linux/drivers/staging/panel/panel.c
<<
>>
Prefs
   1/*
   2 * Front panel driver for Linux
   3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version
   8 * 2 of the License, or (at your option) any later version.
   9 *
  10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
  11 * connected to a parallel printer port.
  12 *
  13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
  14 * serial module compatible with Samsung's KS0074. The pins may be connected in
  15 * any combination, everything is programmable.
  16 *
  17 * The keypad consists in a matrix of push buttons connecting input pins to
  18 * data output pins or to the ground. The combinations have to be hard-coded
  19 * in the driver, though several profiles exist and adding new ones is easy.
  20 *
  21 * Several profiles are provided for commonly found LCD+keypad modules on the
  22 * market, such as those found in Nexcom's appliances.
  23 *
  24 * FIXME:
  25 *      - the initialization/deinitialization process is very dirty and should
  26 *        be rewritten. It may even be buggy.
  27 *
  28 * TODO:
  29 *      - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
  30 *      - make the LCD a part of a virtual screen of Vx*Vy
  31 *      - make the inputs list smp-safe
  32 *      - change the keyboard to a double mapping : signals -> key_id -> values
  33 *        so that applications can change values without knowing signals
  34 *
  35 */
  36
  37#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  38
  39#include <linux/module.h>
  40
  41#include <linux/types.h>
  42#include <linux/errno.h>
  43#include <linux/signal.h>
  44#include <linux/sched.h>
  45#include <linux/spinlock.h>
  46#include <linux/interrupt.h>
  47#include <linux/miscdevice.h>
  48#include <linux/slab.h>
  49#include <linux/ioport.h>
  50#include <linux/fcntl.h>
  51#include <linux/init.h>
  52#include <linux/delay.h>
  53#include <linux/kernel.h>
  54#include <linux/ctype.h>
  55#include <linux/parport.h>
  56#include <linux/list.h>
  57#include <linux/notifier.h>
  58#include <linux/reboot.h>
  59#include <generated/utsrelease.h>
  60
  61#include <linux/io.h>
  62#include <linux/uaccess.h>
  63
  64#define LCD_MINOR               156
  65#define KEYPAD_MINOR            185
  66
  67#define PANEL_VERSION           "0.9.5"
  68
  69#define LCD_MAXBYTES            256     /* max burst write */
  70
  71#define KEYPAD_BUFFER           64
  72
  73/* poll the keyboard this every second */
  74#define INPUT_POLL_TIME         (HZ/50)
  75/* a key starts to repeat after this times INPUT_POLL_TIME */
  76#define KEYPAD_REP_START        (10)
  77/* a key repeats this times INPUT_POLL_TIME */
  78#define KEYPAD_REP_DELAY        (2)
  79
  80/* keep the light on this times INPUT_POLL_TIME for each flash */
  81#define FLASH_LIGHT_TEMPO       (200)
  82
  83/* converts an r_str() input to an active high, bits string : 000BAOSE */
  84#define PNL_PINPUT(a)           ((((unsigned char)(a)) ^ 0x7F) >> 3)
  85
  86#define PNL_PBUSY               0x80    /* inverted input, active low */
  87#define PNL_PACK                0x40    /* direct input, active low */
  88#define PNL_POUTPA              0x20    /* direct input, active high */
  89#define PNL_PSELECD             0x10    /* direct input, active high */
  90#define PNL_PERRORP             0x08    /* direct input, active low */
  91
  92#define PNL_PBIDIR              0x20    /* bi-directional ports */
  93/* high to read data in or-ed with data out */
  94#define PNL_PINTEN              0x10
  95#define PNL_PSELECP             0x08    /* inverted output, active low */
  96#define PNL_PINITP              0x04    /* direct output, active low */
  97#define PNL_PAUTOLF             0x02    /* inverted output, active low */
  98#define PNL_PSTROBE             0x01    /* inverted output */
  99
 100#define PNL_PD0                 0x01
 101#define PNL_PD1                 0x02
 102#define PNL_PD2                 0x04
 103#define PNL_PD3                 0x08
 104#define PNL_PD4                 0x10
 105#define PNL_PD5                 0x20
 106#define PNL_PD6                 0x40
 107#define PNL_PD7                 0x80
 108
 109#define PIN_NONE                0
 110#define PIN_STROBE              1
 111#define PIN_D0                  2
 112#define PIN_D1                  3
 113#define PIN_D2                  4
 114#define PIN_D3                  5
 115#define PIN_D4                  6
 116#define PIN_D5                  7
 117#define PIN_D6                  8
 118#define PIN_D7                  9
 119#define PIN_AUTOLF              14
 120#define PIN_INITP               16
 121#define PIN_SELECP              17
 122#define PIN_NOT_SET             127
 123
 124#define LCD_FLAG_S              0x0001
 125#define LCD_FLAG_ID             0x0002
 126#define LCD_FLAG_B              0x0004  /* blink on */
 127#define LCD_FLAG_C              0x0008  /* cursor on */
 128#define LCD_FLAG_D              0x0010  /* display on */
 129#define LCD_FLAG_F              0x0020  /* large font mode */
 130#define LCD_FLAG_N              0x0040  /* 2-rows mode */
 131#define LCD_FLAG_L              0x0080  /* backlight enabled */
 132
 133/* LCD commands */
 134#define LCD_CMD_DISPLAY_CLEAR   0x01    /* Clear entire display */
 135
 136#define LCD_CMD_ENTRY_MODE      0x04    /* Set entry mode */
 137#define LCD_CMD_CURSOR_INC      0x02    /* Increment cursor */
 138
 139#define LCD_CMD_DISPLAY_CTRL    0x08    /* Display control */
 140#define LCD_CMD_DISPLAY_ON      0x04    /* Set display on */
 141#define LCD_CMD_CURSOR_ON       0x02    /* Set cursor on */
 142#define LCD_CMD_BLINK_ON        0x01    /* Set blink on */
 143
 144#define LCD_CMD_SHIFT           0x10    /* Shift cursor/display */
 145#define LCD_CMD_DISPLAY_SHIFT   0x08    /* Shift display instead of cursor */
 146#define LCD_CMD_SHIFT_RIGHT     0x04    /* Shift display/cursor to the right */
 147
 148#define LCD_CMD_FUNCTION_SET    0x20    /* Set function */
 149#define LCD_CMD_DATA_LEN_8BITS  0x10    /* Set data length to 8 bits */
 150#define LCD_CMD_TWO_LINES       0x08    /* Set to two display lines */
 151#define LCD_CMD_FONT_5X10_DOTS  0x04    /* Set char font to 5x10 dots */
 152
 153#define LCD_CMD_SET_CGRAM_ADDR  0x40    /* Set char generator RAM address */
 154
 155#define LCD_CMD_SET_DDRAM_ADDR  0x80    /* Set display data RAM address */
 156
 157#define LCD_ESCAPE_LEN          24      /* max chars for LCD escape command */
 158#define LCD_ESCAPE_CHAR 27      /* use char 27 for escape command */
 159
 160#define NOT_SET                 -1
 161
 162/* macros to simplify use of the parallel port */
 163#define r_ctr(x)        (parport_read_control((x)->port))
 164#define r_dtr(x)        (parport_read_data((x)->port))
 165#define r_str(x)        (parport_read_status((x)->port))
 166#define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
 167#define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
 168
 169/* this defines which bits are to be used and which ones to be ignored */
 170/* logical or of the output bits involved in the scan matrix */
 171static __u8 scan_mask_o;
 172/* logical or of the input bits involved in the scan matrix */
 173static __u8 scan_mask_i;
 174
 175typedef __u64 pmask_t;
 176
 177enum input_type {
 178        INPUT_TYPE_STD,
 179        INPUT_TYPE_KBD,
 180};
 181
 182enum input_state {
 183        INPUT_ST_LOW,
 184        INPUT_ST_RISING,
 185        INPUT_ST_HIGH,
 186        INPUT_ST_FALLING,
 187};
 188
 189struct logical_input {
 190        struct list_head list;
 191        pmask_t mask;
 192        pmask_t value;
 193        enum input_type type;
 194        enum input_state state;
 195        __u8 rise_time, fall_time;
 196        __u8 rise_timer, fall_timer, high_timer;
 197
 198        union {
 199                struct {        /* valid when type == INPUT_TYPE_STD */
 200                        void (*press_fct)(int);
 201                        void (*release_fct)(int);
 202                        int press_data;
 203                        int release_data;
 204                } std;
 205                struct {        /* valid when type == INPUT_TYPE_KBD */
 206                        /* strings can be non null-terminated */
 207                        char press_str[sizeof(void *) + sizeof(int)];
 208                        char repeat_str[sizeof(void *) + sizeof(int)];
 209                        char release_str[sizeof(void *) + sizeof(int)];
 210                } kbd;
 211        } u;
 212};
 213
 214static LIST_HEAD(logical_inputs);       /* list of all defined logical inputs */
 215
 216/* physical contacts history
 217 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
 218 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
 219 * corresponds to the ground.
 220 * Within each group, bits are stored in the same order as read on the port :
 221 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
 222 * So, each __u64 (or pmask_t) is represented like this :
 223 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
 224 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
 225 */
 226
 227/* what has just been read from the I/O ports */
 228static pmask_t phys_read;
 229/* previous phys_read */
 230static pmask_t phys_read_prev;
 231/* stabilized phys_read (phys_read|phys_read_prev) */
 232static pmask_t phys_curr;
 233/* previous phys_curr */
 234static pmask_t phys_prev;
 235/* 0 means that at least one logical signal needs be computed */
 236static char inputs_stable;
 237
 238/* these variables are specific to the keypad */
 239static struct {
 240        bool enabled;
 241} keypad;
 242
 243static char keypad_buffer[KEYPAD_BUFFER];
 244static int keypad_buflen;
 245static int keypad_start;
 246static char keypressed;
 247static wait_queue_head_t keypad_read_wait;
 248
 249/* lcd-specific variables */
 250static struct {
 251        bool enabled;
 252        bool initialized;
 253        bool must_clear;
 254
 255        int height;
 256        int width;
 257        int bwidth;
 258        int hwidth;
 259        int charset;
 260        int proto;
 261        int light_tempo;
 262
 263        /* TODO: use union here? */
 264        struct {
 265                int e;
 266                int rs;
 267                int rw;
 268                int cl;
 269                int da;
 270                int bl;
 271        } pins;
 272
 273        /* contains the LCD config state */
 274        unsigned long int flags;
 275
 276        /* Contains the LCD X and Y offset */
 277        struct {
 278                unsigned long int x;
 279                unsigned long int y;
 280        } addr;
 281
 282        /* Current escape sequence and it's length or -1 if outside */
 283        struct {
 284                char buf[LCD_ESCAPE_LEN + 1];
 285                int len;
 286        } esc_seq;
 287} lcd;
 288
 289/* Needed only for init */
 290static int selected_lcd_type = NOT_SET;
 291
 292/*
 293 * Bit masks to convert LCD signals to parallel port outputs.
 294 * _d_ are values for data port, _c_ are for control port.
 295 * [0] = signal OFF, [1] = signal ON, [2] = mask
 296 */
 297#define BIT_CLR         0
 298#define BIT_SET         1
 299#define BIT_MSK         2
 300#define BIT_STATES      3
 301/*
 302 * one entry for each bit on the LCD
 303 */
 304#define LCD_BIT_E       0
 305#define LCD_BIT_RS      1
 306#define LCD_BIT_RW      2
 307#define LCD_BIT_BL      3
 308#define LCD_BIT_CL      4
 309#define LCD_BIT_DA      5
 310#define LCD_BITS        6
 311
 312/*
 313 * each bit can be either connected to a DATA or CTRL port
 314 */
 315#define LCD_PORT_C      0
 316#define LCD_PORT_D      1
 317#define LCD_PORTS       2
 318
 319static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
 320
 321/*
 322 * LCD protocols
 323 */
 324#define LCD_PROTO_PARALLEL      0
 325#define LCD_PROTO_SERIAL        1
 326#define LCD_PROTO_TI_DA8XX_LCD  2
 327
 328/*
 329 * LCD character sets
 330 */
 331#define LCD_CHARSET_NORMAL      0
 332#define LCD_CHARSET_KS0074      1
 333
 334/*
 335 * LCD types
 336 */
 337#define LCD_TYPE_NONE           0
 338#define LCD_TYPE_OLD            1
 339#define LCD_TYPE_KS0074         2
 340#define LCD_TYPE_HANTRONIX      3
 341#define LCD_TYPE_NEXCOM         4
 342#define LCD_TYPE_CUSTOM         5
 343
 344/*
 345 * keypad types
 346 */
 347#define KEYPAD_TYPE_NONE        0
 348#define KEYPAD_TYPE_OLD         1
 349#define KEYPAD_TYPE_NEW         2
 350#define KEYPAD_TYPE_NEXCOM      3
 351
 352/*
 353 * panel profiles
 354 */
 355#define PANEL_PROFILE_CUSTOM    0
 356#define PANEL_PROFILE_OLD       1
 357#define PANEL_PROFILE_NEW       2
 358#define PANEL_PROFILE_HANTRONIX 3
 359#define PANEL_PROFILE_NEXCOM    4
 360#define PANEL_PROFILE_LARGE     5
 361
 362/*
 363 * Construct custom config from the kernel's configuration
 364 */
 365#define DEFAULT_PARPORT         0
 366#define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
 367#define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
 368#define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
 369#define DEFAULT_LCD_HEIGHT      2
 370#define DEFAULT_LCD_WIDTH       40
 371#define DEFAULT_LCD_BWIDTH      40
 372#define DEFAULT_LCD_HWIDTH      64
 373#define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
 374#define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
 375
 376#define DEFAULT_LCD_PIN_E       PIN_AUTOLF
 377#define DEFAULT_LCD_PIN_RS      PIN_SELECP
 378#define DEFAULT_LCD_PIN_RW      PIN_INITP
 379#define DEFAULT_LCD_PIN_SCL     PIN_STROBE
 380#define DEFAULT_LCD_PIN_SDA     PIN_D0
 381#define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
 382
 383#ifdef CONFIG_PANEL_PARPORT
 384#undef DEFAULT_PARPORT
 385#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
 386#endif
 387
 388#ifdef CONFIG_PANEL_PROFILE
 389#undef DEFAULT_PROFILE
 390#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
 391#endif
 392
 393#if DEFAULT_PROFILE == 0        /* custom */
 394#ifdef CONFIG_PANEL_KEYPAD
 395#undef DEFAULT_KEYPAD_TYPE
 396#define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
 397#endif
 398
 399#ifdef CONFIG_PANEL_LCD
 400#undef DEFAULT_LCD_TYPE
 401#define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
 402#endif
 403
 404#ifdef CONFIG_PANEL_LCD_HEIGHT
 405#undef DEFAULT_LCD_HEIGHT
 406#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
 407#endif
 408
 409#ifdef CONFIG_PANEL_LCD_WIDTH
 410#undef DEFAULT_LCD_WIDTH
 411#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
 412#endif
 413
 414#ifdef CONFIG_PANEL_LCD_BWIDTH
 415#undef DEFAULT_LCD_BWIDTH
 416#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
 417#endif
 418
 419#ifdef CONFIG_PANEL_LCD_HWIDTH
 420#undef DEFAULT_LCD_HWIDTH
 421#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
 422#endif
 423
 424#ifdef CONFIG_PANEL_LCD_CHARSET
 425#undef DEFAULT_LCD_CHARSET
 426#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
 427#endif
 428
 429#ifdef CONFIG_PANEL_LCD_PROTO
 430#undef DEFAULT_LCD_PROTO
 431#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
 432#endif
 433
 434#ifdef CONFIG_PANEL_LCD_PIN_E
 435#undef DEFAULT_LCD_PIN_E
 436#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
 437#endif
 438
 439#ifdef CONFIG_PANEL_LCD_PIN_RS
 440#undef DEFAULT_LCD_PIN_RS
 441#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
 442#endif
 443
 444#ifdef CONFIG_PANEL_LCD_PIN_RW
 445#undef DEFAULT_LCD_PIN_RW
 446#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
 447#endif
 448
 449#ifdef CONFIG_PANEL_LCD_PIN_SCL
 450#undef DEFAULT_LCD_PIN_SCL
 451#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
 452#endif
 453
 454#ifdef CONFIG_PANEL_LCD_PIN_SDA
 455#undef DEFAULT_LCD_PIN_SDA
 456#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
 457#endif
 458
 459#ifdef CONFIG_PANEL_LCD_PIN_BL
 460#undef DEFAULT_LCD_PIN_BL
 461#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
 462#endif
 463
 464#endif /* DEFAULT_PROFILE == 0 */
 465
 466/* global variables */
 467
 468/* Device single-open policy control */
 469static atomic_t lcd_available = ATOMIC_INIT(1);
 470static atomic_t keypad_available = ATOMIC_INIT(1);
 471
 472static struct pardevice *pprt;
 473
 474static int keypad_initialized;
 475
 476static char init_in_progress;
 477
 478static void (*lcd_write_cmd)(int);
 479static void (*lcd_write_data)(int);
 480static void (*lcd_clear_fast)(void);
 481
 482static DEFINE_SPINLOCK(pprt_lock);
 483static struct timer_list scan_timer;
 484
 485MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
 486
 487static int parport = DEFAULT_PARPORT;
 488module_param(parport, int, 0000);
 489MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
 490
 491static int profile = DEFAULT_PROFILE;
 492module_param(profile, int, 0000);
 493MODULE_PARM_DESC(profile,
 494                 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
 495                 "4=16x2 nexcom; default=40x2, old kp");
 496
 497static int keypad_type = NOT_SET;
 498module_param(keypad_type, int, 0000);
 499MODULE_PARM_DESC(keypad_type,
 500                 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
 501
 502static int lcd_type = NOT_SET;
 503module_param(lcd_type, int, 0000);
 504MODULE_PARM_DESC(lcd_type,
 505                 "LCD type: 0=none, 1=old //, 2=serial ks0074, 3=hantronix //, 4=nexcom //, 5=compiled-in");
 506
 507static int lcd_height = NOT_SET;
 508module_param(lcd_height, int, 0000);
 509MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
 510
 511static int lcd_width = NOT_SET;
 512module_param(lcd_width, int, 0000);
 513MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
 514
 515static int lcd_bwidth = NOT_SET;        /* internal buffer width (usually 40) */
 516module_param(lcd_bwidth, int, 0000);
 517MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
 518
 519static int lcd_hwidth = NOT_SET;        /* hardware buffer width (usually 64) */
 520module_param(lcd_hwidth, int, 0000);
 521MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
 522
 523static int lcd_charset = NOT_SET;
 524module_param(lcd_charset, int, 0000);
 525MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
 526
 527static int lcd_proto = NOT_SET;
 528module_param(lcd_proto, int, 0000);
 529MODULE_PARM_DESC(lcd_proto,
 530                 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
 531
 532/*
 533 * These are the parallel port pins the LCD control signals are connected to.
 534 * Set this to 0 if the signal is not used. Set it to its opposite value
 535 * (negative) if the signal is negated. -MAXINT is used to indicate that the
 536 * pin has not been explicitly specified.
 537 *
 538 * WARNING! no check will be performed about collisions with keypad !
 539 */
 540
 541static int lcd_e_pin  = PIN_NOT_SET;
 542module_param(lcd_e_pin, int, 0000);
 543MODULE_PARM_DESC(lcd_e_pin,
 544                 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
 545
 546static int lcd_rs_pin = PIN_NOT_SET;
 547module_param(lcd_rs_pin, int, 0000);
 548MODULE_PARM_DESC(lcd_rs_pin,
 549                 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
 550
 551static int lcd_rw_pin = PIN_NOT_SET;
 552module_param(lcd_rw_pin, int, 0000);
 553MODULE_PARM_DESC(lcd_rw_pin,
 554                 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
 555
 556static int lcd_cl_pin = PIN_NOT_SET;
 557module_param(lcd_cl_pin, int, 0000);
 558MODULE_PARM_DESC(lcd_cl_pin,
 559                 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
 560
 561static int lcd_da_pin = PIN_NOT_SET;
 562module_param(lcd_da_pin, int, 0000);
 563MODULE_PARM_DESC(lcd_da_pin,
 564                 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
 565
 566static int lcd_bl_pin = PIN_NOT_SET;
 567module_param(lcd_bl_pin, int, 0000);
 568MODULE_PARM_DESC(lcd_bl_pin,
 569                 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
 570
 571/* Deprecated module parameters - consider not using them anymore */
 572
 573static int lcd_enabled = NOT_SET;
 574module_param(lcd_enabled, int, 0000);
 575MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
 576
 577static int keypad_enabled = NOT_SET;
 578module_param(keypad_enabled, int, 0000);
 579MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
 580
 581
 582static const unsigned char *lcd_char_conv;
 583
 584/* for some LCD drivers (ks0074) we need a charset conversion table. */
 585static const unsigned char lcd_char_conv_ks0074[256] = {
 586        /*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
 587        /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 588        /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 589        /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 590        /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 591        /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
 592        /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
 593        /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
 594        /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
 595        /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
 596        /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
 597        /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
 598        /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
 599        /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
 600        /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
 601        /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
 602        /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
 603        /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
 604        /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
 605        /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
 606        /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
 607        /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
 608        /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
 609        /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
 610        /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
 611        /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
 612        /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
 613        /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
 614        /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
 615        /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
 616        /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
 617        /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
 618        /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
 619};
 620
 621static const char old_keypad_profile[][4][9] = {
 622        {"S0", "Left\n", "Left\n", ""},
 623        {"S1", "Down\n", "Down\n", ""},
 624        {"S2", "Up\n", "Up\n", ""},
 625        {"S3", "Right\n", "Right\n", ""},
 626        {"S4", "Esc\n", "Esc\n", ""},
 627        {"S5", "Ret\n", "Ret\n", ""},
 628        {"", "", "", ""}
 629};
 630
 631/* signals, press, repeat, release */
 632static const char new_keypad_profile[][4][9] = {
 633        {"S0", "Left\n", "Left\n", ""},
 634        {"S1", "Down\n", "Down\n", ""},
 635        {"S2", "Up\n", "Up\n", ""},
 636        {"S3", "Right\n", "Right\n", ""},
 637        {"S4s5", "", "Esc\n", "Esc\n"},
 638        {"s4S5", "", "Ret\n", "Ret\n"},
 639        {"S4S5", "Help\n", "", ""},
 640        /* add new signals above this line */
 641        {"", "", "", ""}
 642};
 643
 644/* signals, press, repeat, release */
 645static const char nexcom_keypad_profile[][4][9] = {
 646        {"a-p-e-", "Down\n", "Down\n", ""},
 647        {"a-p-E-", "Ret\n", "Ret\n", ""},
 648        {"a-P-E-", "Esc\n", "Esc\n", ""},
 649        {"a-P-e-", "Up\n", "Up\n", ""},
 650        /* add new signals above this line */
 651        {"", "", "", ""}
 652};
 653
 654static const char (*keypad_profile)[4][9] = old_keypad_profile;
 655
 656/* FIXME: this should be converted to a bit array containing signals states */
 657static struct {
 658        unsigned char e;  /* parallel LCD E (data latch on falling edge) */
 659        unsigned char rs; /* parallel LCD RS  (0 = cmd, 1 = data) */
 660        unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
 661        unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
 662        unsigned char cl; /* serial LCD clock (latch on rising edge) */
 663        unsigned char da; /* serial LCD data */
 664} bits;
 665
 666static void init_scan_timer(void);
 667
 668/* sets data port bits according to current signals values */
 669static int set_data_bits(void)
 670{
 671        int val, bit;
 672
 673        val = r_dtr(pprt);
 674        for (bit = 0; bit < LCD_BITS; bit++)
 675                val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
 676
 677        val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
 678            | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
 679            | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
 680            | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
 681            | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
 682            | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
 683
 684        w_dtr(pprt, val);
 685        return val;
 686}
 687
 688/* sets ctrl port bits according to current signals values */
 689static int set_ctrl_bits(void)
 690{
 691        int val, bit;
 692
 693        val = r_ctr(pprt);
 694        for (bit = 0; bit < LCD_BITS; bit++)
 695                val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
 696
 697        val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
 698            | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
 699            | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
 700            | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
 701            | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
 702            | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
 703
 704        w_ctr(pprt, val);
 705        return val;
 706}
 707
 708/* sets ctrl & data port bits according to current signals values */
 709static void panel_set_bits(void)
 710{
 711        set_data_bits();
 712        set_ctrl_bits();
 713}
 714
 715/*
 716 * Converts a parallel port pin (from -25 to 25) to data and control ports
 717 * masks, and data and control port bits. The signal will be considered
 718 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
 719 *
 720 * Result will be used this way :
 721 *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
 722 *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
 723 */
 724static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
 725{
 726        int d_bit, c_bit, inv;
 727
 728        d_val[0] = 0;
 729        c_val[0] = 0;
 730        d_val[1] = 0;
 731        c_val[1] = 0;
 732        d_val[2] = 0xFF;
 733        c_val[2] = 0xFF;
 734
 735        if (pin == 0)
 736                return;
 737
 738        inv = (pin < 0);
 739        if (inv)
 740                pin = -pin;
 741
 742        d_bit = 0;
 743        c_bit = 0;
 744
 745        switch (pin) {
 746        case PIN_STROBE:        /* strobe, inverted */
 747                c_bit = PNL_PSTROBE;
 748                inv = !inv;
 749                break;
 750        case PIN_D0...PIN_D7:   /* D0 - D7 = 2 - 9 */
 751                d_bit = 1 << (pin - 2);
 752                break;
 753        case PIN_AUTOLF:        /* autofeed, inverted */
 754                c_bit = PNL_PAUTOLF;
 755                inv = !inv;
 756                break;
 757        case PIN_INITP:         /* init, direct */
 758                c_bit = PNL_PINITP;
 759                break;
 760        case PIN_SELECP:        /* select_in, inverted */
 761                c_bit = PNL_PSELECP;
 762                inv = !inv;
 763                break;
 764        default:                /* unknown pin, ignore */
 765                break;
 766        }
 767
 768        if (c_bit) {
 769                c_val[2] &= ~c_bit;
 770                c_val[!inv] = c_bit;
 771        } else if (d_bit) {
 772                d_val[2] &= ~d_bit;
 773                d_val[!inv] = d_bit;
 774        }
 775}
 776
 777/* sleeps that many milliseconds with a reschedule */
 778static void long_sleep(int ms)
 779{
 780        if (in_interrupt()) {
 781                mdelay(ms);
 782        } else {
 783                __set_current_state(TASK_INTERRUPTIBLE);
 784                schedule_timeout((ms * HZ + 999) / 1000);
 785        }
 786}
 787
 788/* send a serial byte to the LCD panel. The caller is responsible for locking
 789   if needed. */
 790static void lcd_send_serial(int byte)
 791{
 792        int bit;
 793
 794        /* the data bit is set on D0, and the clock on STROBE.
 795         * LCD reads D0 on STROBE's rising edge. */
 796        for (bit = 0; bit < 8; bit++) {
 797                bits.cl = BIT_CLR;      /* CLK low */
 798                panel_set_bits();
 799                bits.da = byte & 1;
 800                panel_set_bits();
 801                udelay(2);  /* maintain the data during 2 us before CLK up */
 802                bits.cl = BIT_SET;      /* CLK high */
 803                panel_set_bits();
 804                udelay(1);  /* maintain the strobe during 1 us */
 805                byte >>= 1;
 806        }
 807}
 808
 809/* turn the backlight on or off */
 810static void lcd_backlight(int on)
 811{
 812        if (lcd.pins.bl == PIN_NONE)
 813                return;
 814
 815        /* The backlight is activated by setting the AUTOFEED line to +5V  */
 816        spin_lock_irq(&pprt_lock);
 817        bits.bl = on;
 818        panel_set_bits();
 819        spin_unlock_irq(&pprt_lock);
 820}
 821
 822/* send a command to the LCD panel in serial mode */
 823static void lcd_write_cmd_s(int cmd)
 824{
 825        spin_lock_irq(&pprt_lock);
 826        lcd_send_serial(0x1F);  /* R/W=W, RS=0 */
 827        lcd_send_serial(cmd & 0x0F);
 828        lcd_send_serial((cmd >> 4) & 0x0F);
 829        udelay(40);             /* the shortest command takes at least 40 us */
 830        spin_unlock_irq(&pprt_lock);
 831}
 832
 833/* send data to the LCD panel in serial mode */
 834static void lcd_write_data_s(int data)
 835{
 836        spin_lock_irq(&pprt_lock);
 837        lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 838        lcd_send_serial(data & 0x0F);
 839        lcd_send_serial((data >> 4) & 0x0F);
 840        udelay(40);             /* the shortest data takes at least 40 us */
 841        spin_unlock_irq(&pprt_lock);
 842}
 843
 844/* send a command to the LCD panel in 8 bits parallel mode */
 845static void lcd_write_cmd_p8(int cmd)
 846{
 847        spin_lock_irq(&pprt_lock);
 848        /* present the data to the data port */
 849        w_dtr(pprt, cmd);
 850        udelay(20);     /* maintain the data during 20 us before the strobe */
 851
 852        bits.e = BIT_SET;
 853        bits.rs = BIT_CLR;
 854        bits.rw = BIT_CLR;
 855        set_ctrl_bits();
 856
 857        udelay(40);     /* maintain the strobe during 40 us */
 858
 859        bits.e = BIT_CLR;
 860        set_ctrl_bits();
 861
 862        udelay(120);    /* the shortest command takes at least 120 us */
 863        spin_unlock_irq(&pprt_lock);
 864}
 865
 866/* send data to the LCD panel in 8 bits parallel mode */
 867static void lcd_write_data_p8(int data)
 868{
 869        spin_lock_irq(&pprt_lock);
 870        /* present the data to the data port */
 871        w_dtr(pprt, data);
 872        udelay(20);     /* maintain the data during 20 us before the strobe */
 873
 874        bits.e = BIT_SET;
 875        bits.rs = BIT_SET;
 876        bits.rw = BIT_CLR;
 877        set_ctrl_bits();
 878
 879        udelay(40);     /* maintain the strobe during 40 us */
 880
 881        bits.e = BIT_CLR;
 882        set_ctrl_bits();
 883
 884        udelay(45);     /* the shortest data takes at least 45 us */
 885        spin_unlock_irq(&pprt_lock);
 886}
 887
 888/* send a command to the TI LCD panel */
 889static void lcd_write_cmd_tilcd(int cmd)
 890{
 891        spin_lock_irq(&pprt_lock);
 892        /* present the data to the control port */
 893        w_ctr(pprt, cmd);
 894        udelay(60);
 895        spin_unlock_irq(&pprt_lock);
 896}
 897
 898/* send data to the TI LCD panel */
 899static void lcd_write_data_tilcd(int data)
 900{
 901        spin_lock_irq(&pprt_lock);
 902        /* present the data to the data port */
 903        w_dtr(pprt, data);
 904        udelay(60);
 905        spin_unlock_irq(&pprt_lock);
 906}
 907
 908static void lcd_gotoxy(void)
 909{
 910        lcd_write_cmd(LCD_CMD_SET_DDRAM_ADDR
 911                      | (lcd.addr.y ? lcd.hwidth : 0)
 912                      /* we force the cursor to stay at the end of the
 913                         line if it wants to go farther */
 914                      | ((lcd.addr.x < lcd.bwidth) ? lcd.addr.x &
 915                         (lcd.hwidth - 1) : lcd.bwidth - 1));
 916}
 917
 918static void lcd_print(char c)
 919{
 920        if (lcd.addr.x < lcd.bwidth) {
 921                if (lcd_char_conv != NULL)
 922                        c = lcd_char_conv[(unsigned char)c];
 923                lcd_write_data(c);
 924                lcd.addr.x++;
 925        }
 926        /* prevents the cursor from wrapping onto the next line */
 927        if (lcd.addr.x == lcd.bwidth)
 928                lcd_gotoxy();
 929}
 930
 931/* fills the display with spaces and resets X/Y */
 932static void lcd_clear_fast_s(void)
 933{
 934        int pos;
 935
 936        lcd.addr.x = 0;
 937        lcd.addr.y = 0;
 938        lcd_gotoxy();
 939
 940        spin_lock_irq(&pprt_lock);
 941        for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
 942                lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 943                lcd_send_serial(' ' & 0x0F);
 944                lcd_send_serial((' ' >> 4) & 0x0F);
 945                udelay(40);     /* the shortest data takes at least 40 us */
 946        }
 947        spin_unlock_irq(&pprt_lock);
 948
 949        lcd.addr.x = 0;
 950        lcd.addr.y = 0;
 951        lcd_gotoxy();
 952}
 953
 954/* fills the display with spaces and resets X/Y */
 955static void lcd_clear_fast_p8(void)
 956{
 957        int pos;
 958
 959        lcd.addr.x = 0;
 960        lcd.addr.y = 0;
 961        lcd_gotoxy();
 962
 963        spin_lock_irq(&pprt_lock);
 964        for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
 965                /* present the data to the data port */
 966                w_dtr(pprt, ' ');
 967
 968                /* maintain the data during 20 us before the strobe */
 969                udelay(20);
 970
 971                bits.e = BIT_SET;
 972                bits.rs = BIT_SET;
 973                bits.rw = BIT_CLR;
 974                set_ctrl_bits();
 975
 976                /* maintain the strobe during 40 us */
 977                udelay(40);
 978
 979                bits.e = BIT_CLR;
 980                set_ctrl_bits();
 981
 982                /* the shortest data takes at least 45 us */
 983                udelay(45);
 984        }
 985        spin_unlock_irq(&pprt_lock);
 986
 987        lcd.addr.x = 0;
 988        lcd.addr.y = 0;
 989        lcd_gotoxy();
 990}
 991
 992/* fills the display with spaces and resets X/Y */
 993static void lcd_clear_fast_tilcd(void)
 994{
 995        int pos;
 996
 997        lcd.addr.x = 0;
 998        lcd.addr.y = 0;
 999        lcd_gotoxy();
1000
1001        spin_lock_irq(&pprt_lock);
1002        for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
1003                /* present the data to the data port */
1004                w_dtr(pprt, ' ');
1005                udelay(60);
1006        }
1007
1008        spin_unlock_irq(&pprt_lock);
1009
1010        lcd.addr.x = 0;
1011        lcd.addr.y = 0;
1012        lcd_gotoxy();
1013}
1014
1015/* clears the display and resets X/Y */
1016static void lcd_clear_display(void)
1017{
1018        lcd_write_cmd(LCD_CMD_DISPLAY_CLEAR);
1019        lcd.addr.x = 0;
1020        lcd.addr.y = 0;
1021        /* we must wait a few milliseconds (15) */
1022        long_sleep(15);
1023}
1024
1025static void lcd_init_display(void)
1026{
1027        lcd.flags = ((lcd.height > 1) ? LCD_FLAG_N : 0)
1028            | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
1029
1030        long_sleep(20);         /* wait 20 ms after power-up for the paranoid */
1031
1032        /* 8bits, 1 line, small fonts; let's do it 3 times */
1033        lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1034        long_sleep(10);
1035        lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1036        long_sleep(10);
1037        lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1038        long_sleep(10);
1039
1040        /* set font height and lines number */
1041        lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS
1042                      | ((lcd.flags & LCD_FLAG_F) ? LCD_CMD_FONT_5X10_DOTS : 0)
1043                      | ((lcd.flags & LCD_FLAG_N) ? LCD_CMD_TWO_LINES : 0)
1044            );
1045        long_sleep(10);
1046
1047        /* display off, cursor off, blink off */
1048        lcd_write_cmd(LCD_CMD_DISPLAY_CTRL);
1049        long_sleep(10);
1050
1051        lcd_write_cmd(LCD_CMD_DISPLAY_CTRL      /* set display mode */
1052                      | ((lcd.flags & LCD_FLAG_D) ? LCD_CMD_DISPLAY_ON : 0)
1053                      | ((lcd.flags & LCD_FLAG_C) ? LCD_CMD_CURSOR_ON : 0)
1054                      | ((lcd.flags & LCD_FLAG_B) ? LCD_CMD_BLINK_ON : 0)
1055            );
1056
1057        lcd_backlight((lcd.flags & LCD_FLAG_L) ? 1 : 0);
1058
1059        long_sleep(10);
1060
1061        /* entry mode set : increment, cursor shifting */
1062        lcd_write_cmd(LCD_CMD_ENTRY_MODE | LCD_CMD_CURSOR_INC);
1063
1064        lcd_clear_display();
1065}
1066
1067/*
1068 * These are the file operation function for user access to /dev/lcd
1069 * This function can also be called from inside the kernel, by
1070 * setting file and ppos to NULL.
1071 *
1072 */
1073
1074static inline int handle_lcd_special_code(void)
1075{
1076        /* LCD special codes */
1077
1078        int processed = 0;
1079
1080        char *esc = lcd.esc_seq.buf + 2;
1081        int oldflags = lcd.flags;
1082
1083        /* check for display mode flags */
1084        switch (*esc) {
1085        case 'D':       /* Display ON */
1086                lcd.flags |= LCD_FLAG_D;
1087                processed = 1;
1088                break;
1089        case 'd':       /* Display OFF */
1090                lcd.flags &= ~LCD_FLAG_D;
1091                processed = 1;
1092                break;
1093        case 'C':       /* Cursor ON */
1094                lcd.flags |= LCD_FLAG_C;
1095                processed = 1;
1096                break;
1097        case 'c':       /* Cursor OFF */
1098                lcd.flags &= ~LCD_FLAG_C;
1099                processed = 1;
1100                break;
1101        case 'B':       /* Blink ON */
1102                lcd.flags |= LCD_FLAG_B;
1103                processed = 1;
1104                break;
1105        case 'b':       /* Blink OFF */
1106                lcd.flags &= ~LCD_FLAG_B;
1107                processed = 1;
1108                break;
1109        case '+':       /* Back light ON */
1110                lcd.flags |= LCD_FLAG_L;
1111                processed = 1;
1112                break;
1113        case '-':       /* Back light OFF */
1114                lcd.flags &= ~LCD_FLAG_L;
1115                processed = 1;
1116                break;
1117        case '*':
1118                /* flash back light using the keypad timer */
1119                if (scan_timer.function != NULL) {
1120                        if (lcd.light_tempo == 0
1121                                        && ((lcd.flags & LCD_FLAG_L) == 0))
1122                                lcd_backlight(1);
1123                        lcd.light_tempo = FLASH_LIGHT_TEMPO;
1124                }
1125                processed = 1;
1126                break;
1127        case 'f':       /* Small Font */
1128                lcd.flags &= ~LCD_FLAG_F;
1129                processed = 1;
1130                break;
1131        case 'F':       /* Large Font */
1132                lcd.flags |= LCD_FLAG_F;
1133                processed = 1;
1134                break;
1135        case 'n':       /* One Line */
1136                lcd.flags &= ~LCD_FLAG_N;
1137                processed = 1;
1138                break;
1139        case 'N':       /* Two Lines */
1140                lcd.flags |= LCD_FLAG_N;
1141                break;
1142        case 'l':       /* Shift Cursor Left */
1143                if (lcd.addr.x > 0) {
1144                        /* back one char if not at end of line */
1145                        if (lcd.addr.x < lcd.bwidth)
1146                                lcd_write_cmd(LCD_CMD_SHIFT);
1147                        lcd.addr.x--;
1148                }
1149                processed = 1;
1150                break;
1151        case 'r':       /* shift cursor right */
1152                if (lcd.addr.x < lcd.width) {
1153                        /* allow the cursor to pass the end of the line */
1154                        if (lcd.addr.x < (lcd.bwidth - 1))
1155                                lcd_write_cmd(LCD_CMD_SHIFT |
1156                                                LCD_CMD_SHIFT_RIGHT);
1157                        lcd.addr.x++;
1158                }
1159                processed = 1;
1160                break;
1161        case 'L':       /* shift display left */
1162                lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT);
1163                processed = 1;
1164                break;
1165        case 'R':       /* shift display right */
1166                lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT |
1167                                LCD_CMD_SHIFT_RIGHT);
1168                processed = 1;
1169                break;
1170        case 'k': {     /* kill end of line */
1171                int x;
1172
1173                for (x = lcd.addr.x; x < lcd.bwidth; x++)
1174                        lcd_write_data(' ');
1175
1176                /* restore cursor position */
1177                lcd_gotoxy();
1178                processed = 1;
1179                break;
1180        }
1181        case 'I':       /* reinitialize display */
1182                lcd_init_display();
1183                processed = 1;
1184                break;
1185        case 'G': {
1186                /* Generator : LGcxxxxx...xx; must have <c> between '0'
1187                 * and '7', representing the numerical ASCII code of the
1188                 * redefined character, and <xx...xx> a sequence of 16
1189                 * hex digits representing 8 bytes for each character.
1190                 * Most LCDs will only use 5 lower bits of the 7 first
1191                 * bytes.
1192                 */
1193
1194                unsigned char cgbytes[8];
1195                unsigned char cgaddr;
1196                int cgoffset;
1197                int shift;
1198                char value;
1199                int addr;
1200
1201                if (strchr(esc, ';') == NULL)
1202                        break;
1203
1204                esc++;
1205
1206                cgaddr = *(esc++) - '0';
1207                if (cgaddr > 7) {
1208                        processed = 1;
1209                        break;
1210                }
1211
1212                cgoffset = 0;
1213                shift = 0;
1214                value = 0;
1215                while (*esc && cgoffset < 8) {
1216                        shift ^= 4;
1217                        if (*esc >= '0' && *esc <= '9') {
1218                                value |= (*esc - '0') << shift;
1219                        } else if (*esc >= 'A' && *esc <= 'Z') {
1220                                value |= (*esc - 'A' + 10) << shift;
1221                        } else if (*esc >= 'a' && *esc <= 'z') {
1222                                value |= (*esc - 'a' + 10) << shift;
1223                        } else {
1224                                esc++;
1225                                continue;
1226                        }
1227
1228                        if (shift == 0) {
1229                                cgbytes[cgoffset++] = value;
1230                                value = 0;
1231                        }
1232
1233                        esc++;
1234                }
1235
1236                lcd_write_cmd(LCD_CMD_SET_CGRAM_ADDR | (cgaddr * 8));
1237                for (addr = 0; addr < cgoffset; addr++)
1238                        lcd_write_data(cgbytes[addr]);
1239
1240                /* ensures that we stop writing to CGRAM */
1241                lcd_gotoxy();
1242                processed = 1;
1243                break;
1244        }
1245        case 'x':       /* gotoxy : LxXXX[yYYY]; */
1246        case 'y':       /* gotoxy : LyYYY[xXXX]; */
1247                if (strchr(esc, ';') == NULL)
1248                        break;
1249
1250                while (*esc) {
1251                        if (*esc == 'x') {
1252                                esc++;
1253                                if (kstrtoul(esc, 10, &lcd.addr.x) < 0)
1254                                        break;
1255                        } else if (*esc == 'y') {
1256                                esc++;
1257                                if (kstrtoul(esc, 10, &lcd.addr.y) < 0)
1258                                        break;
1259                        } else {
1260                                break;
1261                        }
1262                }
1263
1264                lcd_gotoxy();
1265                processed = 1;
1266                break;
1267        }
1268
1269        /* TODO: This indent party here got ugly, clean it! */
1270        /* Check whether one flag was changed */
1271        if (oldflags != lcd.flags) {
1272                /* check whether one of B,C,D flags were changed */
1273                if ((oldflags ^ lcd.flags) &
1274                    (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1275                        /* set display mode */
1276                        lcd_write_cmd(LCD_CMD_DISPLAY_CTRL
1277                                      | ((lcd.flags & LCD_FLAG_D)
1278                                                      ? LCD_CMD_DISPLAY_ON : 0)
1279                                      | ((lcd.flags & LCD_FLAG_C)
1280                                                      ? LCD_CMD_CURSOR_ON : 0)
1281                                      | ((lcd.flags & LCD_FLAG_B)
1282                                                      ? LCD_CMD_BLINK_ON : 0));
1283                /* check whether one of F,N flags was changed */
1284                else if ((oldflags ^ lcd.flags) & (LCD_FLAG_F | LCD_FLAG_N))
1285                        lcd_write_cmd(LCD_CMD_FUNCTION_SET
1286                                      | LCD_CMD_DATA_LEN_8BITS
1287                                      | ((lcd.flags & LCD_FLAG_F)
1288                                                      ? LCD_CMD_TWO_LINES : 0)
1289                                      | ((lcd.flags & LCD_FLAG_N)
1290                                                      ? LCD_CMD_FONT_5X10_DOTS
1291                                                                      : 0));
1292                /* check whether L flag was changed */
1293                else if ((oldflags ^ lcd.flags) & (LCD_FLAG_L)) {
1294                        if (lcd.flags & (LCD_FLAG_L))
1295                                lcd_backlight(1);
1296                        else if (lcd.light_tempo == 0)
1297                                /* switch off the light only when the tempo
1298                                   lighting is gone */
1299                                lcd_backlight(0);
1300                }
1301        }
1302
1303        return processed;
1304}
1305
1306static void lcd_write_char(char c)
1307{
1308        /* first, we'll test if we're in escape mode */
1309        if ((c != '\n') && lcd.esc_seq.len >= 0) {
1310                /* yes, let's add this char to the buffer */
1311                lcd.esc_seq.buf[lcd.esc_seq.len++] = c;
1312                lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1313        } else {
1314                /* aborts any previous escape sequence */
1315                lcd.esc_seq.len = -1;
1316
1317                switch (c) {
1318                case LCD_ESCAPE_CHAR:
1319                        /* start of an escape sequence */
1320                        lcd.esc_seq.len = 0;
1321                        lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1322                        break;
1323                case '\b':
1324                        /* go back one char and clear it */
1325                        if (lcd.addr.x > 0) {
1326                                /* check if we're not at the
1327                                   end of the line */
1328                                if (lcd.addr.x < lcd.bwidth)
1329                                        /* back one char */
1330                                        lcd_write_cmd(LCD_CMD_SHIFT);
1331                                lcd.addr.x--;
1332                        }
1333                        /* replace with a space */
1334                        lcd_write_data(' ');
1335                        /* back one char again */
1336                        lcd_write_cmd(LCD_CMD_SHIFT);
1337                        break;
1338                case '\014':
1339                        /* quickly clear the display */
1340                        lcd_clear_fast();
1341                        break;
1342                case '\n':
1343                        /* flush the remainder of the current line and
1344                           go to the beginning of the next line */
1345                        for (; lcd.addr.x < lcd.bwidth; lcd.addr.x++)
1346                                lcd_write_data(' ');
1347                        lcd.addr.x = 0;
1348                        lcd.addr.y = (lcd.addr.y + 1) % lcd.height;
1349                        lcd_gotoxy();
1350                        break;
1351                case '\r':
1352                        /* go to the beginning of the same line */
1353                        lcd.addr.x = 0;
1354                        lcd_gotoxy();
1355                        break;
1356                case '\t':
1357                        /* print a space instead of the tab */
1358                        lcd_print(' ');
1359                        break;
1360                default:
1361                        /* simply print this char */
1362                        lcd_print(c);
1363                        break;
1364                }
1365        }
1366
1367        /* now we'll see if we're in an escape mode and if the current
1368           escape sequence can be understood. */
1369        if (lcd.esc_seq.len >= 2) {
1370                int processed = 0;
1371
1372                if (!strcmp(lcd.esc_seq.buf, "[2J")) {
1373                        /* clear the display */
1374                        lcd_clear_fast();
1375                        processed = 1;
1376                } else if (!strcmp(lcd.esc_seq.buf, "[H")) {
1377                        /* cursor to home */
1378                        lcd.addr.x = 0;
1379                        lcd.addr.y = 0;
1380                        lcd_gotoxy();
1381                        processed = 1;
1382                }
1383                /* codes starting with ^[[L */
1384                else if ((lcd.esc_seq.len >= 3) &&
1385                         (lcd.esc_seq.buf[0] == '[') &&
1386                         (lcd.esc_seq.buf[1] == 'L')) {
1387                        processed = handle_lcd_special_code();
1388                }
1389
1390                /* LCD special escape codes */
1391                /* flush the escape sequence if it's been processed
1392                   or if it is getting too long. */
1393                if (processed || (lcd.esc_seq.len >= LCD_ESCAPE_LEN))
1394                        lcd.esc_seq.len = -1;
1395        } /* escape codes */
1396}
1397
1398static ssize_t lcd_write(struct file *file,
1399                         const char __user *buf, size_t count, loff_t *ppos)
1400{
1401        const char __user *tmp = buf;
1402        char c;
1403
1404        for (; count-- > 0; (*ppos)++, tmp++) {
1405                if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1406                        /* let's be a little nice with other processes
1407                           that need some CPU */
1408                        schedule();
1409
1410                if (get_user(c, tmp))
1411                        return -EFAULT;
1412
1413                lcd_write_char(c);
1414        }
1415
1416        return tmp - buf;
1417}
1418
1419static int lcd_open(struct inode *inode, struct file *file)
1420{
1421        if (!atomic_dec_and_test(&lcd_available))
1422                return -EBUSY;  /* open only once at a time */
1423
1424        if (file->f_mode & FMODE_READ)  /* device is write-only */
1425                return -EPERM;
1426
1427        if (lcd.must_clear) {
1428                lcd_clear_display();
1429                lcd.must_clear = false;
1430        }
1431        return nonseekable_open(inode, file);
1432}
1433
1434static int lcd_release(struct inode *inode, struct file *file)
1435{
1436        atomic_inc(&lcd_available);
1437        return 0;
1438}
1439
1440static const struct file_operations lcd_fops = {
1441        .write   = lcd_write,
1442        .open    = lcd_open,
1443        .release = lcd_release,
1444        .llseek  = no_llseek,
1445};
1446
1447static struct miscdevice lcd_dev = {
1448        .minor  = LCD_MINOR,
1449        .name   = "lcd",
1450        .fops   = &lcd_fops,
1451};
1452
1453/* public function usable from the kernel for any purpose */
1454static void panel_lcd_print(const char *s)
1455{
1456        const char *tmp = s;
1457        int count = strlen(s);
1458
1459        if (lcd.enabled && lcd.initialized) {
1460                for (; count-- > 0; tmp++) {
1461                        if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1462                                /* let's be a little nice with other processes
1463                                   that need some CPU */
1464                                schedule();
1465
1466                        lcd_write_char(*tmp);
1467                }
1468        }
1469}
1470
1471/* initialize the LCD driver */
1472static void lcd_init(void)
1473{
1474        switch (selected_lcd_type) {
1475        case LCD_TYPE_OLD:
1476                /* parallel mode, 8 bits */
1477                lcd.proto = LCD_PROTO_PARALLEL;
1478                lcd.charset = LCD_CHARSET_NORMAL;
1479                lcd.pins.e = PIN_STROBE;
1480                lcd.pins.rs = PIN_AUTOLF;
1481
1482                lcd.width = 40;
1483                lcd.bwidth = 40;
1484                lcd.hwidth = 64;
1485                lcd.height = 2;
1486                break;
1487        case LCD_TYPE_KS0074:
1488                /* serial mode, ks0074 */
1489                lcd.proto = LCD_PROTO_SERIAL;
1490                lcd.charset = LCD_CHARSET_KS0074;
1491                lcd.pins.bl = PIN_AUTOLF;
1492                lcd.pins.cl = PIN_STROBE;
1493                lcd.pins.da = PIN_D0;
1494
1495                lcd.width = 16;
1496                lcd.bwidth = 40;
1497                lcd.hwidth = 16;
1498                lcd.height = 2;
1499                break;
1500        case LCD_TYPE_NEXCOM:
1501                /* parallel mode, 8 bits, generic */
1502                lcd.proto = LCD_PROTO_PARALLEL;
1503                lcd.charset = LCD_CHARSET_NORMAL;
1504                lcd.pins.e = PIN_AUTOLF;
1505                lcd.pins.rs = PIN_SELECP;
1506                lcd.pins.rw = PIN_INITP;
1507
1508                lcd.width = 16;
1509                lcd.bwidth = 40;
1510                lcd.hwidth = 64;
1511                lcd.height = 2;
1512                break;
1513        case LCD_TYPE_CUSTOM:
1514                /* customer-defined */
1515                lcd.proto = DEFAULT_LCD_PROTO;
1516                lcd.charset = DEFAULT_LCD_CHARSET;
1517                /* default geometry will be set later */
1518                break;
1519        case LCD_TYPE_HANTRONIX:
1520                /* parallel mode, 8 bits, hantronix-like */
1521        default:
1522                lcd.proto = LCD_PROTO_PARALLEL;
1523                lcd.charset = LCD_CHARSET_NORMAL;
1524                lcd.pins.e = PIN_STROBE;
1525                lcd.pins.rs = PIN_SELECP;
1526
1527                lcd.width = 16;
1528                lcd.bwidth = 40;
1529                lcd.hwidth = 64;
1530                lcd.height = 2;
1531                break;
1532        }
1533
1534        /* Overwrite with module params set on loading */
1535        if (lcd_height != NOT_SET)
1536                lcd.height = lcd_height;
1537        if (lcd_width != NOT_SET)
1538                lcd.width = lcd_width;
1539        if (lcd_bwidth != NOT_SET)
1540                lcd.bwidth = lcd_bwidth;
1541        if (lcd_hwidth != NOT_SET)
1542                lcd.hwidth = lcd_hwidth;
1543        if (lcd_charset != NOT_SET)
1544                lcd.charset = lcd_charset;
1545        if (lcd_proto != NOT_SET)
1546                lcd.proto = lcd_proto;
1547        if (lcd_e_pin != PIN_NOT_SET)
1548                lcd.pins.e = lcd_e_pin;
1549        if (lcd_rs_pin != PIN_NOT_SET)
1550                lcd.pins.rs = lcd_rs_pin;
1551        if (lcd_rw_pin != PIN_NOT_SET)
1552                lcd.pins.rw = lcd_rw_pin;
1553        if (lcd_cl_pin != PIN_NOT_SET)
1554                lcd.pins.cl = lcd_cl_pin;
1555        if (lcd_da_pin != PIN_NOT_SET)
1556                lcd.pins.da = lcd_da_pin;
1557        if (lcd_bl_pin != PIN_NOT_SET)
1558                lcd.pins.bl = lcd_bl_pin;
1559
1560        /* this is used to catch wrong and default values */
1561        if (lcd.width <= 0)
1562                lcd.width = DEFAULT_LCD_WIDTH;
1563        if (lcd.bwidth <= 0)
1564                lcd.bwidth = DEFAULT_LCD_BWIDTH;
1565        if (lcd.hwidth <= 0)
1566                lcd.hwidth = DEFAULT_LCD_HWIDTH;
1567        if (lcd.height <= 0)
1568                lcd.height = DEFAULT_LCD_HEIGHT;
1569
1570        if (lcd.proto == LCD_PROTO_SERIAL) {    /* SERIAL */
1571                lcd_write_cmd = lcd_write_cmd_s;
1572                lcd_write_data = lcd_write_data_s;
1573                lcd_clear_fast = lcd_clear_fast_s;
1574
1575                if (lcd.pins.cl == PIN_NOT_SET)
1576                        lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1577                if (lcd.pins.da == PIN_NOT_SET)
1578                        lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1579
1580        } else if (lcd.proto == LCD_PROTO_PARALLEL) {   /* PARALLEL */
1581                lcd_write_cmd = lcd_write_cmd_p8;
1582                lcd_write_data = lcd_write_data_p8;
1583                lcd_clear_fast = lcd_clear_fast_p8;
1584
1585                if (lcd.pins.e == PIN_NOT_SET)
1586                        lcd.pins.e = DEFAULT_LCD_PIN_E;
1587                if (lcd.pins.rs == PIN_NOT_SET)
1588                        lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1589                if (lcd.pins.rw == PIN_NOT_SET)
1590                        lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1591        } else {
1592                lcd_write_cmd = lcd_write_cmd_tilcd;
1593                lcd_write_data = lcd_write_data_tilcd;
1594                lcd_clear_fast = lcd_clear_fast_tilcd;
1595        }
1596
1597        if (lcd.pins.bl == PIN_NOT_SET)
1598                lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1599
1600        if (lcd.pins.e == PIN_NOT_SET)
1601                lcd.pins.e = PIN_NONE;
1602        if (lcd.pins.rs == PIN_NOT_SET)
1603                lcd.pins.rs = PIN_NONE;
1604        if (lcd.pins.rw == PIN_NOT_SET)
1605                lcd.pins.rw = PIN_NONE;
1606        if (lcd.pins.bl == PIN_NOT_SET)
1607                lcd.pins.bl = PIN_NONE;
1608        if (lcd.pins.cl == PIN_NOT_SET)
1609                lcd.pins.cl = PIN_NONE;
1610        if (lcd.pins.da == PIN_NOT_SET)
1611                lcd.pins.da = PIN_NONE;
1612
1613        if (lcd.charset == NOT_SET)
1614                lcd.charset = DEFAULT_LCD_CHARSET;
1615
1616        if (lcd.charset == LCD_CHARSET_KS0074)
1617                lcd_char_conv = lcd_char_conv_ks0074;
1618        else
1619                lcd_char_conv = NULL;
1620
1621        if (lcd.pins.bl != PIN_NONE)
1622                init_scan_timer();
1623
1624        pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1625                    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1626        pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1627                    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1628        pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1629                    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1630        pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1631                    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1632        pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1633                    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1634        pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1635                    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1636
1637        /* before this line, we must NOT send anything to the display.
1638         * Since lcd_init_display() needs to write data, we have to
1639         * enable mark the LCD initialized just before. */
1640        lcd.initialized = true;
1641        lcd_init_display();
1642
1643        /* display a short message */
1644#ifdef CONFIG_PANEL_CHANGE_MESSAGE
1645#ifdef CONFIG_PANEL_BOOT_MESSAGE
1646        panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1647#endif
1648#else
1649        panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1650                        PANEL_VERSION);
1651#endif
1652        lcd.addr.x = 0;
1653        lcd.addr.y = 0;
1654        /* clear the display on the next device opening */
1655        lcd.must_clear = true;
1656        lcd_gotoxy();
1657}
1658
1659/*
1660 * These are the file operation function for user access to /dev/keypad
1661 */
1662
1663static ssize_t keypad_read(struct file *file,
1664                           char __user *buf, size_t count, loff_t *ppos)
1665{
1666        unsigned i = *ppos;
1667        char __user *tmp = buf;
1668
1669        if (keypad_buflen == 0) {
1670                if (file->f_flags & O_NONBLOCK)
1671                        return -EAGAIN;
1672
1673                if (wait_event_interruptible(keypad_read_wait,
1674                                             keypad_buflen != 0))
1675                        return -EINTR;
1676        }
1677
1678        for (; count-- > 0 && (keypad_buflen > 0);
1679             ++i, ++tmp, --keypad_buflen) {
1680                put_user(keypad_buffer[keypad_start], tmp);
1681                keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1682        }
1683        *ppos = i;
1684
1685        return tmp - buf;
1686}
1687
1688static int keypad_open(struct inode *inode, struct file *file)
1689{
1690        if (!atomic_dec_and_test(&keypad_available))
1691                return -EBUSY;  /* open only once at a time */
1692
1693        if (file->f_mode & FMODE_WRITE) /* device is read-only */
1694                return -EPERM;
1695
1696        keypad_buflen = 0;      /* flush the buffer on opening */
1697        return 0;
1698}
1699
1700static int keypad_release(struct inode *inode, struct file *file)
1701{
1702        atomic_inc(&keypad_available);
1703        return 0;
1704}
1705
1706static const struct file_operations keypad_fops = {
1707        .read    = keypad_read,         /* read */
1708        .open    = keypad_open,         /* open */
1709        .release = keypad_release,      /* close */
1710        .llseek  = default_llseek,
1711};
1712
1713static struct miscdevice keypad_dev = {
1714        .minor  = KEYPAD_MINOR,
1715        .name   = "keypad",
1716        .fops   = &keypad_fops,
1717};
1718
1719static void keypad_send_key(const char *string, int max_len)
1720{
1721        if (init_in_progress)
1722                return;
1723
1724        /* send the key to the device only if a process is attached to it. */
1725        if (!atomic_read(&keypad_available)) {
1726                while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1727                        keypad_buffer[(keypad_start + keypad_buflen++) %
1728                                      KEYPAD_BUFFER] = *string++;
1729                }
1730                wake_up_interruptible(&keypad_read_wait);
1731        }
1732}
1733
1734/* this function scans all the bits involving at least one logical signal,
1735 * and puts the results in the bitfield "phys_read" (one bit per established
1736 * contact), and sets "phys_read_prev" to "phys_read".
1737 *
1738 * Note: to debounce input signals, we will only consider as switched a signal
1739 * which is stable across 2 measures. Signals which are different between two
1740 * reads will be kept as they previously were in their logical form (phys_prev).
1741 * A signal which has just switched will have a 1 in
1742 * (phys_read ^ phys_read_prev).
1743 */
1744static void phys_scan_contacts(void)
1745{
1746        int bit, bitval;
1747        char oldval;
1748        char bitmask;
1749        char gndmask;
1750
1751        phys_prev = phys_curr;
1752        phys_read_prev = phys_read;
1753        phys_read = 0;          /* flush all signals */
1754
1755        /* keep track of old value, with all outputs disabled */
1756        oldval = r_dtr(pprt) | scan_mask_o;
1757        /* activate all keyboard outputs (active low) */
1758        w_dtr(pprt, oldval & ~scan_mask_o);
1759
1760        /* will have a 1 for each bit set to gnd */
1761        bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1762        /* disable all matrix signals */
1763        w_dtr(pprt, oldval);
1764
1765        /* now that all outputs are cleared, the only active input bits are
1766         * directly connected to the ground
1767         */
1768
1769        /* 1 for each grounded input */
1770        gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1771
1772        /* grounded inputs are signals 40-44 */
1773        phys_read |= (pmask_t) gndmask << 40;
1774
1775        if (bitmask != gndmask) {
1776                /* since clearing the outputs changed some inputs, we know
1777                 * that some input signals are currently tied to some outputs.
1778                 * So we'll scan them.
1779                 */
1780                for (bit = 0; bit < 8; bit++) {
1781                        bitval = 1 << bit;
1782
1783                        if (!(scan_mask_o & bitval))    /* skip unused bits */
1784                                continue;
1785
1786                        w_dtr(pprt, oldval & ~bitval);  /* enable this output */
1787                        bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1788                        phys_read |= (pmask_t) bitmask << (5 * bit);
1789                }
1790                w_dtr(pprt, oldval);    /* disable all outputs */
1791        }
1792        /* this is easy: use old bits when they are flapping,
1793         * use new ones when stable */
1794        phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1795                    (phys_read & ~(phys_read ^ phys_read_prev));
1796}
1797
1798static inline int input_state_high(struct logical_input *input)
1799{
1800#if 0
1801        /* FIXME:
1802         * this is an invalid test. It tries to catch
1803         * transitions from single-key to multiple-key, but
1804         * doesn't take into account the contacts polarity.
1805         * The only solution to the problem is to parse keys
1806         * from the most complex to the simplest combinations,
1807         * and mark them as 'caught' once a combination
1808         * matches, then unmatch it for all other ones.
1809         */
1810
1811        /* try to catch dangerous transitions cases :
1812         * someone adds a bit, so this signal was a false
1813         * positive resulting from a transition. We should
1814         * invalidate the signal immediately and not call the
1815         * release function.
1816         * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1817         */
1818        if (((phys_prev & input->mask) == input->value) &&
1819            ((phys_curr & input->mask) >  input->value)) {
1820                input->state = INPUT_ST_LOW; /* invalidate */
1821                return 1;
1822        }
1823#endif
1824
1825        if ((phys_curr & input->mask) == input->value) {
1826                if ((input->type == INPUT_TYPE_STD) &&
1827                    (input->high_timer == 0)) {
1828                        input->high_timer++;
1829                        if (input->u.std.press_fct != NULL)
1830                                input->u.std.press_fct(input->u.std.press_data);
1831                } else if (input->type == INPUT_TYPE_KBD) {
1832                        /* will turn on the light */
1833                        keypressed = 1;
1834
1835                        if (input->high_timer == 0) {
1836                                char *press_str = input->u.kbd.press_str;
1837
1838                                if (press_str[0]) {
1839                                        int s = sizeof(input->u.kbd.press_str);
1840
1841                                        keypad_send_key(press_str, s);
1842                                }
1843                        }
1844
1845                        if (input->u.kbd.repeat_str[0]) {
1846                                char *repeat_str = input->u.kbd.repeat_str;
1847
1848                                if (input->high_timer >= KEYPAD_REP_START) {
1849                                        int s = sizeof(input->u.kbd.repeat_str);
1850
1851                                        input->high_timer -= KEYPAD_REP_DELAY;
1852                                        keypad_send_key(repeat_str, s);
1853                                }
1854                                /* we will need to come back here soon */
1855                                inputs_stable = 0;
1856                        }
1857
1858                        if (input->high_timer < 255)
1859                                input->high_timer++;
1860                }
1861                return 1;
1862        }
1863
1864        /* else signal falling down. Let's fall through. */
1865        input->state = INPUT_ST_FALLING;
1866        input->fall_timer = 0;
1867
1868        return 0;
1869}
1870
1871static inline void input_state_falling(struct logical_input *input)
1872{
1873#if 0
1874        /* FIXME !!! same comment as in input_state_high */
1875        if (((phys_prev & input->mask) == input->value) &&
1876            ((phys_curr & input->mask) >  input->value)) {
1877                input->state = INPUT_ST_LOW;    /* invalidate */
1878                return;
1879        }
1880#endif
1881
1882        if ((phys_curr & input->mask) == input->value) {
1883                if (input->type == INPUT_TYPE_KBD) {
1884                        /* will turn on the light */
1885                        keypressed = 1;
1886
1887                        if (input->u.kbd.repeat_str[0]) {
1888                                char *repeat_str = input->u.kbd.repeat_str;
1889
1890                                if (input->high_timer >= KEYPAD_REP_START) {
1891                                        int s = sizeof(input->u.kbd.repeat_str);
1892
1893                                        input->high_timer -= KEYPAD_REP_DELAY;
1894                                        keypad_send_key(repeat_str, s);
1895                                }
1896                                /* we will need to come back here soon */
1897                                inputs_stable = 0;
1898                        }
1899
1900                        if (input->high_timer < 255)
1901                                input->high_timer++;
1902                }
1903                input->state = INPUT_ST_HIGH;
1904        } else if (input->fall_timer >= input->fall_time) {
1905                /* call release event */
1906                if (input->type == INPUT_TYPE_STD) {
1907                        void (*release_fct)(int) = input->u.std.release_fct;
1908
1909                        if (release_fct != NULL)
1910                                release_fct(input->u.std.release_data);
1911                } else if (input->type == INPUT_TYPE_KBD) {
1912                        char *release_str = input->u.kbd.release_str;
1913
1914                        if (release_str[0]) {
1915                                int s = sizeof(input->u.kbd.release_str);
1916
1917                                keypad_send_key(release_str, s);
1918                        }
1919                }
1920
1921                input->state = INPUT_ST_LOW;
1922        } else {
1923                input->fall_timer++;
1924                inputs_stable = 0;
1925        }
1926}
1927
1928static void panel_process_inputs(void)
1929{
1930        struct list_head *item;
1931        struct logical_input *input;
1932
1933        keypressed = 0;
1934        inputs_stable = 1;
1935        list_for_each(item, &logical_inputs) {
1936                input = list_entry(item, struct logical_input, list);
1937
1938                switch (input->state) {
1939                case INPUT_ST_LOW:
1940                        if ((phys_curr & input->mask) != input->value)
1941                                break;
1942                        /* if all needed ones were already set previously,
1943                         * this means that this logical signal has been
1944                         * activated by the releasing of another combined
1945                         * signal, so we don't want to match.
1946                         * eg: AB -(release B)-> A -(release A)-> 0 :
1947                         *     don't match A.
1948                         */
1949                        if ((phys_prev & input->mask) == input->value)
1950                                break;
1951                        input->rise_timer = 0;
1952                        input->state = INPUT_ST_RISING;
1953                        /* no break here, fall through */
1954                case INPUT_ST_RISING:
1955                        if ((phys_curr & input->mask) != input->value) {
1956                                input->state = INPUT_ST_LOW;
1957                                break;
1958                        }
1959                        if (input->rise_timer < input->rise_time) {
1960                                inputs_stable = 0;
1961                                input->rise_timer++;
1962                                break;
1963                        }
1964                        input->high_timer = 0;
1965                        input->state = INPUT_ST_HIGH;
1966                        /* no break here, fall through */
1967                case INPUT_ST_HIGH:
1968                        if (input_state_high(input))
1969                                break;
1970                        /* no break here, fall through */
1971                case INPUT_ST_FALLING:
1972                        input_state_falling(input);
1973                }
1974        }
1975}
1976
1977static void panel_scan_timer(void)
1978{
1979        if (keypad.enabled && keypad_initialized) {
1980                if (spin_trylock_irq(&pprt_lock)) {
1981                        phys_scan_contacts();
1982
1983                        /* no need for the parport anymore */
1984                        spin_unlock_irq(&pprt_lock);
1985                }
1986
1987                if (!inputs_stable || phys_curr != phys_prev)
1988                        panel_process_inputs();
1989        }
1990
1991        if (lcd.enabled && lcd.initialized) {
1992                if (keypressed) {
1993                        if (lcd.light_tempo == 0
1994                                        && ((lcd.flags & LCD_FLAG_L) == 0))
1995                                lcd_backlight(1);
1996                        lcd.light_tempo = FLASH_LIGHT_TEMPO;
1997                } else if (lcd.light_tempo > 0) {
1998                        lcd.light_tempo--;
1999                        if (lcd.light_tempo == 0
2000                                        && ((lcd.flags & LCD_FLAG_L) == 0))
2001                                lcd_backlight(0);
2002                }
2003        }
2004
2005        mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
2006}
2007
2008static void init_scan_timer(void)
2009{
2010        if (scan_timer.function != NULL)
2011                return;         /* already started */
2012
2013        init_timer(&scan_timer);
2014        scan_timer.expires = jiffies + INPUT_POLL_TIME;
2015        scan_timer.data = 0;
2016        scan_timer.function = (void *)&panel_scan_timer;
2017        add_timer(&scan_timer);
2018}
2019
2020/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
2021 * if <omask> or <imask> are non-null, they will be or'ed with the bits
2022 * corresponding to out and in bits respectively.
2023 * returns 1 if ok, 0 if error (in which case, nothing is written).
2024 */
2025static int input_name2mask(const char *name, pmask_t *mask, pmask_t *value,
2026                           char *imask, char *omask)
2027{
2028        static char sigtab[10] = "EeSsPpAaBb";
2029        char im, om;
2030        pmask_t m, v;
2031
2032        om = 0ULL;
2033        im = 0ULL;
2034        m = 0ULL;
2035        v = 0ULL;
2036        while (*name) {
2037                int in, out, bit, neg;
2038
2039                for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name);
2040                     in++)
2041                        ;
2042
2043                if (in >= sizeof(sigtab))
2044                        return 0;       /* input name not found */
2045                neg = (in & 1); /* odd (lower) names are negated */
2046                in >>= 1;
2047                im |= (1 << in);
2048
2049                name++;
2050                if (isdigit(*name)) {
2051                        out = *name - '0';
2052                        om |= (1 << out);
2053                } else if (*name == '-') {
2054                        out = 8;
2055                } else {
2056                        return 0;       /* unknown bit name */
2057                }
2058
2059                bit = (out * 5) + in;
2060
2061                m |= 1ULL << bit;
2062                if (!neg)
2063                        v |= 1ULL << bit;
2064                name++;
2065        }
2066        *mask = m;
2067        *value = v;
2068        if (imask)
2069                *imask |= im;
2070        if (omask)
2071                *omask |= om;
2072        return 1;
2073}
2074
2075/* tries to bind a key to the signal name <name>. The key will send the
2076 * strings <press>, <repeat>, <release> for these respective events.
2077 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
2078 */
2079static struct logical_input *panel_bind_key(const char *name, const char *press,
2080                                            const char *repeat,
2081                                            const char *release)
2082{
2083        struct logical_input *key;
2084
2085        key = kzalloc(sizeof(*key), GFP_KERNEL);
2086        if (!key)
2087                return NULL;
2088
2089        if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
2090                             &scan_mask_o)) {
2091                kfree(key);
2092                return NULL;
2093        }
2094
2095        key->type = INPUT_TYPE_KBD;
2096        key->state = INPUT_ST_LOW;
2097        key->rise_time = 1;
2098        key->fall_time = 1;
2099
2100        strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2101        strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2102        strncpy(key->u.kbd.release_str, release,
2103                sizeof(key->u.kbd.release_str));
2104        list_add(&key->list, &logical_inputs);
2105        return key;
2106}
2107
2108#if 0
2109/* tries to bind a callback function to the signal name <name>. The function
2110 * <press_fct> will be called with the <press_data> arg when the signal is
2111 * activated, and so on for <release_fct>/<release_data>
2112 * Returns the pointer to the new signal if ok, NULL if the signal could not
2113 * be bound.
2114 */
2115static struct logical_input *panel_bind_callback(char *name,
2116                                                 void (*press_fct)(int),
2117                                                 int press_data,
2118                                                 void (*release_fct)(int),
2119                                                 int release_data)
2120{
2121        struct logical_input *callback;
2122
2123        callback = kmalloc(sizeof(*callback), GFP_KERNEL);
2124        if (!callback)
2125                return NULL;
2126
2127        memset(callback, 0, sizeof(struct logical_input));
2128        if (!input_name2mask(name, &callback->mask, &callback->value,
2129                             &scan_mask_i, &scan_mask_o))
2130                return NULL;
2131
2132        callback->type = INPUT_TYPE_STD;
2133        callback->state = INPUT_ST_LOW;
2134        callback->rise_time = 1;
2135        callback->fall_time = 1;
2136        callback->u.std.press_fct = press_fct;
2137        callback->u.std.press_data = press_data;
2138        callback->u.std.release_fct = release_fct;
2139        callback->u.std.release_data = release_data;
2140        list_add(&callback->list, &logical_inputs);
2141        return callback;
2142}
2143#endif
2144
2145static void keypad_init(void)
2146{
2147        int keynum;
2148
2149        init_waitqueue_head(&keypad_read_wait);
2150        keypad_buflen = 0;      /* flushes any eventual noisy keystroke */
2151
2152        /* Let's create all known keys */
2153
2154        for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2155                panel_bind_key(keypad_profile[keynum][0],
2156                               keypad_profile[keynum][1],
2157                               keypad_profile[keynum][2],
2158                               keypad_profile[keynum][3]);
2159        }
2160
2161        init_scan_timer();
2162        keypad_initialized = 1;
2163}
2164
2165/**************************************************/
2166/* device initialization                          */
2167/**************************************************/
2168
2169static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2170                            void *unused)
2171{
2172        if (lcd.enabled && lcd.initialized) {
2173                switch (code) {
2174                case SYS_DOWN:
2175                        panel_lcd_print
2176                            ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2177                        break;
2178                case SYS_HALT:
2179                        panel_lcd_print
2180                            ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2181                        break;
2182                case SYS_POWER_OFF:
2183                        panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2184                        break;
2185                default:
2186                        break;
2187                }
2188        }
2189        return NOTIFY_DONE;
2190}
2191
2192static struct notifier_block panel_notifier = {
2193        panel_notify_sys,
2194        NULL,
2195        0
2196};
2197
2198static void panel_attach(struct parport *port)
2199{
2200        if (port->number != parport)
2201                return;
2202
2203        if (pprt) {
2204                pr_err("%s: port->number=%d parport=%d, already registered!\n",
2205                       __func__, port->number, parport);
2206                return;
2207        }
2208
2209        pprt = parport_register_device(port, "panel", NULL, NULL,  /* pf, kf */
2210                                       NULL,
2211                                       /*PARPORT_DEV_EXCL */
2212                                       0, (void *)&pprt);
2213        if (pprt == NULL) {
2214                pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2215                       __func__, port->number, parport);
2216                return;
2217        }
2218
2219        if (parport_claim(pprt)) {
2220                pr_err("could not claim access to parport%d. Aborting.\n",
2221                       parport);
2222                goto err_unreg_device;
2223        }
2224
2225        /* must init LCD first, just in case an IRQ from the keypad is
2226         * generated at keypad init
2227         */
2228        if (lcd.enabled) {
2229                lcd_init();
2230                if (misc_register(&lcd_dev))
2231                        goto err_unreg_device;
2232        }
2233
2234        if (keypad.enabled) {
2235                keypad_init();
2236                if (misc_register(&keypad_dev))
2237                        goto err_lcd_unreg;
2238        }
2239        return;
2240
2241err_lcd_unreg:
2242        if (lcd.enabled)
2243                misc_deregister(&lcd_dev);
2244err_unreg_device:
2245        parport_unregister_device(pprt);
2246        pprt = NULL;
2247}
2248
2249static void panel_detach(struct parport *port)
2250{
2251        if (port->number != parport)
2252                return;
2253
2254        if (!pprt) {
2255                pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2256                       __func__, port->number, parport);
2257                return;
2258        }
2259
2260        if (keypad.enabled && keypad_initialized) {
2261                misc_deregister(&keypad_dev);
2262                keypad_initialized = 0;
2263        }
2264
2265        if (lcd.enabled && lcd.initialized) {
2266                misc_deregister(&lcd_dev);
2267                lcd.initialized = false;
2268        }
2269
2270        parport_release(pprt);
2271        parport_unregister_device(pprt);
2272        pprt = NULL;
2273}
2274
2275static struct parport_driver panel_driver = {
2276        .name = "panel",
2277        .attach = panel_attach,
2278        .detach = panel_detach,
2279};
2280
2281/* init function */
2282static int __init panel_init_module(void)
2283{
2284        int selected_keypad_type = NOT_SET;
2285
2286        /* take care of an eventual profile */
2287        switch (profile) {
2288        case PANEL_PROFILE_CUSTOM:
2289                /* custom profile */
2290                selected_keypad_type = DEFAULT_KEYPAD_TYPE;
2291                selected_lcd_type = DEFAULT_LCD_TYPE;
2292                break;
2293        case PANEL_PROFILE_OLD:
2294                /* 8 bits, 2*16, old keypad */
2295                selected_keypad_type = KEYPAD_TYPE_OLD;
2296                selected_lcd_type = LCD_TYPE_OLD;
2297
2298                /* TODO: This two are a little hacky, sort it out later */
2299                if (lcd_width == NOT_SET)
2300                        lcd_width = 16;
2301                if (lcd_hwidth == NOT_SET)
2302                        lcd_hwidth = 16;
2303                break;
2304        case PANEL_PROFILE_NEW:
2305                /* serial, 2*16, new keypad */
2306                selected_keypad_type = KEYPAD_TYPE_NEW;
2307                selected_lcd_type = LCD_TYPE_KS0074;
2308                break;
2309        case PANEL_PROFILE_HANTRONIX:
2310                /* 8 bits, 2*16 hantronix-like, no keypad */
2311                selected_keypad_type = KEYPAD_TYPE_NONE;
2312                selected_lcd_type = LCD_TYPE_HANTRONIX;
2313                break;
2314        case PANEL_PROFILE_NEXCOM:
2315                /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2316                selected_keypad_type = KEYPAD_TYPE_NEXCOM;
2317                selected_lcd_type = LCD_TYPE_NEXCOM;
2318                break;
2319        case PANEL_PROFILE_LARGE:
2320                /* 8 bits, 2*40, old keypad */
2321                selected_keypad_type = KEYPAD_TYPE_OLD;
2322                selected_lcd_type = LCD_TYPE_OLD;
2323                break;
2324        }
2325
2326        /*
2327         * Init lcd struct with load-time values to preserve exact current
2328         * functionality (at least for now).
2329         */
2330        lcd.height = lcd_height;
2331        lcd.width = lcd_width;
2332        lcd.bwidth = lcd_bwidth;
2333        lcd.hwidth = lcd_hwidth;
2334        lcd.charset = lcd_charset;
2335        lcd.proto = lcd_proto;
2336        lcd.pins.e = lcd_e_pin;
2337        lcd.pins.rs = lcd_rs_pin;
2338        lcd.pins.rw = lcd_rw_pin;
2339        lcd.pins.cl = lcd_cl_pin;
2340        lcd.pins.da = lcd_da_pin;
2341        lcd.pins.bl = lcd_bl_pin;
2342
2343        /* Leave it for now, just in case */
2344        lcd.esc_seq.len = -1;
2345
2346        /*
2347         * Overwrite selection with module param values (both keypad and lcd),
2348         * where the deprecated params have lower prio.
2349         */
2350        if (keypad_enabled != NOT_SET)
2351                selected_keypad_type = keypad_enabled;
2352        if (keypad_type != NOT_SET)
2353                selected_keypad_type = keypad_type;
2354
2355        keypad.enabled = (selected_keypad_type > 0);
2356
2357        if (lcd_enabled != NOT_SET)
2358                selected_lcd_type = lcd_enabled;
2359        if (lcd_type != NOT_SET)
2360                selected_lcd_type = lcd_type;
2361
2362        lcd.enabled = (selected_lcd_type > 0);
2363
2364        switch (selected_keypad_type) {
2365        case KEYPAD_TYPE_OLD:
2366                keypad_profile = old_keypad_profile;
2367                break;
2368        case KEYPAD_TYPE_NEW:
2369                keypad_profile = new_keypad_profile;
2370                break;
2371        case KEYPAD_TYPE_NEXCOM:
2372                keypad_profile = nexcom_keypad_profile;
2373                break;
2374        default:
2375                keypad_profile = NULL;
2376                break;
2377        }
2378
2379        /* tells various subsystems about the fact that we are initializing */
2380        init_in_progress = 1;
2381
2382        if (parport_register_driver(&panel_driver)) {
2383                pr_err("could not register with parport. Aborting.\n");
2384                return -EIO;
2385        }
2386
2387        if (!lcd.enabled && !keypad.enabled) {
2388                /* no device enabled, let's release the parport */
2389                if (pprt) {
2390                        parport_release(pprt);
2391                        parport_unregister_device(pprt);
2392                        pprt = NULL;
2393                }
2394                parport_unregister_driver(&panel_driver);
2395                pr_err("driver version " PANEL_VERSION " disabled.\n");
2396                return -ENODEV;
2397        }
2398
2399        register_reboot_notifier(&panel_notifier);
2400
2401        if (pprt)
2402                pr_info("driver version " PANEL_VERSION
2403                        " registered on parport%d (io=0x%lx).\n", parport,
2404                        pprt->port->base);
2405        else
2406                pr_info("driver version " PANEL_VERSION
2407                        " not yet registered\n");
2408        /* tells various subsystems about the fact that initialization
2409           is finished */
2410        init_in_progress = 0;
2411        return 0;
2412}
2413
2414static void __exit panel_cleanup_module(void)
2415{
2416        unregister_reboot_notifier(&panel_notifier);
2417
2418        if (scan_timer.function != NULL)
2419                del_timer_sync(&scan_timer);
2420
2421        if (pprt != NULL) {
2422                if (keypad.enabled) {
2423                        misc_deregister(&keypad_dev);
2424                        keypad_initialized = 0;
2425                }
2426
2427                if (lcd.enabled) {
2428                        panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2429                                        "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2430                        misc_deregister(&lcd_dev);
2431                        lcd.initialized = false;
2432                }
2433
2434                /* TODO: free all input signals */
2435                parport_release(pprt);
2436                parport_unregister_device(pprt);
2437                pprt = NULL;
2438        }
2439        parport_unregister_driver(&panel_driver);
2440}
2441
2442module_init(panel_init_module);
2443module_exit(panel_cleanup_module);
2444MODULE_AUTHOR("Willy Tarreau");
2445MODULE_LICENSE("GPL");
2446
2447/*
2448 * Local variables:
2449 *  c-indent-level: 4
2450 *  tab-width: 8
2451 * End:
2452 */
2453