linux/drivers/net/ethernet/intel/fm10k/fm10k_main.c
<<
>>
Prefs
   1/* Intel Ethernet Switch Host Interface Driver
   2 * Copyright(c) 2013 - 2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19 */
  20
  21#include <linux/types.h>
  22#include <linux/module.h>
  23#include <net/ipv6.h>
  24#include <net/ip.h>
  25#include <net/tcp.h>
  26#include <linux/if_macvlan.h>
  27#include <linux/prefetch.h>
  28
  29#include "fm10k.h"
  30
  31#define DRV_VERSION     "0.12.2-k"
  32const char fm10k_driver_version[] = DRV_VERSION;
  33char fm10k_driver_name[] = "fm10k";
  34static const char fm10k_driver_string[] =
  35        "Intel(R) Ethernet Switch Host Interface Driver";
  36static const char fm10k_copyright[] =
  37        "Copyright (c) 2013 Intel Corporation.";
  38
  39MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  40MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
  41MODULE_LICENSE("GPL");
  42MODULE_VERSION(DRV_VERSION);
  43
  44/**
  45 * fm10k_init_module - Driver Registration Routine
  46 *
  47 * fm10k_init_module is the first routine called when the driver is
  48 * loaded.  All it does is register with the PCI subsystem.
  49 **/
  50static int __init fm10k_init_module(void)
  51{
  52        pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
  53        pr_info("%s\n", fm10k_copyright);
  54
  55        fm10k_dbg_init();
  56
  57        return fm10k_register_pci_driver();
  58}
  59module_init(fm10k_init_module);
  60
  61/**
  62 * fm10k_exit_module - Driver Exit Cleanup Routine
  63 *
  64 * fm10k_exit_module is called just before the driver is removed
  65 * from memory.
  66 **/
  67static void __exit fm10k_exit_module(void)
  68{
  69        fm10k_unregister_pci_driver();
  70
  71        fm10k_dbg_exit();
  72}
  73module_exit(fm10k_exit_module);
  74
  75static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
  76                                    struct fm10k_rx_buffer *bi)
  77{
  78        struct page *page = bi->page;
  79        dma_addr_t dma;
  80
  81        /* Only page will be NULL if buffer was consumed */
  82        if (likely(page))
  83                return true;
  84
  85        /* alloc new page for storage */
  86        page = dev_alloc_page();
  87        if (unlikely(!page)) {
  88                rx_ring->rx_stats.alloc_failed++;
  89                return false;
  90        }
  91
  92        /* map page for use */
  93        dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  94
  95        /* if mapping failed free memory back to system since
  96         * there isn't much point in holding memory we can't use
  97         */
  98        if (dma_mapping_error(rx_ring->dev, dma)) {
  99                __free_page(page);
 100
 101                rx_ring->rx_stats.alloc_failed++;
 102                return false;
 103        }
 104
 105        bi->dma = dma;
 106        bi->page = page;
 107        bi->page_offset = 0;
 108
 109        return true;
 110}
 111
 112/**
 113 * fm10k_alloc_rx_buffers - Replace used receive buffers
 114 * @rx_ring: ring to place buffers on
 115 * @cleaned_count: number of buffers to replace
 116 **/
 117void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
 118{
 119        union fm10k_rx_desc *rx_desc;
 120        struct fm10k_rx_buffer *bi;
 121        u16 i = rx_ring->next_to_use;
 122
 123        /* nothing to do */
 124        if (!cleaned_count)
 125                return;
 126
 127        rx_desc = FM10K_RX_DESC(rx_ring, i);
 128        bi = &rx_ring->rx_buffer[i];
 129        i -= rx_ring->count;
 130
 131        do {
 132                if (!fm10k_alloc_mapped_page(rx_ring, bi))
 133                        break;
 134
 135                /* Refresh the desc even if buffer_addrs didn't change
 136                 * because each write-back erases this info.
 137                 */
 138                rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 139
 140                rx_desc++;
 141                bi++;
 142                i++;
 143                if (unlikely(!i)) {
 144                        rx_desc = FM10K_RX_DESC(rx_ring, 0);
 145                        bi = rx_ring->rx_buffer;
 146                        i -= rx_ring->count;
 147                }
 148
 149                /* clear the status bits for the next_to_use descriptor */
 150                rx_desc->d.staterr = 0;
 151
 152                cleaned_count--;
 153        } while (cleaned_count);
 154
 155        i += rx_ring->count;
 156
 157        if (rx_ring->next_to_use != i) {
 158                /* record the next descriptor to use */
 159                rx_ring->next_to_use = i;
 160
 161                /* update next to alloc since we have filled the ring */
 162                rx_ring->next_to_alloc = i;
 163
 164                /* Force memory writes to complete before letting h/w
 165                 * know there are new descriptors to fetch.  (Only
 166                 * applicable for weak-ordered memory model archs,
 167                 * such as IA-64).
 168                 */
 169                wmb();
 170
 171                /* notify hardware of new descriptors */
 172                writel(i, rx_ring->tail);
 173        }
 174}
 175
 176/**
 177 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
 178 * @rx_ring: rx descriptor ring to store buffers on
 179 * @old_buff: donor buffer to have page reused
 180 *
 181 * Synchronizes page for reuse by the interface
 182 **/
 183static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
 184                                struct fm10k_rx_buffer *old_buff)
 185{
 186        struct fm10k_rx_buffer *new_buff;
 187        u16 nta = rx_ring->next_to_alloc;
 188
 189        new_buff = &rx_ring->rx_buffer[nta];
 190
 191        /* update, and store next to alloc */
 192        nta++;
 193        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 194
 195        /* transfer page from old buffer to new buffer */
 196        *new_buff = *old_buff;
 197
 198        /* sync the buffer for use by the device */
 199        dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
 200                                         old_buff->page_offset,
 201                                         FM10K_RX_BUFSZ,
 202                                         DMA_FROM_DEVICE);
 203}
 204
 205static inline bool fm10k_page_is_reserved(struct page *page)
 206{
 207        return (page_to_nid(page) != numa_mem_id()) || page->pfmemalloc;
 208}
 209
 210static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
 211                                    struct page *page,
 212                                    unsigned int truesize)
 213{
 214        /* avoid re-using remote pages */
 215        if (unlikely(fm10k_page_is_reserved(page)))
 216                return false;
 217
 218#if (PAGE_SIZE < 8192)
 219        /* if we are only owner of page we can reuse it */
 220        if (unlikely(page_count(page) != 1))
 221                return false;
 222
 223        /* flip page offset to other buffer */
 224        rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
 225#else
 226        /* move offset up to the next cache line */
 227        rx_buffer->page_offset += truesize;
 228
 229        if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
 230                return false;
 231#endif
 232
 233        /* Even if we own the page, we are not allowed to use atomic_set()
 234         * This would break get_page_unless_zero() users.
 235         */
 236        atomic_inc(&page->_count);
 237
 238        return true;
 239}
 240
 241/**
 242 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
 243 * @rx_ring: rx descriptor ring to transact packets on
 244 * @rx_buffer: buffer containing page to add
 245 * @rx_desc: descriptor containing length of buffer written by hardware
 246 * @skb: sk_buff to place the data into
 247 *
 248 * This function will add the data contained in rx_buffer->page to the skb.
 249 * This is done either through a direct copy if the data in the buffer is
 250 * less than the skb header size, otherwise it will just attach the page as
 251 * a frag to the skb.
 252 *
 253 * The function will then update the page offset if necessary and return
 254 * true if the buffer can be reused by the interface.
 255 **/
 256static bool fm10k_add_rx_frag(struct fm10k_ring *rx_ring,
 257                              struct fm10k_rx_buffer *rx_buffer,
 258                              union fm10k_rx_desc *rx_desc,
 259                              struct sk_buff *skb)
 260{
 261        struct page *page = rx_buffer->page;
 262        unsigned int size = le16_to_cpu(rx_desc->w.length);
 263#if (PAGE_SIZE < 8192)
 264        unsigned int truesize = FM10K_RX_BUFSZ;
 265#else
 266        unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
 267#endif
 268
 269        if ((size <= FM10K_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
 270                unsigned char *va = page_address(page) + rx_buffer->page_offset;
 271
 272                memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 273
 274                /* page is not reserved, we can reuse buffer as-is */
 275                if (likely(!fm10k_page_is_reserved(page)))
 276                        return true;
 277
 278                /* this page cannot be reused so discard it */
 279                __free_page(page);
 280                return false;
 281        }
 282
 283        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 284                        rx_buffer->page_offset, size, truesize);
 285
 286        return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
 287}
 288
 289static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
 290                                             union fm10k_rx_desc *rx_desc,
 291                                             struct sk_buff *skb)
 292{
 293        struct fm10k_rx_buffer *rx_buffer;
 294        struct page *page;
 295
 296        rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
 297        page = rx_buffer->page;
 298        prefetchw(page);
 299
 300        if (likely(!skb)) {
 301                void *page_addr = page_address(page) +
 302                                  rx_buffer->page_offset;
 303
 304                /* prefetch first cache line of first page */
 305                prefetch(page_addr);
 306#if L1_CACHE_BYTES < 128
 307                prefetch(page_addr + L1_CACHE_BYTES);
 308#endif
 309
 310                /* allocate a skb to store the frags */
 311                skb = napi_alloc_skb(&rx_ring->q_vector->napi,
 312                                     FM10K_RX_HDR_LEN);
 313                if (unlikely(!skb)) {
 314                        rx_ring->rx_stats.alloc_failed++;
 315                        return NULL;
 316                }
 317
 318                /* we will be copying header into skb->data in
 319                 * pskb_may_pull so it is in our interest to prefetch
 320                 * it now to avoid a possible cache miss
 321                 */
 322                prefetchw(skb->data);
 323        }
 324
 325        /* we are reusing so sync this buffer for CPU use */
 326        dma_sync_single_range_for_cpu(rx_ring->dev,
 327                                      rx_buffer->dma,
 328                                      rx_buffer->page_offset,
 329                                      FM10K_RX_BUFSZ,
 330                                      DMA_FROM_DEVICE);
 331
 332        /* pull page into skb */
 333        if (fm10k_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
 334                /* hand second half of page back to the ring */
 335                fm10k_reuse_rx_page(rx_ring, rx_buffer);
 336        } else {
 337                /* we are not reusing the buffer so unmap it */
 338                dma_unmap_page(rx_ring->dev, rx_buffer->dma,
 339                               PAGE_SIZE, DMA_FROM_DEVICE);
 340        }
 341
 342        /* clear contents of rx_buffer */
 343        rx_buffer->page = NULL;
 344
 345        return skb;
 346}
 347
 348static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
 349                                     union fm10k_rx_desc *rx_desc,
 350                                     struct sk_buff *skb)
 351{
 352        skb_checksum_none_assert(skb);
 353
 354        /* Rx checksum disabled via ethtool */
 355        if (!(ring->netdev->features & NETIF_F_RXCSUM))
 356                return;
 357
 358        /* TCP/UDP checksum error bit is set */
 359        if (fm10k_test_staterr(rx_desc,
 360                               FM10K_RXD_STATUS_L4E |
 361                               FM10K_RXD_STATUS_L4E2 |
 362                               FM10K_RXD_STATUS_IPE |
 363                               FM10K_RXD_STATUS_IPE2)) {
 364                ring->rx_stats.csum_err++;
 365                return;
 366        }
 367
 368        /* It must be a TCP or UDP packet with a valid checksum */
 369        if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
 370                skb->encapsulation = true;
 371        else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
 372                return;
 373
 374        skb->ip_summed = CHECKSUM_UNNECESSARY;
 375}
 376
 377#define FM10K_RSS_L4_TYPES_MASK \
 378        ((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
 379         (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
 380         (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
 381         (1ul << FM10K_RSSTYPE_IPV6_UDP))
 382
 383static inline void fm10k_rx_hash(struct fm10k_ring *ring,
 384                                 union fm10k_rx_desc *rx_desc,
 385                                 struct sk_buff *skb)
 386{
 387        u16 rss_type;
 388
 389        if (!(ring->netdev->features & NETIF_F_RXHASH))
 390                return;
 391
 392        rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
 393        if (!rss_type)
 394                return;
 395
 396        skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
 397                     (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
 398                     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
 399}
 400
 401static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
 402                              union fm10k_rx_desc *rx_desc,
 403                              struct sk_buff *skb)
 404{
 405        struct fm10k_intfc *interface = rx_ring->q_vector->interface;
 406
 407        FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
 408
 409        if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
 410                fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
 411                                          le64_to_cpu(rx_desc->q.timestamp));
 412}
 413
 414static void fm10k_type_trans(struct fm10k_ring *rx_ring,
 415                             union fm10k_rx_desc *rx_desc,
 416                             struct sk_buff *skb)
 417{
 418        struct net_device *dev = rx_ring->netdev;
 419        struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
 420
 421        /* check to see if DGLORT belongs to a MACVLAN */
 422        if (l2_accel) {
 423                u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
 424
 425                idx -= l2_accel->dglort;
 426                if (idx < l2_accel->size && l2_accel->macvlan[idx])
 427                        dev = l2_accel->macvlan[idx];
 428                else
 429                        l2_accel = NULL;
 430        }
 431
 432        skb->protocol = eth_type_trans(skb, dev);
 433
 434        if (!l2_accel)
 435                return;
 436
 437        /* update MACVLAN statistics */
 438        macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
 439                         !!(rx_desc->w.hdr_info &
 440                            cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
 441}
 442
 443/**
 444 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
 445 * @rx_ring: rx descriptor ring packet is being transacted on
 446 * @rx_desc: pointer to the EOP Rx descriptor
 447 * @skb: pointer to current skb being populated
 448 *
 449 * This function checks the ring, descriptor, and packet information in
 450 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 451 * other fields within the skb.
 452 **/
 453static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
 454                                             union fm10k_rx_desc *rx_desc,
 455                                             struct sk_buff *skb)
 456{
 457        unsigned int len = skb->len;
 458
 459        fm10k_rx_hash(rx_ring, rx_desc, skb);
 460
 461        fm10k_rx_checksum(rx_ring, rx_desc, skb);
 462
 463        fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
 464
 465        FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
 466
 467        skb_record_rx_queue(skb, rx_ring->queue_index);
 468
 469        FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
 470
 471        if (rx_desc->w.vlan) {
 472                u16 vid = le16_to_cpu(rx_desc->w.vlan);
 473
 474                if (vid != rx_ring->vid)
 475                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 476        }
 477
 478        fm10k_type_trans(rx_ring, rx_desc, skb);
 479
 480        return len;
 481}
 482
 483/**
 484 * fm10k_is_non_eop - process handling of non-EOP buffers
 485 * @rx_ring: Rx ring being processed
 486 * @rx_desc: Rx descriptor for current buffer
 487 *
 488 * This function updates next to clean.  If the buffer is an EOP buffer
 489 * this function exits returning false, otherwise it will place the
 490 * sk_buff in the next buffer to be chained and return true indicating
 491 * that this is in fact a non-EOP buffer.
 492 **/
 493static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
 494                             union fm10k_rx_desc *rx_desc)
 495{
 496        u32 ntc = rx_ring->next_to_clean + 1;
 497
 498        /* fetch, update, and store next to clean */
 499        ntc = (ntc < rx_ring->count) ? ntc : 0;
 500        rx_ring->next_to_clean = ntc;
 501
 502        prefetch(FM10K_RX_DESC(rx_ring, ntc));
 503
 504        if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
 505                return false;
 506
 507        return true;
 508}
 509
 510/**
 511 * fm10k_pull_tail - fm10k specific version of skb_pull_tail
 512 * @rx_ring: rx descriptor ring packet is being transacted on
 513 * @rx_desc: pointer to the EOP Rx descriptor
 514 * @skb: pointer to current skb being adjusted
 515 *
 516 * This function is an fm10k specific version of __pskb_pull_tail.  The
 517 * main difference between this version and the original function is that
 518 * this function can make several assumptions about the state of things
 519 * that allow for significant optimizations versus the standard function.
 520 * As a result we can do things like drop a frag and maintain an accurate
 521 * truesize for the skb.
 522 */
 523static void fm10k_pull_tail(struct fm10k_ring *rx_ring,
 524                            union fm10k_rx_desc *rx_desc,
 525                            struct sk_buff *skb)
 526{
 527        struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
 528        unsigned char *va;
 529        unsigned int pull_len;
 530
 531        /* it is valid to use page_address instead of kmap since we are
 532         * working with pages allocated out of the lomem pool per
 533         * alloc_page(GFP_ATOMIC)
 534         */
 535        va = skb_frag_address(frag);
 536
 537        /* we need the header to contain the greater of either ETH_HLEN or
 538         * 60 bytes if the skb->len is less than 60 for skb_pad.
 539         */
 540        pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
 541
 542        /* align pull length to size of long to optimize memcpy performance */
 543        skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
 544
 545        /* update all of the pointers */
 546        skb_frag_size_sub(frag, pull_len);
 547        frag->page_offset += pull_len;
 548        skb->data_len -= pull_len;
 549        skb->tail += pull_len;
 550}
 551
 552/**
 553 * fm10k_cleanup_headers - Correct corrupted or empty headers
 554 * @rx_ring: rx descriptor ring packet is being transacted on
 555 * @rx_desc: pointer to the EOP Rx descriptor
 556 * @skb: pointer to current skb being fixed
 557 *
 558 * Address the case where we are pulling data in on pages only
 559 * and as such no data is present in the skb header.
 560 *
 561 * In addition if skb is not at least 60 bytes we need to pad it so that
 562 * it is large enough to qualify as a valid Ethernet frame.
 563 *
 564 * Returns true if an error was encountered and skb was freed.
 565 **/
 566static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
 567                                  union fm10k_rx_desc *rx_desc,
 568                                  struct sk_buff *skb)
 569{
 570        if (unlikely((fm10k_test_staterr(rx_desc,
 571                                         FM10K_RXD_STATUS_RXE)))) {
 572                dev_kfree_skb_any(skb);
 573                rx_ring->rx_stats.errors++;
 574                return true;
 575        }
 576
 577        /* place header in linear portion of buffer */
 578        if (skb_is_nonlinear(skb))
 579                fm10k_pull_tail(rx_ring, rx_desc, skb);
 580
 581        /* if eth_skb_pad returns an error the skb was freed */
 582        if (eth_skb_pad(skb))
 583                return true;
 584
 585        return false;
 586}
 587
 588/**
 589 * fm10k_receive_skb - helper function to handle rx indications
 590 * @q_vector: structure containing interrupt and ring information
 591 * @skb: packet to send up
 592 **/
 593static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
 594                              struct sk_buff *skb)
 595{
 596        napi_gro_receive(&q_vector->napi, skb);
 597}
 598
 599static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
 600                               struct fm10k_ring *rx_ring,
 601                               int budget)
 602{
 603        struct sk_buff *skb = rx_ring->skb;
 604        unsigned int total_bytes = 0, total_packets = 0;
 605        u16 cleaned_count = fm10k_desc_unused(rx_ring);
 606
 607        do {
 608                union fm10k_rx_desc *rx_desc;
 609
 610                /* return some buffers to hardware, one at a time is too slow */
 611                if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
 612                        fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
 613                        cleaned_count = 0;
 614                }
 615
 616                rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
 617
 618                if (!rx_desc->d.staterr)
 619                        break;
 620
 621                /* This memory barrier is needed to keep us from reading
 622                 * any other fields out of the rx_desc until we know the
 623                 * descriptor has been written back
 624                 */
 625                dma_rmb();
 626
 627                /* retrieve a buffer from the ring */
 628                skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
 629
 630                /* exit if we failed to retrieve a buffer */
 631                if (!skb)
 632                        break;
 633
 634                cleaned_count++;
 635
 636                /* fetch next buffer in frame if non-eop */
 637                if (fm10k_is_non_eop(rx_ring, rx_desc))
 638                        continue;
 639
 640                /* verify the packet layout is correct */
 641                if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
 642                        skb = NULL;
 643                        continue;
 644                }
 645
 646                /* populate checksum, timestamp, VLAN, and protocol */
 647                total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
 648
 649                fm10k_receive_skb(q_vector, skb);
 650
 651                /* reset skb pointer */
 652                skb = NULL;
 653
 654                /* update budget accounting */
 655                total_packets++;
 656        } while (likely(total_packets < budget));
 657
 658        /* place incomplete frames back on ring for completion */
 659        rx_ring->skb = skb;
 660
 661        u64_stats_update_begin(&rx_ring->syncp);
 662        rx_ring->stats.packets += total_packets;
 663        rx_ring->stats.bytes += total_bytes;
 664        u64_stats_update_end(&rx_ring->syncp);
 665        q_vector->rx.total_packets += total_packets;
 666        q_vector->rx.total_bytes += total_bytes;
 667
 668        return total_packets < budget;
 669}
 670
 671#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
 672static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
 673{
 674        struct fm10k_intfc *interface = netdev_priv(skb->dev);
 675        struct fm10k_vxlan_port *vxlan_port;
 676
 677        /* we can only offload a vxlan if we recognize it as such */
 678        vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
 679                                              struct fm10k_vxlan_port, list);
 680
 681        if (!vxlan_port)
 682                return NULL;
 683        if (vxlan_port->port != udp_hdr(skb)->dest)
 684                return NULL;
 685
 686        /* return offset of udp_hdr plus 8 bytes for VXLAN header */
 687        return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
 688}
 689
 690#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
 691#define NVGRE_TNI htons(0x2000)
 692struct fm10k_nvgre_hdr {
 693        __be16 flags;
 694        __be16 proto;
 695        __be32 tni;
 696};
 697
 698static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
 699{
 700        struct fm10k_nvgre_hdr *nvgre_hdr;
 701        int hlen = ip_hdrlen(skb);
 702
 703        /* currently only IPv4 is supported due to hlen above */
 704        if (vlan_get_protocol(skb) != htons(ETH_P_IP))
 705                return NULL;
 706
 707        /* our transport header should be NVGRE */
 708        nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
 709
 710        /* verify all reserved flags are 0 */
 711        if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
 712                return NULL;
 713
 714        /* verify protocol is transparent Ethernet bridging */
 715        if (nvgre_hdr->proto != htons(ETH_P_TEB))
 716                return NULL;
 717
 718        /* report start of ethernet header */
 719        if (nvgre_hdr->flags & NVGRE_TNI)
 720                return (struct ethhdr *)(nvgre_hdr + 1);
 721
 722        return (struct ethhdr *)(&nvgre_hdr->tni);
 723}
 724
 725static __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
 726{
 727        struct ethhdr *eth_hdr;
 728        u8 l4_hdr = 0;
 729
 730/* fm10k supports 184 octets of outer+inner headers. Minus 20 for inner L4. */
 731#define FM10K_MAX_ENCAP_TRANSPORT_OFFSET        164
 732        if (skb_inner_transport_header(skb) - skb_mac_header(skb) >
 733            FM10K_MAX_ENCAP_TRANSPORT_OFFSET)
 734                return 0;
 735
 736        switch (vlan_get_protocol(skb)) {
 737        case htons(ETH_P_IP):
 738                l4_hdr = ip_hdr(skb)->protocol;
 739                break;
 740        case htons(ETH_P_IPV6):
 741                l4_hdr = ipv6_hdr(skb)->nexthdr;
 742                break;
 743        default:
 744                return 0;
 745        }
 746
 747        switch (l4_hdr) {
 748        case IPPROTO_UDP:
 749                eth_hdr = fm10k_port_is_vxlan(skb);
 750                break;
 751        case IPPROTO_GRE:
 752                eth_hdr = fm10k_gre_is_nvgre(skb);
 753                break;
 754        default:
 755                return 0;
 756        }
 757
 758        if (!eth_hdr)
 759                return 0;
 760
 761        switch (eth_hdr->h_proto) {
 762        case htons(ETH_P_IP):
 763        case htons(ETH_P_IPV6):
 764                break;
 765        default:
 766                return 0;
 767        }
 768
 769        return eth_hdr->h_proto;
 770}
 771
 772static int fm10k_tso(struct fm10k_ring *tx_ring,
 773                     struct fm10k_tx_buffer *first)
 774{
 775        struct sk_buff *skb = first->skb;
 776        struct fm10k_tx_desc *tx_desc;
 777        unsigned char *th;
 778        u8 hdrlen;
 779
 780        if (skb->ip_summed != CHECKSUM_PARTIAL)
 781                return 0;
 782
 783        if (!skb_is_gso(skb))
 784                return 0;
 785
 786        /* compute header lengths */
 787        if (skb->encapsulation) {
 788                if (!fm10k_tx_encap_offload(skb))
 789                        goto err_vxlan;
 790                th = skb_inner_transport_header(skb);
 791        } else {
 792                th = skb_transport_header(skb);
 793        }
 794
 795        /* compute offset from SOF to transport header and add header len */
 796        hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
 797
 798        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 799
 800        /* update gso size and bytecount with header size */
 801        first->gso_segs = skb_shinfo(skb)->gso_segs;
 802        first->bytecount += (first->gso_segs - 1) * hdrlen;
 803
 804        /* populate Tx descriptor header size and mss */
 805        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 806        tx_desc->hdrlen = hdrlen;
 807        tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
 808
 809        return 1;
 810err_vxlan:
 811        tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
 812        if (!net_ratelimit())
 813                netdev_err(tx_ring->netdev,
 814                           "TSO requested for unsupported tunnel, disabling offload\n");
 815        return -1;
 816}
 817
 818static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
 819                          struct fm10k_tx_buffer *first)
 820{
 821        struct sk_buff *skb = first->skb;
 822        struct fm10k_tx_desc *tx_desc;
 823        union {
 824                struct iphdr *ipv4;
 825                struct ipv6hdr *ipv6;
 826                u8 *raw;
 827        } network_hdr;
 828        __be16 protocol;
 829        u8 l4_hdr = 0;
 830
 831        if (skb->ip_summed != CHECKSUM_PARTIAL)
 832                goto no_csum;
 833
 834        if (skb->encapsulation) {
 835                protocol = fm10k_tx_encap_offload(skb);
 836                if (!protocol) {
 837                        if (skb_checksum_help(skb)) {
 838                                dev_warn(tx_ring->dev,
 839                                         "failed to offload encap csum!\n");
 840                                tx_ring->tx_stats.csum_err++;
 841                        }
 842                        goto no_csum;
 843                }
 844                network_hdr.raw = skb_inner_network_header(skb);
 845        } else {
 846                protocol = vlan_get_protocol(skb);
 847                network_hdr.raw = skb_network_header(skb);
 848        }
 849
 850        switch (protocol) {
 851        case htons(ETH_P_IP):
 852                l4_hdr = network_hdr.ipv4->protocol;
 853                break;
 854        case htons(ETH_P_IPV6):
 855                l4_hdr = network_hdr.ipv6->nexthdr;
 856                break;
 857        default:
 858                if (unlikely(net_ratelimit())) {
 859                        dev_warn(tx_ring->dev,
 860                                 "partial checksum but ip version=%x!\n",
 861                                 protocol);
 862                }
 863                tx_ring->tx_stats.csum_err++;
 864                goto no_csum;
 865        }
 866
 867        switch (l4_hdr) {
 868        case IPPROTO_TCP:
 869        case IPPROTO_UDP:
 870                break;
 871        case IPPROTO_GRE:
 872                if (skb->encapsulation)
 873                        break;
 874        default:
 875                if (unlikely(net_ratelimit())) {
 876                        dev_warn(tx_ring->dev,
 877                                 "partial checksum but l4 proto=%x!\n",
 878                                 l4_hdr);
 879                }
 880                tx_ring->tx_stats.csum_err++;
 881                goto no_csum;
 882        }
 883
 884        /* update TX checksum flag */
 885        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 886
 887no_csum:
 888        /* populate Tx descriptor header size and mss */
 889        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 890        tx_desc->hdrlen = 0;
 891        tx_desc->mss = 0;
 892}
 893
 894#define FM10K_SET_FLAG(_input, _flag, _result) \
 895        ((_flag <= _result) ? \
 896         ((u32)(_input & _flag) * (_result / _flag)) : \
 897         ((u32)(_input & _flag) / (_flag / _result)))
 898
 899static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
 900{
 901        /* set type for advanced descriptor with frame checksum insertion */
 902        u32 desc_flags = 0;
 903
 904        /* set timestamping bits */
 905        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
 906            likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
 907                        desc_flags |= FM10K_TXD_FLAG_TIME;
 908
 909        /* set checksum offload bits */
 910        desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
 911                                     FM10K_TXD_FLAG_CSUM);
 912
 913        return desc_flags;
 914}
 915
 916static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
 917                               struct fm10k_tx_desc *tx_desc, u16 i,
 918                               dma_addr_t dma, unsigned int size, u8 desc_flags)
 919{
 920        /* set RS and INT for last frame in a cache line */
 921        if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
 922                desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
 923
 924        /* record values to descriptor */
 925        tx_desc->buffer_addr = cpu_to_le64(dma);
 926        tx_desc->flags = desc_flags;
 927        tx_desc->buflen = cpu_to_le16(size);
 928
 929        /* return true if we just wrapped the ring */
 930        return i == tx_ring->count;
 931}
 932
 933static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 934{
 935        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 936
 937        smp_mb();
 938
 939        /* We need to check again in a case another CPU has just
 940         * made room available. */
 941        if (likely(fm10k_desc_unused(tx_ring) < size))
 942                return -EBUSY;
 943
 944        /* A reprieve! - use start_queue because it doesn't call schedule */
 945        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
 946        ++tx_ring->tx_stats.restart_queue;
 947        return 0;
 948}
 949
 950static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 951{
 952        if (likely(fm10k_desc_unused(tx_ring) >= size))
 953                return 0;
 954        return __fm10k_maybe_stop_tx(tx_ring, size);
 955}
 956
 957static void fm10k_tx_map(struct fm10k_ring *tx_ring,
 958                         struct fm10k_tx_buffer *first)
 959{
 960        struct sk_buff *skb = first->skb;
 961        struct fm10k_tx_buffer *tx_buffer;
 962        struct fm10k_tx_desc *tx_desc;
 963        struct skb_frag_struct *frag;
 964        unsigned char *data;
 965        dma_addr_t dma;
 966        unsigned int data_len, size;
 967        u32 tx_flags = first->tx_flags;
 968        u16 i = tx_ring->next_to_use;
 969        u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
 970
 971        tx_desc = FM10K_TX_DESC(tx_ring, i);
 972
 973        /* add HW VLAN tag */
 974        if (skb_vlan_tag_present(skb))
 975                tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 976        else
 977                tx_desc->vlan = 0;
 978
 979        size = skb_headlen(skb);
 980        data = skb->data;
 981
 982        dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
 983
 984        data_len = skb->data_len;
 985        tx_buffer = first;
 986
 987        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 988                if (dma_mapping_error(tx_ring->dev, dma))
 989                        goto dma_error;
 990
 991                /* record length, and DMA address */
 992                dma_unmap_len_set(tx_buffer, len, size);
 993                dma_unmap_addr_set(tx_buffer, dma, dma);
 994
 995                while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
 996                        if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
 997                                               FM10K_MAX_DATA_PER_TXD, flags)) {
 998                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
 999                                i = 0;
1000                        }
1001
1002                        dma += FM10K_MAX_DATA_PER_TXD;
1003                        size -= FM10K_MAX_DATA_PER_TXD;
1004                }
1005
1006                if (likely(!data_len))
1007                        break;
1008
1009                if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1010                                       dma, size, flags)) {
1011                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
1012                        i = 0;
1013                }
1014
1015                size = skb_frag_size(frag);
1016                data_len -= size;
1017
1018                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1019                                       DMA_TO_DEVICE);
1020
1021                tx_buffer = &tx_ring->tx_buffer[i];
1022        }
1023
1024        /* write last descriptor with LAST bit set */
1025        flags |= FM10K_TXD_FLAG_LAST;
1026
1027        if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1028                i = 0;
1029
1030        /* record bytecount for BQL */
1031        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1032
1033        /* record SW timestamp if HW timestamp is not available */
1034        skb_tx_timestamp(first->skb);
1035
1036        /* Force memory writes to complete before letting h/w know there
1037         * are new descriptors to fetch.  (Only applicable for weak-ordered
1038         * memory model archs, such as IA-64).
1039         *
1040         * We also need this memory barrier to make certain all of the
1041         * status bits have been updated before next_to_watch is written.
1042         */
1043        wmb();
1044
1045        /* set next_to_watch value indicating a packet is present */
1046        first->next_to_watch = tx_desc;
1047
1048        tx_ring->next_to_use = i;
1049
1050        /* Make sure there is space in the ring for the next send. */
1051        fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1052
1053        /* notify HW of packet */
1054        if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1055                writel(i, tx_ring->tail);
1056
1057                /* we need this if more than one processor can write to our tail
1058                 * at a time, it synchronizes IO on IA64/Altix systems
1059                 */
1060                mmiowb();
1061        }
1062
1063        return;
1064dma_error:
1065        dev_err(tx_ring->dev, "TX DMA map failed\n");
1066
1067        /* clear dma mappings for failed tx_buffer map */
1068        for (;;) {
1069                tx_buffer = &tx_ring->tx_buffer[i];
1070                fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1071                if (tx_buffer == first)
1072                        break;
1073                if (i == 0)
1074                        i = tx_ring->count;
1075                i--;
1076        }
1077
1078        tx_ring->next_to_use = i;
1079}
1080
1081netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1082                                  struct fm10k_ring *tx_ring)
1083{
1084        struct fm10k_tx_buffer *first;
1085        int tso;
1086        u32 tx_flags = 0;
1087#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1088        unsigned short f;
1089#endif
1090        u16 count = TXD_USE_COUNT(skb_headlen(skb));
1091
1092        /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1093         *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1094         *       + 2 desc gap to keep tail from touching head
1095         * otherwise try next time
1096         */
1097#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1098        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1099                count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1100#else
1101        count += skb_shinfo(skb)->nr_frags;
1102#endif
1103        if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1104                tx_ring->tx_stats.tx_busy++;
1105                return NETDEV_TX_BUSY;
1106        }
1107
1108        /* record the location of the first descriptor for this packet */
1109        first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1110        first->skb = skb;
1111        first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1112        first->gso_segs = 1;
1113
1114        /* record initial flags and protocol */
1115        first->tx_flags = tx_flags;
1116
1117        tso = fm10k_tso(tx_ring, first);
1118        if (tso < 0)
1119                goto out_drop;
1120        else if (!tso)
1121                fm10k_tx_csum(tx_ring, first);
1122
1123        fm10k_tx_map(tx_ring, first);
1124
1125        return NETDEV_TX_OK;
1126
1127out_drop:
1128        dev_kfree_skb_any(first->skb);
1129        first->skb = NULL;
1130
1131        return NETDEV_TX_OK;
1132}
1133
1134static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1135{
1136        return ring->stats.packets;
1137}
1138
1139static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1140{
1141        /* use SW head and tail until we have real hardware */
1142        u32 head = ring->next_to_clean;
1143        u32 tail = ring->next_to_use;
1144
1145        return ((head <= tail) ? tail : tail + ring->count) - head;
1146}
1147
1148bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1149{
1150        u32 tx_done = fm10k_get_tx_completed(tx_ring);
1151        u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1152        u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1153
1154        clear_check_for_tx_hang(tx_ring);
1155
1156        /* Check for a hung queue, but be thorough. This verifies
1157         * that a transmit has been completed since the previous
1158         * check AND there is at least one packet pending. By
1159         * requiring this to fail twice we avoid races with
1160         * clearing the ARMED bit and conditions where we
1161         * run the check_tx_hang logic with a transmit completion
1162         * pending but without time to complete it yet.
1163         */
1164        if (!tx_pending || (tx_done_old != tx_done)) {
1165                /* update completed stats and continue */
1166                tx_ring->tx_stats.tx_done_old = tx_done;
1167                /* reset the countdown */
1168                clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1169
1170                return false;
1171        }
1172
1173        /* make sure it is true for two checks in a row */
1174        return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1175}
1176
1177/**
1178 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1179 * @interface: driver private struct
1180 **/
1181void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1182{
1183        /* Do the reset outside of interrupt context */
1184        if (!test_bit(__FM10K_DOWN, &interface->state)) {
1185                netdev_err(interface->netdev, "Reset interface\n");
1186                interface->tx_timeout_count++;
1187                interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1188                fm10k_service_event_schedule(interface);
1189        }
1190}
1191
1192/**
1193 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1194 * @q_vector: structure containing interrupt and ring information
1195 * @tx_ring: tx ring to clean
1196 **/
1197static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1198                               struct fm10k_ring *tx_ring)
1199{
1200        struct fm10k_intfc *interface = q_vector->interface;
1201        struct fm10k_tx_buffer *tx_buffer;
1202        struct fm10k_tx_desc *tx_desc;
1203        unsigned int total_bytes = 0, total_packets = 0;
1204        unsigned int budget = q_vector->tx.work_limit;
1205        unsigned int i = tx_ring->next_to_clean;
1206
1207        if (test_bit(__FM10K_DOWN, &interface->state))
1208                return true;
1209
1210        tx_buffer = &tx_ring->tx_buffer[i];
1211        tx_desc = FM10K_TX_DESC(tx_ring, i);
1212        i -= tx_ring->count;
1213
1214        do {
1215                struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1216
1217                /* if next_to_watch is not set then there is no work pending */
1218                if (!eop_desc)
1219                        break;
1220
1221                /* prevent any other reads prior to eop_desc */
1222                read_barrier_depends();
1223
1224                /* if DD is not set pending work has not been completed */
1225                if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1226                        break;
1227
1228                /* clear next_to_watch to prevent false hangs */
1229                tx_buffer->next_to_watch = NULL;
1230
1231                /* update the statistics for this packet */
1232                total_bytes += tx_buffer->bytecount;
1233                total_packets += tx_buffer->gso_segs;
1234
1235                /* free the skb */
1236                dev_consume_skb_any(tx_buffer->skb);
1237
1238                /* unmap skb header data */
1239                dma_unmap_single(tx_ring->dev,
1240                                 dma_unmap_addr(tx_buffer, dma),
1241                                 dma_unmap_len(tx_buffer, len),
1242                                 DMA_TO_DEVICE);
1243
1244                /* clear tx_buffer data */
1245                tx_buffer->skb = NULL;
1246                dma_unmap_len_set(tx_buffer, len, 0);
1247
1248                /* unmap remaining buffers */
1249                while (tx_desc != eop_desc) {
1250                        tx_buffer++;
1251                        tx_desc++;
1252                        i++;
1253                        if (unlikely(!i)) {
1254                                i -= tx_ring->count;
1255                                tx_buffer = tx_ring->tx_buffer;
1256                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
1257                        }
1258
1259                        /* unmap any remaining paged data */
1260                        if (dma_unmap_len(tx_buffer, len)) {
1261                                dma_unmap_page(tx_ring->dev,
1262                                               dma_unmap_addr(tx_buffer, dma),
1263                                               dma_unmap_len(tx_buffer, len),
1264                                               DMA_TO_DEVICE);
1265                                dma_unmap_len_set(tx_buffer, len, 0);
1266                        }
1267                }
1268
1269                /* move us one more past the eop_desc for start of next pkt */
1270                tx_buffer++;
1271                tx_desc++;
1272                i++;
1273                if (unlikely(!i)) {
1274                        i -= tx_ring->count;
1275                        tx_buffer = tx_ring->tx_buffer;
1276                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
1277                }
1278
1279                /* issue prefetch for next Tx descriptor */
1280                prefetch(tx_desc);
1281
1282                /* update budget accounting */
1283                budget--;
1284        } while (likely(budget));
1285
1286        i += tx_ring->count;
1287        tx_ring->next_to_clean = i;
1288        u64_stats_update_begin(&tx_ring->syncp);
1289        tx_ring->stats.bytes += total_bytes;
1290        tx_ring->stats.packets += total_packets;
1291        u64_stats_update_end(&tx_ring->syncp);
1292        q_vector->tx.total_bytes += total_bytes;
1293        q_vector->tx.total_packets += total_packets;
1294
1295        if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1296                /* schedule immediate reset if we believe we hung */
1297                struct fm10k_hw *hw = &interface->hw;
1298
1299                netif_err(interface, drv, tx_ring->netdev,
1300                          "Detected Tx Unit Hang\n"
1301                          "  Tx Queue             <%d>\n"
1302                          "  TDH, TDT             <%x>, <%x>\n"
1303                          "  next_to_use          <%x>\n"
1304                          "  next_to_clean        <%x>\n",
1305                          tx_ring->queue_index,
1306                          fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1307                          fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1308                          tx_ring->next_to_use, i);
1309
1310                netif_stop_subqueue(tx_ring->netdev,
1311                                    tx_ring->queue_index);
1312
1313                netif_info(interface, probe, tx_ring->netdev,
1314                           "tx hang %d detected on queue %d, resetting interface\n",
1315                           interface->tx_timeout_count + 1,
1316                           tx_ring->queue_index);
1317
1318                fm10k_tx_timeout_reset(interface);
1319
1320                /* the netdev is about to reset, no point in enabling stuff */
1321                return true;
1322        }
1323
1324        /* notify netdev of completed buffers */
1325        netdev_tx_completed_queue(txring_txq(tx_ring),
1326                                  total_packets, total_bytes);
1327
1328#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1329        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1330                     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1331                /* Make sure that anybody stopping the queue after this
1332                 * sees the new next_to_clean.
1333                 */
1334                smp_mb();
1335                if (__netif_subqueue_stopped(tx_ring->netdev,
1336                                             tx_ring->queue_index) &&
1337                    !test_bit(__FM10K_DOWN, &interface->state)) {
1338                        netif_wake_subqueue(tx_ring->netdev,
1339                                            tx_ring->queue_index);
1340                        ++tx_ring->tx_stats.restart_queue;
1341                }
1342        }
1343
1344        return !!budget;
1345}
1346
1347/**
1348 * fm10k_update_itr - update the dynamic ITR value based on packet size
1349 *
1350 *      Stores a new ITR value based on strictly on packet size.  The
1351 *      divisors and thresholds used by this function were determined based
1352 *      on theoretical maximum wire speed and testing data, in order to
1353 *      minimize response time while increasing bulk throughput.
1354 *
1355 * @ring_container: Container for rings to have ITR updated
1356 **/
1357static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1358{
1359        unsigned int avg_wire_size, packets;
1360
1361        /* Only update ITR if we are using adaptive setting */
1362        if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
1363                goto clear_counts;
1364
1365        packets = ring_container->total_packets;
1366        if (!packets)
1367                goto clear_counts;
1368
1369        avg_wire_size = ring_container->total_bytes / packets;
1370
1371        /* Add 24 bytes to size to account for CRC, preamble, and gap */
1372        avg_wire_size += 24;
1373
1374        /* Don't starve jumbo frames */
1375        if (avg_wire_size > 3000)
1376                avg_wire_size = 3000;
1377
1378        /* Give a little boost to mid-size frames */
1379        if ((avg_wire_size > 300) && (avg_wire_size < 1200))
1380                avg_wire_size /= 3;
1381        else
1382                avg_wire_size /= 2;
1383
1384        /* write back value and retain adaptive flag */
1385        ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1386
1387clear_counts:
1388        ring_container->total_bytes = 0;
1389        ring_container->total_packets = 0;
1390}
1391
1392static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1393{
1394        /* Enable auto-mask and clear the current mask */
1395        u32 itr = FM10K_ITR_ENABLE;
1396
1397        /* Update Tx ITR */
1398        fm10k_update_itr(&q_vector->tx);
1399
1400        /* Update Rx ITR */
1401        fm10k_update_itr(&q_vector->rx);
1402
1403        /* Store Tx itr in timer slot 0 */
1404        itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1405
1406        /* Shift Rx itr to timer slot 1 */
1407        itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1408
1409        /* Write the final value to the ITR register */
1410        writel(itr, q_vector->itr);
1411}
1412
1413static int fm10k_poll(struct napi_struct *napi, int budget)
1414{
1415        struct fm10k_q_vector *q_vector =
1416                               container_of(napi, struct fm10k_q_vector, napi);
1417        struct fm10k_ring *ring;
1418        int per_ring_budget;
1419        bool clean_complete = true;
1420
1421        fm10k_for_each_ring(ring, q_vector->tx)
1422                clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1423
1424        /* attempt to distribute budget to each queue fairly, but don't
1425         * allow the budget to go below 1 because we'll exit polling
1426         */
1427        if (q_vector->rx.count > 1)
1428                per_ring_budget = max(budget/q_vector->rx.count, 1);
1429        else
1430                per_ring_budget = budget;
1431
1432        fm10k_for_each_ring(ring, q_vector->rx)
1433                clean_complete &= fm10k_clean_rx_irq(q_vector, ring,
1434                                                     per_ring_budget);
1435
1436        /* If all work not completed, return budget and keep polling */
1437        if (!clean_complete)
1438                return budget;
1439
1440        /* all work done, exit the polling mode */
1441        napi_complete(napi);
1442
1443        /* re-enable the q_vector */
1444        fm10k_qv_enable(q_vector);
1445
1446        return 0;
1447}
1448
1449/**
1450 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1451 * @interface: board private structure to initialize
1452 *
1453 * When QoS (Quality of Service) is enabled, allocate queues for
1454 * each traffic class.  If multiqueue isn't available,then abort QoS
1455 * initialization.
1456 *
1457 * This function handles all combinations of Qos and RSS.
1458 *
1459 **/
1460static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1461{
1462        struct net_device *dev = interface->netdev;
1463        struct fm10k_ring_feature *f;
1464        int rss_i, i;
1465        int pcs;
1466
1467        /* Map queue offset and counts onto allocated tx queues */
1468        pcs = netdev_get_num_tc(dev);
1469
1470        if (pcs <= 1)
1471                return false;
1472
1473        /* set QoS mask and indices */
1474        f = &interface->ring_feature[RING_F_QOS];
1475        f->indices = pcs;
1476        f->mask = (1 << fls(pcs - 1)) - 1;
1477
1478        /* determine the upper limit for our current DCB mode */
1479        rss_i = interface->hw.mac.max_queues / pcs;
1480        rss_i = 1 << (fls(rss_i) - 1);
1481
1482        /* set RSS mask and indices */
1483        f = &interface->ring_feature[RING_F_RSS];
1484        rss_i = min_t(u16, rss_i, f->limit);
1485        f->indices = rss_i;
1486        f->mask = (1 << fls(rss_i - 1)) - 1;
1487
1488        /* configure pause class to queue mapping */
1489        for (i = 0; i < pcs; i++)
1490                netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1491
1492        interface->num_rx_queues = rss_i * pcs;
1493        interface->num_tx_queues = rss_i * pcs;
1494
1495        return true;
1496}
1497
1498/**
1499 * fm10k_set_rss_queues: Allocate queues for RSS
1500 * @interface: board private structure to initialize
1501 *
1502 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1503 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1504 *
1505 **/
1506static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1507{
1508        struct fm10k_ring_feature *f;
1509        u16 rss_i;
1510
1511        f = &interface->ring_feature[RING_F_RSS];
1512        rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1513
1514        /* record indices and power of 2 mask for RSS */
1515        f->indices = rss_i;
1516        f->mask = (1 << fls(rss_i - 1)) - 1;
1517
1518        interface->num_rx_queues = rss_i;
1519        interface->num_tx_queues = rss_i;
1520
1521        return true;
1522}
1523
1524/**
1525 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1526 * @interface: board private structure to initialize
1527 *
1528 * This is the top level queue allocation routine.  The order here is very
1529 * important, starting with the "most" number of features turned on at once,
1530 * and ending with the smallest set of features.  This way large combinations
1531 * can be allocated if they're turned on, and smaller combinations are the
1532 * fallthrough conditions.
1533 *
1534 **/
1535static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1536{
1537        /* Start with base case */
1538        interface->num_rx_queues = 1;
1539        interface->num_tx_queues = 1;
1540
1541        if (fm10k_set_qos_queues(interface))
1542                return;
1543
1544        fm10k_set_rss_queues(interface);
1545}
1546
1547/**
1548 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1549 * @interface: board private structure to initialize
1550 * @v_count: q_vectors allocated on interface, used for ring interleaving
1551 * @v_idx: index of vector in interface struct
1552 * @txr_count: total number of Tx rings to allocate
1553 * @txr_idx: index of first Tx ring to allocate
1554 * @rxr_count: total number of Rx rings to allocate
1555 * @rxr_idx: index of first Rx ring to allocate
1556 *
1557 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1558 **/
1559static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1560                                unsigned int v_count, unsigned int v_idx,
1561                                unsigned int txr_count, unsigned int txr_idx,
1562                                unsigned int rxr_count, unsigned int rxr_idx)
1563{
1564        struct fm10k_q_vector *q_vector;
1565        struct fm10k_ring *ring;
1566        int ring_count, size;
1567
1568        ring_count = txr_count + rxr_count;
1569        size = sizeof(struct fm10k_q_vector) +
1570               (sizeof(struct fm10k_ring) * ring_count);
1571
1572        /* allocate q_vector and rings */
1573        q_vector = kzalloc(size, GFP_KERNEL);
1574        if (!q_vector)
1575                return -ENOMEM;
1576
1577        /* initialize NAPI */
1578        netif_napi_add(interface->netdev, &q_vector->napi,
1579                       fm10k_poll, NAPI_POLL_WEIGHT);
1580
1581        /* tie q_vector and interface together */
1582        interface->q_vector[v_idx] = q_vector;
1583        q_vector->interface = interface;
1584        q_vector->v_idx = v_idx;
1585
1586        /* initialize pointer to rings */
1587        ring = q_vector->ring;
1588
1589        /* save Tx ring container info */
1590        q_vector->tx.ring = ring;
1591        q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1592        q_vector->tx.itr = interface->tx_itr;
1593        q_vector->tx.count = txr_count;
1594
1595        while (txr_count) {
1596                /* assign generic ring traits */
1597                ring->dev = &interface->pdev->dev;
1598                ring->netdev = interface->netdev;
1599
1600                /* configure backlink on ring */
1601                ring->q_vector = q_vector;
1602
1603                /* apply Tx specific ring traits */
1604                ring->count = interface->tx_ring_count;
1605                ring->queue_index = txr_idx;
1606
1607                /* assign ring to interface */
1608                interface->tx_ring[txr_idx] = ring;
1609
1610                /* update count and index */
1611                txr_count--;
1612                txr_idx += v_count;
1613
1614                /* push pointer to next ring */
1615                ring++;
1616        }
1617
1618        /* save Rx ring container info */
1619        q_vector->rx.ring = ring;
1620        q_vector->rx.itr = interface->rx_itr;
1621        q_vector->rx.count = rxr_count;
1622
1623        while (rxr_count) {
1624                /* assign generic ring traits */
1625                ring->dev = &interface->pdev->dev;
1626                ring->netdev = interface->netdev;
1627                rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1628
1629                /* configure backlink on ring */
1630                ring->q_vector = q_vector;
1631
1632                /* apply Rx specific ring traits */
1633                ring->count = interface->rx_ring_count;
1634                ring->queue_index = rxr_idx;
1635
1636                /* assign ring to interface */
1637                interface->rx_ring[rxr_idx] = ring;
1638
1639                /* update count and index */
1640                rxr_count--;
1641                rxr_idx += v_count;
1642
1643                /* push pointer to next ring */
1644                ring++;
1645        }
1646
1647        fm10k_dbg_q_vector_init(q_vector);
1648
1649        return 0;
1650}
1651
1652/**
1653 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1654 * @interface: board private structure to initialize
1655 * @v_idx: Index of vector to be freed
1656 *
1657 * This function frees the memory allocated to the q_vector.  In addition if
1658 * NAPI is enabled it will delete any references to the NAPI struct prior
1659 * to freeing the q_vector.
1660 **/
1661static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1662{
1663        struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1664        struct fm10k_ring *ring;
1665
1666        fm10k_dbg_q_vector_exit(q_vector);
1667
1668        fm10k_for_each_ring(ring, q_vector->tx)
1669                interface->tx_ring[ring->queue_index] = NULL;
1670
1671        fm10k_for_each_ring(ring, q_vector->rx)
1672                interface->rx_ring[ring->queue_index] = NULL;
1673
1674        interface->q_vector[v_idx] = NULL;
1675        netif_napi_del(&q_vector->napi);
1676        kfree_rcu(q_vector, rcu);
1677}
1678
1679/**
1680 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1681 * @interface: board private structure to initialize
1682 *
1683 * We allocate one q_vector per queue interrupt.  If allocation fails we
1684 * return -ENOMEM.
1685 **/
1686static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1687{
1688        unsigned int q_vectors = interface->num_q_vectors;
1689        unsigned int rxr_remaining = interface->num_rx_queues;
1690        unsigned int txr_remaining = interface->num_tx_queues;
1691        unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1692        int err;
1693
1694        if (q_vectors >= (rxr_remaining + txr_remaining)) {
1695                for (; rxr_remaining; v_idx++) {
1696                        err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1697                                                   0, 0, 1, rxr_idx);
1698                        if (err)
1699                                goto err_out;
1700
1701                        /* update counts and index */
1702                        rxr_remaining--;
1703                        rxr_idx++;
1704                }
1705        }
1706
1707        for (; v_idx < q_vectors; v_idx++) {
1708                int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1709                int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1710
1711                err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1712                                           tqpv, txr_idx,
1713                                           rqpv, rxr_idx);
1714
1715                if (err)
1716                        goto err_out;
1717
1718                /* update counts and index */
1719                rxr_remaining -= rqpv;
1720                txr_remaining -= tqpv;
1721                rxr_idx++;
1722                txr_idx++;
1723        }
1724
1725        return 0;
1726
1727err_out:
1728        interface->num_tx_queues = 0;
1729        interface->num_rx_queues = 0;
1730        interface->num_q_vectors = 0;
1731
1732        while (v_idx--)
1733                fm10k_free_q_vector(interface, v_idx);
1734
1735        return -ENOMEM;
1736}
1737
1738/**
1739 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1740 * @interface: board private structure to initialize
1741 *
1742 * This function frees the memory allocated to the q_vectors.  In addition if
1743 * NAPI is enabled it will delete any references to the NAPI struct prior
1744 * to freeing the q_vector.
1745 **/
1746static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1747{
1748        int v_idx = interface->num_q_vectors;
1749
1750        interface->num_tx_queues = 0;
1751        interface->num_rx_queues = 0;
1752        interface->num_q_vectors = 0;
1753
1754        while (v_idx--)
1755                fm10k_free_q_vector(interface, v_idx);
1756}
1757
1758/**
1759 * f10k_reset_msix_capability - reset MSI-X capability
1760 * @interface: board private structure to initialize
1761 *
1762 * Reset the MSI-X capability back to its starting state
1763 **/
1764static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1765{
1766        pci_disable_msix(interface->pdev);
1767        kfree(interface->msix_entries);
1768        interface->msix_entries = NULL;
1769}
1770
1771/**
1772 * f10k_init_msix_capability - configure MSI-X capability
1773 * @interface: board private structure to initialize
1774 *
1775 * Attempt to configure the interrupts using the best available
1776 * capabilities of the hardware and the kernel.
1777 **/
1778static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1779{
1780        struct fm10k_hw *hw = &interface->hw;
1781        int v_budget, vector;
1782
1783        /* It's easy to be greedy for MSI-X vectors, but it really
1784         * doesn't do us much good if we have a lot more vectors
1785         * than CPU's.  So let's be conservative and only ask for
1786         * (roughly) the same number of vectors as there are CPU's.
1787         * the default is to use pairs of vectors
1788         */
1789        v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1790        v_budget = min_t(u16, v_budget, num_online_cpus());
1791
1792        /* account for vectors not related to queues */
1793        v_budget += NON_Q_VECTORS(hw);
1794
1795        /* At the same time, hardware can only support a maximum of
1796         * hw.mac->max_msix_vectors vectors.  With features
1797         * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1798         * descriptor queues supported by our device.  Thus, we cap it off in
1799         * those rare cases where the cpu count also exceeds our vector limit.
1800         */
1801        v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1802
1803        /* A failure in MSI-X entry allocation is fatal. */
1804        interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1805                                          GFP_KERNEL);
1806        if (!interface->msix_entries)
1807                return -ENOMEM;
1808
1809        /* populate entry values */
1810        for (vector = 0; vector < v_budget; vector++)
1811                interface->msix_entries[vector].entry = vector;
1812
1813        /* Attempt to enable MSI-X with requested value */
1814        v_budget = pci_enable_msix_range(interface->pdev,
1815                                         interface->msix_entries,
1816                                         MIN_MSIX_COUNT(hw),
1817                                         v_budget);
1818        if (v_budget < 0) {
1819                kfree(interface->msix_entries);
1820                interface->msix_entries = NULL;
1821                return -ENOMEM;
1822        }
1823
1824        /* record the number of queues available for q_vectors */
1825        interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1826
1827        return 0;
1828}
1829
1830/**
1831 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1832 * @interface: Interface structure continaining rings and devices
1833 *
1834 * Cache the descriptor ring offsets for Qos
1835 **/
1836static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1837{
1838        struct net_device *dev = interface->netdev;
1839        int pc, offset, rss_i, i, q_idx;
1840        u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1841        u8 num_pcs = netdev_get_num_tc(dev);
1842
1843        if (num_pcs <= 1)
1844                return false;
1845
1846        rss_i = interface->ring_feature[RING_F_RSS].indices;
1847
1848        for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1849                q_idx = pc;
1850                for (i = 0; i < rss_i; i++) {
1851                        interface->tx_ring[offset + i]->reg_idx = q_idx;
1852                        interface->tx_ring[offset + i]->qos_pc = pc;
1853                        interface->rx_ring[offset + i]->reg_idx = q_idx;
1854                        interface->rx_ring[offset + i]->qos_pc = pc;
1855                        q_idx += pc_stride;
1856                }
1857        }
1858
1859        return true;
1860}
1861
1862/**
1863 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1864 * @interface: Interface structure continaining rings and devices
1865 *
1866 * Cache the descriptor ring offsets for RSS
1867 **/
1868static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1869{
1870        int i;
1871
1872        for (i = 0; i < interface->num_rx_queues; i++)
1873                interface->rx_ring[i]->reg_idx = i;
1874
1875        for (i = 0; i < interface->num_tx_queues; i++)
1876                interface->tx_ring[i]->reg_idx = i;
1877}
1878
1879/**
1880 * fm10k_assign_rings - Map rings to network devices
1881 * @interface: Interface structure containing rings and devices
1882 *
1883 * This function is meant to go though and configure both the network
1884 * devices so that they contain rings, and configure the rings so that
1885 * they function with their network devices.
1886 **/
1887static void fm10k_assign_rings(struct fm10k_intfc *interface)
1888{
1889        if (fm10k_cache_ring_qos(interface))
1890                return;
1891
1892        fm10k_cache_ring_rss(interface);
1893}
1894
1895static void fm10k_init_reta(struct fm10k_intfc *interface)
1896{
1897        u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1898        u32 reta, base;
1899
1900        /* If the netdev is initialized we have to maintain table if possible */
1901        if (interface->netdev->reg_state) {
1902                for (i = FM10K_RETA_SIZE; i--;) {
1903                        reta = interface->reta[i];
1904                        if ((((reta << 24) >> 24) < rss_i) &&
1905                            (((reta << 16) >> 24) < rss_i) &&
1906                            (((reta <<  8) >> 24) < rss_i) &&
1907                            (((reta)       >> 24) < rss_i))
1908                                continue;
1909                        goto repopulate_reta;
1910                }
1911
1912                /* do nothing if all of the elements are in bounds */
1913                return;
1914        }
1915
1916repopulate_reta:
1917        /* Populate the redirection table 4 entries at a time.  To do this
1918         * we are generating the results for n and n+2 and then interleaving
1919         * those with the results with n+1 and n+3.
1920         */
1921        for (i = FM10K_RETA_SIZE; i--;) {
1922                /* first pass generates n and n+2 */
1923                base = ((i * 0x00040004) + 0x00020000) * rss_i;
1924                reta = (base & 0x3F803F80) >> 7;
1925
1926                /* second pass generates n+1 and n+3 */
1927                base += 0x00010001 * rss_i;
1928                reta |= (base & 0x3F803F80) << 1;
1929
1930                interface->reta[i] = reta;
1931        }
1932}
1933
1934/**
1935 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1936 * @interface: board private structure to initialize
1937 *
1938 * We determine which queueing scheme to use based on...
1939 * - Hardware queue count (num_*_queues)
1940 *   - defined by miscellaneous hardware support/features (RSS, etc.)
1941 **/
1942int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1943{
1944        int err;
1945
1946        /* Number of supported queues */
1947        fm10k_set_num_queues(interface);
1948
1949        /* Configure MSI-X capability */
1950        err = fm10k_init_msix_capability(interface);
1951        if (err) {
1952                dev_err(&interface->pdev->dev,
1953                        "Unable to initialize MSI-X capability\n");
1954                return err;
1955        }
1956
1957        /* Allocate memory for queues */
1958        err = fm10k_alloc_q_vectors(interface);
1959        if (err)
1960                return err;
1961
1962        /* Map rings to devices, and map devices to physical queues */
1963        fm10k_assign_rings(interface);
1964
1965        /* Initialize RSS redirection table */
1966        fm10k_init_reta(interface);
1967
1968        return 0;
1969}
1970
1971/**
1972 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1973 * @interface: board private structure to clear queueing scheme on
1974 *
1975 * We go through and clear queueing specific resources and reset the structure
1976 * to pre-load conditions
1977 **/
1978void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1979{
1980        fm10k_free_q_vectors(interface);
1981        fm10k_reset_msix_capability(interface);
1982}
1983