1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17#include <asm/unaligned.h>
18#include "hw.h"
19#include "ar9002_phy.h"
20
21static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
22{
23 return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
24}
25
26static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
27{
28 return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
29}
30
31#define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
32
33static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
34{
35 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
36 int addr, eep_start_loc = 64;
37
38 for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
39 if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
40 return false;
41 eep_data++;
42 }
43
44 return true;
45}
46
47static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
48{
49 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
50
51 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
52
53 return true;
54}
55
56static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
57{
58 struct ath_common *common = ath9k_hw_common(ah);
59
60 if (!ath9k_hw_use_flash(ah)) {
61 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
62 }
63
64 if (common->bus_ops->ath_bus_type == ATH_USB)
65 return __ath9k_hw_usb_4k_fill_eeprom(ah);
66 else
67 return __ath9k_hw_4k_fill_eeprom(ah);
68}
69
70#if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
71static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size,
72 struct modal_eep_4k_header *modal_hdr)
73{
74 PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
75 PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
76 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
77 PR_EEP("Switch Settle", modal_hdr->switchSettling);
78 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
79 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
80 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
81 PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
82 PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
83 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
84 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
85 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
86 PR_EEP("CCA Threshold)", modal_hdr->thresh62);
87 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
88 PR_EEP("xpdGain", modal_hdr->xpdGain);
89 PR_EEP("External PD", modal_hdr->xpd);
90 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
91 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
92 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
93 PR_EEP("O/D Bias Version", modal_hdr->version);
94 PR_EEP("CCK OutputBias", modal_hdr->ob_0);
95 PR_EEP("BPSK OutputBias", modal_hdr->ob_1);
96 PR_EEP("QPSK OutputBias", modal_hdr->ob_2);
97 PR_EEP("16QAM OutputBias", modal_hdr->ob_3);
98 PR_EEP("64QAM OutputBias", modal_hdr->ob_4);
99 PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0);
100 PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1);
101 PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2);
102 PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3);
103 PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4);
104 PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0);
105 PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1);
106 PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2);
107 PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3);
108 PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4);
109 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
110 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
111 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
112 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
113 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
114 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
115 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
116 PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
117 PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
118 PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1);
119 PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2);
120 PR_EEP("TX Diversity", modal_hdr->tx_diversity);
121
122 return len;
123}
124
125static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
126 u8 *buf, u32 len, u32 size)
127{
128 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
129 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
130
131 if (!dump_base_hdr) {
132 len += scnprintf(buf + len, size - len,
133 "%20s :\n", "2GHz modal Header");
134 len = ath9k_dump_4k_modal_eeprom(buf, len, size,
135 &eep->modalHeader);
136 goto out;
137 }
138
139 PR_EEP("Major Version", pBase->version >> 12);
140 PR_EEP("Minor Version", pBase->version & 0xFFF);
141 PR_EEP("Checksum", pBase->checksum);
142 PR_EEP("Length", pBase->length);
143 PR_EEP("RegDomain1", pBase->regDmn[0]);
144 PR_EEP("RegDomain2", pBase->regDmn[1]);
145 PR_EEP("TX Mask", pBase->txMask);
146 PR_EEP("RX Mask", pBase->rxMask);
147 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
148 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
149 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
150 AR5416_OPFLAGS_N_2G_HT20));
151 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
152 AR5416_OPFLAGS_N_2G_HT40));
153 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
154 AR5416_OPFLAGS_N_5G_HT20));
155 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
156 AR5416_OPFLAGS_N_5G_HT40));
157 PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
158 PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
159 PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
160 PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
161 PR_EEP("TX Gain type", pBase->txGainType);
162
163 len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
164 pBase->macAddr);
165
166out:
167 if (len > size)
168 len = size;
169
170 return len;
171}
172#else
173static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
174 u8 *buf, u32 len, u32 size)
175{
176 return 0;
177}
178#endif
179
180
181#undef SIZE_EEPROM_4K
182
183static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
184{
185#define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
186 struct ath_common *common = ath9k_hw_common(ah);
187 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
188 u16 *eepdata, temp, magic, magic2;
189 u32 sum = 0, el;
190 bool need_swap = false;
191 int i, addr;
192
193
194 if (!ath9k_hw_use_flash(ah)) {
195 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
196 &magic)) {
197 ath_err(common, "Reading Magic # failed\n");
198 return false;
199 }
200
201 ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
202
203 if (magic != AR5416_EEPROM_MAGIC) {
204 magic2 = swab16(magic);
205
206 if (magic2 == AR5416_EEPROM_MAGIC) {
207 need_swap = true;
208 eepdata = (u16 *) (&ah->eeprom);
209
210 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
211 temp = swab16(*eepdata);
212 *eepdata = temp;
213 eepdata++;
214 }
215 } else {
216 ath_err(common,
217 "Invalid EEPROM Magic. Endianness mismatch.\n");
218 return -EINVAL;
219 }
220 }
221 }
222
223 ath_dbg(common, EEPROM, "need_swap = %s\n",
224 need_swap ? "True" : "False");
225
226 if (need_swap)
227 el = swab16(ah->eeprom.map4k.baseEepHeader.length);
228 else
229 el = ah->eeprom.map4k.baseEepHeader.length;
230
231 if (el > sizeof(struct ar5416_eeprom_4k))
232 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
233 else
234 el = el / sizeof(u16);
235
236 eepdata = (u16 *)(&ah->eeprom);
237
238 for (i = 0; i < el; i++)
239 sum ^= *eepdata++;
240
241 if (need_swap) {
242 u32 integer;
243 u16 word;
244
245 ath_dbg(common, EEPROM,
246 "EEPROM Endianness is not native.. Changing\n");
247
248 word = swab16(eep->baseEepHeader.length);
249 eep->baseEepHeader.length = word;
250
251 word = swab16(eep->baseEepHeader.checksum);
252 eep->baseEepHeader.checksum = word;
253
254 word = swab16(eep->baseEepHeader.version);
255 eep->baseEepHeader.version = word;
256
257 word = swab16(eep->baseEepHeader.regDmn[0]);
258 eep->baseEepHeader.regDmn[0] = word;
259
260 word = swab16(eep->baseEepHeader.regDmn[1]);
261 eep->baseEepHeader.regDmn[1] = word;
262
263 word = swab16(eep->baseEepHeader.rfSilent);
264 eep->baseEepHeader.rfSilent = word;
265
266 word = swab16(eep->baseEepHeader.blueToothOptions);
267 eep->baseEepHeader.blueToothOptions = word;
268
269 word = swab16(eep->baseEepHeader.deviceCap);
270 eep->baseEepHeader.deviceCap = word;
271
272 integer = swab32(eep->modalHeader.antCtrlCommon);
273 eep->modalHeader.antCtrlCommon = integer;
274
275 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
276 integer = swab32(eep->modalHeader.antCtrlChain[i]);
277 eep->modalHeader.antCtrlChain[i] = integer;
278 }
279
280 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
281 word = swab16(eep->modalHeader.spurChans[i].spurChan);
282 eep->modalHeader.spurChans[i].spurChan = word;
283 }
284 }
285
286 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
287 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
288 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
289 sum, ah->eep_ops->get_eeprom_ver(ah));
290 return -EINVAL;
291 }
292
293 return 0;
294#undef EEPROM_4K_SIZE
295}
296
297static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
298 enum eeprom_param param)
299{
300 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
301 struct modal_eep_4k_header *pModal = &eep->modalHeader;
302 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
303 u16 ver_minor;
304
305 ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
306
307 switch (param) {
308 case EEP_NFTHRESH_2:
309 return pModal->noiseFloorThreshCh[0];
310 case EEP_MAC_LSW:
311 return get_unaligned_be16(pBase->macAddr);
312 case EEP_MAC_MID:
313 return get_unaligned_be16(pBase->macAddr + 2);
314 case EEP_MAC_MSW:
315 return get_unaligned_be16(pBase->macAddr + 4);
316 case EEP_REG_0:
317 return pBase->regDmn[0];
318 case EEP_OP_CAP:
319 return pBase->deviceCap;
320 case EEP_OP_MODE:
321 return pBase->opCapFlags;
322 case EEP_RF_SILENT:
323 return pBase->rfSilent;
324 case EEP_OB_2:
325 return pModal->ob_0;
326 case EEP_DB_2:
327 return pModal->db1_1;
328 case EEP_MINOR_REV:
329 return ver_minor;
330 case EEP_TX_MASK:
331 return pBase->txMask;
332 case EEP_RX_MASK:
333 return pBase->rxMask;
334 case EEP_FRAC_N_5G:
335 return 0;
336 case EEP_PWR_TABLE_OFFSET:
337 return AR5416_PWR_TABLE_OFFSET_DB;
338 case EEP_MODAL_VER:
339 return pModal->version;
340 case EEP_ANT_DIV_CTL1:
341 return pModal->antdiv_ctl1;
342 case EEP_TXGAIN_TYPE:
343 return pBase->txGainType;
344 case EEP_ANTENNA_GAIN_2G:
345 return pModal->antennaGainCh[0];
346 default:
347 return 0;
348 }
349}
350
351static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
352 struct ath9k_channel *chan)
353{
354 struct ath_common *common = ath9k_hw_common(ah);
355 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
356 struct cal_data_per_freq_4k *pRawDataset;
357 u8 *pCalBChans = NULL;
358 u16 pdGainOverlap_t2;
359 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
360 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
361 u16 numPiers, i, j;
362 u16 numXpdGain, xpdMask;
363 u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
364 u32 reg32, regOffset, regChainOffset;
365
366 xpdMask = pEepData->modalHeader.xpdGain;
367
368 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
369 AR5416_EEP_MINOR_VER_2) {
370 pdGainOverlap_t2 =
371 pEepData->modalHeader.pdGainOverlap;
372 } else {
373 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
374 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
375 }
376
377 pCalBChans = pEepData->calFreqPier2G;
378 numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
379
380 numXpdGain = 0;
381
382 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
383 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
384 if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
385 break;
386 xpdGainValues[numXpdGain] =
387 (u16)(AR5416_PD_GAINS_IN_MASK - i);
388 numXpdGain++;
389 }
390 }
391
392 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
393 (numXpdGain - 1) & 0x3);
394 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
395 xpdGainValues[0]);
396 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
397 xpdGainValues[1]);
398 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
399
400 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
401 regChainOffset = i * 0x1000;
402
403 if (pEepData->baseEepHeader.txMask & (1 << i)) {
404 pRawDataset = pEepData->calPierData2G[i];
405
406 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
407 pRawDataset, pCalBChans,
408 numPiers, pdGainOverlap_t2,
409 gainBoundaries,
410 pdadcValues, numXpdGain);
411
412 ENABLE_REGWRITE_BUFFER(ah);
413
414 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
415 SM(pdGainOverlap_t2,
416 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
417 | SM(gainBoundaries[0],
418 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
419 | SM(gainBoundaries[1],
420 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
421 | SM(gainBoundaries[2],
422 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
423 | SM(gainBoundaries[3],
424 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
425
426 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
427 for (j = 0; j < 32; j++) {
428 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
429 REG_WRITE(ah, regOffset, reg32);
430
431 ath_dbg(common, EEPROM,
432 "PDADC (%d,%4x): %4.4x %8.8x\n",
433 i, regChainOffset, regOffset,
434 reg32);
435 ath_dbg(common, EEPROM,
436 "PDADC: Chain %d | "
437 "PDADC %3d Value %3d | "
438 "PDADC %3d Value %3d | "
439 "PDADC %3d Value %3d | "
440 "PDADC %3d Value %3d |\n",
441 i, 4 * j, pdadcValues[4 * j],
442 4 * j + 1, pdadcValues[4 * j + 1],
443 4 * j + 2, pdadcValues[4 * j + 2],
444 4 * j + 3, pdadcValues[4 * j + 3]);
445
446 regOffset += 4;
447 }
448
449 REGWRITE_BUFFER_FLUSH(ah);
450 }
451 }
452}
453
454static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
455 struct ath9k_channel *chan,
456 int16_t *ratesArray,
457 u16 cfgCtl,
458 u16 antenna_reduction,
459 u16 powerLimit)
460{
461#define CMP_TEST_GRP \
462 (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
463 pEepData->ctlIndex[i]) \
464 || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
465 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
466
467 int i;
468 u16 twiceMinEdgePower;
469 u16 twiceMaxEdgePower;
470 u16 scaledPower = 0, minCtlPower;
471 u16 numCtlModes;
472 const u16 *pCtlMode;
473 u16 ctlMode, freq;
474 struct chan_centers centers;
475 struct cal_ctl_data_4k *rep;
476 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
477 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
478 0, { 0, 0, 0, 0}
479 };
480 struct cal_target_power_leg targetPowerOfdmExt = {
481 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
482 0, { 0, 0, 0, 0 }
483 };
484 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
485 0, {0, 0, 0, 0}
486 };
487 static const u16 ctlModesFor11g[] = {
488 CTL_11B, CTL_11G, CTL_2GHT20,
489 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
490 };
491
492 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
493
494 scaledPower = powerLimit - antenna_reduction;
495 numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
496 pCtlMode = ctlModesFor11g;
497
498 ath9k_hw_get_legacy_target_powers(ah, chan,
499 pEepData->calTargetPowerCck,
500 AR5416_NUM_2G_CCK_TARGET_POWERS,
501 &targetPowerCck, 4, false);
502 ath9k_hw_get_legacy_target_powers(ah, chan,
503 pEepData->calTargetPower2G,
504 AR5416_NUM_2G_20_TARGET_POWERS,
505 &targetPowerOfdm, 4, false);
506 ath9k_hw_get_target_powers(ah, chan,
507 pEepData->calTargetPower2GHT20,
508 AR5416_NUM_2G_20_TARGET_POWERS,
509 &targetPowerHt20, 8, false);
510
511 if (IS_CHAN_HT40(chan)) {
512 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
513 ath9k_hw_get_target_powers(ah, chan,
514 pEepData->calTargetPower2GHT40,
515 AR5416_NUM_2G_40_TARGET_POWERS,
516 &targetPowerHt40, 8, true);
517 ath9k_hw_get_legacy_target_powers(ah, chan,
518 pEepData->calTargetPowerCck,
519 AR5416_NUM_2G_CCK_TARGET_POWERS,
520 &targetPowerCckExt, 4, true);
521 ath9k_hw_get_legacy_target_powers(ah, chan,
522 pEepData->calTargetPower2G,
523 AR5416_NUM_2G_20_TARGET_POWERS,
524 &targetPowerOfdmExt, 4, true);
525 }
526
527 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
528 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
529 (pCtlMode[ctlMode] == CTL_2GHT40);
530
531 if (isHt40CtlMode)
532 freq = centers.synth_center;
533 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
534 freq = centers.ext_center;
535 else
536 freq = centers.ctl_center;
537
538 twiceMaxEdgePower = MAX_RATE_POWER;
539
540 for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
541 pEepData->ctlIndex[i]; i++) {
542
543 if (CMP_TEST_GRP) {
544 rep = &(pEepData->ctlData[i]);
545
546 twiceMinEdgePower = ath9k_hw_get_max_edge_power(
547 freq,
548 rep->ctlEdges[
549 ar5416_get_ntxchains(ah->txchainmask) - 1],
550 IS_CHAN_2GHZ(chan),
551 AR5416_EEP4K_NUM_BAND_EDGES);
552
553 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
554 twiceMaxEdgePower =
555 min(twiceMaxEdgePower,
556 twiceMinEdgePower);
557 } else {
558 twiceMaxEdgePower = twiceMinEdgePower;
559 break;
560 }
561 }
562 }
563
564 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
565
566 switch (pCtlMode[ctlMode]) {
567 case CTL_11B:
568 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
569 targetPowerCck.tPow2x[i] =
570 min((u16)targetPowerCck.tPow2x[i],
571 minCtlPower);
572 }
573 break;
574 case CTL_11G:
575 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
576 targetPowerOfdm.tPow2x[i] =
577 min((u16)targetPowerOfdm.tPow2x[i],
578 minCtlPower);
579 }
580 break;
581 case CTL_2GHT20:
582 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
583 targetPowerHt20.tPow2x[i] =
584 min((u16)targetPowerHt20.tPow2x[i],
585 minCtlPower);
586 }
587 break;
588 case CTL_11B_EXT:
589 targetPowerCckExt.tPow2x[0] =
590 min((u16)targetPowerCckExt.tPow2x[0],
591 minCtlPower);
592 break;
593 case CTL_11G_EXT:
594 targetPowerOfdmExt.tPow2x[0] =
595 min((u16)targetPowerOfdmExt.tPow2x[0],
596 minCtlPower);
597 break;
598 case CTL_2GHT40:
599 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
600 targetPowerHt40.tPow2x[i] =
601 min((u16)targetPowerHt40.tPow2x[i],
602 minCtlPower);
603 }
604 break;
605 default:
606 break;
607 }
608 }
609
610 ratesArray[rate6mb] =
611 ratesArray[rate9mb] =
612 ratesArray[rate12mb] =
613 ratesArray[rate18mb] =
614 ratesArray[rate24mb] =
615 targetPowerOfdm.tPow2x[0];
616
617 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
618 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
619 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
620 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
621
622 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
623 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
624
625 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
626 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
627 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
628 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
629
630 if (IS_CHAN_HT40(chan)) {
631 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
632 ratesArray[rateHt40_0 + i] =
633 targetPowerHt40.tPow2x[i];
634 }
635 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
636 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
637 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
638 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
639 }
640
641#undef CMP_TEST_GRP
642}
643
644static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
645 struct ath9k_channel *chan,
646 u16 cfgCtl,
647 u8 twiceAntennaReduction,
648 u8 powerLimit, bool test)
649{
650 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
651 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
652 struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
653 int16_t ratesArray[Ar5416RateSize];
654 u8 ht40PowerIncForPdadc = 2;
655 int i;
656
657 memset(ratesArray, 0, sizeof(ratesArray));
658
659 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
660 AR5416_EEP_MINOR_VER_2) {
661 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
662 }
663
664 ath9k_hw_set_4k_power_per_rate_table(ah, chan,
665 &ratesArray[0], cfgCtl,
666 twiceAntennaReduction,
667 powerLimit);
668
669 ath9k_hw_set_4k_power_cal_table(ah, chan);
670
671 regulatory->max_power_level = 0;
672 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
673 if (ratesArray[i] > MAX_RATE_POWER)
674 ratesArray[i] = MAX_RATE_POWER;
675
676 if (ratesArray[i] > regulatory->max_power_level)
677 regulatory->max_power_level = ratesArray[i];
678 }
679
680 if (test)
681 return;
682
683 for (i = 0; i < Ar5416RateSize; i++)
684 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
685
686 ENABLE_REGWRITE_BUFFER(ah);
687
688
689 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
690 ATH9K_POW_SM(ratesArray[rate18mb], 24)
691 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
692 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
693 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
694 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
695 ATH9K_POW_SM(ratesArray[rate54mb], 24)
696 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
697 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
698 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
699
700
701 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
702 ATH9K_POW_SM(ratesArray[rate2s], 24)
703 | ATH9K_POW_SM(ratesArray[rate2l], 16)
704 | ATH9K_POW_SM(ratesArray[rateXr], 8)
705 | ATH9K_POW_SM(ratesArray[rate1l], 0));
706 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
707 ATH9K_POW_SM(ratesArray[rate11s], 24)
708 | ATH9K_POW_SM(ratesArray[rate11l], 16)
709 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
710 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
711
712
713 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
714 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
715 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
716 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
717 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
718 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
719 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
720 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
721 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
722 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
723
724
725 if (IS_CHAN_HT40(chan)) {
726 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
727 ATH9K_POW_SM(ratesArray[rateHt40_3] +
728 ht40PowerIncForPdadc, 24)
729 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
730 ht40PowerIncForPdadc, 16)
731 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
732 ht40PowerIncForPdadc, 8)
733 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
734 ht40PowerIncForPdadc, 0));
735 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
736 ATH9K_POW_SM(ratesArray[rateHt40_7] +
737 ht40PowerIncForPdadc, 24)
738 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
739 ht40PowerIncForPdadc, 16)
740 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
741 ht40PowerIncForPdadc, 8)
742 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
743 ht40PowerIncForPdadc, 0));
744 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
745 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
746 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
747 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
748 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
749 }
750
751
752 if (ah->tpc_enabled) {
753 int ht40_delta;
754
755 ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
756 ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
757
758 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
759 MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
760 } else {
761
762 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
763 }
764
765 REGWRITE_BUFFER_FLUSH(ah);
766}
767
768static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
769 struct modal_eep_4k_header *pModal,
770 struct ar5416_eeprom_4k *eep,
771 u8 txRxAttenLocal)
772{
773 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
774 pModal->antCtrlChain[0]);
775
776 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
777 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
778 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
779 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
780 SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
781 SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
782
783 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
784 AR5416_EEP_MINOR_VER_3) {
785 txRxAttenLocal = pModal->txRxAttenCh[0];
786
787 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
788 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
789 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
790 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
791 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
792 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
793 pModal->xatten2Margin[0]);
794 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
795 AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
796
797
798 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
799 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
800 pModal->bswMargin[0]);
801 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
802 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
803 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
804 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
805 pModal->xatten2Margin[0]);
806 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
807 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
808 pModal->xatten2Db[0]);
809 }
810
811 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
812 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
813 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
814 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
815
816 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
817 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
818 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
819 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
820}
821
822
823
824
825
826static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
827 struct ath9k_channel *chan)
828{
829 struct ath9k_hw_capabilities *pCap = &ah->caps;
830 struct modal_eep_4k_header *pModal;
831 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
832 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
833 u8 txRxAttenLocal;
834 u8 ob[5], db1[5], db2[5];
835 u8 ant_div_control1, ant_div_control2;
836 u8 bb_desired_scale;
837 u32 regVal;
838
839 pModal = &eep->modalHeader;
840 txRxAttenLocal = 23;
841
842 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
843
844
845 ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
846
847
848 if (pModal->version >= 3) {
849 ant_div_control1 = pModal->antdiv_ctl1;
850 ant_div_control2 = pModal->antdiv_ctl2;
851
852 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
853 regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
854
855 regVal |= SM(ant_div_control1,
856 AR_PHY_9285_ANT_DIV_CTL);
857 regVal |= SM(ant_div_control2,
858 AR_PHY_9285_ANT_DIV_ALT_LNACONF);
859 regVal |= SM((ant_div_control2 >> 2),
860 AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
861 regVal |= SM((ant_div_control1 >> 1),
862 AR_PHY_9285_ANT_DIV_ALT_GAINTB);
863 regVal |= SM((ant_div_control1 >> 2),
864 AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
865
866
867 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
868 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
869 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
870 regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
871 regVal |= SM((ant_div_control1 >> 3),
872 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
873
874 REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
875 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
876
877 if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
878
879
880
881
882 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
883 regVal &= (~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
884 AR_PHY_9285_ANT_DIV_ALT_LNACONF));
885
886 regVal |= (ATH_ANT_DIV_COMB_LNA1 <<
887 AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S);
888 regVal |= (ATH_ANT_DIV_COMB_LNA2 <<
889 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S);
890 regVal &= (~(AR_PHY_9285_FAST_DIV_BIAS));
891 regVal |= (0 << AR_PHY_9285_FAST_DIV_BIAS_S);
892 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
893 }
894 }
895
896 if (pModal->version >= 2) {
897 ob[0] = pModal->ob_0;
898 ob[1] = pModal->ob_1;
899 ob[2] = pModal->ob_2;
900 ob[3] = pModal->ob_3;
901 ob[4] = pModal->ob_4;
902
903 db1[0] = pModal->db1_0;
904 db1[1] = pModal->db1_1;
905 db1[2] = pModal->db1_2;
906 db1[3] = pModal->db1_3;
907 db1[4] = pModal->db1_4;
908
909 db2[0] = pModal->db2_0;
910 db2[1] = pModal->db2_1;
911 db2[2] = pModal->db2_2;
912 db2[3] = pModal->db2_3;
913 db2[4] = pModal->db2_4;
914 } else if (pModal->version == 1) {
915 ob[0] = pModal->ob_0;
916 ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
917 db1[0] = pModal->db1_0;
918 db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
919 db2[0] = pModal->db2_0;
920 db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
921 } else {
922 int i;
923
924 for (i = 0; i < 5; i++) {
925 ob[i] = pModal->ob_0;
926 db1[i] = pModal->db1_0;
927 db2[i] = pModal->db1_0;
928 }
929 }
930
931 if (AR_SREV_9271(ah)) {
932 ath9k_hw_analog_shift_rmw(ah,
933 AR9285_AN_RF2G3,
934 AR9271_AN_RF2G3_OB_cck,
935 AR9271_AN_RF2G3_OB_cck_S,
936 ob[0]);
937 ath9k_hw_analog_shift_rmw(ah,
938 AR9285_AN_RF2G3,
939 AR9271_AN_RF2G3_OB_psk,
940 AR9271_AN_RF2G3_OB_psk_S,
941 ob[1]);
942 ath9k_hw_analog_shift_rmw(ah,
943 AR9285_AN_RF2G3,
944 AR9271_AN_RF2G3_OB_qam,
945 AR9271_AN_RF2G3_OB_qam_S,
946 ob[2]);
947 ath9k_hw_analog_shift_rmw(ah,
948 AR9285_AN_RF2G3,
949 AR9271_AN_RF2G3_DB_1,
950 AR9271_AN_RF2G3_DB_1_S,
951 db1[0]);
952 ath9k_hw_analog_shift_rmw(ah,
953 AR9285_AN_RF2G4,
954 AR9271_AN_RF2G4_DB_2,
955 AR9271_AN_RF2G4_DB_2_S,
956 db2[0]);
957 } else {
958 ath9k_hw_analog_shift_rmw(ah,
959 AR9285_AN_RF2G3,
960 AR9285_AN_RF2G3_OB_0,
961 AR9285_AN_RF2G3_OB_0_S,
962 ob[0]);
963 ath9k_hw_analog_shift_rmw(ah,
964 AR9285_AN_RF2G3,
965 AR9285_AN_RF2G3_OB_1,
966 AR9285_AN_RF2G3_OB_1_S,
967 ob[1]);
968 ath9k_hw_analog_shift_rmw(ah,
969 AR9285_AN_RF2G3,
970 AR9285_AN_RF2G3_OB_2,
971 AR9285_AN_RF2G3_OB_2_S,
972 ob[2]);
973 ath9k_hw_analog_shift_rmw(ah,
974 AR9285_AN_RF2G3,
975 AR9285_AN_RF2G3_OB_3,
976 AR9285_AN_RF2G3_OB_3_S,
977 ob[3]);
978 ath9k_hw_analog_shift_rmw(ah,
979 AR9285_AN_RF2G3,
980 AR9285_AN_RF2G3_OB_4,
981 AR9285_AN_RF2G3_OB_4_S,
982 ob[4]);
983
984 ath9k_hw_analog_shift_rmw(ah,
985 AR9285_AN_RF2G3,
986 AR9285_AN_RF2G3_DB1_0,
987 AR9285_AN_RF2G3_DB1_0_S,
988 db1[0]);
989 ath9k_hw_analog_shift_rmw(ah,
990 AR9285_AN_RF2G3,
991 AR9285_AN_RF2G3_DB1_1,
992 AR9285_AN_RF2G3_DB1_1_S,
993 db1[1]);
994 ath9k_hw_analog_shift_rmw(ah,
995 AR9285_AN_RF2G3,
996 AR9285_AN_RF2G3_DB1_2,
997 AR9285_AN_RF2G3_DB1_2_S,
998 db1[2]);
999 ath9k_hw_analog_shift_rmw(ah,
1000 AR9285_AN_RF2G4,
1001 AR9285_AN_RF2G4_DB1_3,
1002 AR9285_AN_RF2G4_DB1_3_S,
1003 db1[3]);
1004 ath9k_hw_analog_shift_rmw(ah,
1005 AR9285_AN_RF2G4,
1006 AR9285_AN_RF2G4_DB1_4,
1007 AR9285_AN_RF2G4_DB1_4_S, db1[4]);
1008
1009 ath9k_hw_analog_shift_rmw(ah,
1010 AR9285_AN_RF2G4,
1011 AR9285_AN_RF2G4_DB2_0,
1012 AR9285_AN_RF2G4_DB2_0_S,
1013 db2[0]);
1014 ath9k_hw_analog_shift_rmw(ah,
1015 AR9285_AN_RF2G4,
1016 AR9285_AN_RF2G4_DB2_1,
1017 AR9285_AN_RF2G4_DB2_1_S,
1018 db2[1]);
1019 ath9k_hw_analog_shift_rmw(ah,
1020 AR9285_AN_RF2G4,
1021 AR9285_AN_RF2G4_DB2_2,
1022 AR9285_AN_RF2G4_DB2_2_S,
1023 db2[2]);
1024 ath9k_hw_analog_shift_rmw(ah,
1025 AR9285_AN_RF2G4,
1026 AR9285_AN_RF2G4_DB2_3,
1027 AR9285_AN_RF2G4_DB2_3_S,
1028 db2[3]);
1029 ath9k_hw_analog_shift_rmw(ah,
1030 AR9285_AN_RF2G4,
1031 AR9285_AN_RF2G4_DB2_4,
1032 AR9285_AN_RF2G4_DB2_4_S,
1033 db2[4]);
1034 }
1035
1036
1037 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1038 pModal->switchSettling);
1039 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1040 pModal->adcDesiredSize);
1041
1042 REG_WRITE(ah, AR_PHY_RF_CTL4,
1043 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1044 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1045 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
1046 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1047
1048 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1049 pModal->txEndToRxOn);
1050
1051 if (AR_SREV_9271_10(ah))
1052 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1053 pModal->txEndToRxOn);
1054 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1055 pModal->thresh62);
1056 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1057 pModal->thresh62);
1058
1059 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1060 AR5416_EEP_MINOR_VER_2) {
1061 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1062 pModal->txFrameToDataStart);
1063 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1064 pModal->txFrameToPaOn);
1065 }
1066
1067 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1068 AR5416_EEP_MINOR_VER_3) {
1069 if (IS_CHAN_HT40(chan))
1070 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1071 AR_PHY_SETTLING_SWITCH,
1072 pModal->swSettleHt40);
1073 }
1074
1075 bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1076 EEP_4K_BB_DESIRED_SCALE_MASK);
1077 if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1078 u32 pwrctrl, mask, clr;
1079
1080 mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1081 pwrctrl = mask * bb_desired_scale;
1082 clr = mask * 0x1f;
1083 REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1084 REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1085 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1086
1087 mask = BIT(0)|BIT(5)|BIT(15);
1088 pwrctrl = mask * bb_desired_scale;
1089 clr = mask * 0x1f;
1090 REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1091
1092 mask = BIT(0)|BIT(5);
1093 pwrctrl = mask * bb_desired_scale;
1094 clr = mask * 0x1f;
1095 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1096 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1097 }
1098}
1099
1100static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1101{
1102 return ah->eeprom.map4k.modalHeader.spurChans[i].spurChan;
1103}
1104
1105const struct eeprom_ops eep_4k_ops = {
1106 .check_eeprom = ath9k_hw_4k_check_eeprom,
1107 .get_eeprom = ath9k_hw_4k_get_eeprom,
1108 .fill_eeprom = ath9k_hw_4k_fill_eeprom,
1109 .dump_eeprom = ath9k_hw_4k_dump_eeprom,
1110 .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
1111 .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
1112 .set_board_values = ath9k_hw_4k_set_board_values,
1113 .set_txpower = ath9k_hw_4k_set_txpower,
1114 .get_spur_channel = ath9k_hw_4k_get_spur_channel
1115};
1116