linux/drivers/scsi/libfc/fc_exch.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
   3 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
   4 * Copyright(c) 2008 Mike Christie
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc.,
  17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18 *
  19 * Maintained at www.Open-FCoE.org
  20 */
  21
  22/*
  23 * Fibre Channel exchange and sequence handling.
  24 */
  25
  26#include <linux/timer.h>
  27#include <linux/slab.h>
  28#include <linux/err.h>
  29#include <linux/export.h>
  30#include <linux/log2.h>
  31
  32#include <scsi/fc/fc_fc2.h>
  33
  34#include <scsi/libfc.h>
  35#include <scsi/fc_encode.h>
  36
  37#include "fc_libfc.h"
  38
  39u16     fc_cpu_mask;            /* cpu mask for possible cpus */
  40EXPORT_SYMBOL(fc_cpu_mask);
  41static u16      fc_cpu_order;   /* 2's power to represent total possible cpus */
  42static struct kmem_cache *fc_em_cachep;        /* cache for exchanges */
  43static struct workqueue_struct *fc_exch_workqueue;
  44
  45/*
  46 * Structure and function definitions for managing Fibre Channel Exchanges
  47 * and Sequences.
  48 *
  49 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
  50 *
  51 * fc_exch_mgr holds the exchange state for an N port
  52 *
  53 * fc_exch holds state for one exchange and links to its active sequence.
  54 *
  55 * fc_seq holds the state for an individual sequence.
  56 */
  57
  58/**
  59 * struct fc_exch_pool - Per cpu exchange pool
  60 * @next_index:   Next possible free exchange index
  61 * @total_exches: Total allocated exchanges
  62 * @lock:         Exch pool lock
  63 * @ex_list:      List of exchanges
  64 *
  65 * This structure manages per cpu exchanges in array of exchange pointers.
  66 * This array is allocated followed by struct fc_exch_pool memory for
  67 * assigned range of exchanges to per cpu pool.
  68 */
  69struct fc_exch_pool {
  70        spinlock_t       lock;
  71        struct list_head ex_list;
  72        u16              next_index;
  73        u16              total_exches;
  74
  75        /* two cache of free slot in exch array */
  76        u16              left;
  77        u16              right;
  78} ____cacheline_aligned_in_smp;
  79
  80/**
  81 * struct fc_exch_mgr - The Exchange Manager (EM).
  82 * @class:          Default class for new sequences
  83 * @kref:           Reference counter
  84 * @min_xid:        Minimum exchange ID
  85 * @max_xid:        Maximum exchange ID
  86 * @ep_pool:        Reserved exchange pointers
  87 * @pool_max_index: Max exch array index in exch pool
  88 * @pool:           Per cpu exch pool
  89 * @stats:          Statistics structure
  90 *
  91 * This structure is the center for creating exchanges and sequences.
  92 * It manages the allocation of exchange IDs.
  93 */
  94struct fc_exch_mgr {
  95        struct fc_exch_pool __percpu *pool;
  96        mempool_t       *ep_pool;
  97        enum fc_class   class;
  98        struct kref     kref;
  99        u16             min_xid;
 100        u16             max_xid;
 101        u16             pool_max_index;
 102
 103        struct {
 104                atomic_t no_free_exch;
 105                atomic_t no_free_exch_xid;
 106                atomic_t xid_not_found;
 107                atomic_t xid_busy;
 108                atomic_t seq_not_found;
 109                atomic_t non_bls_resp;
 110        } stats;
 111};
 112
 113/**
 114 * struct fc_exch_mgr_anchor - primary structure for list of EMs
 115 * @ema_list: Exchange Manager Anchor list
 116 * @mp:       Exchange Manager associated with this anchor
 117 * @match:    Routine to determine if this anchor's EM should be used
 118 *
 119 * When walking the list of anchors the match routine will be called
 120 * for each anchor to determine if that EM should be used. The last
 121 * anchor in the list will always match to handle any exchanges not
 122 * handled by other EMs. The non-default EMs would be added to the
 123 * anchor list by HW that provides offloads.
 124 */
 125struct fc_exch_mgr_anchor {
 126        struct list_head ema_list;
 127        struct fc_exch_mgr *mp;
 128        bool (*match)(struct fc_frame *);
 129};
 130
 131static void fc_exch_rrq(struct fc_exch *);
 132static void fc_seq_ls_acc(struct fc_frame *);
 133static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
 134                          enum fc_els_rjt_explan);
 135static void fc_exch_els_rec(struct fc_frame *);
 136static void fc_exch_els_rrq(struct fc_frame *);
 137
 138/*
 139 * Internal implementation notes.
 140 *
 141 * The exchange manager is one by default in libfc but LLD may choose
 142 * to have one per CPU. The sequence manager is one per exchange manager
 143 * and currently never separated.
 144 *
 145 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
 146 * assigned by the Sequence Initiator that shall be unique for a specific
 147 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
 148 * qualified by exchange ID, which one might think it would be.
 149 * In practice this limits the number of open sequences and exchanges to 256
 150 * per session.  For most targets we could treat this limit as per exchange.
 151 *
 152 * The exchange and its sequence are freed when the last sequence is received.
 153 * It's possible for the remote port to leave an exchange open without
 154 * sending any sequences.
 155 *
 156 * Notes on reference counts:
 157 *
 158 * Exchanges are reference counted and exchange gets freed when the reference
 159 * count becomes zero.
 160 *
 161 * Timeouts:
 162 * Sequences are timed out for E_D_TOV and R_A_TOV.
 163 *
 164 * Sequence event handling:
 165 *
 166 * The following events may occur on initiator sequences:
 167 *
 168 *      Send.
 169 *          For now, the whole thing is sent.
 170 *      Receive ACK
 171 *          This applies only to class F.
 172 *          The sequence is marked complete.
 173 *      ULP completion.
 174 *          The upper layer calls fc_exch_done() when done
 175 *          with exchange and sequence tuple.
 176 *      RX-inferred completion.
 177 *          When we receive the next sequence on the same exchange, we can
 178 *          retire the previous sequence ID.  (XXX not implemented).
 179 *      Timeout.
 180 *          R_A_TOV frees the sequence ID.  If we're waiting for ACK,
 181 *          E_D_TOV causes abort and calls upper layer response handler
 182 *          with FC_EX_TIMEOUT error.
 183 *      Receive RJT
 184 *          XXX defer.
 185 *      Send ABTS
 186 *          On timeout.
 187 *
 188 * The following events may occur on recipient sequences:
 189 *
 190 *      Receive
 191 *          Allocate sequence for first frame received.
 192 *          Hold during receive handler.
 193 *          Release when final frame received.
 194 *          Keep status of last N of these for the ELS RES command.  XXX TBD.
 195 *      Receive ABTS
 196 *          Deallocate sequence
 197 *      Send RJT
 198 *          Deallocate
 199 *
 200 * For now, we neglect conditions where only part of a sequence was
 201 * received or transmitted, or where out-of-order receipt is detected.
 202 */
 203
 204/*
 205 * Locking notes:
 206 *
 207 * The EM code run in a per-CPU worker thread.
 208 *
 209 * To protect against concurrency between a worker thread code and timers,
 210 * sequence allocation and deallocation must be locked.
 211 *  - exchange refcnt can be done atomicly without locks.
 212 *  - sequence allocation must be locked by exch lock.
 213 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
 214 *    EM pool lock must be taken before the ex_lock.
 215 */
 216
 217/*
 218 * opcode names for debugging.
 219 */
 220static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
 221
 222/**
 223 * fc_exch_name_lookup() - Lookup name by opcode
 224 * @op:        Opcode to be looked up
 225 * @table:     Opcode/name table
 226 * @max_index: Index not to be exceeded
 227 *
 228 * This routine is used to determine a human-readable string identifying
 229 * a R_CTL opcode.
 230 */
 231static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
 232                                              unsigned int max_index)
 233{
 234        const char *name = NULL;
 235
 236        if (op < max_index)
 237                name = table[op];
 238        if (!name)
 239                name = "unknown";
 240        return name;
 241}
 242
 243/**
 244 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
 245 * @op: The opcode to be looked up
 246 */
 247static const char *fc_exch_rctl_name(unsigned int op)
 248{
 249        return fc_exch_name_lookup(op, fc_exch_rctl_names,
 250                                   ARRAY_SIZE(fc_exch_rctl_names));
 251}
 252
 253/**
 254 * fc_exch_hold() - Increment an exchange's reference count
 255 * @ep: Echange to be held
 256 */
 257static inline void fc_exch_hold(struct fc_exch *ep)
 258{
 259        atomic_inc(&ep->ex_refcnt);
 260}
 261
 262/**
 263 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
 264 *                       and determine SOF and EOF.
 265 * @ep:    The exchange to that will use the header
 266 * @fp:    The frame whose header is to be modified
 267 * @f_ctl: F_CTL bits that will be used for the frame header
 268 *
 269 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
 270 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
 271 */
 272static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
 273                              u32 f_ctl)
 274{
 275        struct fc_frame_header *fh = fc_frame_header_get(fp);
 276        u16 fill;
 277
 278        fr_sof(fp) = ep->class;
 279        if (ep->seq.cnt)
 280                fr_sof(fp) = fc_sof_normal(ep->class);
 281
 282        if (f_ctl & FC_FC_END_SEQ) {
 283                fr_eof(fp) = FC_EOF_T;
 284                if (fc_sof_needs_ack(ep->class))
 285                        fr_eof(fp) = FC_EOF_N;
 286                /*
 287                 * From F_CTL.
 288                 * The number of fill bytes to make the length a 4-byte
 289                 * multiple is the low order 2-bits of the f_ctl.
 290                 * The fill itself will have been cleared by the frame
 291                 * allocation.
 292                 * After this, the length will be even, as expected by
 293                 * the transport.
 294                 */
 295                fill = fr_len(fp) & 3;
 296                if (fill) {
 297                        fill = 4 - fill;
 298                        /* TODO, this may be a problem with fragmented skb */
 299                        skb_put(fp_skb(fp), fill);
 300                        hton24(fh->fh_f_ctl, f_ctl | fill);
 301                }
 302        } else {
 303                WARN_ON(fr_len(fp) % 4 != 0);   /* no pad to non last frame */
 304                fr_eof(fp) = FC_EOF_N;
 305        }
 306
 307        /* Initialize remaining fh fields from fc_fill_fc_hdr */
 308        fh->fh_ox_id = htons(ep->oxid);
 309        fh->fh_rx_id = htons(ep->rxid);
 310        fh->fh_seq_id = ep->seq.id;
 311        fh->fh_seq_cnt = htons(ep->seq.cnt);
 312}
 313
 314/**
 315 * fc_exch_release() - Decrement an exchange's reference count
 316 * @ep: Exchange to be released
 317 *
 318 * If the reference count reaches zero and the exchange is complete,
 319 * it is freed.
 320 */
 321static void fc_exch_release(struct fc_exch *ep)
 322{
 323        struct fc_exch_mgr *mp;
 324
 325        if (atomic_dec_and_test(&ep->ex_refcnt)) {
 326                mp = ep->em;
 327                if (ep->destructor)
 328                        ep->destructor(&ep->seq, ep->arg);
 329                WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
 330                mempool_free(ep, mp->ep_pool);
 331        }
 332}
 333
 334/**
 335 * fc_exch_timer_cancel() - cancel exch timer
 336 * @ep:         The exchange whose timer to be canceled
 337 */
 338static inline void fc_exch_timer_cancel(struct fc_exch *ep)
 339{
 340        if (cancel_delayed_work(&ep->timeout_work)) {
 341                FC_EXCH_DBG(ep, "Exchange timer canceled\n");
 342                atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
 343        }
 344}
 345
 346/**
 347 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
 348 *                              the exchange lock held
 349 * @ep:         The exchange whose timer will start
 350 * @timer_msec: The timeout period
 351 *
 352 * Used for upper level protocols to time out the exchange.
 353 * The timer is cancelled when it fires or when the exchange completes.
 354 */
 355static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
 356                                            unsigned int timer_msec)
 357{
 358        if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 359                return;
 360
 361        FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
 362
 363        fc_exch_hold(ep);               /* hold for timer */
 364        if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
 365                                msecs_to_jiffies(timer_msec)))
 366                fc_exch_release(ep);
 367}
 368
 369/**
 370 * fc_exch_timer_set() - Lock the exchange and set the timer
 371 * @ep:         The exchange whose timer will start
 372 * @timer_msec: The timeout period
 373 */
 374static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
 375{
 376        spin_lock_bh(&ep->ex_lock);
 377        fc_exch_timer_set_locked(ep, timer_msec);
 378        spin_unlock_bh(&ep->ex_lock);
 379}
 380
 381/**
 382 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
 383 * @ep: The exchange that is complete
 384 *
 385 * Note: May sleep if invoked from outside a response handler.
 386 */
 387static int fc_exch_done_locked(struct fc_exch *ep)
 388{
 389        int rc = 1;
 390
 391        /*
 392         * We must check for completion in case there are two threads
 393         * tyring to complete this. But the rrq code will reuse the
 394         * ep, and in that case we only clear the resp and set it as
 395         * complete, so it can be reused by the timer to send the rrq.
 396         */
 397        if (ep->state & FC_EX_DONE)
 398                return rc;
 399        ep->esb_stat |= ESB_ST_COMPLETE;
 400
 401        if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
 402                ep->state |= FC_EX_DONE;
 403                fc_exch_timer_cancel(ep);
 404                rc = 0;
 405        }
 406        return rc;
 407}
 408
 409/**
 410 * fc_exch_ptr_get() - Return an exchange from an exchange pool
 411 * @pool:  Exchange Pool to get an exchange from
 412 * @index: Index of the exchange within the pool
 413 *
 414 * Use the index to get an exchange from within an exchange pool. exches
 415 * will point to an array of exchange pointers. The index will select
 416 * the exchange within the array.
 417 */
 418static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
 419                                              u16 index)
 420{
 421        struct fc_exch **exches = (struct fc_exch **)(pool + 1);
 422        return exches[index];
 423}
 424
 425/**
 426 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
 427 * @pool:  The pool to assign the exchange to
 428 * @index: The index in the pool where the exchange will be assigned
 429 * @ep:    The exchange to assign to the pool
 430 */
 431static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
 432                                   struct fc_exch *ep)
 433{
 434        ((struct fc_exch **)(pool + 1))[index] = ep;
 435}
 436
 437/**
 438 * fc_exch_delete() - Delete an exchange
 439 * @ep: The exchange to be deleted
 440 */
 441static void fc_exch_delete(struct fc_exch *ep)
 442{
 443        struct fc_exch_pool *pool;
 444        u16 index;
 445
 446        pool = ep->pool;
 447        spin_lock_bh(&pool->lock);
 448        WARN_ON(pool->total_exches <= 0);
 449        pool->total_exches--;
 450
 451        /* update cache of free slot */
 452        index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
 453        if (pool->left == FC_XID_UNKNOWN)
 454                pool->left = index;
 455        else if (pool->right == FC_XID_UNKNOWN)
 456                pool->right = index;
 457        else
 458                pool->next_index = index;
 459
 460        fc_exch_ptr_set(pool, index, NULL);
 461        list_del(&ep->ex_list);
 462        spin_unlock_bh(&pool->lock);
 463        fc_exch_release(ep);    /* drop hold for exch in mp */
 464}
 465
 466static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
 467                              struct fc_frame *fp)
 468{
 469        struct fc_exch *ep;
 470        struct fc_frame_header *fh = fc_frame_header_get(fp);
 471        int error = -ENXIO;
 472        u32 f_ctl;
 473        u8 fh_type = fh->fh_type;
 474
 475        ep = fc_seq_exch(sp);
 476
 477        if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
 478                fc_frame_free(fp);
 479                goto out;
 480        }
 481
 482        WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
 483
 484        f_ctl = ntoh24(fh->fh_f_ctl);
 485        fc_exch_setup_hdr(ep, fp, f_ctl);
 486        fr_encaps(fp) = ep->encaps;
 487
 488        /*
 489         * update sequence count if this frame is carrying
 490         * multiple FC frames when sequence offload is enabled
 491         * by LLD.
 492         */
 493        if (fr_max_payload(fp))
 494                sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
 495                                        fr_max_payload(fp));
 496        else
 497                sp->cnt++;
 498
 499        /*
 500         * Send the frame.
 501         */
 502        error = lport->tt.frame_send(lport, fp);
 503
 504        if (fh_type == FC_TYPE_BLS)
 505                goto out;
 506
 507        /*
 508         * Update the exchange and sequence flags,
 509         * assuming all frames for the sequence have been sent.
 510         * We can only be called to send once for each sequence.
 511         */
 512        ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;   /* not first seq */
 513        if (f_ctl & FC_FC_SEQ_INIT)
 514                ep->esb_stat &= ~ESB_ST_SEQ_INIT;
 515out:
 516        return error;
 517}
 518
 519/**
 520 * fc_seq_send() - Send a frame using existing sequence/exchange pair
 521 * @lport: The local port that the exchange will be sent on
 522 * @sp:    The sequence to be sent
 523 * @fp:    The frame to be sent on the exchange
 524 *
 525 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
 526 * or indirectly by calling libfc_function_template.frame_send().
 527 */
 528static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
 529                       struct fc_frame *fp)
 530{
 531        struct fc_exch *ep;
 532        int error;
 533        ep = fc_seq_exch(sp);
 534        spin_lock_bh(&ep->ex_lock);
 535        error = fc_seq_send_locked(lport, sp, fp);
 536        spin_unlock_bh(&ep->ex_lock);
 537        return error;
 538}
 539
 540/**
 541 * fc_seq_alloc() - Allocate a sequence for a given exchange
 542 * @ep:     The exchange to allocate a new sequence for
 543 * @seq_id: The sequence ID to be used
 544 *
 545 * We don't support multiple originated sequences on the same exchange.
 546 * By implication, any previously originated sequence on this exchange
 547 * is complete, and we reallocate the same sequence.
 548 */
 549static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
 550{
 551        struct fc_seq *sp;
 552
 553        sp = &ep->seq;
 554        sp->ssb_stat = 0;
 555        sp->cnt = 0;
 556        sp->id = seq_id;
 557        return sp;
 558}
 559
 560/**
 561 * fc_seq_start_next_locked() - Allocate a new sequence on the same
 562 *                              exchange as the supplied sequence
 563 * @sp: The sequence/exchange to get a new sequence for
 564 */
 565static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
 566{
 567        struct fc_exch *ep = fc_seq_exch(sp);
 568
 569        sp = fc_seq_alloc(ep, ep->seq_id++);
 570        FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
 571                    ep->f_ctl, sp->id);
 572        return sp;
 573}
 574
 575/**
 576 * fc_seq_start_next() - Lock the exchange and get a new sequence
 577 *                       for a given sequence/exchange pair
 578 * @sp: The sequence/exchange to get a new exchange for
 579 */
 580static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
 581{
 582        struct fc_exch *ep = fc_seq_exch(sp);
 583
 584        spin_lock_bh(&ep->ex_lock);
 585        sp = fc_seq_start_next_locked(sp);
 586        spin_unlock_bh(&ep->ex_lock);
 587
 588        return sp;
 589}
 590
 591/*
 592 * Set the response handler for the exchange associated with a sequence.
 593 *
 594 * Note: May sleep if invoked from outside a response handler.
 595 */
 596static void fc_seq_set_resp(struct fc_seq *sp,
 597                            void (*resp)(struct fc_seq *, struct fc_frame *,
 598                                         void *),
 599                            void *arg)
 600{
 601        struct fc_exch *ep = fc_seq_exch(sp);
 602        DEFINE_WAIT(wait);
 603
 604        spin_lock_bh(&ep->ex_lock);
 605        while (ep->resp_active && ep->resp_task != current) {
 606                prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
 607                spin_unlock_bh(&ep->ex_lock);
 608
 609                schedule();
 610
 611                spin_lock_bh(&ep->ex_lock);
 612        }
 613        finish_wait(&ep->resp_wq, &wait);
 614        ep->resp = resp;
 615        ep->arg = arg;
 616        spin_unlock_bh(&ep->ex_lock);
 617}
 618
 619/**
 620 * fc_exch_abort_locked() - Abort an exchange
 621 * @ep: The exchange to be aborted
 622 * @timer_msec: The period of time to wait before aborting
 623 *
 624 * Locking notes:  Called with exch lock held
 625 *
 626 * Return value: 0 on success else error code
 627 */
 628static int fc_exch_abort_locked(struct fc_exch *ep,
 629                                unsigned int timer_msec)
 630{
 631        struct fc_seq *sp;
 632        struct fc_frame *fp;
 633        int error;
 634
 635        if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
 636            ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
 637                return -ENXIO;
 638
 639        /*
 640         * Send the abort on a new sequence if possible.
 641         */
 642        sp = fc_seq_start_next_locked(&ep->seq);
 643        if (!sp)
 644                return -ENOMEM;
 645
 646        if (timer_msec)
 647                fc_exch_timer_set_locked(ep, timer_msec);
 648
 649        if (ep->sid) {
 650                /*
 651                 * Send an abort for the sequence that timed out.
 652                 */
 653                fp = fc_frame_alloc(ep->lp, 0);
 654                if (fp) {
 655                        ep->esb_stat |= ESB_ST_SEQ_INIT;
 656                        fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
 657                                       FC_TYPE_BLS, FC_FC_END_SEQ |
 658                                       FC_FC_SEQ_INIT, 0);
 659                        error = fc_seq_send_locked(ep->lp, sp, fp);
 660                } else {
 661                        error = -ENOBUFS;
 662                }
 663        } else {
 664                /*
 665                 * If not logged into the fabric, don't send ABTS but leave
 666                 * sequence active until next timeout.
 667                 */
 668                error = 0;
 669        }
 670        ep->esb_stat |= ESB_ST_ABNORMAL;
 671        return error;
 672}
 673
 674/**
 675 * fc_seq_exch_abort() - Abort an exchange and sequence
 676 * @req_sp:     The sequence to be aborted
 677 * @timer_msec: The period of time to wait before aborting
 678 *
 679 * Generally called because of a timeout or an abort from the upper layer.
 680 *
 681 * Return value: 0 on success else error code
 682 */
 683static int fc_seq_exch_abort(const struct fc_seq *req_sp,
 684                             unsigned int timer_msec)
 685{
 686        struct fc_exch *ep;
 687        int error;
 688
 689        ep = fc_seq_exch(req_sp);
 690        spin_lock_bh(&ep->ex_lock);
 691        error = fc_exch_abort_locked(ep, timer_msec);
 692        spin_unlock_bh(&ep->ex_lock);
 693        return error;
 694}
 695
 696/**
 697 * fc_invoke_resp() - invoke ep->resp()
 698 *
 699 * Notes:
 700 * It is assumed that after initialization finished (this means the
 701 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
 702 * modified only via fc_seq_set_resp(). This guarantees that none of these
 703 * two variables changes if ep->resp_active > 0.
 704 *
 705 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
 706 * this function is invoked, the first spin_lock_bh() call in this function
 707 * will wait until fc_seq_set_resp() has finished modifying these variables.
 708 *
 709 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
 710 * ep->resp() won't be invoked after fc_exch_done() has returned.
 711 *
 712 * The response handler itself may invoke fc_exch_done(), which will clear the
 713 * ep->resp pointer.
 714 *
 715 * Return value:
 716 * Returns true if and only if ep->resp has been invoked.
 717 */
 718static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
 719                           struct fc_frame *fp)
 720{
 721        void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
 722        void *arg;
 723        bool res = false;
 724
 725        spin_lock_bh(&ep->ex_lock);
 726        ep->resp_active++;
 727        if (ep->resp_task != current)
 728                ep->resp_task = !ep->resp_task ? current : NULL;
 729        resp = ep->resp;
 730        arg = ep->arg;
 731        spin_unlock_bh(&ep->ex_lock);
 732
 733        if (resp) {
 734                resp(sp, fp, arg);
 735                res = true;
 736        } else if (!IS_ERR(fp)) {
 737                fc_frame_free(fp);
 738        }
 739
 740        spin_lock_bh(&ep->ex_lock);
 741        if (--ep->resp_active == 0)
 742                ep->resp_task = NULL;
 743        spin_unlock_bh(&ep->ex_lock);
 744
 745        if (ep->resp_active == 0)
 746                wake_up(&ep->resp_wq);
 747
 748        return res;
 749}
 750
 751/**
 752 * fc_exch_timeout() - Handle exchange timer expiration
 753 * @work: The work_struct identifying the exchange that timed out
 754 */
 755static void fc_exch_timeout(struct work_struct *work)
 756{
 757        struct fc_exch *ep = container_of(work, struct fc_exch,
 758                                          timeout_work.work);
 759        struct fc_seq *sp = &ep->seq;
 760        u32 e_stat;
 761        int rc = 1;
 762
 763        FC_EXCH_DBG(ep, "Exchange timed out\n");
 764
 765        spin_lock_bh(&ep->ex_lock);
 766        if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 767                goto unlock;
 768
 769        e_stat = ep->esb_stat;
 770        if (e_stat & ESB_ST_COMPLETE) {
 771                ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
 772                spin_unlock_bh(&ep->ex_lock);
 773                if (e_stat & ESB_ST_REC_QUAL)
 774                        fc_exch_rrq(ep);
 775                goto done;
 776        } else {
 777                if (e_stat & ESB_ST_ABNORMAL)
 778                        rc = fc_exch_done_locked(ep);
 779                spin_unlock_bh(&ep->ex_lock);
 780                if (!rc)
 781                        fc_exch_delete(ep);
 782                fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
 783                fc_seq_set_resp(sp, NULL, ep->arg);
 784                fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
 785                goto done;
 786        }
 787unlock:
 788        spin_unlock_bh(&ep->ex_lock);
 789done:
 790        /*
 791         * This release matches the hold taken when the timer was set.
 792         */
 793        fc_exch_release(ep);
 794}
 795
 796/**
 797 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
 798 * @lport: The local port that the exchange is for
 799 * @mp:    The exchange manager that will allocate the exchange
 800 *
 801 * Returns pointer to allocated fc_exch with exch lock held.
 802 */
 803static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
 804                                        struct fc_exch_mgr *mp)
 805{
 806        struct fc_exch *ep;
 807        unsigned int cpu;
 808        u16 index;
 809        struct fc_exch_pool *pool;
 810
 811        /* allocate memory for exchange */
 812        ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
 813        if (!ep) {
 814                atomic_inc(&mp->stats.no_free_exch);
 815                goto out;
 816        }
 817        memset(ep, 0, sizeof(*ep));
 818
 819        cpu = get_cpu();
 820        pool = per_cpu_ptr(mp->pool, cpu);
 821        spin_lock_bh(&pool->lock);
 822        put_cpu();
 823
 824        /* peek cache of free slot */
 825        if (pool->left != FC_XID_UNKNOWN) {
 826                index = pool->left;
 827                pool->left = FC_XID_UNKNOWN;
 828                goto hit;
 829        }
 830        if (pool->right != FC_XID_UNKNOWN) {
 831                index = pool->right;
 832                pool->right = FC_XID_UNKNOWN;
 833                goto hit;
 834        }
 835
 836        index = pool->next_index;
 837        /* allocate new exch from pool */
 838        while (fc_exch_ptr_get(pool, index)) {
 839                index = index == mp->pool_max_index ? 0 : index + 1;
 840                if (index == pool->next_index)
 841                        goto err;
 842        }
 843        pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
 844hit:
 845        fc_exch_hold(ep);       /* hold for exch in mp */
 846        spin_lock_init(&ep->ex_lock);
 847        /*
 848         * Hold exch lock for caller to prevent fc_exch_reset()
 849         * from releasing exch  while fc_exch_alloc() caller is
 850         * still working on exch.
 851         */
 852        spin_lock_bh(&ep->ex_lock);
 853
 854        fc_exch_ptr_set(pool, index, ep);
 855        list_add_tail(&ep->ex_list, &pool->ex_list);
 856        fc_seq_alloc(ep, ep->seq_id++);
 857        pool->total_exches++;
 858        spin_unlock_bh(&pool->lock);
 859
 860        /*
 861         *  update exchange
 862         */
 863        ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
 864        ep->em = mp;
 865        ep->pool = pool;
 866        ep->lp = lport;
 867        ep->f_ctl = FC_FC_FIRST_SEQ;    /* next seq is first seq */
 868        ep->rxid = FC_XID_UNKNOWN;
 869        ep->class = mp->class;
 870        ep->resp_active = 0;
 871        init_waitqueue_head(&ep->resp_wq);
 872        INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
 873out:
 874        return ep;
 875err:
 876        spin_unlock_bh(&pool->lock);
 877        atomic_inc(&mp->stats.no_free_exch_xid);
 878        mempool_free(ep, mp->ep_pool);
 879        return NULL;
 880}
 881
 882/**
 883 * fc_exch_alloc() - Allocate an exchange from an EM on a
 884 *                   local port's list of EMs.
 885 * @lport: The local port that will own the exchange
 886 * @fp:    The FC frame that the exchange will be for
 887 *
 888 * This function walks the list of exchange manager(EM)
 889 * anchors to select an EM for a new exchange allocation. The
 890 * EM is selected when a NULL match function pointer is encountered
 891 * or when a call to a match function returns true.
 892 */
 893static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
 894                                            struct fc_frame *fp)
 895{
 896        struct fc_exch_mgr_anchor *ema;
 897
 898        list_for_each_entry(ema, &lport->ema_list, ema_list)
 899                if (!ema->match || ema->match(fp))
 900                        return fc_exch_em_alloc(lport, ema->mp);
 901        return NULL;
 902}
 903
 904/**
 905 * fc_exch_find() - Lookup and hold an exchange
 906 * @mp:  The exchange manager to lookup the exchange from
 907 * @xid: The XID of the exchange to look up
 908 */
 909static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
 910{
 911        struct fc_exch_pool *pool;
 912        struct fc_exch *ep = NULL;
 913
 914        if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
 915                pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
 916                spin_lock_bh(&pool->lock);
 917                ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
 918                if (ep) {
 919                        WARN_ON(ep->xid != xid);
 920                        fc_exch_hold(ep);
 921                }
 922                spin_unlock_bh(&pool->lock);
 923        }
 924        return ep;
 925}
 926
 927
 928/**
 929 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
 930 *                  the memory allocated for the related objects may be freed.
 931 * @sp: The sequence that has completed
 932 *
 933 * Note: May sleep if invoked from outside a response handler.
 934 */
 935static void fc_exch_done(struct fc_seq *sp)
 936{
 937        struct fc_exch *ep = fc_seq_exch(sp);
 938        int rc;
 939
 940        spin_lock_bh(&ep->ex_lock);
 941        rc = fc_exch_done_locked(ep);
 942        spin_unlock_bh(&ep->ex_lock);
 943
 944        fc_seq_set_resp(sp, NULL, ep->arg);
 945        if (!rc)
 946                fc_exch_delete(ep);
 947}
 948
 949/**
 950 * fc_exch_resp() - Allocate a new exchange for a response frame
 951 * @lport: The local port that the exchange was for
 952 * @mp:    The exchange manager to allocate the exchange from
 953 * @fp:    The response frame
 954 *
 955 * Sets the responder ID in the frame header.
 956 */
 957static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
 958                                    struct fc_exch_mgr *mp,
 959                                    struct fc_frame *fp)
 960{
 961        struct fc_exch *ep;
 962        struct fc_frame_header *fh;
 963
 964        ep = fc_exch_alloc(lport, fp);
 965        if (ep) {
 966                ep->class = fc_frame_class(fp);
 967
 968                /*
 969                 * Set EX_CTX indicating we're responding on this exchange.
 970                 */
 971                ep->f_ctl |= FC_FC_EX_CTX;      /* we're responding */
 972                ep->f_ctl &= ~FC_FC_FIRST_SEQ;  /* not new */
 973                fh = fc_frame_header_get(fp);
 974                ep->sid = ntoh24(fh->fh_d_id);
 975                ep->did = ntoh24(fh->fh_s_id);
 976                ep->oid = ep->did;
 977
 978                /*
 979                 * Allocated exchange has placed the XID in the
 980                 * originator field. Move it to the responder field,
 981                 * and set the originator XID from the frame.
 982                 */
 983                ep->rxid = ep->xid;
 984                ep->oxid = ntohs(fh->fh_ox_id);
 985                ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
 986                if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
 987                        ep->esb_stat &= ~ESB_ST_SEQ_INIT;
 988
 989                fc_exch_hold(ep);       /* hold for caller */
 990                spin_unlock_bh(&ep->ex_lock);   /* lock from fc_exch_alloc */
 991        }
 992        return ep;
 993}
 994
 995/**
 996 * fc_seq_lookup_recip() - Find a sequence where the other end
 997 *                         originated the sequence
 998 * @lport: The local port that the frame was sent to
 999 * @mp:    The Exchange Manager to lookup the exchange from
1000 * @fp:    The frame associated with the sequence we're looking for
1001 *
1002 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1003 * on the ep that should be released by the caller.
1004 */
1005static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1006                                                 struct fc_exch_mgr *mp,
1007                                                 struct fc_frame *fp)
1008{
1009        struct fc_frame_header *fh = fc_frame_header_get(fp);
1010        struct fc_exch *ep = NULL;
1011        struct fc_seq *sp = NULL;
1012        enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1013        u32 f_ctl;
1014        u16 xid;
1015
1016        f_ctl = ntoh24(fh->fh_f_ctl);
1017        WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1018
1019        /*
1020         * Lookup or create the exchange if we will be creating the sequence.
1021         */
1022        if (f_ctl & FC_FC_EX_CTX) {
1023                xid = ntohs(fh->fh_ox_id);      /* we originated exch */
1024                ep = fc_exch_find(mp, xid);
1025                if (!ep) {
1026                        atomic_inc(&mp->stats.xid_not_found);
1027                        reject = FC_RJT_OX_ID;
1028                        goto out;
1029                }
1030                if (ep->rxid == FC_XID_UNKNOWN)
1031                        ep->rxid = ntohs(fh->fh_rx_id);
1032                else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1033                        reject = FC_RJT_OX_ID;
1034                        goto rel;
1035                }
1036        } else {
1037                xid = ntohs(fh->fh_rx_id);      /* we are the responder */
1038
1039                /*
1040                 * Special case for MDS issuing an ELS TEST with a
1041                 * bad rxid of 0.
1042                 * XXX take this out once we do the proper reject.
1043                 */
1044                if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1045                    fc_frame_payload_op(fp) == ELS_TEST) {
1046                        fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1047                        xid = FC_XID_UNKNOWN;
1048                }
1049
1050                /*
1051                 * new sequence - find the exchange
1052                 */
1053                ep = fc_exch_find(mp, xid);
1054                if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1055                        if (ep) {
1056                                atomic_inc(&mp->stats.xid_busy);
1057                                reject = FC_RJT_RX_ID;
1058                                goto rel;
1059                        }
1060                        ep = fc_exch_resp(lport, mp, fp);
1061                        if (!ep) {
1062                                reject = FC_RJT_EXCH_EST;       /* XXX */
1063                                goto out;
1064                        }
1065                        xid = ep->xid;  /* get our XID */
1066                } else if (!ep) {
1067                        atomic_inc(&mp->stats.xid_not_found);
1068                        reject = FC_RJT_RX_ID;  /* XID not found */
1069                        goto out;
1070                }
1071        }
1072
1073        spin_lock_bh(&ep->ex_lock);
1074        /*
1075         * At this point, we have the exchange held.
1076         * Find or create the sequence.
1077         */
1078        if (fc_sof_is_init(fr_sof(fp))) {
1079                sp = &ep->seq;
1080                sp->ssb_stat |= SSB_ST_RESP;
1081                sp->id = fh->fh_seq_id;
1082        } else {
1083                sp = &ep->seq;
1084                if (sp->id != fh->fh_seq_id) {
1085                        atomic_inc(&mp->stats.seq_not_found);
1086                        if (f_ctl & FC_FC_END_SEQ) {
1087                                /*
1088                                 * Update sequence_id based on incoming last
1089                                 * frame of sequence exchange. This is needed
1090                                 * for FC target where DDP has been used
1091                                 * on target where, stack is indicated only
1092                                 * about last frame's (payload _header) header.
1093                                 * Whereas "seq_id" which is part of
1094                                 * frame_header is allocated by initiator
1095                                 * which is totally different from "seq_id"
1096                                 * allocated when XFER_RDY was sent by target.
1097                                 * To avoid false -ve which results into not
1098                                 * sending RSP, hence write request on other
1099                                 * end never finishes.
1100                                 */
1101                                sp->ssb_stat |= SSB_ST_RESP;
1102                                sp->id = fh->fh_seq_id;
1103                        } else {
1104                                spin_unlock_bh(&ep->ex_lock);
1105
1106                                /* sequence/exch should exist */
1107                                reject = FC_RJT_SEQ_ID;
1108                                goto rel;
1109                        }
1110                }
1111        }
1112        WARN_ON(ep != fc_seq_exch(sp));
1113
1114        if (f_ctl & FC_FC_SEQ_INIT)
1115                ep->esb_stat |= ESB_ST_SEQ_INIT;
1116        spin_unlock_bh(&ep->ex_lock);
1117
1118        fr_seq(fp) = sp;
1119out:
1120        return reject;
1121rel:
1122        fc_exch_done(&ep->seq);
1123        fc_exch_release(ep);    /* hold from fc_exch_find/fc_exch_resp */
1124        return reject;
1125}
1126
1127/**
1128 * fc_seq_lookup_orig() - Find a sequence where this end
1129 *                        originated the sequence
1130 * @mp:    The Exchange Manager to lookup the exchange from
1131 * @fp:    The frame associated with the sequence we're looking for
1132 *
1133 * Does not hold the sequence for the caller.
1134 */
1135static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1136                                         struct fc_frame *fp)
1137{
1138        struct fc_frame_header *fh = fc_frame_header_get(fp);
1139        struct fc_exch *ep;
1140        struct fc_seq *sp = NULL;
1141        u32 f_ctl;
1142        u16 xid;
1143
1144        f_ctl = ntoh24(fh->fh_f_ctl);
1145        WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1146        xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1147        ep = fc_exch_find(mp, xid);
1148        if (!ep)
1149                return NULL;
1150        if (ep->seq.id == fh->fh_seq_id) {
1151                /*
1152                 * Save the RX_ID if we didn't previously know it.
1153                 */
1154                sp = &ep->seq;
1155                if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1156                    ep->rxid == FC_XID_UNKNOWN) {
1157                        ep->rxid = ntohs(fh->fh_rx_id);
1158                }
1159        }
1160        fc_exch_release(ep);
1161        return sp;
1162}
1163
1164/**
1165 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1166 * @ep:      The exchange to set the addresses for
1167 * @orig_id: The originator's ID
1168 * @resp_id: The responder's ID
1169 *
1170 * Note this must be done before the first sequence of the exchange is sent.
1171 */
1172static void fc_exch_set_addr(struct fc_exch *ep,
1173                             u32 orig_id, u32 resp_id)
1174{
1175        ep->oid = orig_id;
1176        if (ep->esb_stat & ESB_ST_RESP) {
1177                ep->sid = resp_id;
1178                ep->did = orig_id;
1179        } else {
1180                ep->sid = orig_id;
1181                ep->did = resp_id;
1182        }
1183}
1184
1185/**
1186 * fc_seq_els_rsp_send() - Send an ELS response using information from
1187 *                         the existing sequence/exchange.
1188 * @fp:       The received frame
1189 * @els_cmd:  The ELS command to be sent
1190 * @els_data: The ELS data to be sent
1191 *
1192 * The received frame is not freed.
1193 */
1194static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1195                                struct fc_seq_els_data *els_data)
1196{
1197        switch (els_cmd) {
1198        case ELS_LS_RJT:
1199                fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1200                break;
1201        case ELS_LS_ACC:
1202                fc_seq_ls_acc(fp);
1203                break;
1204        case ELS_RRQ:
1205                fc_exch_els_rrq(fp);
1206                break;
1207        case ELS_REC:
1208                fc_exch_els_rec(fp);
1209                break;
1210        default:
1211                FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1212        }
1213}
1214
1215/**
1216 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1217 * @sp:      The sequence that is to be sent
1218 * @fp:      The frame that will be sent on the sequence
1219 * @rctl:    The R_CTL information to be sent
1220 * @fh_type: The frame header type
1221 */
1222static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1223                             enum fc_rctl rctl, enum fc_fh_type fh_type)
1224{
1225        u32 f_ctl;
1226        struct fc_exch *ep = fc_seq_exch(sp);
1227
1228        f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1229        f_ctl |= ep->f_ctl;
1230        fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1231        fc_seq_send_locked(ep->lp, sp, fp);
1232}
1233
1234/**
1235 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1236 * @sp:    The sequence to send the ACK on
1237 * @rx_fp: The received frame that is being acknoledged
1238 *
1239 * Send ACK_1 (or equiv.) indicating we received something.
1240 */
1241static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1242{
1243        struct fc_frame *fp;
1244        struct fc_frame_header *rx_fh;
1245        struct fc_frame_header *fh;
1246        struct fc_exch *ep = fc_seq_exch(sp);
1247        struct fc_lport *lport = ep->lp;
1248        unsigned int f_ctl;
1249
1250        /*
1251         * Don't send ACKs for class 3.
1252         */
1253        if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1254                fp = fc_frame_alloc(lport, 0);
1255                if (!fp)
1256                        return;
1257
1258                fh = fc_frame_header_get(fp);
1259                fh->fh_r_ctl = FC_RCTL_ACK_1;
1260                fh->fh_type = FC_TYPE_BLS;
1261
1262                /*
1263                 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1264                 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1265                 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1266                 * Last ACK uses bits 7-6 (continue sequence),
1267                 * bits 5-4 are meaningful (what kind of ACK to use).
1268                 */
1269                rx_fh = fc_frame_header_get(rx_fp);
1270                f_ctl = ntoh24(rx_fh->fh_f_ctl);
1271                f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1272                        FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1273                        FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1274                        FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1275                f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1276                hton24(fh->fh_f_ctl, f_ctl);
1277
1278                fc_exch_setup_hdr(ep, fp, f_ctl);
1279                fh->fh_seq_id = rx_fh->fh_seq_id;
1280                fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1281                fh->fh_parm_offset = htonl(1);  /* ack single frame */
1282
1283                fr_sof(fp) = fr_sof(rx_fp);
1284                if (f_ctl & FC_FC_END_SEQ)
1285                        fr_eof(fp) = FC_EOF_T;
1286                else
1287                        fr_eof(fp) = FC_EOF_N;
1288
1289                lport->tt.frame_send(lport, fp);
1290        }
1291}
1292
1293/**
1294 * fc_exch_send_ba_rjt() - Send BLS Reject
1295 * @rx_fp:  The frame being rejected
1296 * @reason: The reason the frame is being rejected
1297 * @explan: The explanation for the rejection
1298 *
1299 * This is for rejecting BA_ABTS only.
1300 */
1301static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1302                                enum fc_ba_rjt_reason reason,
1303                                enum fc_ba_rjt_explan explan)
1304{
1305        struct fc_frame *fp;
1306        struct fc_frame_header *rx_fh;
1307        struct fc_frame_header *fh;
1308        struct fc_ba_rjt *rp;
1309        struct fc_lport *lport;
1310        unsigned int f_ctl;
1311
1312        lport = fr_dev(rx_fp);
1313        fp = fc_frame_alloc(lport, sizeof(*rp));
1314        if (!fp)
1315                return;
1316        fh = fc_frame_header_get(fp);
1317        rx_fh = fc_frame_header_get(rx_fp);
1318
1319        memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1320
1321        rp = fc_frame_payload_get(fp, sizeof(*rp));
1322        rp->br_reason = reason;
1323        rp->br_explan = explan;
1324
1325        /*
1326         * seq_id, cs_ctl, df_ctl and param/offset are zero.
1327         */
1328        memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1329        memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1330        fh->fh_ox_id = rx_fh->fh_ox_id;
1331        fh->fh_rx_id = rx_fh->fh_rx_id;
1332        fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1333        fh->fh_r_ctl = FC_RCTL_BA_RJT;
1334        fh->fh_type = FC_TYPE_BLS;
1335
1336        /*
1337         * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1338         * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1339         * Bits 9-8 are meaningful (retransmitted or unidirectional).
1340         * Last ACK uses bits 7-6 (continue sequence),
1341         * bits 5-4 are meaningful (what kind of ACK to use).
1342         * Always set LAST_SEQ, END_SEQ.
1343         */
1344        f_ctl = ntoh24(rx_fh->fh_f_ctl);
1345        f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1346                FC_FC_END_CONN | FC_FC_SEQ_INIT |
1347                FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1348        f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1349        f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1350        f_ctl &= ~FC_FC_FIRST_SEQ;
1351        hton24(fh->fh_f_ctl, f_ctl);
1352
1353        fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1354        fr_eof(fp) = FC_EOF_T;
1355        if (fc_sof_needs_ack(fr_sof(fp)))
1356                fr_eof(fp) = FC_EOF_N;
1357
1358        lport->tt.frame_send(lport, fp);
1359}
1360
1361/**
1362 * fc_exch_recv_abts() - Handle an incoming ABTS
1363 * @ep:    The exchange the abort was on
1364 * @rx_fp: The ABTS frame
1365 *
1366 * This would be for target mode usually, but could be due to lost
1367 * FCP transfer ready, confirm or RRQ. We always handle this as an
1368 * exchange abort, ignoring the parameter.
1369 */
1370static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1371{
1372        struct fc_frame *fp;
1373        struct fc_ba_acc *ap;
1374        struct fc_frame_header *fh;
1375        struct fc_seq *sp;
1376
1377        if (!ep)
1378                goto reject;
1379
1380        fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1381        if (!fp)
1382                goto free;
1383
1384        spin_lock_bh(&ep->ex_lock);
1385        if (ep->esb_stat & ESB_ST_COMPLETE) {
1386                spin_unlock_bh(&ep->ex_lock);
1387
1388                fc_frame_free(fp);
1389                goto reject;
1390        }
1391        if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1392                ep->esb_stat |= ESB_ST_REC_QUAL;
1393                fc_exch_hold(ep);               /* hold for REC_QUAL */
1394        }
1395        fc_exch_timer_set_locked(ep, ep->r_a_tov);
1396        fh = fc_frame_header_get(fp);
1397        ap = fc_frame_payload_get(fp, sizeof(*ap));
1398        memset(ap, 0, sizeof(*ap));
1399        sp = &ep->seq;
1400        ap->ba_high_seq_cnt = htons(0xffff);
1401        if (sp->ssb_stat & SSB_ST_RESP) {
1402                ap->ba_seq_id = sp->id;
1403                ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1404                ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1405                ap->ba_low_seq_cnt = htons(sp->cnt);
1406        }
1407        sp = fc_seq_start_next_locked(sp);
1408        fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1409        ep->esb_stat |= ESB_ST_ABNORMAL;
1410        spin_unlock_bh(&ep->ex_lock);
1411
1412free:
1413        fc_frame_free(rx_fp);
1414        return;
1415
1416reject:
1417        fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1418        goto free;
1419}
1420
1421/**
1422 * fc_seq_assign() - Assign exchange and sequence for incoming request
1423 * @lport: The local port that received the request
1424 * @fp:    The request frame
1425 *
1426 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1427 * A reference will be held on the exchange/sequence for the caller, which
1428 * must call fc_seq_release().
1429 */
1430static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1431{
1432        struct fc_exch_mgr_anchor *ema;
1433
1434        WARN_ON(lport != fr_dev(fp));
1435        WARN_ON(fr_seq(fp));
1436        fr_seq(fp) = NULL;
1437
1438        list_for_each_entry(ema, &lport->ema_list, ema_list)
1439                if ((!ema->match || ema->match(fp)) &&
1440                    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1441                        break;
1442        return fr_seq(fp);
1443}
1444
1445/**
1446 * fc_seq_release() - Release the hold
1447 * @sp:    The sequence.
1448 */
1449static void fc_seq_release(struct fc_seq *sp)
1450{
1451        fc_exch_release(fc_seq_exch(sp));
1452}
1453
1454/**
1455 * fc_exch_recv_req() - Handler for an incoming request
1456 * @lport: The local port that received the request
1457 * @mp:    The EM that the exchange is on
1458 * @fp:    The request frame
1459 *
1460 * This is used when the other end is originating the exchange
1461 * and the sequence.
1462 */
1463static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1464                             struct fc_frame *fp)
1465{
1466        struct fc_frame_header *fh = fc_frame_header_get(fp);
1467        struct fc_seq *sp = NULL;
1468        struct fc_exch *ep = NULL;
1469        enum fc_pf_rjt_reason reject;
1470
1471        /* We can have the wrong fc_lport at this point with NPIV, which is a
1472         * problem now that we know a new exchange needs to be allocated
1473         */
1474        lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1475        if (!lport) {
1476                fc_frame_free(fp);
1477                return;
1478        }
1479        fr_dev(fp) = lport;
1480
1481        BUG_ON(fr_seq(fp));             /* XXX remove later */
1482
1483        /*
1484         * If the RX_ID is 0xffff, don't allocate an exchange.
1485         * The upper-level protocol may request one later, if needed.
1486         */
1487        if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1488                return lport->tt.lport_recv(lport, fp);
1489
1490        reject = fc_seq_lookup_recip(lport, mp, fp);
1491        if (reject == FC_RJT_NONE) {
1492                sp = fr_seq(fp);        /* sequence will be held */
1493                ep = fc_seq_exch(sp);
1494                fc_seq_send_ack(sp, fp);
1495                ep->encaps = fr_encaps(fp);
1496
1497                /*
1498                 * Call the receive function.
1499                 *
1500                 * The receive function may allocate a new sequence
1501                 * over the old one, so we shouldn't change the
1502                 * sequence after this.
1503                 *
1504                 * The frame will be freed by the receive function.
1505                 * If new exch resp handler is valid then call that
1506                 * first.
1507                 */
1508                if (!fc_invoke_resp(ep, sp, fp))
1509                        lport->tt.lport_recv(lport, fp);
1510                fc_exch_release(ep);    /* release from lookup */
1511        } else {
1512                FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1513                             reject);
1514                fc_frame_free(fp);
1515        }
1516}
1517
1518/**
1519 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1520 *                           end is the originator of the sequence that is a
1521 *                           response to our initial exchange
1522 * @mp: The EM that the exchange is on
1523 * @fp: The response frame
1524 */
1525static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1526{
1527        struct fc_frame_header *fh = fc_frame_header_get(fp);
1528        struct fc_seq *sp;
1529        struct fc_exch *ep;
1530        enum fc_sof sof;
1531        u32 f_ctl;
1532        int rc;
1533
1534        ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1535        if (!ep) {
1536                atomic_inc(&mp->stats.xid_not_found);
1537                goto out;
1538        }
1539        if (ep->esb_stat & ESB_ST_COMPLETE) {
1540                atomic_inc(&mp->stats.xid_not_found);
1541                goto rel;
1542        }
1543        if (ep->rxid == FC_XID_UNKNOWN)
1544                ep->rxid = ntohs(fh->fh_rx_id);
1545        if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1546                atomic_inc(&mp->stats.xid_not_found);
1547                goto rel;
1548        }
1549        if (ep->did != ntoh24(fh->fh_s_id) &&
1550            ep->did != FC_FID_FLOGI) {
1551                atomic_inc(&mp->stats.xid_not_found);
1552                goto rel;
1553        }
1554        sof = fr_sof(fp);
1555        sp = &ep->seq;
1556        if (fc_sof_is_init(sof)) {
1557                sp->ssb_stat |= SSB_ST_RESP;
1558                sp->id = fh->fh_seq_id;
1559        } else if (sp->id != fh->fh_seq_id) {
1560                atomic_inc(&mp->stats.seq_not_found);
1561                goto rel;
1562        }
1563
1564        f_ctl = ntoh24(fh->fh_f_ctl);
1565        fr_seq(fp) = sp;
1566
1567        spin_lock_bh(&ep->ex_lock);
1568        if (f_ctl & FC_FC_SEQ_INIT)
1569                ep->esb_stat |= ESB_ST_SEQ_INIT;
1570        spin_unlock_bh(&ep->ex_lock);
1571
1572        if (fc_sof_needs_ack(sof))
1573                fc_seq_send_ack(sp, fp);
1574
1575        if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1576            (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1577            (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1578                spin_lock_bh(&ep->ex_lock);
1579                rc = fc_exch_done_locked(ep);
1580                WARN_ON(fc_seq_exch(sp) != ep);
1581                spin_unlock_bh(&ep->ex_lock);
1582                if (!rc)
1583                        fc_exch_delete(ep);
1584        }
1585
1586        /*
1587         * Call the receive function.
1588         * The sequence is held (has a refcnt) for us,
1589         * but not for the receive function.
1590         *
1591         * The receive function may allocate a new sequence
1592         * over the old one, so we shouldn't change the
1593         * sequence after this.
1594         *
1595         * The frame will be freed by the receive function.
1596         * If new exch resp handler is valid then call that
1597         * first.
1598         */
1599        fc_invoke_resp(ep, sp, fp);
1600
1601        fc_exch_release(ep);
1602        return;
1603rel:
1604        fc_exch_release(ep);
1605out:
1606        fc_frame_free(fp);
1607}
1608
1609/**
1610 * fc_exch_recv_resp() - Handler for a sequence where other end is
1611 *                       responding to our sequence
1612 * @mp: The EM that the exchange is on
1613 * @fp: The response frame
1614 */
1615static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1616{
1617        struct fc_seq *sp;
1618
1619        sp = fc_seq_lookup_orig(mp, fp);        /* doesn't hold sequence */
1620
1621        if (!sp)
1622                atomic_inc(&mp->stats.xid_not_found);
1623        else
1624                atomic_inc(&mp->stats.non_bls_resp);
1625
1626        fc_frame_free(fp);
1627}
1628
1629/**
1630 * fc_exch_abts_resp() - Handler for a response to an ABT
1631 * @ep: The exchange that the frame is on
1632 * @fp: The response frame
1633 *
1634 * This response would be to an ABTS cancelling an exchange or sequence.
1635 * The response can be either BA_ACC or BA_RJT
1636 */
1637static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1638{
1639        struct fc_frame_header *fh;
1640        struct fc_ba_acc *ap;
1641        struct fc_seq *sp;
1642        u16 low;
1643        u16 high;
1644        int rc = 1, has_rec = 0;
1645
1646        fh = fc_frame_header_get(fp);
1647        FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1648                    fc_exch_rctl_name(fh->fh_r_ctl));
1649
1650        if (cancel_delayed_work_sync(&ep->timeout_work)) {
1651                FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1652                fc_exch_release(ep);    /* release from pending timer hold */
1653        }
1654
1655        spin_lock_bh(&ep->ex_lock);
1656        switch (fh->fh_r_ctl) {
1657        case FC_RCTL_BA_ACC:
1658                ap = fc_frame_payload_get(fp, sizeof(*ap));
1659                if (!ap)
1660                        break;
1661
1662                /*
1663                 * Decide whether to establish a Recovery Qualifier.
1664                 * We do this if there is a non-empty SEQ_CNT range and
1665                 * SEQ_ID is the same as the one we aborted.
1666                 */
1667                low = ntohs(ap->ba_low_seq_cnt);
1668                high = ntohs(ap->ba_high_seq_cnt);
1669                if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1670                    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1671                     ap->ba_seq_id == ep->seq_id) && low != high) {
1672                        ep->esb_stat |= ESB_ST_REC_QUAL;
1673                        fc_exch_hold(ep);  /* hold for recovery qualifier */
1674                        has_rec = 1;
1675                }
1676                break;
1677        case FC_RCTL_BA_RJT:
1678                break;
1679        default:
1680                break;
1681        }
1682
1683        /* do we need to do some other checks here. Can we reuse more of
1684         * fc_exch_recv_seq_resp
1685         */
1686        sp = &ep->seq;
1687        /*
1688         * do we want to check END_SEQ as well as LAST_SEQ here?
1689         */
1690        if (ep->fh_type != FC_TYPE_FCP &&
1691            ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1692                rc = fc_exch_done_locked(ep);
1693        spin_unlock_bh(&ep->ex_lock);
1694
1695        fc_exch_hold(ep);
1696        if (!rc)
1697                fc_exch_delete(ep);
1698        fc_invoke_resp(ep, sp, fp);
1699        if (has_rec)
1700                fc_exch_timer_set(ep, ep->r_a_tov);
1701        fc_exch_release(ep);
1702}
1703
1704/**
1705 * fc_exch_recv_bls() - Handler for a BLS sequence
1706 * @mp: The EM that the exchange is on
1707 * @fp: The request frame
1708 *
1709 * The BLS frame is always a sequence initiated by the remote side.
1710 * We may be either the originator or recipient of the exchange.
1711 */
1712static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1713{
1714        struct fc_frame_header *fh;
1715        struct fc_exch *ep;
1716        u32 f_ctl;
1717
1718        fh = fc_frame_header_get(fp);
1719        f_ctl = ntoh24(fh->fh_f_ctl);
1720        fr_seq(fp) = NULL;
1721
1722        ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1723                          ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1724        if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1725                spin_lock_bh(&ep->ex_lock);
1726                ep->esb_stat |= ESB_ST_SEQ_INIT;
1727                spin_unlock_bh(&ep->ex_lock);
1728        }
1729        if (f_ctl & FC_FC_SEQ_CTX) {
1730                /*
1731                 * A response to a sequence we initiated.
1732                 * This should only be ACKs for class 2 or F.
1733                 */
1734                switch (fh->fh_r_ctl) {
1735                case FC_RCTL_ACK_1:
1736                case FC_RCTL_ACK_0:
1737                        break;
1738                default:
1739                        if (ep)
1740                                FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1741                                            fh->fh_r_ctl,
1742                                            fc_exch_rctl_name(fh->fh_r_ctl));
1743                        break;
1744                }
1745                fc_frame_free(fp);
1746        } else {
1747                switch (fh->fh_r_ctl) {
1748                case FC_RCTL_BA_RJT:
1749                case FC_RCTL_BA_ACC:
1750                        if (ep)
1751                                fc_exch_abts_resp(ep, fp);
1752                        else
1753                                fc_frame_free(fp);
1754                        break;
1755                case FC_RCTL_BA_ABTS:
1756                        fc_exch_recv_abts(ep, fp);
1757                        break;
1758                default:                        /* ignore junk */
1759                        fc_frame_free(fp);
1760                        break;
1761                }
1762        }
1763        if (ep)
1764                fc_exch_release(ep);    /* release hold taken by fc_exch_find */
1765}
1766
1767/**
1768 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1769 * @rx_fp: The received frame, not freed here.
1770 *
1771 * If this fails due to allocation or transmit congestion, assume the
1772 * originator will repeat the sequence.
1773 */
1774static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1775{
1776        struct fc_lport *lport;
1777        struct fc_els_ls_acc *acc;
1778        struct fc_frame *fp;
1779
1780        lport = fr_dev(rx_fp);
1781        fp = fc_frame_alloc(lport, sizeof(*acc));
1782        if (!fp)
1783                return;
1784        acc = fc_frame_payload_get(fp, sizeof(*acc));
1785        memset(acc, 0, sizeof(*acc));
1786        acc->la_cmd = ELS_LS_ACC;
1787        fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1788        lport->tt.frame_send(lport, fp);
1789}
1790
1791/**
1792 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1793 * @rx_fp: The received frame, not freed here.
1794 * @reason: The reason the sequence is being rejected
1795 * @explan: The explanation for the rejection
1796 *
1797 * If this fails due to allocation or transmit congestion, assume the
1798 * originator will repeat the sequence.
1799 */
1800static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1801                          enum fc_els_rjt_explan explan)
1802{
1803        struct fc_lport *lport;
1804        struct fc_els_ls_rjt *rjt;
1805        struct fc_frame *fp;
1806
1807        lport = fr_dev(rx_fp);
1808        fp = fc_frame_alloc(lport, sizeof(*rjt));
1809        if (!fp)
1810                return;
1811        rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1812        memset(rjt, 0, sizeof(*rjt));
1813        rjt->er_cmd = ELS_LS_RJT;
1814        rjt->er_reason = reason;
1815        rjt->er_explan = explan;
1816        fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1817        lport->tt.frame_send(lport, fp);
1818}
1819
1820/**
1821 * fc_exch_reset() - Reset an exchange
1822 * @ep: The exchange to be reset
1823 *
1824 * Note: May sleep if invoked from outside a response handler.
1825 */
1826static void fc_exch_reset(struct fc_exch *ep)
1827{
1828        struct fc_seq *sp;
1829        int rc = 1;
1830
1831        spin_lock_bh(&ep->ex_lock);
1832        fc_exch_abort_locked(ep, 0);
1833        ep->state |= FC_EX_RST_CLEANUP;
1834        fc_exch_timer_cancel(ep);
1835        if (ep->esb_stat & ESB_ST_REC_QUAL)
1836                atomic_dec(&ep->ex_refcnt);     /* drop hold for rec_qual */
1837        ep->esb_stat &= ~ESB_ST_REC_QUAL;
1838        sp = &ep->seq;
1839        rc = fc_exch_done_locked(ep);
1840        spin_unlock_bh(&ep->ex_lock);
1841
1842        fc_exch_hold(ep);
1843
1844        if (!rc)
1845                fc_exch_delete(ep);
1846
1847        fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1848        fc_seq_set_resp(sp, NULL, ep->arg);
1849        fc_exch_release(ep);
1850}
1851
1852/**
1853 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1854 * @lport: The local port that the exchange pool is on
1855 * @pool:  The exchange pool to be reset
1856 * @sid:   The source ID
1857 * @did:   The destination ID
1858 *
1859 * Resets a per cpu exches pool, releasing all of its sequences
1860 * and exchanges. If sid is non-zero then reset only exchanges
1861 * we sourced from the local port's FID. If did is non-zero then
1862 * only reset exchanges destined for the local port's FID.
1863 */
1864static void fc_exch_pool_reset(struct fc_lport *lport,
1865                               struct fc_exch_pool *pool,
1866                               u32 sid, u32 did)
1867{
1868        struct fc_exch *ep;
1869        struct fc_exch *next;
1870
1871        spin_lock_bh(&pool->lock);
1872restart:
1873        list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1874                if ((lport == ep->lp) &&
1875                    (sid == 0 || sid == ep->sid) &&
1876                    (did == 0 || did == ep->did)) {
1877                        fc_exch_hold(ep);
1878                        spin_unlock_bh(&pool->lock);
1879
1880                        fc_exch_reset(ep);
1881
1882                        fc_exch_release(ep);
1883                        spin_lock_bh(&pool->lock);
1884
1885                        /*
1886                         * must restart loop incase while lock
1887                         * was down multiple eps were released.
1888                         */
1889                        goto restart;
1890                }
1891        }
1892        pool->next_index = 0;
1893        pool->left = FC_XID_UNKNOWN;
1894        pool->right = FC_XID_UNKNOWN;
1895        spin_unlock_bh(&pool->lock);
1896}
1897
1898/**
1899 * fc_exch_mgr_reset() - Reset all EMs of a local port
1900 * @lport: The local port whose EMs are to be reset
1901 * @sid:   The source ID
1902 * @did:   The destination ID
1903 *
1904 * Reset all EMs associated with a given local port. Release all
1905 * sequences and exchanges. If sid is non-zero then reset only the
1906 * exchanges sent from the local port's FID. If did is non-zero then
1907 * reset only exchanges destined for the local port's FID.
1908 */
1909void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1910{
1911        struct fc_exch_mgr_anchor *ema;
1912        unsigned int cpu;
1913
1914        list_for_each_entry(ema, &lport->ema_list, ema_list) {
1915                for_each_possible_cpu(cpu)
1916                        fc_exch_pool_reset(lport,
1917                                           per_cpu_ptr(ema->mp->pool, cpu),
1918                                           sid, did);
1919        }
1920}
1921EXPORT_SYMBOL(fc_exch_mgr_reset);
1922
1923/**
1924 * fc_exch_lookup() - find an exchange
1925 * @lport: The local port
1926 * @xid: The exchange ID
1927 *
1928 * Returns exchange pointer with hold for caller, or NULL if not found.
1929 */
1930static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1931{
1932        struct fc_exch_mgr_anchor *ema;
1933
1934        list_for_each_entry(ema, &lport->ema_list, ema_list)
1935                if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1936                        return fc_exch_find(ema->mp, xid);
1937        return NULL;
1938}
1939
1940/**
1941 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1942 * @rfp: The REC frame, not freed here.
1943 *
1944 * Note that the requesting port may be different than the S_ID in the request.
1945 */
1946static void fc_exch_els_rec(struct fc_frame *rfp)
1947{
1948        struct fc_lport *lport;
1949        struct fc_frame *fp;
1950        struct fc_exch *ep;
1951        struct fc_els_rec *rp;
1952        struct fc_els_rec_acc *acc;
1953        enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1954        enum fc_els_rjt_explan explan;
1955        u32 sid;
1956        u16 rxid;
1957        u16 oxid;
1958
1959        lport = fr_dev(rfp);
1960        rp = fc_frame_payload_get(rfp, sizeof(*rp));
1961        explan = ELS_EXPL_INV_LEN;
1962        if (!rp)
1963                goto reject;
1964        sid = ntoh24(rp->rec_s_id);
1965        rxid = ntohs(rp->rec_rx_id);
1966        oxid = ntohs(rp->rec_ox_id);
1967
1968        ep = fc_exch_lookup(lport,
1969                            sid == fc_host_port_id(lport->host) ? oxid : rxid);
1970        explan = ELS_EXPL_OXID_RXID;
1971        if (!ep)
1972                goto reject;
1973        if (ep->oid != sid || oxid != ep->oxid)
1974                goto rel;
1975        if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1976                goto rel;
1977        fp = fc_frame_alloc(lport, sizeof(*acc));
1978        if (!fp)
1979                goto out;
1980
1981        acc = fc_frame_payload_get(fp, sizeof(*acc));
1982        memset(acc, 0, sizeof(*acc));
1983        acc->reca_cmd = ELS_LS_ACC;
1984        acc->reca_ox_id = rp->rec_ox_id;
1985        memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1986        acc->reca_rx_id = htons(ep->rxid);
1987        if (ep->sid == ep->oid)
1988                hton24(acc->reca_rfid, ep->did);
1989        else
1990                hton24(acc->reca_rfid, ep->sid);
1991        acc->reca_fc4value = htonl(ep->seq.rec_data);
1992        acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1993                                                 ESB_ST_SEQ_INIT |
1994                                                 ESB_ST_COMPLETE));
1995        fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1996        lport->tt.frame_send(lport, fp);
1997out:
1998        fc_exch_release(ep);
1999        return;
2000
2001rel:
2002        fc_exch_release(ep);
2003reject:
2004        fc_seq_ls_rjt(rfp, reason, explan);
2005}
2006
2007/**
2008 * fc_exch_rrq_resp() - Handler for RRQ responses
2009 * @sp:  The sequence that the RRQ is on
2010 * @fp:  The RRQ frame
2011 * @arg: The exchange that the RRQ is on
2012 *
2013 * TODO: fix error handler.
2014 */
2015static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2016{
2017        struct fc_exch *aborted_ep = arg;
2018        unsigned int op;
2019
2020        if (IS_ERR(fp)) {
2021                int err = PTR_ERR(fp);
2022
2023                if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2024                        goto cleanup;
2025                FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2026                            "frame error %d\n", err);
2027                return;
2028        }
2029
2030        op = fc_frame_payload_op(fp);
2031        fc_frame_free(fp);
2032
2033        switch (op) {
2034        case ELS_LS_RJT:
2035                FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2036                /* fall through */
2037        case ELS_LS_ACC:
2038                goto cleanup;
2039        default:
2040                FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2041                            op);
2042                return;
2043        }
2044
2045cleanup:
2046        fc_exch_done(&aborted_ep->seq);
2047        /* drop hold for rec qual */
2048        fc_exch_release(aborted_ep);
2049}
2050
2051
2052/**
2053 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2054 * @lport:      The local port to send the frame on
2055 * @fp:         The frame to be sent
2056 * @resp:       The response handler for this request
2057 * @destructor: The destructor for the exchange
2058 * @arg:        The argument to be passed to the response handler
2059 * @timer_msec: The timeout period for the exchange
2060 *
2061 * The frame pointer with some of the header's fields must be
2062 * filled before calling this routine, those fields are:
2063 *
2064 * - routing control
2065 * - FC port did
2066 * - FC port sid
2067 * - FC header type
2068 * - frame control
2069 * - parameter or relative offset
2070 */
2071static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2072                                       struct fc_frame *fp,
2073                                       void (*resp)(struct fc_seq *,
2074                                                    struct fc_frame *fp,
2075                                                    void *arg),
2076                                       void (*destructor)(struct fc_seq *,
2077                                                          void *),
2078                                       void *arg, u32 timer_msec)
2079{
2080        struct fc_exch *ep;
2081        struct fc_seq *sp = NULL;
2082        struct fc_frame_header *fh;
2083        struct fc_fcp_pkt *fsp = NULL;
2084        int rc = 1;
2085
2086        ep = fc_exch_alloc(lport, fp);
2087        if (!ep) {
2088                fc_frame_free(fp);
2089                return NULL;
2090        }
2091        ep->esb_stat |= ESB_ST_SEQ_INIT;
2092        fh = fc_frame_header_get(fp);
2093        fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2094        ep->resp = resp;
2095        ep->destructor = destructor;
2096        ep->arg = arg;
2097        ep->r_a_tov = FC_DEF_R_A_TOV;
2098        ep->lp = lport;
2099        sp = &ep->seq;
2100
2101        ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2102        ep->f_ctl = ntoh24(fh->fh_f_ctl);
2103        fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2104        sp->cnt++;
2105
2106        if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2107                fsp = fr_fsp(fp);
2108                fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2109        }
2110
2111        if (unlikely(lport->tt.frame_send(lport, fp)))
2112                goto err;
2113
2114        if (timer_msec)
2115                fc_exch_timer_set_locked(ep, timer_msec);
2116        ep->f_ctl &= ~FC_FC_FIRST_SEQ;  /* not first seq */
2117
2118        if (ep->f_ctl & FC_FC_SEQ_INIT)
2119                ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2120        spin_unlock_bh(&ep->ex_lock);
2121        return sp;
2122err:
2123        if (fsp)
2124                fc_fcp_ddp_done(fsp);
2125        rc = fc_exch_done_locked(ep);
2126        spin_unlock_bh(&ep->ex_lock);
2127        if (!rc)
2128                fc_exch_delete(ep);
2129        return NULL;
2130}
2131
2132/**
2133 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2134 * @ep: The exchange to send the RRQ on
2135 *
2136 * This tells the remote port to stop blocking the use of
2137 * the exchange and the seq_cnt range.
2138 */
2139static void fc_exch_rrq(struct fc_exch *ep)
2140{
2141        struct fc_lport *lport;
2142        struct fc_els_rrq *rrq;
2143        struct fc_frame *fp;
2144        u32 did;
2145
2146        lport = ep->lp;
2147
2148        fp = fc_frame_alloc(lport, sizeof(*rrq));
2149        if (!fp)
2150                goto retry;
2151
2152        rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2153        memset(rrq, 0, sizeof(*rrq));
2154        rrq->rrq_cmd = ELS_RRQ;
2155        hton24(rrq->rrq_s_id, ep->sid);
2156        rrq->rrq_ox_id = htons(ep->oxid);
2157        rrq->rrq_rx_id = htons(ep->rxid);
2158
2159        did = ep->did;
2160        if (ep->esb_stat & ESB_ST_RESP)
2161                did = ep->sid;
2162
2163        fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2164                       lport->port_id, FC_TYPE_ELS,
2165                       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2166
2167        if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2168                             lport->e_d_tov))
2169                return;
2170
2171retry:
2172        spin_lock_bh(&ep->ex_lock);
2173        if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2174                spin_unlock_bh(&ep->ex_lock);
2175                /* drop hold for rec qual */
2176                fc_exch_release(ep);
2177                return;
2178        }
2179        ep->esb_stat |= ESB_ST_REC_QUAL;
2180        fc_exch_timer_set_locked(ep, ep->r_a_tov);
2181        spin_unlock_bh(&ep->ex_lock);
2182}
2183
2184/**
2185 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2186 * @fp: The RRQ frame, not freed here.
2187 */
2188static void fc_exch_els_rrq(struct fc_frame *fp)
2189{
2190        struct fc_lport *lport;
2191        struct fc_exch *ep = NULL;      /* request or subject exchange */
2192        struct fc_els_rrq *rp;
2193        u32 sid;
2194        u16 xid;
2195        enum fc_els_rjt_explan explan;
2196
2197        lport = fr_dev(fp);
2198        rp = fc_frame_payload_get(fp, sizeof(*rp));
2199        explan = ELS_EXPL_INV_LEN;
2200        if (!rp)
2201                goto reject;
2202
2203        /*
2204         * lookup subject exchange.
2205         */
2206        sid = ntoh24(rp->rrq_s_id);             /* subject source */
2207        xid = fc_host_port_id(lport->host) == sid ?
2208                        ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2209        ep = fc_exch_lookup(lport, xid);
2210        explan = ELS_EXPL_OXID_RXID;
2211        if (!ep)
2212                goto reject;
2213        spin_lock_bh(&ep->ex_lock);
2214        if (ep->oxid != ntohs(rp->rrq_ox_id))
2215                goto unlock_reject;
2216        if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2217            ep->rxid != FC_XID_UNKNOWN)
2218                goto unlock_reject;
2219        explan = ELS_EXPL_SID;
2220        if (ep->sid != sid)
2221                goto unlock_reject;
2222
2223        /*
2224         * Clear Recovery Qualifier state, and cancel timer if complete.
2225         */
2226        if (ep->esb_stat & ESB_ST_REC_QUAL) {
2227                ep->esb_stat &= ~ESB_ST_REC_QUAL;
2228                atomic_dec(&ep->ex_refcnt);     /* drop hold for rec qual */
2229        }
2230        if (ep->esb_stat & ESB_ST_COMPLETE)
2231                fc_exch_timer_cancel(ep);
2232
2233        spin_unlock_bh(&ep->ex_lock);
2234
2235        /*
2236         * Send LS_ACC.
2237         */
2238        fc_seq_ls_acc(fp);
2239        goto out;
2240
2241unlock_reject:
2242        spin_unlock_bh(&ep->ex_lock);
2243reject:
2244        fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2245out:
2246        if (ep)
2247                fc_exch_release(ep);    /* drop hold from fc_exch_find */
2248}
2249
2250/**
2251 * fc_exch_update_stats() - update exches stats to lport
2252 * @lport: The local port to update exchange manager stats
2253 */
2254void fc_exch_update_stats(struct fc_lport *lport)
2255{
2256        struct fc_host_statistics *st;
2257        struct fc_exch_mgr_anchor *ema;
2258        struct fc_exch_mgr *mp;
2259
2260        st = &lport->host_stats;
2261
2262        list_for_each_entry(ema, &lport->ema_list, ema_list) {
2263                mp = ema->mp;
2264                st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2265                st->fc_no_free_exch_xid +=
2266                                atomic_read(&mp->stats.no_free_exch_xid);
2267                st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2268                st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2269                st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2270                st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2271        }
2272}
2273EXPORT_SYMBOL(fc_exch_update_stats);
2274
2275/**
2276 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2277 * @lport: The local port to add the exchange manager to
2278 * @mp:    The exchange manager to be added to the local port
2279 * @match: The match routine that indicates when this EM should be used
2280 */
2281struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2282                                           struct fc_exch_mgr *mp,
2283                                           bool (*match)(struct fc_frame *))
2284{
2285        struct fc_exch_mgr_anchor *ema;
2286
2287        ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2288        if (!ema)
2289                return ema;
2290
2291        ema->mp = mp;
2292        ema->match = match;
2293        /* add EM anchor to EM anchors list */
2294        list_add_tail(&ema->ema_list, &lport->ema_list);
2295        kref_get(&mp->kref);
2296        return ema;
2297}
2298EXPORT_SYMBOL(fc_exch_mgr_add);
2299
2300/**
2301 * fc_exch_mgr_destroy() - Destroy an exchange manager
2302 * @kref: The reference to the EM to be destroyed
2303 */
2304static void fc_exch_mgr_destroy(struct kref *kref)
2305{
2306        struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2307
2308        mempool_destroy(mp->ep_pool);
2309        free_percpu(mp->pool);
2310        kfree(mp);
2311}
2312
2313/**
2314 * fc_exch_mgr_del() - Delete an EM from a local port's list
2315 * @ema: The exchange manager anchor identifying the EM to be deleted
2316 */
2317void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2318{
2319        /* remove EM anchor from EM anchors list */
2320        list_del(&ema->ema_list);
2321        kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2322        kfree(ema);
2323}
2324EXPORT_SYMBOL(fc_exch_mgr_del);
2325
2326/**
2327 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2328 * @src: Source lport to clone exchange managers from
2329 * @dst: New lport that takes references to all the exchange managers
2330 */
2331int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2332{
2333        struct fc_exch_mgr_anchor *ema, *tmp;
2334
2335        list_for_each_entry(ema, &src->ema_list, ema_list) {
2336                if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2337                        goto err;
2338        }
2339        return 0;
2340err:
2341        list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2342                fc_exch_mgr_del(ema);
2343        return -ENOMEM;
2344}
2345EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2346
2347/**
2348 * fc_exch_mgr_alloc() - Allocate an exchange manager
2349 * @lport:   The local port that the new EM will be associated with
2350 * @class:   The default FC class for new exchanges
2351 * @min_xid: The minimum XID for exchanges from the new EM
2352 * @max_xid: The maximum XID for exchanges from the new EM
2353 * @match:   The match routine for the new EM
2354 */
2355struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2356                                      enum fc_class class,
2357                                      u16 min_xid, u16 max_xid,
2358                                      bool (*match)(struct fc_frame *))
2359{
2360        struct fc_exch_mgr *mp;
2361        u16 pool_exch_range;
2362        size_t pool_size;
2363        unsigned int cpu;
2364        struct fc_exch_pool *pool;
2365
2366        if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2367            (min_xid & fc_cpu_mask) != 0) {
2368                FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2369                             min_xid, max_xid);
2370                return NULL;
2371        }
2372
2373        /*
2374         * allocate memory for EM
2375         */
2376        mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2377        if (!mp)
2378                return NULL;
2379
2380        mp->class = class;
2381        /* adjust em exch xid range for offload */
2382        mp->min_xid = min_xid;
2383
2384       /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2385        pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2386                sizeof(struct fc_exch *);
2387        if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2388                mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2389                        min_xid - 1;
2390        } else {
2391                mp->max_xid = max_xid;
2392                pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2393                        (fc_cpu_mask + 1);
2394        }
2395
2396        mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2397        if (!mp->ep_pool)
2398                goto free_mp;
2399
2400        /*
2401         * Setup per cpu exch pool with entire exchange id range equally
2402         * divided across all cpus. The exch pointers array memory is
2403         * allocated for exch range per pool.
2404         */
2405        mp->pool_max_index = pool_exch_range - 1;
2406
2407        /*
2408         * Allocate and initialize per cpu exch pool
2409         */
2410        pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2411        mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2412        if (!mp->pool)
2413                goto free_mempool;
2414        for_each_possible_cpu(cpu) {
2415                pool = per_cpu_ptr(mp->pool, cpu);
2416                pool->next_index = 0;
2417                pool->left = FC_XID_UNKNOWN;
2418                pool->right = FC_XID_UNKNOWN;
2419                spin_lock_init(&pool->lock);
2420                INIT_LIST_HEAD(&pool->ex_list);
2421        }
2422
2423        kref_init(&mp->kref);
2424        if (!fc_exch_mgr_add(lport, mp, match)) {
2425                free_percpu(mp->pool);
2426                goto free_mempool;
2427        }
2428
2429        /*
2430         * Above kref_init() sets mp->kref to 1 and then
2431         * call to fc_exch_mgr_add incremented mp->kref again,
2432         * so adjust that extra increment.
2433         */
2434        kref_put(&mp->kref, fc_exch_mgr_destroy);
2435        return mp;
2436
2437free_mempool:
2438        mempool_destroy(mp->ep_pool);
2439free_mp:
2440        kfree(mp);
2441        return NULL;
2442}
2443EXPORT_SYMBOL(fc_exch_mgr_alloc);
2444
2445/**
2446 * fc_exch_mgr_free() - Free all exchange managers on a local port
2447 * @lport: The local port whose EMs are to be freed
2448 */
2449void fc_exch_mgr_free(struct fc_lport *lport)
2450{
2451        struct fc_exch_mgr_anchor *ema, *next;
2452
2453        flush_workqueue(fc_exch_workqueue);
2454        list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2455                fc_exch_mgr_del(ema);
2456}
2457EXPORT_SYMBOL(fc_exch_mgr_free);
2458
2459/**
2460 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2461 * upon 'xid'.
2462 * @f_ctl: f_ctl
2463 * @lport: The local port the frame was received on
2464 * @fh: The received frame header
2465 */
2466static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2467                                              struct fc_lport *lport,
2468                                              struct fc_frame_header *fh)
2469{
2470        struct fc_exch_mgr_anchor *ema;
2471        u16 xid;
2472
2473        if (f_ctl & FC_FC_EX_CTX)
2474                xid = ntohs(fh->fh_ox_id);
2475        else {
2476                xid = ntohs(fh->fh_rx_id);
2477                if (xid == FC_XID_UNKNOWN)
2478                        return list_entry(lport->ema_list.prev,
2479                                          typeof(*ema), ema_list);
2480        }
2481
2482        list_for_each_entry(ema, &lport->ema_list, ema_list) {
2483                if ((xid >= ema->mp->min_xid) &&
2484                    (xid <= ema->mp->max_xid))
2485                        return ema;
2486        }
2487        return NULL;
2488}
2489/**
2490 * fc_exch_recv() - Handler for received frames
2491 * @lport: The local port the frame was received on
2492 * @fp: The received frame
2493 */
2494void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2495{
2496        struct fc_frame_header *fh = fc_frame_header_get(fp);
2497        struct fc_exch_mgr_anchor *ema;
2498        u32 f_ctl;
2499
2500        /* lport lock ? */
2501        if (!lport || lport->state == LPORT_ST_DISABLED) {
2502                FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2503                             "has not been initialized correctly\n");
2504                fc_frame_free(fp);
2505                return;
2506        }
2507
2508        f_ctl = ntoh24(fh->fh_f_ctl);
2509        ema = fc_find_ema(f_ctl, lport, fh);
2510        if (!ema) {
2511                FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2512                                    "fc_ctl <0x%x>, xid <0x%x>\n",
2513                                     f_ctl,
2514                                     (f_ctl & FC_FC_EX_CTX) ?
2515                                     ntohs(fh->fh_ox_id) :
2516                                     ntohs(fh->fh_rx_id));
2517                fc_frame_free(fp);
2518                return;
2519        }
2520
2521        /*
2522         * If frame is marked invalid, just drop it.
2523         */
2524        switch (fr_eof(fp)) {
2525        case FC_EOF_T:
2526                if (f_ctl & FC_FC_END_SEQ)
2527                        skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2528                /* fall through */
2529        case FC_EOF_N:
2530                if (fh->fh_type == FC_TYPE_BLS)
2531                        fc_exch_recv_bls(ema->mp, fp);
2532                else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2533                         FC_FC_EX_CTX)
2534                        fc_exch_recv_seq_resp(ema->mp, fp);
2535                else if (f_ctl & FC_FC_SEQ_CTX)
2536                        fc_exch_recv_resp(ema->mp, fp);
2537                else    /* no EX_CTX and no SEQ_CTX */
2538                        fc_exch_recv_req(lport, ema->mp, fp);
2539                break;
2540        default:
2541                FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2542                             fr_eof(fp));
2543                fc_frame_free(fp);
2544        }
2545}
2546EXPORT_SYMBOL(fc_exch_recv);
2547
2548/**
2549 * fc_exch_init() - Initialize the exchange layer for a local port
2550 * @lport: The local port to initialize the exchange layer for
2551 */
2552int fc_exch_init(struct fc_lport *lport)
2553{
2554        if (!lport->tt.seq_start_next)
2555                lport->tt.seq_start_next = fc_seq_start_next;
2556
2557        if (!lport->tt.seq_set_resp)
2558                lport->tt.seq_set_resp = fc_seq_set_resp;
2559
2560        if (!lport->tt.exch_seq_send)
2561                lport->tt.exch_seq_send = fc_exch_seq_send;
2562
2563        if (!lport->tt.seq_send)
2564                lport->tt.seq_send = fc_seq_send;
2565
2566        if (!lport->tt.seq_els_rsp_send)
2567                lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2568
2569        if (!lport->tt.exch_done)
2570                lport->tt.exch_done = fc_exch_done;
2571
2572        if (!lport->tt.exch_mgr_reset)
2573                lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2574
2575        if (!lport->tt.seq_exch_abort)
2576                lport->tt.seq_exch_abort = fc_seq_exch_abort;
2577
2578        if (!lport->tt.seq_assign)
2579                lport->tt.seq_assign = fc_seq_assign;
2580
2581        if (!lport->tt.seq_release)
2582                lport->tt.seq_release = fc_seq_release;
2583
2584        return 0;
2585}
2586EXPORT_SYMBOL(fc_exch_init);
2587
2588/**
2589 * fc_setup_exch_mgr() - Setup an exchange manager
2590 */
2591int fc_setup_exch_mgr(void)
2592{
2593        fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2594                                         0, SLAB_HWCACHE_ALIGN, NULL);
2595        if (!fc_em_cachep)
2596                return -ENOMEM;
2597
2598        /*
2599         * Initialize fc_cpu_mask and fc_cpu_order. The
2600         * fc_cpu_mask is set for nr_cpu_ids rounded up
2601         * to order of 2's * power and order is stored
2602         * in fc_cpu_order as this is later required in
2603         * mapping between an exch id and exch array index
2604         * in per cpu exch pool.
2605         *
2606         * This round up is required to align fc_cpu_mask
2607         * to exchange id's lower bits such that all incoming
2608         * frames of an exchange gets delivered to the same
2609         * cpu on which exchange originated by simple bitwise
2610         * AND operation between fc_cpu_mask and exchange id.
2611         */
2612        fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2613        fc_cpu_mask = (1 << fc_cpu_order) - 1;
2614
2615        fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2616        if (!fc_exch_workqueue)
2617                goto err;
2618        return 0;
2619err:
2620        kmem_cache_destroy(fc_em_cachep);
2621        return -ENOMEM;
2622}
2623
2624/**
2625 * fc_destroy_exch_mgr() - Destroy an exchange manager
2626 */
2627void fc_destroy_exch_mgr(void)
2628{
2629        destroy_workqueue(fc_exch_workqueue);
2630        kmem_cache_destroy(fc_em_cachep);
2631}
2632