load
 293 *  and resume paths.
 294 **/
 295static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 296{
 297        struct e1000_adapter *adapter = hw->adapter;
 298        u32 mac_reg, fwsm = er32(FWSM);
 299        s32 ret_val;
 300
 301        /* Gate automatic PHY configuration by hardware on managed and
 302         * non-managed 82579 and newer adapters.
 303         */
 304        e1000_gate_hw_phy_config_ich8lan(hw, true);
 305
 306        /* It is not possible to be certain of the current state of ULP
 307         * so forcibly disable it.
 308         */
 309        hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 310        e1000_disable_ulp_lpt_lp(hw, true);
 311
 312        ret_val = hw->phy.ops.acquire(hw);
 313        if (ret_val) {
 314                e_dbg("Failed to initialize PHY flow\n");
 315                goto out;
 316        }
 317
 318        /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 319         * inaccessible and resetting the PHY is not blocked, toggle the
 320         * LANPHYPC Value bit to force the interconnect to PCIe mode.
 321         */
 322        switch (hw->mac.type) {
 323        case e1000_pch_lpt:
 324                if (e1000_phy_is_accessible_pchlan(hw))
 325                        break;
 326
 327                /* Before toggling LANPHYPC, see if PHY is accessible by
 328                 * forcing MAC to SMBus mode first.
 329                 */
 330                mac_reg = er32(CTRL_EXT);
 331                mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 332                ew32(CTRL_EXT, mac_reg);
 333
 334                /* Wait 50 milliseconds for MAC to finish any retries
 335                 * that it might be trying to perform from previous
 336                 * attempts to acknowledge any phy read requests.
 337                 */
 338                msleep(50);
 339
 340                /* fall-through */
 341        case e1000_pch2lan:
 342                if (e1000_phy_is_accessible_pchlan(hw))
 343                        break;
 344
 345                /* fall-through */
 346        case e1000_pchlan:
 347                if ((hw->mac.type == e1000_pchlan) &&
 348                    (fwsm & E1000_ICH_FWSM_FW_VALID))
 349                        break;
 350
 351                if (hw->phy.ops.check_reset_block(hw)) {
 352                        e_dbg("Required LANPHYPC toggle blocked by ME\n");
 353                        ret_val = -E1000_ERR_PHY;
 354                        break;
 355                }
 356
 357                /* Toggle LANPHYPC Value bit */
 358                e1000_toggle_lanphypc_pch_lpt(hw);
 359                if (hw->mac.type >= e1000_pch_lpt) {
 360                        if (e1000_phy_is_accessible_pchlan(hw))
 361                                break;
 362
 363                        /* Toggling LANPHYPC brings the PHY out of SMBus mode
 364                         * so ensure that the MAC is also out of SMBus mode
 365                         */
 366                        mac_reg = er32(CTRL_EXT);
 367                        mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 368                        ew32(CTRL_EXT, mac_reg);
 369
 370                        if (e1000_phy_is_accessible_pchlan(hw))
 371                                break;
 372
 373                        ret_val = -E1000_ERR_PHY;
 374                }
 375                break;
 376        default:
 377                break;
 378        }
 379
 380        hw->phy.ops.release(hw);
 381        if (!ret_val) {
 382
 383                /* Check to see if able to reset PHY.  Print error if not */
 384                if (hw->phy.ops.check_reset_block(hw)) {
 385                        e_err("Reset blocked by ME\n");
 386                        goto out;
 387                }
 388
 389                /* Reset the PHY before any access to it.  Doing so, ensures
 390                 * that the PHY is in a known good state before we read/write
 391                 * PHY registers.  The generic reset is sufficient here,
 392                 * because we haven't determined the PHY type yet.
 393                 */
 394                ret_val = e1000e_phy_hw_reset_generic(hw);
 395                if (ret_val)
 396                        goto out;
 397
 398                /* On a successful reset, possibly need to wait for the PHY
 399                 * to quiesce to an accessible state before returning control
 400                 * to the calling function.  If the PHY does not quiesce, then
 401                 * return E1000E_BLK_PHY_RESET, as this is the condition that
 402                 *  the PHY is in.
 403                 */
 404                ret_val = hw->phy.ops.check_reset_block(hw);
 405                if (ret_val)
 406                        e_err("ME blocked access to PHY after reset\n");
 407        }
 408
 409out:
 410        /* Ungate automatic PHY configuration on non-managed 82579 */
 411        if ((hw->mac.type == e1000_pch2lan) &&
 412            !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 413                usleep_range(10000, 20000);
 414                e1000_gate_hw_phy_config_ich8lan(hw, false);
 415        }
 416
 417        return ret_val;
 418}
 419
 420/**
 421 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 422 *  @hw: pointer to the HW structure
 423 *
 424 *  Initialize family-specific PHY parameters and function pointers.
 425 **/
 426static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 427{
 428        struct e1000_phy_info *phy = &hw->phy;
 429        s32 ret_val;
 430
 431        phy->addr = 1;
 432        phy->reset_delay_us = 100;
 433
 434        phy->ops.set_page = e1000_set_page_igp;
 435        phy->ops.read_reg = e1000_read_phy_reg_hv;
 436        phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 437        phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 438        phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 439        phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 440        phy->ops.write_reg = e1000_write_phy_reg_hv;
 441        phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 442        phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 443        phy->ops.power_up = e1000_power_up_phy_copper;
 444        phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 445        phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 446
 447        phy->id = e1000_phy_unknown;
 448
 449        ret_val = e1000_init_phy_workarounds_pchlan(hw);
 450        if (ret_val)
 451                return ret_val;
 452
 453        if (phy->id == e1000_phy_unknown)
 454                switch (hw->mac.type) {
 455                default:
 456                        ret_val = e1000e_get_phy_id(hw);
 457                        if (ret_val)
 458                                return ret_val;
 459                        if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 460                                break;
 461                        /* fall-through */
 462                case e1000_pch2lan:
 463                case e1000_pch_lpt:
 464                        /* In case the PHY needs to be in mdio slow mode,
 465                         * set slow mode and try to get the PHY id again.
 466                         */
 467                        ret_val = e1000_set_mdio_slow_mode_hv(hw);
 468                        if (ret_val)
 469                                return ret_val;
 470                        ret_val = e1000e_get_phy_id(hw);
 471                        if (ret_val)
 472                                return ret_val;
 473                        break;
 474                }
 475        phy->type = e1000e_get_phy_type_from_id(phy->id);
 476
 477        switch (phy->type) {
 478        case e1000_phy_82577:
 479        case e1000_phy_82579:
 480        case e1000_phy_i217:
 481                phy->ops.check_polarity = e1000_check_polarity_82577;
 482                phy->ops.force_speed_duplex =
 483                    e1000_phy_force_speed_duplex_82577;
 484                phy->ops.get_cable_length = e1000_get_cable_length_82577;
 485                phy->ops.get_info = e1000_get_phy_info_82577;
 486                phy->ops.commit = e1000e_phy_sw_reset;
 487                break;
 488        case e1000_phy_82578:
 489                phy->ops.check_polarity = e1000_check_polarity_m88;
 490                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 491                phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 492                phy->ops.get_info = e1000e_get_phy_info_m88;
 493                break;
 494        default:
 495                ret_val = -E1000_ERR_PHY;
 496                break;
 497        }
 498
 499        return ret_val;
 500}
 501
 502/**
 503 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 504 *  @hw: pointer to the HW structure
 505 *
 506 *  Initialize family-specific PHY parameters and function pointers.
 507 **/
 508static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 509{
 510        struct e1000_phy_info *phy = &hw->phy;
 511        s32 ret_val;
 512        u16 i = 0;
 513
 514        phy->addr = 1;
 515        phy->reset_delay_us = 100;
 516
 517        phy->ops.power_up = e1000_power_up_phy_copper;
 518        phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 519
 520        /* We may need to do this twice - once for IGP and if that fails,
 521         * we'll set BM func pointers and try again
 522         */
 523        ret_val = e1000e_determine_phy_address(hw);
 524        if (ret_val) {
 525                phy->ops.write_reg = e1000e_write_phy_reg_bm;
 526                phy->ops.read_reg = e1000e_read_phy_reg_bm;
 527                ret_val = e1000e_determine_phy_address(hw);
 528                if (ret_val) {
 529                        e_dbg("Cannot determine PHY addr. Erroring out\n");
 530                        return ret_val;
 531                }
 532        }
 533
 534        phy->id = 0;
 535        while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 536               (i++ < 100)) {
 537                usleep_range(1000, 2000);
 538                ret_val = e1000e_get_phy_id(hw);
 539                if (ret_val)
 540                        return ret_val;
 541        }
 542
 543        /* Verify phy id */
 544        switch (phy->id) {
 545        case IGP03E1000_E_PHY_ID:
 546                phy->type = e1000_phy_igp_3;
 547                phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 548                phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 549                phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 550                phy->ops.get_info = e1000e_get_phy_info_igp;
 551                phy->ops.check_polarity = e1000_check_polarity_igp;
 552                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 553                break;
 554        case IFE_E_PHY_ID:
 555        case IFE_PLUS_E_PHY_ID:
 556        case IFE_C_E_PHY_ID:
 557                phy->type = e1000_phy_ife;
 558                phy->autoneg_mask = E1000_ALL_NOT_GIG;
 559                phy->ops.get_info = e1000_get_phy_info_ife;
 560                phy->ops.check_polarity = e1000_check_polarity_ife;
 561                phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 562                break;
 563        case BME1000_E_PHY_ID:
 564                phy->type = e1000_phy_bm;
 565                phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 566                phy->ops.read_reg = e1000e_read_phy_reg_bm;
 567                phy->ops.write_reg = e1000e_write_phy_reg_bm;
 568                phy->ops.commit = e1000e_phy_sw_reset;
 569                phy->ops.get_info = e1000e_get_phy_info_m88;
 570                phy->ops.check_polarity = e1000_check_polarity_m88;
 571                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 572                break;
 573        default:
 574                return -E1000_ERR_PHY;
 575        }
 576
 577        return 0;
 578}
 579
 580/**
 581 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 582 *  @hw: pointer to the HW structure
 583 *
 584 *  Initialize family-specific NVM parameters and function
 585 *  pointers.
 586 **/
 587static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 588{
 589        struct e1000_nvm_info *nvm = &hw->nvm;
 590        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 591        u32 gfpreg, sector_base_addr, sector_end_addr;
 592        u16 i;
 593
 594        /* Can't read flash registers if the register set isn't mapped. */
 595        if (!hw->flash_address) {
 596                e_dbg("ERROR: Flash registers not mapped\n");
 597                return -E1000_ERR_CONFIG;
 598        }
 599
 600        nvm->type = e1000_nvm_flash_sw;
 601
 602        gfpreg = er32flash(ICH_FLASH_GFPREG);
 603
 604        /* sector_X_addr is a "sector"-aligned address (4096 bytes)
 605         * Add 1 to sector_end_addr since this sector is included in
 606         * the overall size.
 607         */
 608        sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 609        sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 610
 611        /* flash_base_addr is byte-aligned */
 612        nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
 613
 614        /* find total size of the NVM, then cut in half since the total
 615         * size represents two separate NVM banks.
 616         */
 617        nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 618                                << FLASH_SECTOR_ADDR_SHIFT);
 619        nvm->flash_bank_size /= 2;
 620        /* Adjust to word count */
 621        nvm->flash_bank_size /= sizeof(u16);
 622
 623        nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 624
 625        /* Clear shadow ram */
 626        for (i = 0; i < nvm->word_size; i++) {
 627                dev_spec->shadow_ram[i].modified = false;
 628                dev_spec->shadow_ram[i].value = 0xFFFF;
 629        }
 630
 631        return 0;
 632}
 633
 634/**
 635 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 636 *  @hw: pointer to the HW structure
 637 *
 638 *  Initialize family-specific MAC parameters and function
 639 *  pointers.
 640 **/
 641static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 642{
 643        struct e1000_mac_info *mac = &hw->mac;
 644
 645        /* Set media type function pointer */
 646        hw->phy.media_type = e1000_media_type_copper;
 647
 648        /* Set mta register count */
 649        mac->mta_reg_count = 32;
 650        /* Set rar entry count */
 651        mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 652        if (mac->type == e1000_ich8lan)
 653                mac->rar_entry_count--;
 654        /* FWSM register */
 655        mac->has_fwsm = true;
 656        /* ARC subsystem not supported */
 657        mac->arc_subsystem_valid = false;
 658        /* Adaptive IFS supported */
 659        mac->adaptive_ifs = true;
 660
 661        /* LED and other operations */
 662        switch (mac->type) {
 663        case e1000_ich8lan:
 664        case e1000_ich9lan:
 665        case e1000_ich10lan:
 666                /* check management mode */
 667                mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 668                /* ID LED init */
 669                mac->ops.id_led_init = e1000e_id_led_init_generic;
 670                /* blink LED */
 671                mac->ops.blink_led = e1000e_blink_led_generic;
 672                /* setup LED */
 673                mac->ops.setup_led = e1000e_setup_led_generic;
 674                /* cleanup LED */
 675                mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 676                /* turn on/off LED */
 677                mac->ops.led_on = e1000_led_on_ich8lan;
 678                mac->ops.led_off = e1000_led_off_ich8lan;
 679                break;
 680        case e1000_pch2lan:
 681                mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 682                mac->ops.rar_set = e1000_rar_set_pch2lan;
 683                /* fall-through */
 684        case e1000_pch_lpt:
 685        case e1000_pchlan:
 686                /* check management mode */
 687                mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 688                /* ID LED init */
 689                mac->ops.id_led_init = e1000_id_led_init_pchlan;
 690                /* setup LED */
 691                mac->ops.setup_led = e1000_setup_led_pchlan;
 692                /* cleanup LED */
 693                mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 694                /* turn on/off LED */
 695                mac->ops.led_on = e1000_led_on_pchlan;
 696                mac->ops.led_off = e1000_led_off_pchlan;
 697                break;
 698        default:
 699                break;
 700        }
 701
 702        if (mac->type == e1000_pch_lpt) {
 703                mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 704                mac->ops.rar_set = e1000_rar_set_pch_lpt;
 705                mac->ops.setup_physical_interface =
 706                    e1000_setup_copper_link_pch_lpt;
 707                mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 708        }
 709
 710        /* Enable PCS Lock-loss workaround for ICH8 */
 711        if (mac->type == e1000_ich8lan)
 712                e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 713
 714        return 0;
 715}
 716
 717/**
 718 *  __e1000_access_emi_reg_locked - Read/write EMI register
 719 *  @hw: pointer to the HW structure
 720 *  @addr: EMI address to program
 721 *  @data: pointer to value to read/write from/to the EMI address
 722 *  @read: boolean flag to indicate read or write
 723 *
 724 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 725 **/
 726static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 727                                         u16 *data, bool read)
 728{
 729        s32 ret_val;
 730
 731        ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 732        if (ret_val)
 733                return ret_val;
 734
 735        if (read)
 736                ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 737        else
 738                ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 739
 740        return ret_val;
 741}
 742
 743/**
 744 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 745 *  @hw: pointer to the HW structure
 746 *  @addr: EMI address to program
 747 *  @data: value to be read from the EMI address
 748 *
 749 *  Assumes the SW/FW/HW Semaphore is already acquired.
 750 **/
 751s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 752{
 753        return __e1000_access_emi_reg_locked(hw, addr, data, true);
 754}
 755
 756/**
 757 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 758 *  @hw: pointer to the HW structure
 759 *  @addr: EMI address to program
 760 *  @data: value to be written to the EMI address
 761 *
 762 *  Assumes the SW/FW/HW Semaphore is already acquired.
 763 **/
 764s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 765{
 766        return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 767}
 768
 769/**
 770 *  e1000_set_eee_pchlan - Enable/disable EEE support
 771 *  @hw: pointer to the HW structure
 772 *
 773 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 774 *  the link and the EEE capabilities of the link partner.  The LPI Control
 775 *  register bits will remain set only if/when link is up.
 776 *
 777 *  EEE LPI must not be asserted earlier than one second after link is up.
 778 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 779 *  can be link issues with some switches.  Other devices can have EEE LPI
 780 *  enabled immediately upon link up since they have a timer in hardware which
 781 *  prevents LPI from being asserted too early.
 782 **/
 783s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 784{
 785        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 786        s32 ret_val;
 787        u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 788
 789        switch (hw->phy.type) {
 790        case e1000_phy_82579:
 791                lpa = I82579_EEE_LP_ABILITY;
 792                pcs_status = I82579_EEE_PCS_STATUS;
 793                adv_addr = I82579_EEE_ADVERTISEMENT;
 794                break;
 795        case e1000_phy_i217:
 796                lpa = I217_EEE_LP_ABILITY;
 797                pcs_status = I217_EEE_PCS_STATUS;
 798                adv_addr = I217_EEE_ADVERTISEMENT;
 799                break;
 800        default:
 801                return 0;
 802        }
 803
 804        ret_val = hw->phy.ops.acquire(hw);
 805        if (ret_val)
 806                return ret_val;
 807
 808        ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 809        if (ret_val)
 810                goto release;
 811
 812        /* Clear bits that enable EEE in various speeds */
 813        lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 814
 815        /* Enable EEE if not disabled by user */
 816        if (!dev_spec->eee_disable) {
 817                /* Save off link partner's EEE ability */
 818                ret_val = e1000_read_emi_reg_locked(hw, lpa,
 819                                                    &dev_spec->eee_lp_ability);
 820                if (ret_val)
 821                        goto release;
 822
 823                /* Read EEE advertisement */
 824                ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 825                if (ret_val)
 826                        goto release;
 827
 828                /* Enable EEE only for speeds in which the link partner is
 829                 * EEE capable and for which we advertise EEE.
 830                 */
 831                if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 832                        lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 833
 834                if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 835                        e1e_rphy_locked(hw, MII_LPA, &data);
 836                        if (data & LPA_100FULL)
 837                                lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 838                        else
 839                                /* EEE is not supported in 100Half, so ignore
 840                                 * partner's EEE in 100 ability if full-duplex
 841                                 * is not advertised.
 842                                 */
 843                                dev_spec->eee_lp_ability &=
 844                                    ~I82579_EEE_100_SUPPORTED;
 845                }
 846        }
 847
 848        if (hw->phy.type == e1000_phy_82579) {
 849                ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 850                                                    &data);
 851                if (ret_val)
 852                        goto release;
 853
 854                data &= ~I82579_LPI_100_PLL_SHUT;
 855                ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 856                                                     data);
 857        }
 858
 859        /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 860        ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 861        if (ret_val)
 862                goto release;
 863
 864        ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 865release:
 866        hw->phy.ops.release(hw);
 867
 868        return ret_val;
 869}
 870
 871/**
 872 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 873 *  @hw:   pointer to the HW structure
 874 *  @link: link up bool flag
 875 *
 876 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 877 *  preventing further DMA write requests.  Workaround the issue by disabling
 878 *  the de-assertion of the clock request when in 1Gpbs mode.
 879 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 880 *  speeds in order to avoid Tx hangs.
 881 **/
 882static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 883{
 884        u32 fextnvm6 = er32(FEXTNVM6);
 885        u32 status = er32(STATUS);
 886        s32 ret_val = 0;
 887        u16 reg;
 888
 889        if (link && (status & E1000_STATUS_SPEED_1000)) {
 890                ret_val = hw->phy.ops.acquire(hw);
 891                if (ret_val)
 892                        return ret_val;
 893
 894                ret_val =
 895                    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 896                                                &reg);
 897                if (ret_val)
 898                        goto release;
 899
 900                ret_val =
 901                    e1000e_write_kmrn_reg_locked(hw,
 902                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
 903                                                 reg &
 904                                                 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 905                if (ret_val)
 906                        goto release;
 907
 908                usleep_range(10, 20);
 909
 910                ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 911
 912                ret_val =
 913                    e1000e_write_kmrn_reg_locked(hw,
 914                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
 915                                                 reg);
 916release:
 917                hw->phy.ops.release(hw);
 918        } else {
 919                /* clear FEXTNVM6 bit 8 on link down or 10/100 */
 920                fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 921
 922                if (!link || ((status & E1000_STATUS_SPEED_100) &&
 923                              (status & E1000_STATUS_FD)))
 924                        goto update_fextnvm6;
 925
 926                ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 927                if (ret_val)
 928                        return ret_val;
 929
 930                /* Clear link status transmit timeout */
 931                reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 932
 933                if (status & E1000_STATUS_SPEED_100) {
 934                        /* Set inband Tx timeout to 5x10us for 100Half */
 935                        reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 936
 937                        /* Do not extend the K1 entry latency for 100Half */
 938                        fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 939                } else {
 940                        /* Set inband Tx timeout to 50x10us for 10Full/Half */
 941                        reg |= 50 <<
 942                            I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 943
 944                        /* Extend the K1 entry latency for 10 Mbps */
 945                        fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 946                }
 947
 948                ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 949                if (ret_val)
 950                        return ret_val;
 951
 952update_fextnvm6:
 953                ew32(FEXTNVM6, fextnvm6);
 954        }
 955
 956        return ret_val;
 957}
 958
 959/**
 960 *  e1000_platform_pm_pch_lpt - Set platform power management values
 961 *  @hw: pointer to the HW structure
 962 *  @link: bool indicating link status
 963 *
 964 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
 965 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
 966 *  when link is up (which must not exceed the maximum latency supported
 967 *  by the platform), otherwise specify there is no LTR requirement.
 968 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
 969 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
 970 *  Capability register set, on this device LTR is set by writing the
 971 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
 972 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
 973 *  message to the PMC.
 974 **/
 975static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
 976{
 977        u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
 978            link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
 979        u16 lat_enc = 0;        /* latency encoded */
 980
 981        if (link) {
 982                u16 speed, duplex, scale = 0;
 983                u16 max_snoop, max_nosnoop;
 984                u16 max_ltr_enc;        /* max LTR latency encoded */
 985                s64 lat_ns;     /* latency (ns) */
 986                s64 value;
 987                u32 rxa;
 988
 989                if (!hw->adapter->max_frame_size) {
 990                        e_dbg("max_frame_size not set.\n");
 991                        return -E1000_ERR_CONFIG;
 992                }
 993
 994                hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
 995                if (!speed) {
 996                        e_dbg("Speed not set.\n");
 997                        return -E1000_ERR_CONFIG;
 998                }
 999
1000                /* Rx Packet Buffer Allocation size (KB) */
1001                rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1002
1003                /* Determine the maximum latency tolerated by the device.
1004                 *
1005                 * Per the PCIe spec, the tolerated latencies are encoded as
1006                 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1007                 * a 10-bit value (0-1023) to provide a range from 1 ns to
1008                 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1009                 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1010                 */
1011                lat_ns = ((s64)rxa * 1024 -
1012                          (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000;
1013                if (lat_ns < 0)
1014                        lat_ns = 0;
1015                else
1016                        do_div(lat_ns, speed);
1017
1018                value = lat_ns;
1019                while (value > PCI_LTR_VALUE_MASK) {
1020                        scale++;
1021                        value = DIV_ROUND_UP(value, (1 << 5));
1022                }
1023                if (scale > E1000_LTRV_SCALE_MAX) {
1024                        e_dbg("Invalid LTR latency scale %d\n", scale);
1025                        return -E1000_ERR_CONFIG;
1026                }
1027                lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1028
1029                /* Determine the maximum latency tolerated by the platform */
1030                pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1031                                     &max_snoop);
1032                pci_read_config_word(hw->adapter->pdev,
1033                                     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1034                max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1035
1036                if (lat_enc > max_ltr_enc)
1037                        lat_enc = max_ltr_enc;
1038        }
1039
1040        /* Set Snoop and No-Snoop latencies the same */
1041        reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1042        ew32(LTRV, reg);
1043
1044        return 0;
1045}
1046
1047/**
1048 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1049 *  @hw: pointer to the HW structure
1050 *  @to_sx: boolean indicating a system power state transition to Sx
1051 *
1052 *  When link is down, configure ULP mode to significantly reduce the power
1053 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1054 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1055 *  system, configure the ULP mode by software.
1056 */
1057s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1058{
1059        u32 mac_reg;
1060        s32 ret_val = 0;
1061        u16 phy_reg;
1062
1063        if ((hw->mac.type < e1000_pch_lpt) ||
1064            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1065            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1066            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1067            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1068            (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1069                return 0;
1070
1071        if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1072                /* Request ME configure ULP mode in the PHY */
1073                mac_reg = er32(H2ME);
1074                mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1075                ew32(H2ME, mac_reg);
1076
1077                goto out;
1078        }
1079
1080        if (!to_sx) {
1081                int i = 0;
1082
1083                /* Poll up to 5 seconds for Cable Disconnected indication */
1084                while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1085                        /* Bail if link is re-acquired */
1086                        if (er32(STATUS) & E1000_STATUS_LU)
1087                                return -E1000_ERR_PHY;
1088
1089                        if (i++ == 100)
1090                                break;
1091
1092                        msleep(50);
1093                }
1094                e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1095                      (er32(FEXT) &
1096                       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1097        }
1098
1099        ret_val = hw->phy.ops.acquire(hw);
1100        if (ret_val)
1101                goto out;
1102
1103        /* Force SMBus mode in PHY */
1104        ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1105        if (ret_val)
1106                goto release;
1107        phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1108        e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1109
1110        /* Force SMBus mode in MAC */
1111        mac_reg = er32(CTRL_EXT);
1112        mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1113        ew32(CTRL_EXT, mac_reg);
1114
1115        /* Set Inband ULP Exit, Reset to SMBus mode and
1116         * Disable SMBus Release on PERST# in PHY
1117         */
1118        ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1119        if (ret_val)
1120                goto release;
1121        phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1122                    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1123        if (to_sx) {
1124                if (er32(WUFC) & E1000_WUFC_LNKC)
1125                        phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1126
1127                phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1128        } else {
1129                phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1130        }
1131        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1132
1133        /* Set Disable SMBus Release on PERST# in MAC */
1134        mac_reg = er32(FEXTNVM7);
1135        mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1136        ew32(FEXTNVM7, mac_reg);
1137
1138        /* Commit ULP changes in PHY by starting auto ULP configuration */
1139        phy_reg |= I218_ULP_CONFIG1_START;
1140        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1141release:
1142        hw->phy.ops.release(hw);
1143out:
1144        if (ret_val)
1145                e_dbg("Error in ULP enable flow: %d\n", ret_val);
1146        else
1147                hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1148
1149        return ret_val;
1150}
1151
1152/**
1153 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1154 *  @hw: pointer to the HW structure
1155 *  @force: boolean indicating whether or not to force disabling ULP
1156 *
1157 *  Un-configure ULP mode when link is up, the system is transitioned from
1158 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1159 *  system, poll for an indication from ME that ULP has been un-configured.
1160 *  If not on an ME enabled system, un-configure the ULP mode by software.
1161 *
1162 *  During nominal operation, this function is called when link is acquired
1163 *  to disable ULP mode (force=false); otherwise, for example when unloading
1164 *  the driver or during Sx->S0 transitions, this is called with force=true
1165 *  to forcibly disable ULP.
1166 */
1167static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1168{
1169        s32 ret_val = 0;
1170        u32 mac_reg;
1171        u16 phy_reg;
1172        int i = 0;
1173
1174        if ((hw->mac.type < e1000_pch_lpt) ||
1175            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1176            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1177            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1178            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1179            (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1180                return 0;
1181
1182        if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1183                if (force) {
1184                        /* Request ME un-configure ULP mode in the PHY */
1185                        mac_reg = er32(H2ME);
1186                        mac_reg &= ~E1000_H2ME_ULP;
1187                        mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1188                        ew32(H2ME, mac_reg);
1189                }
1190
1191                /* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1192                while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1193                        if (i++ == 10) {
1194                                ret_val = -E1000_ERR_PHY;
1195                                goto out;
1196                        }
1197
1198                        usleep_range(10000, 20000);
1199                }
1200                e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1201
1202                if (force) {
1203                        mac_reg = er32(H2ME);
1204                        mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1205                        ew32(H2ME, mac_reg);
1206                } else {
1207                        /* Clear H2ME.ULP after ME ULP configuration */
1208                        mac_reg = er32(H2ME);
1209                        mac_reg &= ~E1000_H2ME_ULP;
1210                        ew32(H2ME, mac_reg);
1211                }
1212
1213                goto out;
1214        }
1215
1216        ret_val = hw->phy.ops.acquire(hw);
1217        if (ret_val)
1218                goto out;
1219
1220        if (force)
1221                /* Toggle LANPHYPC Value bit */
1222                e1000_toggle_lanphypc_pch_lpt(hw);
1223
1224        /* Unforce SMBus mode in PHY */
1225        ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1226        if (ret_val) {
1227                /* The MAC might be in PCIe mode, so temporarily force to
1228                 * SMBus mode in order to access the PHY.
1229                 */
1230                mac_reg = er32(CTRL_EXT);
1231                mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1232                ew32(CTRL_EXT, mac_reg);
1233
1234                msleep(50);
1235
1236                ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1237                                                       &phy_reg);
1238                if (ret_val)
1239                        goto release;
1240        }
1241        phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1242        e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1243
1244        /* Unforce SMBus mode in MAC */
1245        mac_reg = er32(CTRL_EXT);
1246        mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1247        ew32(CTRL_EXT, mac_reg);
1248
1249        /* When ULP mode was previously entered, K1 was disabled by the
1250         * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1251         */
1252        ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1253        if (ret_val)
1254                goto release;
1255        phy_reg |= HV_PM_CTRL_K1_ENABLE;
1256        e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1257
1258        /* Clear ULP enabled configuration */
1259        ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1260        if (ret_val)
1261                goto release;
1262        phy_reg &= ~(I218_ULP_CONFIG1_IND |
1263                     I218_ULP_CONFIG1_STICKY_ULP |
1264                     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1265                     I218_ULP_CONFIG1_WOL_HOST |
1266                     I218_ULP_CONFIG1_INBAND_EXIT |
1267                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1268        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1269
1270        /* Commit ULP changes by starting auto ULP configuration */
1271        phy_reg |= I218_ULP_CONFIG1_START;
1272        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1273
1274        /* Clear Disable SMBus Release on PERST# in MAC */
1275        mac_reg = er32(FEXTNVM7);
1276        mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1277        ew32(FEXTNVM7, mac_reg);
1278
1279release:
1280        hw->phy.ops.release(hw);
1281        if (force) {
1282                e1000_phy_hw_reset(hw);
1283                msleep(50);
1284        }
1285out:
1286        if (ret_val)
1287                e_dbg("Error in ULP disable flow: %d\n", ret_val);
1288        else
1289                hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1290
1291        return ret_val;
1292}
1293
1294/**
1295 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1296 *  @hw: pointer to the HW structure
1297 *
1298 *  Checks to see of the link status of the hardware has changed.  If a
1299 *  change in link status has been detected, then we read the PHY registers
1300 *  to get the current speed/duplex if link exists.
1301 **/
1302static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1303{
1304        struct e1000_mac_info *mac = &hw->mac;
1305        s32 ret_val;
1306        bool link;
1307        u16 phy_reg;
1308
1309        /* We only want to go out to the PHY registers to see if Auto-Neg
1310         * has completed and/or if our link status has changed.  The
1311         * get_link_status flag is set upon receiving a Link Status
1312         * Change or Rx Sequence Error interrupt.
1313         */
1314        if (!mac->get_link_status)
1315                return 0;
1316
1317        /* First we want to see if the MII Status Register reports
1318         * link.  If so, then we want to get the current speed/duplex
1319         * of the PHY.
1320         */
1321        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1322        if (ret_val)
1323                return ret_val;
1324
1325        if (hw->mac.type == e1000_pchlan) {
1326                ret_val = e1000_k1_gig_workaround_hv(hw, link);
1327                if (ret_val)
1328                        return ret_val;
1329        }
1330
1331        /* When connected at 10Mbps half-duplex, some parts are excessively
1332         * aggressive resulting in many collisions. To avoid this, increase
1333         * the IPG and reduce Rx latency in the PHY.
1334         */
1335        if (((hw->mac.type == e1000_pch2lan) ||
1336             (hw->mac.type == e1000_pch_lpt)) && link) {
1337                u32 reg;
1338
1339                reg = er32(STATUS);
1340                if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1341                        u16 emi_addr;
1342
1343                        reg = er32(TIPG);
1344                        reg &= ~E1000_TIPG_IPGT_MASK;
1345                        reg |= 0xFF;
1346                        ew32(TIPG, reg);
1347
1348                        /* Reduce Rx latency in analog PHY */
1349                        ret_val = hw->phy.ops.acquire(hw);
1350                        if (ret_val)
1351                                return ret_val;
1352
1353                        if (hw->mac.type == e1000_pch2lan)
1354                                emi_addr = I82579_RX_CONFIG;
1355                        else
1356                                emi_addr = I217_RX_CONFIG;
1357
1358                        ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
1359
1360                        hw->phy.ops.release(hw);
1361
1362                        if (ret_val)
1363                                return ret_val;
1364                }
1365        }
1366
1367        /* Work-around I218 hang issue */
1368        if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1369            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1370            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1371            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1372                ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1373                if (ret_val)
1374                        return ret_val;
1375        }
1376
1377        if (hw->mac.type == e1000_pch_lpt) {
1378                /* Set platform power management values for
1379                 * Latency Tolerance Reporting (LTR)
1380                 */
1381                ret_val = e1000_platform_pm_pch_lpt(hw, link);
1382                if (ret_val)
1383                        return ret_val;
1384        }
1385
1386        /* Clear link partner's EEE ability */
1387        hw->dev_spec.ich8lan.eee_lp_ability = 0;
1388
1389        if (!link)
1390                return 0;       /* No link detected */
1391
1392        mac->get_link_status = false;
1393
1394        switch (hw->mac.type) {
1395        case e1000_pch2lan:
1396                ret_val = e1000_k1_workaround_lv(hw);
1397                if (ret_val)
1398                        return ret_val;
1399                /* fall-thru */
1400        case e1000_pchlan:
1401                if (hw->phy.type == e1000_phy_82578) {
1402                        ret_val = e1000_link_stall_workaround_hv(hw);
1403                        if (ret_val)
1404                                return ret_val;
1405                }
1406
1407                /* Workaround for PCHx parts in half-duplex:
1408                 * Set the number of preambles removed from the packet
1409                 * when it is passed from the PHY to the MAC to prevent
1410                 * the MAC from misinterpreting the packet type.
1411                 */
1412                e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1413                phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1414
1415                if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1416                        phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1417
1418                e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1419                break;
1420        default:
1421                break;
1422        }
1423
1424        /* Check if there was DownShift, must be checked
1425         * immediately after link-up
1426         */
1427        e1000e_check_downshift(hw);
1428
1429        /* Enable/Disable EEE after link up */
1430        if (hw->phy.type > e1000_phy_82579) {
1431                ret_val = e1000_set_eee_pchlan(hw);
1432                if (ret_val)
1433                        return ret_val;
1434        }
1435
1436        /* If we are forcing speed/duplex, then we simply return since
1437         * we have already determined whether we have link or not.
1438         */
1439        if (!mac->autoneg)
1440                return -E1000_ERR_CONFIG;
1441
1442        /* Auto-Neg is enabled.  Auto Speed Detection takes care
1443         * of MAC speed/duplex configuration.  So we only need to
1444         * configure Collision Distance in the MAC.
1445         */
1446        mac->ops.config_collision_dist(hw);
1447
1448        /* Configure Flow Control now that Auto-Neg has completed.
1449         * First, we need to restore the desired flow control
1450         * settings because we may have had to re-autoneg with a
1451         * different link partner.
1452         */
1453        ret_val = e1000e_config_fc_after_link_up(hw);
1454        if (ret_val)
1455                e_dbg("Error configuring flow control\n");
1456
1457        return ret_val;
1458}
1459
1460static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1461{
1462        struct e1000_hw *hw = &adapter->hw;
1463        s32 rc;
1464
1465        rc = e1000_init_mac_params_ich8lan(hw);
1466        if (rc)
1467                return rc;
1468
1469        rc = e1000_init_nvm_params_ich8lan(hw);
1470        if (rc)
1471                return rc;
1472
1473        switch (hw->mac.type) {
1474        case e1000_ich8lan:
1475        case e1000_ich9lan:
1476        case e1000_ich10lan:
1477                rc = e1000_init_phy_params_ich8lan(hw);
1478                break;
1479        case e1000_pchlan:
1480        case e1000_pch2lan:
1481        case e1000_pch_lpt:
1482                rc = e1000_init_phy_params_pchlan(hw);
1483                break;
1484        default:
1485                break;
1486        }
1487        if (rc)
1488                return rc;
1489
1490        /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1491         * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1492         */
1493        if ((adapter->hw.phy.type == e1000_phy_ife) ||
1494            ((adapter->hw.mac.type >= e1000_pch2lan) &&
1495             (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1496                adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1497                adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1498
1499                hw->mac.ops.blink_led = NULL;
1500        }
1501
1502        if ((adapter->hw.mac.type == e1000_ich8lan) &&
1503            (adapter->hw.phy.type != e1000_phy_ife))
1504                adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1505
1506        /* Enable workaround for 82579 w/ ME enabled */
1507        if ((adapter->hw.mac.type == e1000_pch2lan) &&
1508            (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1509                adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1510
1511        return 0;
1512}
1513
1514static DEFINE_MUTEX(nvm_mutex);
1515
1516/**
1517 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1518 *  @hw: pointer to the HW structure
1519 *
1520 *  Acquires the mutex for performing NVM operations.
1521 **/
1522static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1523{
1524        mutex_lock(&nvm_mutex);
1525
1526        return 0;
1527}
1528
1529/**
1530 *  e1000_release_nvm_ich8lan - Release NVM mutex
1531 *  @hw: pointer to the HW structure
1532 *
1533 *  Releases the mutex used while performing NVM operations.
1534 **/
1535static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1536{
1537        mutex_unlock(&nvm_mutex);
1538}
1539
1540/**
1541 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1542 *  @hw: pointer to the HW structure
1543 *
1544 *  Acquires the software control flag for performing PHY and select
1545 *  MAC CSR accesses.
1546 **/
1547static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1548{
1549        u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1550        s32 ret_val = 0;
1551
1552        if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1553                             &hw->adapter->state)) {
1554                e_dbg("contention for Phy access\n");
1555                return -E1000_ERR_PHY;
1556        }
1557
1558        while (timeout) {
1559                extcnf_ctrl = er32(EXTCNF_CTRL);
1560                if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1561                        break;
1562
1563                mdelay(1);
1564                timeout--;
1565        }
1566
1567        if (!timeout) {
1568                e_dbg("SW has already locked the resource.\n");
1569                ret_val = -E1000_ERR_CONFIG;
1570                goto out;
1571        }
1572
1573        timeout = SW_FLAG_TIMEOUT;
1574
1575        extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1576        ew32(EXTCNF_CTRL, extcnf_ctrl);
1577
1578        while (timeout) {
1579                extcnf_ctrl = er32(EXTCNF_CTRL);
1580                if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1581                        break;
1582
1583                mdelay(1);
1584                timeout--;
1585        }
1586
1587        if (!timeout) {
1588                e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1589                      er32(FWSM), extcnf_ctrl);
1590                extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1591                ew32(EXTCNF_CTRL, extcnf_ctrl);
1592                ret_val = -E1000_ERR_CONFIG;
1593                goto out;
1594        }
1595
1596out:
1597        if (ret_val)
1598                clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1599
1600        return ret_val;
1601}
1602
1603/**
1604 *  e1000_release_swflag_ich8lan - Release software control flag
1605 *  @hw: pointer to the HW structure
1606 *
1607 *  Releases the software control flag for performing PHY and select
1608 *  MAC CSR accesses.
1609 **/
1610static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1611{
1612        u32 extcnf_ctrl;
1613
1614        extcnf_ctrl = er32(EXTCNF_CTRL);
1615
1616        if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1617                extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1618                ew32(EXTCNF_CTRL, extcnf_ctrl);
1619        } else {
1620                e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1621        }
1622
1623        clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1624}
1625
1626/**
1627 *  e1000_check_mng_mode_ich8lan - Checks management mode
1628 *  @hw: pointer to the HW structure
1629 *
1630 *  This checks if the adapter has any manageability enabled.
1631 *  This is a function pointer entry point only called by read/write
1632 *  routines for the PHY and NVM parts.
1633 **/
1634static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1635{
1636        u32 fwsm;
1637
1638        fwsm = er32(FWSM);
1639        return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1640                ((fwsm & E1000_FWSM_MODE_MASK) ==
1641                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1642}
1643
1644/**
1645 *  e1000_check_mng_mode_pchlan - Checks management mode
1646 *  @hw: pointer to the HW structure
1647 *
1648 *  This checks if the adapter has iAMT enabled.
1649 *  This is a function pointer entry point only called by read/write
1650 *  routines for the PHY and NVM parts.
1651 **/
1652static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1653{
1654        u32 fwsm;
1655
1656        fwsm = er32(FWSM);
1657        return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1658            (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1659}
1660
1661/**
1662 *  e1000_rar_set_pch2lan - Set receive address register
1663 *  @hw: pointer to the HW structure
1664 *  @addr: pointer to the receive address
1665 *  @index: receive address array register
1666 *
1667 *  Sets the receive address array register at index to the address passed
1668 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1669 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1670 *  Use SHRA[0-3] in place of those reserved for ME.
1671 **/
1672static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1673{
1674        u32 rar_low, rar_high;
1675
1676        /* HW expects these in little endian so we reverse the byte order
1677         * from network order (big endian) to little endian
1678         */
1679        rar_low = ((u32)addr[0] |
1680                   ((u32)addr[1] << 8) |
1681                   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1682
1683        rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1684
1685        /* If MAC address zero, no need to set the AV bit */
1686        if (rar_low || rar_high)
1687                rar_high |= E1000_RAH_AV;
1688
1689        if (index == 0) {
1690                ew32(RAL(index), rar_low);
1691                e1e_flush();
1692                ew32(RAH(index), rar_high);
1693                e1e_flush();
1694                return 0;
1695        }
1696
1697        /* RAR[1-6] are owned by manageability.  Skip those and program the
1698         * next address into the SHRA register array.
1699         */
1700        if (index < (u32)(hw->mac.rar_entry_count)) {
1701                s32 ret_val;
1702
1703                ret_val = e1000_acquire_swflag_ich8lan(hw);
1704                if (ret_val)
1705                        goto out;
1706
1707                ew32(SHRAL(index - 1), rar_low);
1708                e1e_flush();
1709                ew32(SHRAH(index - 1), rar_high);
1710                e1e_flush();
1711
1712                e1000_release_swflag_ich8lan(hw);
1713
1714                /* verify the register updates */
1715                if ((er32(SHRAL(index - 1)) == rar_low) &&
1716                    (er32(SHRAH(index - 1)) == rar_high))
1717                        return 0;
1718
1719                e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1720                      (index - 1), er32(FWSM));
1721        }
1722
1723out:
1724        e_dbg("Failed to write receive address at index %d\n", index);
1725        return -E1000_ERR_CONFIG;
1726}
1727
1728/**
1729 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1730 *  @hw: pointer to the HW structure
1731 *
1732 *  Get the number of available receive registers that the Host can
1733 *  program. SHRA[0-10] are the shared receive address registers
1734 *  that are shared between the Host and manageability engine (ME).
1735 *  ME can reserve any number of addresses and the host needs to be
1736 *  able to tell how many available registers it has access to.
1737 **/
1738static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1739{
1740        u32 wlock_mac;
1741        u32 num_entries;
1742
1743        wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1744        wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1745
1746        switch (wlock_mac) {
1747        case 0:
1748                /* All SHRA[0..10] and RAR[0] available */
1749                num_entries = hw->mac.rar_entry_count;
1750                break;
1751        case 1:
1752                /* Only RAR[0] available */
1753                num_entries = 1;
1754                break;
1755        default:
1756                /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1757                num_entries = wlock_mac + 1;
1758                break;
1759        }
1760
1761        return num_entries;
1762}
1763
1764/**
1765 *  e1000_rar_set_pch_lpt - Set receive address registers
1766 *  @hw: pointer to the HW structure
1767 *  @addr: pointer to the receive address
1768 *  @index: receive address array register
1769 *
1770 *  Sets the receive address register array at index to the address passed
1771 *  in by addr. For LPT, RAR[0] is the base address register that is to
1772 *  contain the MAC address. SHRA[0-10] are the shared receive address
1773 *  registers that are shared between the Host and manageability engine (ME).
1774 **/
1775static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1776{
1777        u32 rar_low, rar_high;
1778        u32 wlock_mac;
1779
1780        /* HW expects these in little endian so we reverse the byte order
1781         * from network order (big endian) to little endian
1782         */
1783        rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1784                   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1785
1786        rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1787
1788        /* If MAC address zero, no need to set the AV bit */
1789        if (rar_low || rar_high)
1790                rar_high |= E1000_RAH_AV;
1791
1792        if (index == 0) {
1793                ew32(RAL(index), rar_low);
1794                e1e_flush();
1795                ew32(RAH(index), rar_high);
1796                e1e_flush();
1797                return 0;
1798        }
1799
1800        /* The manageability engine (ME) can lock certain SHRAR registers that
1801         * it is using - those registers are unavailable for use.
1802         */
1803        if (index < hw->mac.rar_entry_count) {
1804                wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1805                wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1806
1807                /* Check if all SHRAR registers are locked */
1808                if (wlock_mac == 1)
1809                        goto out;
1810
1811                if ((wlock_mac == 0) || (index <= wlock_mac)) {
1812                        s32 ret_val;
1813
1814                        ret_val = e1000_acquire_swflag_ich8lan(hw);
1815
1816                        if (ret_val)
1817                                goto out;
1818
1819                        ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1820                        e1e_flush();
1821                        ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1822                        e1e_flush();
1823
1824                        e1000_release_swflag_ich8lan(hw);
1825
1826                        /* verify the register updates */
1827                        if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1828                            (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1829                                return 0;
1830                }
1831        }
1832
1833out:
1834        e_dbg("Failed to write receive address at index %d\n", index);
1835        return -E1000_ERR_CONFIG;
1836}
1837
1838/**
1839 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1840 *  @hw: pointer to the HW structure
1841 *
1842 *  Checks if firmware is blocking the reset of the PHY.
1843 *  This is a function pointer entry point only called by
1844 *  reset routines.
1845 **/
1846static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1847{
1848        bool blocked = false;
1849        int i = 0;
1850
1851        while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
1852               (i++ < 10))
1853                usleep_range(10000, 20000);
1854        return blocked ? E1000_BLK_PHY_RESET : 0;
1855}
1856
1857/**
1858 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1859 *  @hw: pointer to the HW structure
1860 *
1861 *  Assumes semaphore already acquired.
1862 *
1863 **/
1864static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1865{
1866        u16 phy_data;
1867        u32 strap = er32(STRAP);
1868        u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1869            E1000_STRAP_SMT_FREQ_SHIFT;
1870        s32 ret_val;
1871
1872        strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1873
1874        ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1875        if (ret_val)
1876                return ret_val;
1877
1878        phy_data &= ~HV_SMB_ADDR_MASK;
1879        phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1880        phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1881
1882        if (hw->phy.type == e1000_phy_i217) {
1883                /* Restore SMBus frequency */
1884                if (freq--) {
1885                        phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1886                        phy_data |= (freq & (1 << 0)) <<
1887                            HV_SMB_ADDR_FREQ_LOW_SHIFT;
1888                        phy_data |= (freq & (1 << 1)) <<
1889                            (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1890                } else {
1891                        e_dbg("Unsupported SMB frequency in PHY\n");
1892                }
1893        }
1894
1895        return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1896}
1897
1898/**
1899 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1900 *  @hw:   pointer to the HW structure
1901 *
1902 *  SW should configure the LCD from the NVM extended configuration region
1903 *  as a workaround for certain parts.
1904 **/
1905static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1906{
1907        struct e1000_phy_info *phy = &hw->phy;
1908        u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1909        s32 ret_val = 0;
1910        u16 word_addr, reg_data, reg_addr, phy_page = 0;
1911
1912        /* Initialize the PHY from the NVM on ICH platforms.  This
1913         * is needed due to an issue where the NVM configuration is
1914         * not properly autoloaded after power transitions.
1915         * Therefore, after each PHY reset, we will load the
1916         * configuration data out of the NVM manually.
1917         */
1918        switch (hw->mac.type) {
1919        case e1000_ich8lan:
1920                if (phy->type != e1000_phy_igp_3)
1921                        return ret_val;
1922
1923                if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1924                    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1925                        sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1926                        break;
1927                }
1928                /* Fall-thru */
1929        case e1000_pchlan:
1930        case e1000_pch2lan:
1931        case e1000_pch_lpt:
1932                sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1933                break;
1934        default:
1935                return ret_val;
1936        }
1937
1938        ret_val = hw->phy.ops.acquire(hw);
1939        if (ret_val)
1940                return ret_val;
1941
1942        data = er32(FEXTNVM);
1943        if (!(data & sw_cfg_mask))
1944                goto release;
1945
1946        /* Make sure HW does not configure LCD from PHY
1947         * extended configuration before SW configuration
1948         */
1949        data = er32(EXTCNF_CTRL);
1950        if ((hw->mac.type < e1000_pch2lan) &&
1951            (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1952                goto release;
1953
1954        cnf_size = er32(EXTCNF_SIZE);
1955        cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1956        cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1957        if (!cnf_size)
1958                goto release;
1959
1960        cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1961        cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1962
1963        if (((hw->mac.type == e1000_pchlan) &&
1964             !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1965            (hw->mac.type > e1000_pchlan)) {
1966                /* HW configures the SMBus address and LEDs when the
1967                 * OEM and LCD Write Enable bits are set in the NVM.
1968                 * When both NVM bits are cleared, SW will configure
1969                 * them instead.
1970                 */
1971                ret_val = e1000_write_smbus_addr(hw);
1972                if (ret_val)
1973                        goto release;
1974
1975                data = er32(LEDCTL);
1976                ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1977                                                        (u16)data);
1978                if (ret_val)
1979                        goto release;
1980        }
1981
1982        /* Configure LCD from extended configuration region. */
1983
1984        /* cnf_base_addr is in DWORD */
1985        word_addr = (u16)(cnf_base_addr << 1);
1986
1987        for (i = 0; i < cnf_size; i++) {
1988                ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
1989                if (ret_val)
1990                        goto release;
1991
1992                ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1993                                         1, &reg_addr);
1994                if (ret_val)
1995                        goto release;
1996
1997                /* Save off the PHY page for future writes. */
1998                if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1999                        phy_page = reg_data;
2000                        continue;
2001                }
2002
2003                reg_addr &= PHY_REG_MASK;
2004                reg_addr |= phy_page;
2005
2006                ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2007                if (ret_val)
2008                        goto release;
2009        }
2010
2011release:
2012        hw->phy.ops.release(hw);
2013        return ret_val;
2014}
2015
2016/**
2017 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2018 *  @hw:   pointer to the HW structure
2019 *  @link: link up bool flag
2020 *
2021 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2022 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2023 *  If link is down, the function will restore the default K1 setting located
2024 *  in the NVM.
2025 **/
2026static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2027{
2028        s32 ret_val = 0;
2029        u16 status_reg = 0;
2030        bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2031
2032        if (hw->mac.type != e1000_pchlan)
2033                return 0;
2034
2035        /* Wrap the whole flow with the sw flag */
2036        ret_val = hw->phy.ops.acquire(hw);
2037        if (ret_val)
2038                return ret_val;
2039
2040        /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2041        if (link) {
2042                if (hw->phy.type == e1000_phy_82578) {
2043                        ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2044                                                  &status_reg);
2045                        if (ret_val)
2046                                goto release;
2047
2048                        status_reg &= (BM_CS_STATUS_LINK_UP |
2049                                       BM_CS_STATUS_RESOLVED |
2050                                       BM_CS_STATUS_SPEED_MASK);
2051
2052                        if (status_reg == (BM_CS_STATUS_LINK_UP |
2053                                           BM_CS_STATUS_RESOLVED |
2054                                           BM_CS_STATUS_SPEED_1000))
2055                                k1_enable = false;
2056                }
2057
2058                if (hw->phy.type == e1000_phy_82577) {
2059                        ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2060                        if (ret_val)
2061                                goto release;
2062
2063                        status_reg &= (HV_M_STATUS_LINK_UP |
2064                                       HV_M_STATUS_AUTONEG_COMPLETE |
2065                                       HV_M_STATUS_SPEED_MASK);
2066
2067                        if (status_reg == (HV_M_STATUS_LINK_UP |
2068                                           HV_M_STATUS_AUTONEG_COMPLETE |
2069                                           HV_M_STATUS_SPEED_1000))
2070                                k1_enable = false;
2071                }
2072
2073                /* Link stall fix for link up */
2074                ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2075                if (ret_val)
2076                        goto release;
2077
2078        } else {
2079                /* Link stall fix for link down */
2080                ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2081                if (ret_val)
2082                        goto release;
2083        }
2084
2085        ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2086
2087release:
2088        hw->phy.ops.release(hw);
2089
2090        return ret_val;
2091}
2092
2093/**
2094 *  e1000_configure_k1_ich8lan - Configure K1 power state
2095 *  @hw: pointer to the HW structure
2096 *  @enable: K1 state to configure
2097 *
2098 *  Configure the K1 power state based on the provided parameter.
2099 *  Assumes semaphore already acquired.
2100 *
2101 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2102 **/
2103s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2104{
2105        s32 ret_val;
2106        u32 ctrl_reg = 0;
2107        u32 ctrl_ext = 0;
2108        u32 reg = 0;
2109        u16 kmrn_reg = 0;
2110
2111        ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2112                                              &kmrn_reg);
2113        if (ret_val)
2114                return ret_val;
2115
2116        if (k1_enable)
2117                kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2118        else
2119                kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2120
2121        ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2122                                               kmrn_reg);
2123        if (ret_val)
2124                return ret_val;
2125
2126        usleep_range(20, 40);
2127        ctrl_ext = er32(CTRL_EXT);
2128        ctrl_reg = er32(CTRL);
2129
2130        reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2131        reg |= E1000_CTRL_FRCSPD;
2132        ew32(CTRL, reg);
2133
2134        ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2135        e1e_flush();
2136        usleep_range(20, 40);
2137        ew32(CTRL, ctrl_reg);
2138        ew32(CTRL_EXT, ctrl_ext);
2139        e1e_flush();
2140        usleep_range(20, 40);
2141
2142        return 0;
2143}
2144
2145/**
2146 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2147 *  @hw:       pointer to the HW structure
2148 *  @d0_state: boolean if entering d0 or d3 device state
2149 *
2150 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2151 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2152 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2153 **/
2154static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2155{
2156        s32 ret_val = 0;
2157        u32 mac_reg;
2158        u16 oem_reg;
2159
2160        if (hw->mac.type < e1000_pchlan)
2161                return ret_val;
2162
2163        ret_val = hw->phy.ops.acquire(hw);
2164        if (ret_val)
2165                return ret_val;
2166
2167        if (hw->mac.type == e1000_pchlan) {
2168                mac_reg = er32(EXTCNF_CTRL);
2169                if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2170                        goto release;
2171        }
2172
2173        mac_reg = er32(FEXTNVM);
2174        if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2175                goto release;
2176
2177        mac_reg = er32(PHY_CTRL);
2178
2179        ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2180        if (ret_val)
2181                goto release;
2182
2183        oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2184
2185        if (d0_state) {
2186                if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2187                        oem_reg |= HV_OEM_BITS_GBE_DIS;
2188
2189                if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2190                        oem_reg |= HV_OEM_BITS_LPLU;
2191        } else {
2192                if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2193                               E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2194                        oem_reg |= HV_OEM_BITS_GBE_DIS;
2195
2196                if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2197                               E1000_PHY_CTRL_NOND0A_LPLU))
2198                        oem_reg |= HV_OEM_BITS_LPLU;
2199        }
2200
2201        /* Set Restart auto-neg to activate the bits */
2202        if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2203            !hw->phy.ops.check_reset_block(hw))
2204                oem_reg |= HV_OEM_BITS_RESTART_AN;
2205
2206        ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2207
2208release:
2209        hw->phy.ops.release(hw);
2210
2211        return ret_val;
2212}
2213
2214/**
2215 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2216 *  @hw:   pointer to the HW structure
2217 **/
2218static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2219{
2220        s32 ret_val;
2221        u16 data;
2222
2223        ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2224        if (ret_val)
2225                return ret_val;
2226
2227        data |= HV_KMRN_MDIO_SLOW;
2228
2229        ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2230
2231        return ret_val;
2232}
2233
2234/**
2235 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2236 *  done after every PHY reset.
2237 **/
2238static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2239{
2240        s32 ret_val = 0;
2241        u16 phy_data;
2242
2243        if (hw->mac.type != e1000_pchlan)
2244                return 0;
2245
2246        /* Set MDIO slow mode before any other MDIO access */
2247        if (hw->phy.type == e1000_phy_82577) {
2248                ret_val = e1000_set_mdio_slow_mode_hv(hw);
2249                if (ret_val)
2250                        return ret_val;
2251        }
2252
2253        if (((hw->phy.type == e1000_phy_82577) &&
2254             ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2255            ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2256                /* Disable generation of early preamble */
2257                ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2258                if (ret_val)
2259                        return ret_val;
2260
2261                /* Preamble tuning for SSC */
2262                ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2263                if (ret_val)
2264                        return ret_val;
2265        }
2266
2267        if (hw->phy.type == e1000_phy_82578) {
2268                /* Return registers to default by doing a soft reset then
2269                 * writing 0x3140 to the control register.
2270                 */
2271                if (hw->phy.revision < 2) {
2272                        e1000e_phy_sw_reset(hw);
2273                        ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2274                }
2275        }
2276
2277        /* Select page 0 */
2278        ret_val = hw->phy.ops.acquire(hw);
2279        if (ret_val)
2280                return ret_val;
2281
2282        hw->phy.addr = 1;
2283        ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2284        hw->phy.ops.release(hw);
2285        if (ret_val)
2286                return ret_val;
2287
2288        /* Configure the K1 Si workaround during phy reset assuming there is
2289         * link so that it disables K1 if link is in 1Gbps.
2290         */
2291        ret_val = e1000_k1_gig_workaround_hv(hw, true);
2292        if (ret_val)
2293                return ret_val;
2294
2295        /* Workaround for link disconnects on a busy hub in half duplex */
2296        ret_val = hw->phy.ops.acquire(hw);
2297        if (ret_val)
2298                return ret_val;
2299        ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2300        if (ret_val)
2301                goto release;
2302        ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2303        if (ret_val)
2304                goto release;
2305
2306        /* set MSE higher to enable link to stay up when noise is high */
2307        ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2308release:
2309        hw->phy.ops.release(hw);
2310
2311        return ret_val;
2312}
2313
2314/**
2315 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2316 *  @hw:   pointer to the HW structure
2317 **/
2318void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2319{
2320        u32 mac_reg;
2321        u16 i, phy_reg = 0;
2322        s32 ret_val;
2323
2324        ret_val = hw->phy.ops.acquire(hw);
2325        if (ret_val)
2326                return;
2327        ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2328        if (ret_val)
2329                goto release;
2330
2331        /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2332        for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2333                mac_reg = er32(RAL(i));
2334                hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2335                                           (u16)(mac_reg & 0xFFFF));
2336                hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2337                                           (u16)((mac_reg >> 16) & 0xFFFF));
2338
2339                mac_reg = er32(RAH(i));
2340                hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2341                                           (u16)(mac_reg & 0xFFFF));
2342                hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2343                                           (u16)((mac_reg & E1000_RAH_AV)
2344                                                 >> 16));
2345        }
2346
2347        e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2348
2349release:
2350        hw->phy.ops.release(hw);
2351}
2352
2353/**
2354 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2355 *  with 82579 PHY
2356 *  @hw: pointer to the HW structure
2357 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2358 **/
2359s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2360{
2361        s32 ret_val = 0;
2362        u16 phy_reg, data;
2363        u32 mac_reg;
2364        u16 i;
2365
2366        if (hw->mac.type < e1000_pch2lan)
2367                return 0;
2368
2369        /* disable Rx path while enabling/disabling workaround */
2370        e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2371        ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2372        if (ret_val)
2373                return ret_val;
2374
2375        if (enable) {
2376                /* Write Rx addresses (rar_entry_count for RAL/H, and
2377                 * SHRAL/H) and initial CRC values to the MAC
2378                 */
2379                for (i = 0; i < hw->mac.rar_entry_count; i++) {
2380                        u8 mac_addr[ETH_ALEN] = { 0 };
2381                        u32 addr_high, addr_low;
2382
2383                        addr_high = er32(RAH(i));
2384                        if (!(addr_high & E1000_RAH_AV))
2385                                continue;
2386                        addr_low = er32(RAL(i));
2387                        mac_addr[0] = (addr_low & 0xFF);
2388                        mac_addr[1] = ((addr_low >> 8) & 0xFF);
2389                        mac_addr[2] = ((addr_low >> 16) & 0xFF);
2390                        mac_addr[3] = ((addr_low >> 24) & 0xFF);
2391                        mac_addr[4] = (addr_high & 0xFF);
2392                        mac_addr[5] = ((addr_high >> 8) & 0xFF);
2393
2394                        ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2395                }
2396
2397                /* Write Rx addresses to the PHY */
2398                e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2399
2400                /* Enable jumbo frame workaround in the MAC */
2401                mac_reg = er32(FFLT_DBG);
2402                mac_reg &= ~(1 << 14);
2403                mac_reg |= (7 << 15);
2404                ew32(FFLT_DBG, mac_reg);
2405
2406                mac_reg = er32(RCTL);
2407                mac_reg |= E1000_RCTL_SECRC;
2408                ew32(RCTL, mac_reg);
2409
2410                ret_val = e1000e_read_kmrn_reg(hw,
2411                                               E1000_KMRNCTRLSTA_CTRL_OFFSET,
2412                                               &data);
2413                if (ret_val)
2414                        return ret_val;
2415                ret_val = e1000e_write_kmrn_reg(hw,
2416                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2417                                                data | (1 << 0));
2418                if (ret_val)
2419                        return ret_val;
2420                ret_val = e1000e_read_kmrn_reg(hw,
2421                                               E1000_KMRNCTRLSTA_HD_CTRL,
2422                                               &data);
2423                if (ret_val)
2424                        return ret_val;
2425                data &= ~(0xF << 8);
2426                data |= (0xB << 8);
2427                ret_val = e1000e_write_kmrn_reg(hw,
2428                                                E1000_KMRNCTRLSTA_HD_CTRL,
2429                                                data);
2430                if (ret_val)
2431                        return ret_val;
2432
2433                /* Enable jumbo frame workaround in the PHY */
2434                e1e_rphy(hw, PHY_REG(769, 23), &data);
2435                data &= ~(0x7F << 5);
2436                data |= (0x37 << 5);
2437                ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2438                if (ret_val)
2439                        return ret_val;
2440                e1e_rphy(hw, PHY_REG(769, 16), &data);
2441                data &= ~(1 << 13);
2442                ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2443                if (ret_val)
2444                        return ret_val;
2445                e1e_rphy(hw, PHY_REG(776, 20), &data);
2446                data &= ~(0x3FF << 2);
2447                data |= (E1000_TX_PTR_GAP << 2);
2448                ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2449                if (ret_val)
2450                        return ret_val;
2451                ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2452                if (ret_val)
2453                        return ret_val;
2454                e1e_rphy(hw, HV_PM_CTRL, &data);
2455                ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2456                if (ret_val)
2457                        return ret_val;
2458        } else {
2459                /* Write MAC register values back to h/w defaults */
2460                mac_reg = er32(FFLT_DBG);
2461                mac_reg &= ~(0xF << 14);
2462                ew32(FFLT_DBG, mac_reg);
2463
2464                mac_reg = er32(RCTL);
2465                mac_reg &= ~E1000_RCTL_SECRC;
2466                ew32(RCTL, mac_reg);
2467
2468                ret_val = e1000e_read_kmrn_reg(hw,
2469                                               E1000_KMRNCTRLSTA_CTRL_OFFSET,
2470                                               &data);
2471                if (ret_val)
2472                        return ret_val;
2473                ret_val = e1000e_write_kmrn_reg(hw,
2474                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2475                                                data & ~(1 << 0));
2476                if (ret_val)
2477                        return ret_val;
2478                ret_val = e1000e_read_kmrn_reg(hw,
2479                                               E1000_KMRNCTRLSTA_HD_CTRL,
2480                                               &data);
2481                if (ret_val)
2482                        return ret_val;
2483                data &= ~(0xF << 8);
2484                data |= (0xB << 8);
2485                ret_val = e1000e_write_kmrn_reg(hw,
2486                                                E1000_KMRNCTRLSTA_HD_CTRL,
2487                                                data);
2488                if (ret_val)
2489                        return ret_val;
2490
2491                /* Write PHY register values back to h/w defaults */
2492                e1e_rphy(hw, PHY_REG(769, 23), &data);
2493                data &= ~(0x7F << 5);
2494                ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2495                if (ret_val)
2496                        return ret_val;
2497                e1e_rphy(hw, PHY_REG(769, 16), &data);
2498                data |= (1 << 13);
2499                ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2500                if (ret_val)
2501                        return ret_val;
2502                e1e_rphy(hw, PHY_REG(776, 20), &data);
2503                data &= ~(0x3FF << 2);
2504                data |= (0x8 << 2);
2505                ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2506                if (ret_val)
2507                        return ret_val;
2508                ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2509                if (ret_val)
2510                        return ret_val;
2511                e1e_rphy(hw, HV_PM_CTRL, &data);
2512                ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2513                if (ret_val)
2514                        return ret_val;
2515        }
2516
2517        /* re-enable Rx path after enabling/disabling workaround */
2518        return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2519}
2520
2521/**
2522 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2523 *  done after every PHY reset.
2524 **/
2525static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2526{
2527        s32 ret_val = 0;
2528
2529        if (hw->mac.type != e1000_pch2lan)
2530                return 0;
2531
2532        /* Set MDIO slow mode before any other MDIO access */
2533        ret_val = e1000_set_mdio_slow_mode_hv(hw);
2534        if (ret_val)
2535                return ret_val;
2536
2537        ret_val = hw->phy.ops.acquire(hw);
2538        if (ret_val)
2539                return ret_val;
2540        /* set MSE higher to enable link to stay up when noise is high */
2541        ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2542        if (ret_val)
2543                goto release;
2544        /* drop link after 5 times MSE threshold was reached */
2545        ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2546release:
2547        hw->phy.ops.release(hw);
2548
2549        return ret_val;
2550}
2551
2552/**
2553 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2554 *  @hw:   pointer to the HW structure
2555 *
2556 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2557 *  Disable K1 in 1000Mbps and 100Mbps
2558 **/
2559static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2560{
2561        s32 ret_val = 0;
2562        u16 status_reg = 0;
2563
2564        if (hw->mac.type != e1000_pch2lan)
2565                return 0;
2566
2567        /* Set K1 beacon duration based on 10Mbs speed */
2568        ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2569        if (ret_val)
2570                return ret_val;
2571
2572        if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2573            == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2574                if (status_reg &
2575                    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2576                        u16 pm_phy_reg;
2577
2578                        /* LV 1G/100 Packet drop issue wa  */
2579                        ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2580                        if (ret_val)
2581                                return ret_val;
2582                        pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2583                        ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2584                        if (ret_val)
2585                                return ret_val;
2586                } else {
2587                        u32 mac_reg;
2588
2589                        mac_reg = er32(FEXTNVM4);
2590                        mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2591                        mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2592                        ew32(FEXTNVM4, mac_reg);
2593                }
2594        }
2595
2596        return ret_val;
2597}
2598
2599/**
2600 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2601 *  @hw:   pointer to the HW structure
2602 *  @gate: boolean set to true to gate, false to ungate
2603 *
2604 *  Gate/ungate the automatic PHY configuration via hardware; perform
2605 *  the configuration via software instead.
2606 **/
2607static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2608{
2609        u32 extcnf_ctrl;
2610
2611        if (hw->mac.type < e1000_pch2lan)
2612                return;
2613
2614        extcnf_ctrl = er32(EXTCNF_CTRL);
2615
2616        if (gate)
2617                extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2618        else
2619                extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2620
2621        ew32(EXTCNF_CTRL, extcnf_ctrl);
2622}
2623
2624/**
2625 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2626 *  @hw: pointer to the HW structure
2627 *
2628 *  Check the appropriate indication the MAC has finished configuring the
2629 *  PHY after a software reset.
2630 **/
2631static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2632{
2633        u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2634
2635        /* Wait for basic configuration completes before proceeding */
2636        do {
2637                data = er32(STATUS);
2638                data &= E1000_STATUS_LAN_INIT_DONE;
2639                usleep_range(100, 200);
2640        } while ((!data) && --loop);
2641
2642        /* If basic configuration is incomplete before the above loop
2643         * count reaches 0, loading the configuration from NVM will
2644         * leave the PHY in a bad state possibly resulting in no link.
2645         */
2646        if (loop == 0)
2647                e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2648
2649        /* Clear the Init Done bit for the next init event */
2650        data = er32(STATUS);
2651        data &= ~E1000_STATUS_LAN_INIT_DONE;
2652        ew32(STATUS, data);
2653}
2654
2655/**
2656 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2657 *  @hw: pointer to the HW structure
2658 **/
2659static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2660{
2661        s32 ret_val = 0;
2662        u16 reg;
2663
2664        if (hw->phy.ops.check_reset_block(hw))
2665                return 0;
2666
2667        /* Allow time for h/w to get to quiescent state after reset */
2668        usleep_range(10000, 20000);
2669
2670        /* Perform any necessary post-reset workarounds */
2671        switch (hw->mac.type) {
2672        case e1000_pchlan:
2673                ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2674                if (ret_val)
2675                        return ret_val;
2676                break;
2677        case e1000_pch2lan:
2678                ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2679                if (ret_val)
2680                        return ret_val;
2681                break;
2682        default:
2683                break;
2684        }
2685
2686        /* Clear the host wakeup bit after lcd reset */
2687        if (hw->mac.type >= e1000_pchlan) {
2688                e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2689                reg &= ~BM_WUC_HOST_WU_BIT;
2690                e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2691        }
2692
2693        /* Configure the LCD with the extended configuration region in NVM */
2694        ret_val = e1000_sw_lcd_config_ich8lan(hw);
2695        if (ret_val)
2696                return ret_val;
2697
2698        /* Configure the LCD with the OEM bits in NVM */
2699        ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2700
2701        if (hw->mac.type == e1000_pch2lan) {
2702                /* Ungate automatic PHY configuration on non-managed 82579 */
2703                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2704                        usleep_range(10000, 20000);
2705                        e1000_gate_hw_phy_config_ich8lan(hw, false);
2706                }
2707
2708                /* Set EEE LPI Update Timer to 200usec */
2709                ret_val = hw->phy.ops.acquire(hw);
2710                if (ret_val)
2711                        return ret_val;
2712                ret_val = e1000_write_emi_reg_locked(hw,
2713                                                     I82579_LPI_UPDATE_TIMER,
2714                                                     0x1387);
2715                hw->phy.ops.release(hw);
2716        }
2717
2718        return ret_val;
2719}
2720
2721/**
2722 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2723 *  @hw: pointer to the HW structure
2724 *
2725 *  Resets the PHY
2726 *  This is a function pointer entry point called by drivers
2727 *  or other shared routines.
2728 **/
2729static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2730{
2731        s32 ret_val = 0;
2732
2733        /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2734        if ((hw->mac.type == e1000_pch2lan) &&
2735            !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2736                e1000_gate_hw_phy_config_ich8lan(hw, true);
2737
2738        ret_val = e1000e_phy_hw_reset_generic(hw);
2739        if (ret_val)
2740                return ret_val;
2741
2742        return e1000_post_phy_reset_ich8lan(hw);
2743}
2744
2745/**
2746 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2747 *  @hw: pointer to the HW structure
2748 *  @active: true to enable LPLU, false to disable
2749 *
2750 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2751 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2752 *  the phy speed. This function will manually set the LPLU bit and restart
2753 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2754 *  since it configures the same bit.
2755 **/
2756static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2757{
2758        s32 ret_val;
2759        u16 oem_reg;
2760
2761        ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2762        if (ret_val)
2763                return ret_val;
2764
2765        if (active)
2766                oem_reg |= HV_OEM_BITS_LPLU;
2767        else
2768                oem_reg &= ~HV_OEM_BITS_LPLU;
2769
2770        if (!hw->phy.ops.check_reset_block(hw))
2771                oem_reg |= HV_OEM_BITS_RESTART_AN;
2772
2773        return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2774}
2775
2776/**
2777 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2778 *  @hw: pointer to the HW structure
2779 *  @active: true to enable LPLU, false to disable
2780 *
2781 *  Sets the LPLU D0 state according to the active flag.  When
2782 *  activating LPLU this function also disables smart speed
2783 *  and vice versa.  LPLU will not be activated unless the
2784 *  device autonegotiation advertisement meets standards of
2785 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2786 *  This is a function pointer entry point only called by
2787 *  PHY setup routines.
2788 **/
2789static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2790{
2791        struct e1000_phy_info *phy = &hw->phy;
2792        u32 phy_ctrl;
2793        s32 ret_val = 0;
2794        u16 data;
2795
2796        if (phy->type == e1000_phy_ife)
2797                return 0;
2798
2799        phy_ctrl = er32(PHY_CTRL);
2800
2801        if (active) {
2802                phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2803                ew32(PHY_CTRL, phy_ctrl);
2804
2805                if (phy->type != e1000_phy_igp_3)
2806                        return 0;
2807
2808                /* Call gig speed drop workaround on LPLU before accessing
2809                 * any PHY registers
2810                 */
2811                if (hw->mac.type == e1000_ich8lan)
2812                        e1000e_gig_downshift_workaround_ich8lan(hw);
2813
2814                /* When LPLU is enabled, we should disable SmartSpeed */
2815                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2816                if (ret_val)
2817                        return ret_val;
2818                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2819                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2820                if (ret_val)
2821                        return ret_val;
2822        } else {
2823                phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2824                ew32(PHY_CTRL, phy_ctrl);
2825
2826                if (phy->type != e1000_phy_igp_3)
2827                        return 0;
2828
2829                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2830                 * during Dx states where the power conservation is most
2831                 * important.  During driver activity we should enable
2832                 * SmartSpeed, so performance is maintained.
2833                 */
2834                if (phy->smart_speed == e1000_smart_speed_on) {
2835                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2836                                           &data);
2837                        if (ret_val)
2838                                return ret_val;
2839
2840                        data |= IGP01E1000_PSCFR_SMART_SPEED;
2841                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2842                                           data);
2843                        if (ret_val)
2844                                return ret_val;
2845                } else if (phy->smart_speed == e1000_smart_speed_off) {
2846                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2847                                           &data);
2848                        if (ret_val)
2849                                return ret_val;
2850
2851                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2852                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2853                                           data);
2854                        if (ret_val)
2855                                return ret_val;
2856                }
2857        }
2858
2859        return 0;
2860}
2861
2862/**
2863 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2864 *  @hw: pointer to the HW structure
2865 *  @active: true to enable LPLU, false to disable
2866 *
2867 *  Sets the LPLU D3 state according to the active flag.  When
2868 *  activating LPLU this function also disables smart speed
2869 *  and vice versa.  LPLU will not be activated unless the
2870 *  device autonegotiation advertisement meets standards of
2871 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2872 *  This is a function pointer entry point only called by
2873 *  PHY setup routines.
2874 **/
2875static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2876{
2877        struct e1000_phy_info *phy = &hw->phy;
2878        u32 phy_ctrl;
2879        s32 ret_val = 0;
2880        u16 data;
2881
2882        phy_ctrl = er32(PHY_CTRL);
2883
2884        if (!active) {
2885                phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2886                ew32(PHY_CTRL, phy_ctrl);
2887
2888                if (phy->type != e1000_phy_igp_3)
2889                        return 0;
2890
2891                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2892                 * during Dx states where the power conservation is most
2893                 * important.  During driver activity we should enable
2894                 * SmartSpeed, so performance is maintained.
2895                 */
2896                if (phy->smart_speed == e1000_smart_speed_on) {
2897                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2898                                           &data);
2899                        if (ret_val)
2900                                return ret_val;
2901
2902                        data |= IGP01E1000_PSCFR_SMART_SPEED;
2903                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2904                                           data);
2905                        if (ret_val)
2906                                return ret_val;
2907                } else if (phy->smart_speed == e1000_smart_speed_off) {
2908                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2909                                           &data);
2910                        if (ret_val)
2911                                return ret_val;
2912
2913                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2914                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2915                                           data);
2916                        if (ret_val)
2917                                return ret_val;
2918                }
2919        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2920                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2921                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2922                phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2923                ew32(PHY_CTRL, phy_ctrl);
2924
2925                if (phy->type != e1000_phy_igp_3)
2926                        return 0;
2927
2928                /* Call gig speed drop workaround on LPLU before accessing
2929                 * any PHY registers
2930                 */
2931                if (hw->mac.type == e1000_ich8lan)
2932                        e1000e_gig_downshift_workaround_ich8lan(hw);
2933
2934                /* When LPLU is enabled, we should disable SmartSpeed */
2935                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2936                if (ret_val)
2937                        return ret_val;
2938
2939                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2940                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2941        }
2942
2943        return ret_val;
2944}
2945
2946/**
2947 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2948 *  @hw: pointer to the HW structure
2949 *  @bank:  pointer to the variable that returns the active bank
2950 *
2951 *  Reads signature byte from the NVM using the flash access registers.
2952 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2953 **/
2954static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2955{
2956        u32 eecd;
2957        struct e1000_nvm_info *nvm = &hw->nvm;
2958        u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2959        u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2960        u8 sig_byte = 0;
2961        s32 ret_val;
2962
2963        switch (hw->mac.type) {
2964        case e1000_ich8lan:
2965        case e1000_ich9lan:
2966                eecd = er32(EECD);
2967                if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2968                    E1000_EECD_SEC1VAL_VALID_MASK) {
2969                        if (eecd & E1000_EECD_SEC1VAL)
2970                                *bank = 1;
2971                        else
2972                                *bank = 0;
2973
2974                        return 0;
2975                }
2976                e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2977                /* fall-thru */
2978        default:
2979                /* set bank to 0 in case flash read fails */
2980                *bank = 0;
2981
2982                /* Check bank 0 */
2983                ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2984                                                        &sig_byte);
2985                if (ret_val)
2986                        return ret_val;
2987                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2988                    E1000_ICH_NVM_SIG_VALUE) {
2989                        *bank = 0;
2990                        return 0;
2991                }
2992
2993                /* Check bank 1 */
2994                ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2995                                                        bank1_offset,
2996                                                        &sig_byte);
2997                if (ret_val)
2998                        return ret_val;
2999                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3000                    E1000_ICH_NVM_SIG_VALUE) {
3001                        *bank = 1;
3002                        return 0;
3003                }
3004
3005                e_dbg("ERROR: No valid NVM bank present\n");
3006                return -E1000_ERR_NVM;
3007        }
3008}
3009
3010/**
3011 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3012 *  @hw: pointer to the HW structure
3013 *  @offset: The offset (in bytes) of the word(s) to read.
3014 *  @words: Size of data to read in words
3015 *  @data: Pointer to the word(s) to read at offset.
3016 *
3017 *  Reads a word(s) from the NVM using the flash access registers.
3018 **/
3019static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3020                                  u16 *data)
3021{
3022        struct e1000_nvm_info *nvm = &hw->nvm;
3023        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3024        u32 act_offset;
3025        s32 ret_val = 0;
3026        u32 bank = 0;
3027        u16 i, word;
3028
3029        if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3030            (words == 0)) {
3031                e_dbg("nvm parameter(s) out of bounds\n");
3032                ret_val = -E1000_ERR_NVM;
3033                goto out;
3034        }
3035
3036        nvm->ops.acquire(hw);
3037
3038        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3039        if (ret_val) {
3040                e_dbg("Could not detect valid bank, assuming bank 0\n");
3041                bank = 0;
3042        }
3043
3044        act_offset = (bank) ? nvm->flash_bank_size : 0;
3045        act_offset += offset;
3046
3047        ret_val = 0;
3048        for (i = 0; i < words; i++) {
3049                if (dev_spec->shadow_ram[offset + i].modified) {
3050                        data[i] = dev_spec->shadow_ram[offset + i].value;
3051                } else {
3052                        ret_val = e1000_read_flash_word_ich8lan(hw,
3053                                                                act_offset + i,
3054                                                                &word);
3055                        if (ret_val)
3056                                break;
3057                        data[i] = word;
3058                }
3059        }
3060
3061        nvm->ops.release(hw);
3062
3063out:
3064        if (ret_val)
3065                e_dbg("NVM read error: %d\n", ret_val);
3066
3067        return ret_val;
3068}
3069
3070/**
3071 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3072 *  @hw: pointer to the HW structure
3073 *
3074 *  This function does initial flash setup so that a new read/write/erase cycle
3075 *  can be started.
3076 **/
3077static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3078{
3079        union ich8_hws_flash_status hsfsts;
3080        s32 ret_val = -E1000_ERR_NVM;
3081
3082        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3083
3084        /* Check if the flash descriptor is valid */
3085        if (!hsfsts.hsf_status.fldesvalid) {
3086                e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3087                return -E1000_ERR_NVM;
3088        }
3089
3090        /* Clear FCERR and DAEL in hw status by writing 1 */
3091        hsfsts.hsf_status.flcerr = 1;
3092        hsfsts.hsf_status.dael = 1;
3093
3094        ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3095
3096        /* Either we should have a hardware SPI cycle in progress
3097         * bit to check against, in order to start a new cycle or
3098         * FDONE bit should be changed in the hardware so that it
3099         * is 1 after hardware reset, which can then be used as an
3100         * indication whether a cycle is in progress or has been
3101         * completed.
3102         */
3103
3104        if (!hsfsts.hsf_status.flcinprog) {
3105                /* There is no cycle running at present,
3106                 * so we can start a cycle.
3107                 * Begin by setting Flash Cycle Done.
3108                 */
3109                hsfsts.hsf_status.flcdone = 1;
3110                ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3111                ret_val = 0;
3112        } else {
3113                s32 i;
3114
3115                /* Otherwise poll for sometime so the current
3116                 * cycle has a chance to end before giving up.
3117                 */
3118                for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3119                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3120                        if (!hsfsts.hsf_status.flcinprog) {
3121                                ret_val = 0;
3122                                break;
3123                        }
3124                        udelay(1);
3125                }
3126                if (!ret_val) {
3127                        /* Successful in waiting for previous cycle to timeout,
3128                         * now set the Flash Cycle Done.
3129                         */
3130                        hsfsts.hsf_status.flcdone = 1;
3131                        ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3132                } else {
3133                        e_dbg("Flash controller busy, cannot get access\n");
3134                }
3135        }
3136
3137        return ret_val;
3138}
3139
3140/**
3141 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3142 *  @hw: pointer to the HW structure
3143 *  @timeout: maximum time to wait for completion
3144 *
3145 *  This function starts a flash cycle and waits for its completion.
3146 **/
3147static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3148{
3149        union ich8_hws_flash_ctrl hsflctl;
3150        union ich8_hws_flash_status hsfsts;
3151        u32 i = 0;
3152
3153        /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3154        hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3155        hsflctl.hsf_ctrl.flcgo = 1;
3156        ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3157
3158        /* wait till FDONE bit is set to 1 */
3159        do {
3160                hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3161                if (hsfsts.hsf_status.flcdone)
3162                        break;
3163                udelay(1);
3164        } while (i++ < timeout);
3165
3166        if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3167                return 0;
3168
3169        return -E1000_ERR_NVM;
3170}
3171
3172/**
3173 *  e1000_read_flash_word_ich8lan - Read word from flash
3174 *  @hw: pointer to the HW structure
3175 *  @offset: offset to data location
3176 *  @data: pointer to the location for storing the data
3177 *
3178 *  Reads the flash word at offset into data.  Offset is converted
3179 *  to bytes before read.
3180 **/
3181static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3182                                         u16 *data)
3183{
3184        /* Must convert offset into bytes. */
3185        offset <<= 1;
3186
3187        return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3188}
3189
3190/**
3191 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3192 *  @hw: pointer to the HW structure
3193 *  @offset: The offset of the byte to read.
3194 *  @data: Pointer to a byte to store the value read.
3195 *
3196 *  Reads a single byte from the NVM using the flash access registers.
3197 **/
3198static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3199                                         u8 *data)
3200{
3201        s32 ret_val;
3202        u16 word = 0;
3203
3204        ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3205        if (ret_val)
3206                return ret_val;
3207
3208        *data = (u8)word;
3209
3210        return 0;
3211}
3212
3213/**
3214 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3215 *  @hw: pointer to the HW structure
3216 *  @offset: The offset (in bytes) of the byte or word to read.
3217 *  @size: Size of data to read, 1=byte 2=word
3218 *  @data: Pointer to the word to store the value read.
3219 *
3220 *  Reads a byte or word from the NVM using the flash access registers.
3221 **/
3222static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3223                                         u8 size, u16 *data)
3224{
3225        union ich8_hws_flash_status hsfsts;
3226        union ich8_hws_flash_ctrl hsflctl;
3227        u32 flash_linear_addr;
3228        u32 flash_data = 0;
3229        s32 ret_val = -E1000_ERR_NVM;
3230        u8 count = 0;
3231
3232        if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3233                return -E1000_ERR_NVM;
3234
3235        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3236                             hw->nvm.flash_base_addr);
3237
3238        do {
3239                udelay(1);
3240                /* Steps */
3241                ret_val = e1000_flash_cycle_init_ich8lan(hw);
3242                if (ret_val)
3243                        break;
3244
3245                hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3246                /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3247                hsflctl.hsf_ctrl.fldbcount = size - 1;
3248                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3249                ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3250
3251                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3252
3253                ret_val =
3254                    e1000_flash_cycle_ich8lan(hw,
3255                                              ICH_FLASH_READ_COMMAND_TIMEOUT);
3256
3257                /* Check if FCERR is set to 1, if set to 1, clear it
3258                 * and try the whole sequence a few more times, else
3259                 * read in (shift in) the Flash Data0, the order is
3260                 * least significant byte first msb to lsb
3261                 */
3262                if (!ret_val) {
3263                        flash_data = er32flash(ICH_FLASH_FDATA0);
3264                        if (size == 1)
3265                                *data = (u8)(flash_data & 0x000000FF);
3266                        else if (size == 2)
3267                                *data = (u16)(flash_data & 0x0000FFFF);
3268                        break;
3269                } else {
3270                        /* If we've gotten here, then things are probably
3271                         * completely hosed, but if the error condition is
3272                         * detected, it won't hurt to give it another try...
3273                         * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3274                         */
3275                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3276                        if (hsfsts.hsf_status.flcerr) {
3277                                /* Repeat for some time before giving up. */
3278                                continue;
3279                        } else if (!hsfsts.hsf_status.flcdone) {
3280                                e_dbg("Timeout error - flash cycle did not complete.\n");
3281                                break;
3282                        }
3283                }
3284        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3285
3286        return ret_val;
3287}
3288
3289/**
3290 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3291 *  @hw: pointer to the HW structure
3292 *  @offset: The offset (in bytes) of the word(s) to write.
3293 *  @words: Size of data to write in words
3294 *  @data: Pointer to the word(s) to write at offset.
3295 *
3296 *  Writes a byte or word to the NVM using the flash access registers.
3297 **/
3298static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3299                                   u16 *data)
3300{
3301        struct e1000_nvm_info *nvm = &hw->nvm;
3302        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3303        u16 i;
3304
3305        if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3306            (words == 0)) {
3307                e_dbg("nvm parameter(s) out of bounds\n");
3308                return -E1000_ERR_NVM;
3309        }
3310
3311        nvm->ops.acquire(hw);
3312
3313        for (i = 0; i < words; i++) {
3314                dev_spec->shadow_ram[offset + i].modified = true;
3315                dev_spec->shadow_ram[offset + i].value = data[i];
3316        }
3317
3318        nvm->ops.release(hw);
3319
3320        return 0;
3321}
3322
3323/**
3324 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3325 *  @hw: pointer to the HW structure
3326 *
3327 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3328 *  which writes the checksum to the shadow ram.  The changes in the shadow
3329 *  ram are then committed to the EEPROM by processing each bank at a time
3330 *  checking for the modified bit and writing only the pending changes.
3331 *  After a successful commit, the shadow ram is cleared and is ready for
3332 *  future writes.
3333 **/
3334static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3335{
3336        struct e1000_nvm_info *nvm = &hw->nvm;
3337        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3338        u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3339        s32 ret_val;
3340        u16 data;
3341
3342        ret_val = e1000e_update_nvm_checksum_generic(hw);
3343        if (ret_val)
3344                goto out;
3345
3346        if (nvm->type != e1000_nvm_flash_sw)
3347                goto out;
3348
3349        nvm->ops.acquire(hw);
3350
3351        /* We're writing to the opposite bank so if we're on bank 1,
3352         * write to bank 0 etc.  We also need to erase the segment that
3353         * is going to be written
3354         */
3355        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3356        if (ret_val) {
3357                e_dbg("Could not detect valid bank, assuming bank 0\n");
3358                bank = 0;
3359        }
3360
3361        if (bank == 0) {
3362                new_bank_offset = nvm->flash_bank_size;
3363                old_bank_offset = 0;
3364                ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3365                if (ret_val)
3366                        goto release;
3367        } else {
3368                old_bank_offset = nvm->flash_bank_size;
3369                new_bank_offset = 0;
3370                ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3371                if (ret_val)
3372                        goto release;
3373        }
3374
3375        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3376                /* Determine whether to write the value stored
3377                 * in the other NVM bank or a modified value stored
3378                 * in the shadow RAM
3379                 */
3380                if (dev_spec->shadow_ram[i].modified) {
3381                        data = dev_spec->shadow_ram[i].value;
3382                } else {
3383                        ret_val = e1000_read_flash_word_ich8lan(hw, i +
3384                                                                old_bank_offset,
3385                                                                &data);
3386                        if (ret_val)
3387                                break;
3388                }
3389
3390                /* If the word is 0x13, then make sure the signature bits
3391                 * (15:14) are 11b until the commit has completed.
3392                 * This will allow us to write 10b which indicates the
3393                 * signature is valid.  We want to do this after the write
3394                 * has completed so that we don't mark the segment valid
3395                 * while the write is still in progress
3396                 */
3397                if (i == E1000_ICH_NVM_SIG_WORD)
3398                        data |= E1000_ICH_NVM_SIG_MASK;
3399
3400                /* Convert offset to bytes. */
3401                act_offset = (i + new_bank_offset) << 1;
3402
3403                usleep_range(100, 200);
3404                /* Write the bytes to the new bank. */
3405                ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3406                                                               act_offset,
3407                                                               (u8)data);
3408                if (ret_val)
3409                        break;
3410
3411                usleep_range(100, 200);
3412                ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3413                                                               act_offset + 1,
3414                                                               (u8)(data >> 8));
3415                if (ret_val)
3416                        break;
3417        }
3418
3419        /* Don't bother writing the segment valid bits if sector
3420         * programming failed.
3421         */
3422        if (ret_val) {
3423                /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3424                e_dbg("Flash commit failed.\n");
3425                goto release;
3426        }
3427
3428        /* Finally validate the new segment by setting bit 15:14
3429         * to 10b in word 0x13 , this can be done without an
3430         * erase as well since these bits are 11 to start with
3431         * and we need to change bit 14 to 0b
3432         */
3433        act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3434        ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3435        if (ret_val)
3436                goto release;
3437
3438        data &= 0xBFFF;
3439        ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3440                                                       act_offset * 2 + 1,
3441                                                       (u8)(data >> 8));
3442        if (ret_val)
3443                goto release;
3444
3445        /* And invalidate the previously valid segment by setting
3446         * its signature word (0x13) high_byte to 0b. This can be
3447         * done without an erase because flash erase sets all bits
3448         * to 1's. We can write 1's to 0's without an erase
3449         */
3450        act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3451        ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3452        if (ret_val)
3453                goto release;
3454
3455        /* Great!  Everything worked, we can now clear the cached entries. */
3456        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3457                dev_spec->shadow_ram[i].modified = false;
3458                dev_spec->shadow_ram[i].value = 0xFFFF;
3459        }
3460
3461release:
3462        nvm->ops.release(hw);
3463
3464        /* Reload the EEPROM, or else modifications will not appear
3465         * until after the next adapter reset.
3466         */
3467        if (!ret_val) {
3468                nvm->ops.reload(hw);
3469                usleep_range(10000, 20000);
3470        }
3471
3472out:
3473        if (ret_val)
3474                e_dbg("NVM update error: %d\n", ret_val);
3475
3476        return ret_val;
3477}
3478
3479/**
3480 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3481 *  @hw: pointer to the HW structure
3482 *
3483 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3484 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3485 *  calculated, in which case we need to calculate the checksum and set bit 6.
3486 **/
3487static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3488{
3489        s32 ret_val;
3490        u16 data;
3491        u16 word;
3492        u16 valid_csum_mask;
3493
3494        /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3495         * the checksum needs to be fixed.  This bit is an indication that
3496         * the NVM was prepared by OEM software and did not calculate
3497         * the checksum...a likely scenario.
3498         */
3499        switch (hw->mac.type) {
3500        case e1000_pch_lpt:
3501                word = NVM_COMPAT;
3502                valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3503                break;
3504        default:
3505                word = NVM_FUTURE_INIT_WORD1;
3506                valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3507                break;
3508        }
3509
3510        ret_val = e1000_read_nvm(hw, word, 1, &data);
3511        if (ret_val)
3512                return ret_val;
3513
3514        if (!(data & valid_csum_mask)) {
3515                data |= valid_csum_mask;
3516                ret_val = e1000_write_nvm(hw, word, 1, &data);
3517                if (ret_val)
3518                        return ret_val;
3519                ret_val = e1000e_update_nvm_checksum(hw);
3520                if (ret_val)
3521                        return ret_val;
3522        }
3523
3524        return e1000e_validate_nvm_checksum_generic(hw);
3525}
3526
3527/**
3528 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3529 *  @hw: pointer to the HW structure
3530 *
3531 *  To prevent malicious write/erase of the NVM, set it to be read-only
3532 *  so that the hardware ignores all write/erase cycles of the NVM via
3533 *  the flash control registers.  The shadow-ram copy of the NVM will
3534 *  still be updated, however any updates to this copy will not stick
3535 *  across driver reloads.
3536 **/
3537void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3538{
3539        struct e1000_nvm_info *nvm = &hw->nvm;
3540        union ich8_flash_protected_range pr0;
3541        union ich8_hws_flash_status hsfsts;
3542        u32 gfpreg;
3543
3544        nvm->ops.acquire(hw);
3545
3546        gfpreg = er32flash(ICH_FLASH_GFPREG);
3547
3548        /* Write-protect GbE Sector of NVM */
3549        pr0.regval = er32flash(ICH_FLASH_PR0);
3550        pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3551        pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3552        pr0.range.wpe = true;
3553        ew32flash(ICH_FLASH_PR0, pr0.regval);
3554
3555        /* Lock down a subset of GbE Flash Control Registers, e.g.
3556         * PR0 to prevent the write-protection from being lifted.
3557         * Once FLOCKDN is set, the registers protected by it cannot
3558         * be written until FLOCKDN is cleared by a hardware reset.
3559         */
3560        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3561        hsfsts.hsf_status.flockdn = true;
3562        ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3563
3564        nvm->ops.release(hw);
3565}
3566
3567/**
3568 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3569 *  @hw: pointer to the HW structure
3570 *  @offset: The offset (in bytes) of the byte/word to read.
3571 *  @size: Size of data to read, 1=byte 2=word
3572 *  @data: The byte(s) to write to the NVM.
3573 *
3574 *  Writes one/two bytes to the NVM using the flash access registers.
3575 **/
3576static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3577                                          u8 size, u16 data)
3578{
3579        union ich8_hws_flash_status hsfsts;
3580        union ich8_hws_flash_ctrl hsflctl;
3581        u32 flash_linear_addr;
3582        u32 flash_data = 0;
3583        s32 ret_val;
3584        u8 count = 0;
3585
3586        if (size < 1 || size > 2 || data > size * 0xff ||
3587            offset > ICH_FLASH_LINEAR_ADDR_MASK)
3588                return -E1000_ERR_NVM;
3589
3590        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3591                             hw->nvm.flash_base_addr);
3592
3593        do {
3594                udelay(1);
3595                /* Steps */
3596                ret_val = e1000_flash_cycle_init_ich8lan(hw);
3597                if (ret_val)
3598                        break;
3599
3600                hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3601                /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3602                hsflctl.hsf_ctrl.fldbcount = size - 1;
3603                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3604                ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3605
3606                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3607
3608                if (size == 1)
3609                        flash_data = (u32)data & 0x00FF;
3610                else
3611                        flash_data = (u32)data;
3612
3613                ew32flash(ICH_FLASH_FDATA0, flash_data);
3614
3615                /* check if FCERR is set to 1 , if set to 1, clear it
3616                 * and try the whole sequence a few more times else done
3617                 */
3618                ret_val =
3619                    e1000_flash_cycle_ich8lan(hw,
3620                                              ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3621                if (!ret_val)
3622                        break;
3623
3624                /* If we're here, then things are most likely
3625                 * completely hosed, but if the error condition
3626                 * is detected, it won't hurt to give it another
3627                 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3628                 */
3629                hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3630                if (hsfsts.hsf_status.flcerr)
3631                        /* Repeat for some time before giving up. */
3632                        continue;
3633                if (!hsfsts.hsf_status.flcdone) {
3634                        e_dbg("Timeout error - flash cycle did not complete.\n");
3635                        break;
3636                }
3637        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3638
3639        return ret_val;
3640}
3641
3642/**
3643 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3644 *  @hw: pointer to the HW structure
3645 *  @offset: The index of the byte to read.
3646 *  @data: The byte to write to the NVM.
3647 *
3648 *  Writes a single byte to the NVM using the flash access registers.
3649 **/
3650static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3651                                          u8 data)
3652{
3653        u16 word = (u16)data;
3654
3655        return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3656}
3657
3658/**
3659 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3660 *  @hw: pointer to the HW structure
3661 *  @offset: The offset of the byte to write.
3662 *  @byte: The byte to write to the NVM.
3663 *
3664 *  Writes a single byte to the NVM using the flash access registers.
3665 *  Goes through a retry algorithm before giving up.
3666 **/
3667static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3668                                                u32 offset, u8 byte)
3669{
3670        s32 ret_val;
3671        u16 program_retries;
3672
3673        ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3674        if (!ret_val)
3675                return ret_val;
3676
3677        for (program_retries = 0; program_retries < 100; program_retries++) {
3678                e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3679                usleep_range(100, 200);
3680                ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3681                if (!ret_val)
3682                        break;
3683        }
3684        if (program_retries == 100)
3685                return -E1000_ERR_NVM;
3686
3687        return 0;
3688}
3689
3690/**
3691 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3692 *  @hw: pointer to the HW structure
3693 *  @bank: 0 for first bank, 1 for second bank, etc.
3694 *
3695 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3696 *  bank N is 4096 * N + flash_reg_addr.
3697 **/
3698static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3699{
3700        struct e1000_nvm_info *nvm = &hw->nvm;
3701        union ich8_hws_flash_status hsfsts;
3702        union ich8_hws_flash_ctrl hsflctl;
3703        u32 flash_linear_addr;
3704        /* bank size is in 16bit words - adjust to bytes */
3705        u32 flash_bank_size = nvm->flash_bank_size * 2;
3706        s32 ret_val;
3707        s32 count = 0;
3708        s32 j, iteration, sector_size;
3709
3710        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3711
3712        /* Determine HW Sector size: Read BERASE bits of hw flash status
3713         * register
3714         * 00: The Hw sector is 256 bytes, hence we need to erase 16
3715         *     consecutive sectors.  The start index for the nth Hw sector
3716         *     can be calculated as = bank * 4096 + n * 256
3717         * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3718         *     The start index for the nth Hw sector can be calculated
3719         *     as = bank * 4096
3720         * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3721         *     (ich9 only, otherwise error condition)
3722         * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3723         */
3724        switch (hsfsts.hsf_status.berasesz) {
3725        case 0:
3726                /* Hw sector size 256 */
3727                sector_size = ICH_FLASH_SEG_SIZE_256;
3728                iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3729                break;
3730        case 1:
3731                sector_size = ICH_FLASH_SEG_SIZE_4K;
3732                iteration = 1;
3733                break;
3734        case 2:
3735                sector_size = ICH_FLASH_SEG_SIZE_8K;
3736                iteration = 1;
3737                break;
3738        case 3:
3739                sector_size = ICH_FLASH_SEG_SIZE_64K;
3740                iteration = 1;
3741                break;
3742        default:
3743                return -E1000_ERR_NVM;
3744        }
3745
3746        /* Start with the base address, then add the sector offset. */
3747        flash_linear_addr = hw->nvm.flash_base_addr;
3748        flash_linear_addr += (bank) ? flash_bank_size : 0;
3749
3750        for (j = 0; j < iteration; j++) {
3751                do {
3752                        u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
3753
3754                        /* Steps */
3755                        ret_val = e1000_flash_cycle_init_ich8lan(hw);
3756                        if (ret_val)
3757                                return ret_val;
3758
3759                        /* Write a value 11 (block Erase) in Flash
3760                         * Cycle field in hw flash control
3761                         */
3762                        hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3763                        hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3764                        ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3765
3766                        /* Write the last 24 bits of an index within the
3767                         * block into Flash Linear address field in Flash
3768                         * Address.
3769                         */
3770                        flash_linear_addr += (j * sector_size);
3771                        ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3772
3773                        ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
3774                        if (!ret_val)
3775                                break;
3776
3777                        /* Check if FCERR is set to 1.  If 1,
3778                         * clear it and try the whole sequence
3779                         * a few more times else Done
3780                         */
3781                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3782                        if (hsfsts.hsf_status.flcerr)
3783                                /* repeat for some time before giving up */
3784                                continue;
3785                        else if (!hsfsts.hsf_status.flcdone)
3786                                return ret_val;
3787                } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3788        }
3789
3790        return 0;
3791}
3792
3793/**
3794 *  e1000_valid_led_default_ich8lan - Set the default LED settings
3795 *  @hw: pointer to the HW structure
3796 *  @data: Pointer to the LED settings
3797 *
3798 *  Reads the LED default settings from the NVM to data.  If the NVM LED
3799 *  settings is all 0's or F's, set the LED default to a valid LED default
3800 *  setting.
3801 **/
3802static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3803{
3804        s32 ret_val;
3805
3806        ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3807        if (ret_val) {
3808                e_dbg("NVM Read Error\n");
3809                return ret_val;
3810        }
3811
3812        if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
3813                *data = ID_LED_DEFAULT_ICH8LAN;
3814
3815        return 0;
3816}
3817
3818/**
3819 *  e1000_id_led_init_pchlan - store LED configurations
3820 *  @hw: pointer to the HW structure
3821 *
3822 *  PCH does not control LEDs via the LEDCTL register, rather it uses
3823 *  the PHY LED configuration register.
3824 *
3825 *  PCH also does not have an "always on" or "always off" mode which
3826 *  complicates the ID feature.  Instead of using the "on" mode to indicate
3827 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3828 *  use "link_up" mode.  The LEDs will still ID on request if there is no
3829 *  link based on logic in e1000_led_[on|off]_pchlan().
3830 **/
3831static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3832{
3833        struct e1000_mac_info *mac = &hw->mac;
3834        s32 ret_val;
3835        const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3836        const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3837        u16 data, i, temp, shift;
3838
3839        /* Get default ID LED modes */
3840        ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3841        if (ret_val)
3842                return ret_val;
3843
3844        mac->ledctl_default = er32(LEDCTL);
3845        mac->ledctl_mode1 = mac->ledctl_default;
3846        mac->ledctl_mode2 = mac->ledctl_default;
3847
3848        for (i = 0; i < 4; i++) {
3849                temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3850                shift = (i * 5);
3851                switch (temp) {
3852                case ID_LED_ON1_DEF2:
3853                case ID_LED_ON1_ON2:
3854                case ID_LED_ON1_OFF2:
3855                        mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3856                        mac->ledctl_mode1 |= (ledctl_on << shift);
3857                        break;
3858                case ID_LED_OFF1_DEF2:
3859                case ID_LED_OFF1_ON2:
3860                case ID_LED_OFF1_OFF2:
3861                        mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3862                        mac->ledctl_mode1 |= (ledctl_off << shift);
3863                        break;
3864                default:
3865                        /* Do nothing */
3866                        break;
3867                }
3868                switch (temp) {
3869                case ID_LED_DEF1_ON2:
3870                case ID_LED_ON1_ON2:
3871                case ID_LED_OFF1_ON2:
3872                        mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3873                        mac->ledctl_mode2 |= (ledctl_on << shift);
3874                        break;
3875                case ID_LED_DEF1_OFF2:
3876                case ID_LED_ON1_OFF2:
3877                case ID_LED_OFF1_OFF2:
3878                        mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3879                        mac->ledctl_mode2 |= (ledctl_off << shift);
3880                        break;
3881                default:
3882                        /* Do nothing */
3883                        break;
3884                }
3885        }
3886
3887        return 0;
3888}
3889
3890/**
3891 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3892 *  @hw: pointer to the HW structure
3893 *
3894 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3895 *  register, so the the bus width is hard coded.
3896 **/
3897static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3898{
3899        struct e1000_bus_info *bus = &hw->bus;
3900        s32 ret_val;
3901
3902        ret_val = e1000e_get_bus_info_pcie(hw);
3903
3904        /* ICH devices are "PCI Express"-ish.  They have
3905         * a configuration space, but do not contain
3906         * PCI Express Capability registers, so bus width
3907         * must be hardcoded.
3908         */
3909        if (bus->width == e1000_bus_width_unknown)
3910                bus->width = e1000_bus_width_pcie_x1;
3911
3912        return ret_val;
3913}
3914
3915/**
3916 *  e1000_reset_hw_ich8lan - Reset the hardware
3917 *  @hw: pointer to the HW structure
3918 *
3919 *  Does a full reset of the hardware which includes a reset of the PHY and
3920 *  MAC.
3921 **/
3922static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3923{
3924        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3925        u16 kum_cfg;
3926        u32 ctrl, reg;
3927        s32 ret_val;
3928
3929        /* Prevent the PCI-E bus from sticking if there is no TLP connection
3930         * on the last TLP read/write transaction when MAC is reset.
3931         */
3932        ret_val = e1000e_disable_pcie_master(hw);
3933        if (ret_val)
3934                e_dbg("PCI-E Master disable polling has failed.\n");
3935
3936        e_dbg("Masking off all interrupts\n");
3937        ew32(IMC, 0xffffffff);
3938
3939        /* Disable the Transmit and Receive units.  Then delay to allow
3940         * any pending transactions to complete before we hit the MAC
3941         * with the global reset.
3942         */
3943        ew32(RCTL, 0);
3944        ew32(TCTL, E1000_TCTL_PSP);
3945        e1e_flush();
3946
3947        usleep_range(10000, 20000);
3948
3949        /* Workaround for ICH8 bit corruption issue in FIFO memory */
3950        if (hw->mac.type == e1000_ich8lan) {
3951                /* Set Tx and Rx buffer allocation to 8k apiece. */
3952                ew32(PBA, E1000_PBA_8K);
3953                /* Set Packet Buffer Size to 16k. */
3954                ew32(PBS, E1000_PBS_16K);
3955        }
3956
3957        if (hw->mac.type == e1000_pchlan) {
3958                /* Save the NVM K1 bit setting */
3959                ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3960                if (ret_val)
3961                        return ret_val;
3962
3963                if (kum_cfg & E1000_NVM_K1_ENABLE)
3964                        dev_spec->nvm_k1_enabled = true;
3965                else
3966                        dev_spec->nvm_k1_enabled = false;
3967        }
3968
3969        ctrl = er32(CTRL);
3970
3971        if (!hw->phy.ops.check_reset_block(hw)) {
3972                /* Full-chip reset requires MAC and PHY reset at the same
3973                 * time to make sure the interface between MAC and the
3974                 * external PHY is reset.
3975                 */
3976                ctrl |= E1000_CTRL_PHY_RST;
3977
3978                /* Gate automatic PHY configuration by hardware on
3979                 * non-managed 82579
3980                 */
3981                if ((hw->mac.type == e1000_pch2lan) &&
3982                    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3983                        e1000_gate_hw_phy_config_ich8lan(hw, true);
3984        }
3985        ret_val = e1000_acquire_swflag_ich8lan(hw);
3986        e_dbg("Issuing a global reset to ich8lan\n");
3987        ew32(CTRL, (ctrl | E1000_CTRL_RST));
3988        /* cannot issue a flush here because it hangs the hardware */
3989        msleep(20);
3990
3991        /* Set Phy Config Counter to 50msec */
3992        if (hw->mac.type == e1000_pch2lan) {
3993                reg = er32(FEXTNVM3);
3994                reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3995                reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3996                ew32(FEXTNVM3, reg);
3997        }
3998
3999        if (!ret_val)
4000                clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4001
4002        if (ctrl & E1000_CTRL_PHY_RST) {
4003                ret_val = hw->phy.ops.get_cfg_done(hw);
4004                if (ret_val)
4005                        return ret_val;
4006
4007                ret_val = e1000_post_phy_reset_ich8lan(hw);
4008                if (ret_val)
4009                        return ret_val;
4010        }
4011
4012        /* For PCH, this write will make sure that any noise
4013         * will be detected as a CRC error and be dropped rather than show up
4014         * as a bad packet to the DMA engine.
4015         */
4016        if (hw->mac.type == e1000_pchlan)
4017                ew32(CRC_OFFSET, 0x65656565);
4018
4019        ew32(IMC, 0xffffffff);
4020        er32(ICR);
4021
4022        reg = er32(KABGTXD);
4023        reg |= E1000_KABGTXD_BGSQLBIAS;
4024        ew32(KABGTXD, reg);
4025
4026        return 0;
4027}
4028
4029/**
4030 *  e1000_init_hw_ich8lan - Initialize the hardware
4031 *  @hw: pointer to the HW structure
4032 *
4033 *  Prepares the hardware for transmit and receive by doing the following:
4034 *   - initialize hardware bits
4035 *   - initialize LED identification
4036 *   - setup receive address registers
4037 *   - setup flow control
4038 *   - setup transmit descriptors
4039 *   - clear statistics
4040 **/
4041static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4042{
4043        struct e1000_mac_info *mac = &hw->mac;
4044        u32 ctrl_ext, txdctl, snoop;
4045        s32 ret_val;
4046        u16 i;
4047
4048        e1000_initialize_hw_bits_ich8lan(hw);
4049
4050        /* Initialize identification LED */
4051        ret_val = mac->ops.id_led_init(hw);
4052        /* An error is not fatal and we should not stop init due to this */
4053        if (ret_val)
4054                e_dbg("Error initializing identification LED\n");
4055
4056        /* Setup the receive address. */
4057        e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4058
4059        /* Zero out the Multicast HASH table */
4060        e_dbg("Zeroing the MTA\n");
4061        for (i = 0; i < mac->mta_reg_count; i++)
4062                E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4063
4064        /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4065         * the ME.  Disable wakeup by clearing the host wakeup bit.
4066         * Reset the phy after disabling host wakeup to reset the Rx buffer.
4067         */
4068        if (hw->phy.type == e1000_phy_82578) {
4069                e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4070                i &= ~BM_WUC_HOST_WU_BIT;
4071                e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4072                ret_val = e1000_phy_hw_reset_ich8lan(hw);
4073                if (ret_val)
4074                        return ret_val;
4075        }
4076
4077        /* Setup link and flow control */
4078        ret_val = mac->ops.setup_link(hw);
4079
4080        /* Set the transmit descriptor write-back policy for both queues */
4081        txdctl = er32(TXDCTL(0));
4082        txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4083                  E1000_TXDCTL_FULL_TX_DESC_WB);
4084        txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4085                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4086        ew32(TXDCTL(0), txdctl);
4087        txdctl = er32(TXDCTL(1));
4088        txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4089                  E1000_TXDCTL_FULL_TX_DESC_WB);
4090        txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4091                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4092        ew32(TXDCTL(1), txdctl);
4093
4094        /* ICH8 has opposite polarity of no_snoop bits.
4095         * By default, we should use snoop behavior.
4096         */
4097        if (mac->type == e1000_ich8lan)
4098                snoop = PCIE_ICH8_SNOOP_ALL;
4099        else
4100                snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4101        e1000e_set_pcie_no_snoop(hw, snoop);
4102
4103        ctrl_ext = er32(CTRL_EXT);
4104        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4105        ew32(CTRL_EXT, ctrl_ext);
4106
4107        /* Clear all of the statistics registers (clear on read).  It is
4108         * important that we do this after we have tried to establish link
4109         * because the symbol error count will increment wildly if there
4110         * is no link.
4111         */
4112        e1000_clear_hw_cntrs_ich8lan(hw);
4113
4114        return ret_val;
4115}
4116
4117/**
4118 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4119 *  @hw: pointer to the HW structure
4120 *
4121 *  Sets/Clears required hardware bits necessary for correctly setting up the
4122 *  hardware for transmit and receive.
4123 **/
4124static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4125{
4126        u32 reg;
4127
4128        /* Extended Device Control */
4129        reg = er32(CTRL_EXT);
4130        reg |= (1 << 22);
4131        /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4132        if (hw->mac.type >= e1000_pchlan)
4133                reg |= E1000_CTRL_EXT_PHYPDEN;
4134        ew32(CTRL_EXT, reg);
4135
4136        /* Transmit Descriptor Control 0 */
4137        reg = er32(TXDCTL(0));
4138        reg |= (1 << 22);
4139        ew32(TXDCTL(0), reg);
4140
4141        /* Transmit Descriptor Control 1 */
4142        reg = er32(TXDCTL(1));
4143        reg |= (1 << 22);
4144        ew32(TXDCTL(1), reg);
4145
4146        /* Transmit Arbitration Control 0 */
4147        reg = er32(TARC(0));
4148        if (hw->mac.type == e1000_ich8lan)
4149                reg |= (1 << 28) | (1 << 29);
4150        reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4151        ew32(TARC(0), reg);
4152
4153        /* Transmit Arbitration Control 1 */
4154        reg = er32(TARC(1));
4155        if (er32(TCTL) & E1000_TCTL_MULR)
4156                reg &= ~(1 << 28);
4157        else
4158                reg |= (1 << 28);
4159        reg |= (1 << 24) | (1 << 26) | (1 << 30);
4160        ew32(TARC(1), reg);
4161
4162        /* Device Status */
4163        if (hw->mac.type == e1000_ich8lan) {
4164                reg = er32(STATUS);
4165                reg &= ~(1 << 31);
4166                ew32(STATUS, reg);
4167        }
4168
4169        /* work-around descriptor data corruption issue during nfs v2 udp
4170         * traffic, just disable the nfs filtering capability
4171         */
4172        reg = er32(RFCTL);
4173        reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4174
4175        /* Disable IPv6 extension header parsing because some malformed
4176         * IPv6 headers can hang the Rx.
4177         */
4178        if (hw->mac.type == e1000_ich8lan)
4179                reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4180        ew32(RFCTL, reg);
4181
4182        /* Enable ECC on Lynxpoint */
4183        if (hw->mac.type == e1000_pch_lpt) {
4184                reg = er32(PBECCSTS);
4185                reg |= E1000_PBECCSTS_ECC_ENABLE;
4186                ew32(PBECCSTS, reg);
4187
4188                reg = er32(CTRL);
4189                reg |= E1000_CTRL_MEHE;
4190                ew32(CTRL, reg);
4191        }
4192}
4193
4194/**
4195 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4196 *  @hw: pointer to the HW structure
4197 *
4198 *  Determines which flow control settings to use, then configures flow
4199 *  control.  Calls the appropriate media-specific link configuration
4200 *  function.  Assuming the adapter has a valid link partner, a valid link
4201 *  should be established.  Assumes the hardware has previously been reset
4202 *  and the transmitter and receiver are not enabled.
4203 **/
4204static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4205{
4206        s32 ret_val;
4207
4208        if (hw->phy.ops.check_reset_block(hw))
4209                return 0;
4210
4211        /* ICH parts do not have a word in the NVM to determine
4212         * the default flow control setting, so we explicitly
4213         * set it to full.
4214         */
4215        if (hw->fc.requested_mode == e1000_fc_default) {
4216                /* Workaround h/w hang when Tx flow control enabled */
4217                if (hw->mac.type == e1000_pchlan)
4218                        hw->fc.requested_mode = e1000_fc_rx_pause;
4219                else
4220                        hw->fc.requested_mode = e1000_fc_full;
4221        }
4222
4223        /* Save off the requested flow control mode for use later.  Depending
4224         * on the link partner's capabilities, we may or may not use this mode.
4225         */
4226        hw->fc.current_mode = hw->fc.requested_mode;
4227
4228        e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4229
4230        /* Continue to configure the copper link. */
4231        ret_val = hw->mac.ops.setup_physical_interface(hw);
4232        if (ret_val)
4233                return ret_val;
4234
4235        ew32(FCTTV, hw->fc.pause_time);
4236        if ((hw->phy.type == e1000_phy_82578) ||
4237            (hw->phy.type == e1000_phy_82579) ||
4238            (hw->phy.type == e1000_phy_i217) ||
4239            (hw->phy.type == e1000_phy_82577)) {
4240                ew32(FCRTV_PCH, hw->fc.refresh_time);
4241
4242                ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4243                                   hw->fc.pause_time);
4244                if (ret_val)
4245                        return ret_val;
4246        }
4247
4248        return e1000e_set_fc_watermarks(hw);
4249}
4250
4251/**
4252 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4253 *  @hw: pointer to the HW structure
4254 *
4255 *  Configures the kumeran interface to the PHY to wait the appropriate time
4256 *  when polling the PHY, then call the generic setup_copper_link to finish
4257 *  configuring the copper link.
4258 **/
4259static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4260{
4261        u32 ctrl;
4262        s32 ret_val;
4263        u16 reg_data;
4264
4265        ctrl = er32(CTRL);
4266        ctrl |= E1000_CTRL_SLU;
4267        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4268        ew32(CTRL, ctrl);
4269
4270        /* Set the mac to wait the maximum time between each iteration
4271         * and increase the max iterations when polling the phy;
4272         * this fixes erroneous timeouts at 10Mbps.
4273         */
4274        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4275        if (ret_val)
4276                return ret_val;
4277        ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4278                                       &reg_data);
4279        if (ret_val)
4280                return ret_val;
4281        reg_data |= 0x3F;
4282        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4283                                        reg_data);
4284        if (ret_val)
4285                return ret_val;
4286
4287        switch (hw->phy.type) {
4288        case e1000_phy_igp_3:
4289                ret_val = e1000e_copper_link_setup_igp(hw);
4290                if (ret_val)
4291                        return ret_val;
4292                break;
4293        case e1000_phy_bm:
4294        case e1000_phy_82578:
4295                ret_val = e1000e_copper_link_setup_m88(hw);
4296                if (ret_val)
4297                        return ret_val;
4298                break;
4299        case e1000_phy_82577:
4300        case e1000_phy_82579:
4301                ret_val = e1000_copper_link_setup_82577(hw);
4302                if (ret_val)
4303                        return ret_val;
4304                break;
4305        case e1000_phy_ife:
4306                ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
4307                if (ret_val)
4308                        return ret_val;
4309
4310                reg_data &= ~IFE_PMC_AUTO_MDIX;
4311
4312                switch (hw->phy.mdix) {
4313                case 1:
4314                        reg_data &= ~IFE_PMC_FORCE_MDIX;
4315                        break;
4316                case 2:
4317                        reg_data |= IFE_PMC_FORCE_MDIX;
4318                        break;
4319                case 0:
4320                default:
4321                        reg_data |= IFE_PMC_AUTO_MDIX;
4322                        break;
4323                }
4324                ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
4325                if (ret_val)
4326                        return ret_val;
4327                break;
4328        default:
4329                break;
4330        }
4331
4332        return e1000e_setup_copper_link(hw);
4333}
4334
4335/**
4336 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4337 *  @hw: pointer to the HW structure
4338 *
4339 *  Calls the PHY specific link setup function and then calls the
4340 *  generic setup_copper_link to finish configuring the link for
4341 *  Lynxpoint PCH devices
4342 **/
4343static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4344{
4345        u32 ctrl;
4346        s32 ret_val;
4347
4348        ctrl = er32(CTRL);
4349        ctrl |= E1000_CTRL_SLU;
4350        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4351        ew32(CTRL, ctrl);
4352
4353        ret_val = e1000_copper_link_setup_82577(hw);
4354        if (ret_val)
4355                return ret_val;
4356
4357        return e1000e_setup_copper_link(hw);
4358}
4359
4360/**
4361 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4362 *  @hw: pointer to the HW structure
4363 *  @speed: pointer to store current link speed
4364 *  @duplex: pointer to store the current link duplex
4365 *
4366 *  Calls the generic get_speed_and_duplex to retrieve the current link
4367 *  information and then calls the Kumeran lock loss workaround for links at
4368 *  gigabit speeds.
4369 **/
4370static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4371                                          u16 *duplex)
4372{
4373        s32 ret_val;
4374
4375        ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
4376        if (ret_val)
4377                return ret_val;
4378
4379        if ((hw->mac.type == e1000_ich8lan) &&
4380            (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
4381                ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4382        }
4383
4384        return ret_val;
4385}
4386
4387/**
4388 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4389 *  @hw: pointer to the HW structure
4390 *
4391 *  Work-around for 82566 Kumeran PCS lock loss:
4392 *  On link status change (i.e. PCI reset, speed change) and link is up and
4393 *  speed is gigabit-
4394 *    0) if workaround is optionally disabled do nothing
4395 *    1) wait 1ms for Kumeran link to come up
4396 *    2) check Kumeran Diagnostic register PCS lock loss bit
4397 *    3) if not set the link is locked (all is good), otherwise...
4398 *    4) reset the PHY
4399 *    5) repeat up to 10 times
4400 *  Note: this is only called for IGP3 copper when speed is 1gb.
4401 **/
4402static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4403{
4404        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4405        u32 phy_ctrl;
4406        s32 ret_val;
4407        u16 i, data;
4408        bool link;
4409
4410        if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4411                return 0;
4412
4413        /* Make sure link is up before proceeding.  If not just return.
4414         * Attempting this while link is negotiating fouled up link
4415         * stability
4416         */
4417        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
4418        if (!link)
4419                return 0;
4420
4421        for (i = 0; i < 10; i++) {
4422                /* read once to clear */
4423                ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4424                if (ret_val)
4425                        return ret_val;
4426                /* and again to get new status */
4427                ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4428                if (ret_val)
4429                        return ret_val;
4430
4431                /* check for PCS lock */
4432                if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4433                        return 0;
4434
4435                /* Issue PHY reset */
4436                e1000_phy_hw_reset(hw);
4437                mdelay(5);
4438        }
4439        /* Disable GigE link negotiation */
4440        phy_ctrl = er32(PHY_CTRL);
4441        phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4442                     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4443        ew32(PHY_CTRL, phy_ctrl);
4444
4445        /* Call gig speed drop workaround on Gig disable before accessing
4446         * any PHY registers
4447         */
4448        e1000e_gig_downshift_workaround_ich8lan(hw);
4449
4450        /* unable to acquire PCS lock */
4451        return -E1000_ERR_PHY;
4452}
4453
4454/**
4455 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4456 *  @hw: pointer to the HW structure
4457 *  @state: boolean value used to set the current Kumeran workaround state
4458 *
4459 *  If ICH8, set the current Kumeran workaround state (enabled - true
4460 *  /disabled - false).
4461 **/
4462void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4463                                                  bool state)
4464{
4465        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4466
4467        if (hw->mac.type != e1000_ich8lan) {
4468                e_dbg("Workaround applies to ICH8 only.\n");
4469                return;
4470        }
4471
4472        dev_spec->kmrn_lock_loss_workaround_enabled = state;
4473}
4474
4475/**
4476 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4477 *  @hw: pointer to the HW structure
4478 *
4479 *  Workaround for 82566 power-down on D3 entry:
4480 *    1) disable gigabit link
4481 *    2) write VR power-down enable
4482 *    3) read it back
4483 *  Continue if successful, else issue LCD reset and repeat
4484 **/
4485void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4486{
4487        u32 reg;
4488        u16 data;
4489        u8 retry = 0;
4490
4491        if (hw->phy.type != e1000_phy_igp_3)
4492                return;
4493
4494        /* Try the workaround twice (if needed) */
4495        do {
4496                /* Disable link */
4497                reg = er32(PHY_CTRL);
4498                reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4499                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4500                ew32(PHY_CTRL, reg);
4501
4502                /* Call gig speed drop workaround on Gig disable before
4503                 * accessing any PHY registers
4504                 */
4505                if (hw->mac.type == e1000_ich8lan)
4506                        e1000e_gig_downshift_workaround_ich8lan(hw);
4507
4508                /* Write VR power-down enable */
4509                e1e_rphy(hw, IGP3_VR_CTRL, &data);
4510                data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4511                e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4512
4513                /* Read it back and test */
4514                e1e_rphy(hw, IGP3_VR_CTRL, &data);
4515                data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4516                if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4517                        break;
4518
4519                /* Issue PHY reset and repeat at most one more time */
4520                reg = er32(CTRL);
4521                ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4522                retry++;
4523        } while (retry);
4524}
4525
4526/**
4527 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4528 *  @hw: pointer to the HW structure
4529 *
4530 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4531 *  LPLU, Gig disable, MDIC PHY reset):
4532 *    1) Set Kumeran Near-end loopback
4533 *    2) Clear Kumeran Near-end loopback
4534 *  Should only be called for ICH8[m] devices with any 1G Phy.
4535 **/
4536void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4537{
4538        s32 ret_val;
4539        u16 reg_data;
4540
4541        if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4542                return;
4543
4544        ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4545                                       &reg_data);
4546        if (ret_val)
4547                return;
4548        reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4549        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4550                                        reg_data);
4551        if (ret_val)
4552                return;
4553        reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4554        e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
4555}
4556
4557/**
4558 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4559 *  @hw: pointer to the HW structure
4560 *
4561 *  During S0 to Sx transition, it is possible the link remains at gig
4562 *  instead of negotiating to a lower speed.  Before going to Sx, set
4563 *  'Gig Disable' to force link speed negotiation to a lower speed based on
4564 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4565 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4566 *  needs to be written.
4567 *  Parts that support (and are linked to a partner which support) EEE in
4568 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4569 *  than 10Mbps w/o EEE.
4570 **/
4571void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4572{
4573        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4574        u32 phy_ctrl;
4575        s32 ret_val;
4576
4577        phy_ctrl = er32(PHY_CTRL);
4578        phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4579
4580        if (hw->phy.type == e1000_phy_i217) {
4581                u16 phy_reg, device_id = hw->adapter->pdev->device;
4582
4583                if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4584                    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4585                    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4586                    (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4587                        u32 fextnvm6 = er32(FEXTNVM6);
4588
4589                        ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4590                }
4591
4592                ret_val = hw->phy.ops.acquire(hw);
4593                if (ret_val)
4594                        goto out;
4595
4596                if (!dev_spec->eee_disable) {
4597                        u16 eee_advert;
4598
4599                        ret_val =
4600                            e1000_read_emi_reg_locked(hw,
4601                                                      I217_EEE_ADVERTISEMENT,
4602                                                      &eee_advert);
4603                        if (ret_val)
4604                                goto release;
4605
4606                        /* Disable LPLU if both link partners support 100BaseT
4607                         * EEE and 100Full is advertised on both ends of the
4608                         * link, and enable Auto Enable LPI since there will
4609                         * be no driver to enable LPI while in Sx.
4610                         */
4611                        if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4612                            (dev_spec->eee_lp_ability &
4613                             I82579_EEE_100_SUPPORTED) &&
4614                            (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
4615                                phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4616                                              E1000_PHY_CTRL_NOND0A_LPLU);
4617
4618                                /* Set Auto Enable LPI after link up */
4619                                e1e_rphy_locked(hw,
4620                                                I217_LPI_GPIO_CTRL, &phy_reg);
4621                                phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
4622                                e1e_wphy_locked(hw,
4623                                                I217_LPI_GPIO_CTRL, phy_reg);
4624                        }
4625                }
4626
4627                /* For i217 Intel Rapid Start Technology support,
4628                 * when the system is going into Sx and no manageability engine
4629                 * is present, the driver must configure proxy to reset only on
4630                 * power good.  LPI (Low Power Idle) state must also reset only
4631                 * on power good, as well as the MTA (Multicast table array).
4632                 * The SMBus release must also be disabled on LCD reset.
4633                 */
4634                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4635                        /* Enable proxy to reset only on power good. */
4636                        e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4637                        phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4638                        e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4639
4640                        /* Set bit enable LPI (EEE) to reset only on
4641                         * power good.
4642                         */
4643                        e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4644                        phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4645                        e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4646
4647                        /* Disable the SMB release on LCD reset. */
4648                        e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4649                        phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4650                        e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4651                }
4652
4653                /* Enable MTA to reset for Intel Rapid Start Technology
4654                 * Support
4655                 */
4656                e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4657                phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4658                e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4659
4660release:
4661                hw->phy.ops.release(hw);
4662        }
4663out:
4664        ew32(PHY_CTRL, phy_ctrl);
4665
4666        if (hw->mac.type == e1000_ich8lan)
4667                e1000e_gig_downshift_workaround_ich8lan(hw);
4668
4669        if (hw->mac.type >= e1000_pchlan) {
4670                e1000_oem_bits_config_ich8lan(hw, false);
4671
4672                /* Reset PHY to activate OEM bits on 82577/8 */
4673                if (hw->mac.type == e1000_pchlan)
4674                        e1000e_phy_hw_reset_generic(hw);
4675
4676                ret_val = hw->phy.ops.acquire(hw);
4677                if (ret_val)
4678                        return;
4679                e1000_write_smbus_addr(hw);
4680                hw->phy.ops.release(hw);
4681        }
4682}
4683
4684/**
4685 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4686 *  @hw: pointer to the HW structure
4687 *
4688 *  During Sx to S0 transitions on non-managed devices or managed devices
4689 *  on which PHY resets are not blocked, if the PHY registers cannot be
4690 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4691 *  the PHY.
4692 *  On i217, setup Intel Rapid Start Technology.
4693 **/
4694void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4695{
4696        s32 ret_val;
4697
4698        if (hw->mac.type < e1000_pch2lan)
4699                return;
4700
4701        ret_val = e1000_init_phy_workarounds_pchlan(hw);
4702        if (ret_val) {
4703                e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4704                return;
4705        }
4706
4707        /* For i217 Intel Rapid Start Technology support when the system
4708         * is transitioning from Sx and no manageability engine is present
4709         * configure SMBus to restore on reset, disable proxy, and enable
4710         * the reset on MTA (Multicast table array).
4711         */
4712        if (hw->phy.type == e1000_phy_i217) {
4713                u16 phy_reg;
4714
4715                ret_val = hw->phy.ops.acquire(hw);
4716                if (ret_val) {
4717                        e_dbg("Failed to setup iRST\n");
4718                        return;
4719                }
4720
4721                /* Clear Auto Enable LPI after link up */
4722                e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
4723                phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
4724                e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
4725
4726                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4727                        /* Restore clear on SMB if no manageability engine
4728                         * is present
4729                         */
4730                        ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4731                        if (ret_val)
4732                                goto release;
4733                        phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4734                        e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4735
4736                        /* Disable Proxy */
4737                        e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4738                }
4739                /* Enable reset on MTA */
4740                ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4741                if (ret_val)
4742                        goto release;
4743                phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4744                e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4745release:
4746                if (ret_val)
4747                        e_dbg("Error %d in resume workarounds\n", ret_val);
4748                hw->phy.ops.release(hw);
4749        }
4750}
4751
4752/**
4753 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4754 *  @hw: pointer to the HW structure
4755 *
4756 *  Return the LED back to the default configuration.
4757 **/
4758static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4759{
4760        if (hw->phy.type == e1000_phy_ife)
4761                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4762
4763        ew32(LEDCTL, hw->mac.ledctl_default);
4764        return 0;
4765}
4766
4767/**
4768 *  e1000_led_on_ich8lan - Turn LEDs on
4769 *  @hw: pointer to the HW structure
4770 *
4771 *  Turn on the LEDs.
4772 **/
4773static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4774{
4775        if (hw->phy.type == e1000_phy_ife)
4776                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4777                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4778
4779        ew32(LEDCTL, hw->mac.ledctl_mode2);
4780        return 0;
4781}
4782
4783/**
4784 *  e1000_led_off_ich8lan - Turn LEDs off
4785 *  @hw: pointer to the HW structure
4786 *
4787 *  Turn off the LEDs.
4788 **/
4789static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4790{
4791        if (hw->phy.type == e1000_phy_ife)
4792                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4793                                (IFE_PSCL_PROBE_MODE |
4794                                 IFE_PSCL_PROBE_LEDS_OFF));
4795
4796        ew32(LEDCTL, hw->mac.ledctl_mode1);
4797        return 0;
4798}
4799
4800/**
4801 *  e1000_setup_led_pchlan - Configures SW controllable LED
4802 *  @hw: pointer to the HW structure
4803 *
4804 *  This prepares the SW controllable LED for use.
4805 **/
4806static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4807{
4808        return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4809}
4810
4811/**
4812 *  e1000_cleanup_led_pchlan - Restore the default LED operation
4813 *  @hw: pointer to the HW structure
4814 *
4815 *  Return the LED back to the default configuration.
4816 **/
4817static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4818{
4819        return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4820}
4821
4822/**
4823 *  e1000_led_on_pchlan - Turn LEDs on
4824 *  @hw: pointer to the HW structure
4825 *
4826 *  Turn on the LEDs.
4827 **/
4828static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4829{
4830        u16 data = (u16)hw->mac.ledctl_mode2;
4831        u32 i, led;
4832
4833        /* If no link, then turn LED on by setting the invert bit
4834         * for each LED that's mode is "link_up" in ledctl_mode2.
4835         */
4836        if (!(er32(STATUS) & E1000_STATUS_LU)) {
4837                for (i = 0; i < 3; i++) {
4838                        led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4839                        if ((led & E1000_PHY_LED0_MODE_MASK) !=
4840                            E1000_LEDCTL_MODE_LINK_UP)
4841                                continue;
4842                        if (led & E1000_PHY_LED0_IVRT)
4843                                data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4844                        else
4845                                data |= (E1000_PHY_LED0_IVRT << (i * 5));
4846                }
4847        }
4848
4849        return e1e_wphy(hw, HV_LED_CONFIG, data);
4850}
4851
4852/**
4853 *  e1000_led_off_pchlan - Turn LEDs off
4854 *  @hw: pointer to the HW structure
4855 *
4856 *  Turn off the LEDs.
4857 **/
4858static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4859{
4860        u16 data = (u16)hw->mac.ledctl_mode1;
4861        u32 i, led;
4862
4863        /* If no link, then turn LED off by clearing the invert bit
4864         * for each LED that's mode is "link_up" in ledctl_mode1.
4865         */
4866        if (!(er32(STATUS) & E1000_STATUS_LU)) {
4867                for (i = 0; i < 3; i++) {
4868                        led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4869                        if ((led & E1000_PHY_LED0_MODE_MASK) !=
4870                            E1000_LEDCTL_MODE_LINK_UP)
4871                                continue;
4872                        if (led & E1000_PHY_LED0_IVRT)
4873                                data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4874                        else
4875                                data |= (E1000_PHY_LED0_IVRT << (i * 5));
4876                }
4877        }
4878
4879        return e1e_wphy(hw, HV_LED_CONFIG, data);
4880}
4881
4882/**
4883 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4884 *  @hw: pointer to the HW structure
4885 *
4886 *  Read appropriate register for the config done bit for completion status
4887 *  and configure the PHY through s/w for EEPROM-less parts.
4888 *
4889 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4890 *  config done bit, so only an error is logged and continues.  If we were
4891 *  to return with error, EEPROM-less silicon would not be able to be reset
4892 *  or change link.
4893 **/
4894static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4895{
4896        s32 ret_val = 0;
4897        u32 bank = 0;
4898        u32 status;
4899
4900        e1000e_get_cfg_done_generic(hw);
4901
4902        /* Wait for indication from h/w that it has completed basic config */
4903        if (hw->mac.type >= e1000_ich10lan) {
4904                e1000_lan_init_done_ich8lan(hw);
4905        } else {
4906                ret_val = e1000e_get_auto_rd_done(hw);
4907                if (ret_val) {
4908                        /* When auto config read does not complete, do not
4909                         * return with an error. This can happen in situations
4910                         * where there is no eeprom and prevents getting link.
4911                         */
4912                        e_dbg("Auto Read Done did not complete\n");
4913                        ret_val = 0;
4914                }
4915        }
4916
4917        /* Clear PHY Reset Asserted bit */
4918        status = er32(STATUS);
4919        if (status & E1000_STATUS_PHYRA)
4920                ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4921        else
4922                e_dbg("PHY Reset Asserted not set - needs delay\n");
4923
4924        /* If EEPROM is not marked present, init the IGP 3 PHY manually */
4925        if (hw->mac.type <= e1000_ich9lan) {
4926                if (!(er32(EECD) & E1000_EECD_PRES) &&
4927                    (hw->phy.type == e1000_phy_igp_3)) {
4928                        e1000e_phy_init_script_igp3(hw);
4929                }
4930        } else {
4931                if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4932                        /* Maybe we should do a basic PHY config */
4933                        e_dbg("EEPROM not present\n");
4934                        ret_val = -E1000_ERR_CONFIG;
4935                }
4936        }
4937
4938        return ret_val;
4939}
4940
4941/**
4942 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4943 * @hw: pointer to the HW structure
4944 *
4945 * In the case of a PHY power down to save power, or to turn off link during a
4946 * driver unload, or wake on lan is not enabled, remove the link.
4947 **/
4948static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4949{
4950        /* If the management interface is not enabled, then power down */
4951        if (!(hw->mac.ops.check_mng_mode(hw) ||
4952              hw->phy.ops.check_reset_block(hw)))
4953                e1000_power_down_phy_copper(hw);
4954}
4955
4956/**
4957 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4958 *  @hw: pointer to the HW structure
4959 *
4960 *  Clears hardware counters specific to the silicon family and calls
4961 *  clear_hw_cntrs_generic to clear all general purpose counters.
4962 **/
4963static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4964{
4965        u16 phy_data;
4966        s32 ret_val;
4967
4968        e1000e_clear_hw_cntrs_base(hw);
4969
4970        er32(ALGNERRC);
4971        er32(RXERRC);
4972        er32(TNCRS);
4973        er32(CEXTERR);
4974        er32(TSCTC);
4975        er32(TSCTFC);
4976
4977        er32(MGTPRC);
4978        er32(MGTPDC);
4979        er32(MGTPTC);
4980
4981        er32(IAC);
4982        er32(ICRXOC);
4983
4984        /* Clear PHY statistics registers */
4985        if ((hw->phy.type == e1000_phy_82578) ||
4986            (hw->phy.type == e1000_phy_82579) ||
4987            (hw->phy.type == e1000_phy_i217) ||
4988            (hw->phy.type == e1000_phy_82577)) {
4989                ret_val = hw->phy.ops.acquire(hw);
4990                if (ret_val)
4991                        return;
4992                ret_val = hw->phy.ops.set_page(hw,
4993                                               HV_STATS_PAGE << IGP_PAGE_SHIFT);
4994                if (ret_val)
4995                        goto release;
4996                hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4997                hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4998                hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4999                hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5000                hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5001                hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5002                hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5003                hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5004                hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5005                hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5006                hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5007                hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5008                hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5009                hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5010release:
5011                hw->phy.ops.release(hw);
5012        }
5013}
5014
5015static const struct e1000_mac_operations ich8_mac_ops = {
5016        /* check_mng_mode dependent on mac type */
5017        .check_for_link         = e1000_check_for_copper_link_ich8lan,
5018        /* cleanup_led dependent on mac type */
5019        .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
5020        .get_bus_info           = e1000_get_bus_info_ich8lan,
5021        .set_lan_id             = e1000_set_lan_id_single_port,
5022        .get_link_up_info       = e1000_get_link_up_info_ich8lan,
5023        /* led_on dependent on mac type */
5024        /* led_off dependent on mac type */
5025        .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
5026        .reset_hw               = e1000_reset_hw_ich8lan,
5027        .init_hw                = e1000_init_hw_ich8lan,
5028        .setup_link             = e1000_setup_link_ich8lan,
5029        .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5030        /* id_led_init dependent on mac type */
5031        .config_collision_dist  = e1000e_config_collision_dist_generic,
5032        .rar_set                = e1000e_rar_set_generic,
5033        .rar_get_count          = e1000e_rar_get_count_generic,
5034};
5035
5036static const struct e1000_phy_operations ich8_phy_ops = {
5037        .acquire                = e1000_acquire_swflag_ich8lan,
5038        .check_reset_block      = e1000_check_reset_block_ich8lan,
5039        .commit                 = NULL,
5040        .get_cfg_done           = e1000_get_cfg_done_ich8lan,
5041        .get_cable_length       = e1000e_get_cable_length_igp_2,
5042        .read_reg               = e1000e_read_phy_reg_igp,
5043        .release                = e1000_release_swflag_ich8lan,
5044        .reset                  = e1000_phy_hw_reset_ich8lan,
5045        .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
5046        .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
5047        .write_reg              = e1000e_write_phy_reg_igp,
5048};
5049
5050static const struct e1000_nvm_operations ich8_nvm_ops = {
5051        .acquire                = e1000_acquire_nvm_ich8lan,
5052        .read                   = e1000_read_nvm_ich8lan,
5053        .release                = e1000_release_nvm_ich8lan,
5054        .reload                 = e1000e_reload_nvm_generic,
5055        .update                 = e1000_update_nvm_checksum_ich8lan,
5056        .valid_led_default      = e1000_valid_led_default_ich8lan,
5057        .validate               = e1000_validate_nvm_checksum_ich8lan,
5058        .write                  = e1000_write_nvm_ich8lan,
5059};
5060
5061const struct e1000_info e1000_ich8_info = {
5062        .mac                    = e1000_ich8lan,
5063        .flags                  = FLAG_HAS_WOL
5064                                  | FLAG_IS_ICH
5065                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5066                                  | FLAG_HAS_AMT
5067                                  | FLAG_HAS_FLASH
5068                                  | FLAG_APME_IN_WUC,
5069        .pba                    = 8,
5070        .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
5071        .get_variants           = e1000_get_variants_ich8lan,
5072        .mac_ops                = &ich8_mac_ops,
5073        .phy_ops                = &ich8_phy_ops,
5074        .nvm_ops                = &ich8_nvm_ops,
5075};
5076
5077const struct e1000_info e1000_ich9_info = {
5078        .mac                    = e1000_ich9lan,
5079        .flags                  = FLAG_HAS_JUMBO_FRAMES
5080                                  | FLAG_IS_ICH
5081                                  | FLAG_HAS_WOL
5082                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5083                                  | FLAG_HAS_AMT
5084                                  | FLAG_HAS_FLASH
5085                                  | FLAG_APME_IN_WUC,
5086        .pba                    = 18,
5087        .max_hw_frame_size      = DEFAULT_JUMBO,
5088        .get_variants           = e1000_get_variants_ich8lan,
5089        .mac_ops                = &ich8_mac_ops,
5090        .phy_ops                = &ich8_phy_ops,
5091        .nvm_ops                = &ich8_nvm_ops,
5092};
5093
5094const struct e1000_info e1000_ich10_info = {
5095        .mac                    = e1000_ich10lan,
5096        .flags                  = FLAG_HAS_JUMBO_FRAMES
5097                                  | FLAG_IS_ICH
5098                                  | FLAG_HAS_WOL
5099                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5100                                  | FLAG_HAS_AMT
5101                                  | FLAG_HAS_FLASH
5102                                  | FLAG_APME_IN_WUC,
5103        .pba                    = 18,
5104        .max_hw_frame_size      = DEFAULT_JUMBO,
5105        .get_variants           = e1000_get_variants_ich8lan,
5106        .mac_ops                = &ich8_mac_ops,
5107        .phy_ops                = &ich8_phy_ops,
5108        .nvm_ops                = &ich8_nvm_ops,
5109};
5110
5111const struct e1000_info e1000_pch_info = {
5112        .mac                    = e1000_pchlan,
5113        .flags                  = FLAG_IS_ICH
5114                                  | FLAG_HAS_WOL
5115                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5116                                  | FLAG_HAS_AMT
5117                                  | FLAG_HAS_FLASH
5118                                  | FLAG_HAS_JUMBO_FRAMES
5119                                  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5120                                  | FLAG_APME_IN_WUC,
5121        .flags2                 = FLAG2_HAS_PHY_STATS,
5122        .pba                    = 26,
5123        .max_hw_frame_size      = 4096,
5124        .get_variants           = e1000_get_variants_ich8lan,
5125        .mac_ops                = &ich8_mac_ops,
5126        .phy_ops                = &ich8_phy_ops,
5127        .nvm_ops                = &ich8_nvm_ops,
5128};
5129
5130const struct e1000_info e1000_pch2_info = {
5131        .mac                    = e1000_pch2lan,
5132        .flags                  = FLAG_IS_ICH
5133                                  | FLAG_HAS_WOL
5134                                  | FLAG_HAS_HW_TIMESTAMP
5135                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5136                                  | FLAG_HAS_AMT
5137                                  | FLAG_HAS_FLASH
5138                                  | FLAG_HAS_JUMBO_FRAMES
5139                                  | FLAG_APME_IN_WUC,
5140        .flags2                 = FLAG2_HAS_PHY_STATS
5141                                  | FLAG2_HAS_EEE,
5142        .pba                    = 26,
5143        .max_hw_frame_size      = 9018,
5144        .get_variants           = e1000_get_variants_ich8lan,
5145        .mac_ops                = &ich8_mac_ops,
5146        .phy_ops                = &ich8_phy_ops,
5147        .nvm_ops                = &ich8_nvm_ops,
5148};
5149
5150const struct e1000_info e1000_pch_lpt_info = {
5151        .mac                    = e1000_pch_lpt,
5152        .flags                  = FLAG_IS_ICH
5153                                  | FLAG_HAS_WOL
5154                                  | FLAG_HAS_HW_TIMESTAMP
5155                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5156                                  | FLAG_HAS_AMT
5157                                  | FLAG_HAS_FLASH
5158                                  | FLAG_HAS_JUMBO_FRAMES
5159                                  | FLAG_APME_IN_WUC,
5160        .flags2                 = FLAG2_HAS_PHY_STATS
5161                                  | FLAG2_HAS_EEE,
5162        .pba                    = 26,
5163        .max_hw_frame_size      = 9018,
5164        .get_variants           = e1000_get_variants_ich8lan,
5165        .mac_ops                = &ich8_mac_ops,
5166        .phy_ops                = &ich8_phy_ops,
5167        .nvm_ops                = &ich8_nvm_ops,
5168};
5169