linux/fs/btrfs/compression.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/slab.h>
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "ordered-data.h"
  41#include "compression.h"
  42#include "extent_io.h"
  43#include "extent_map.h"
  44
  45struct compressed_bio {
  46        /* number of bios pending for this compressed extent */
  47        atomic_t pending_bios;
  48
  49        /* the pages with the compressed data on them */
  50        struct page **compressed_pages;
  51
  52        /* inode that owns this data */
  53        struct inode *inode;
  54
  55        /* starting offset in the inode for our pages */
  56        u64 start;
  57
  58        /* number of bytes in the inode we're working on */
  59        unsigned long len;
  60
  61        /* number of bytes on disk */
  62        unsigned long compressed_len;
  63
  64        /* the compression algorithm for this bio */
  65        int compress_type;
  66
  67        /* number of compressed pages in the array */
  68        unsigned long nr_pages;
  69
  70        /* IO errors */
  71        int errors;
  72        int mirror_num;
  73
  74        /* for reads, this is the bio we are copying the data into */
  75        struct bio *orig_bio;
  76
  77        /*
  78         * the start of a variable length array of checksums only
  79         * used by reads
  80         */
  81        u32 sums;
  82};
  83
  84static int btrfs_decompress_biovec(int type, struct page **pages_in,
  85                                   u64 disk_start, struct bio_vec *bvec,
  86                                   int vcnt, size_t srclen);
  87
  88static inline int compressed_bio_size(struct btrfs_root *root,
  89                                      unsigned long disk_size)
  90{
  91        u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  92
  93        return sizeof(struct compressed_bio) +
  94                (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
  95}
  96
  97static struct bio *compressed_bio_alloc(struct block_device *bdev,
  98                                        u64 first_byte, gfp_t gfp_flags)
  99{
 100        int nr_vecs;
 101
 102        nr_vecs = bio_get_nr_vecs(bdev);
 103        return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
 104}
 105
 106static int check_compressed_csum(struct inode *inode,
 107                                 struct compressed_bio *cb,
 108                                 u64 disk_start)
 109{
 110        int ret;
 111        struct page *page;
 112        unsigned long i;
 113        char *kaddr;
 114        u32 csum;
 115        u32 *cb_sum = &cb->sums;
 116
 117        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
 118                return 0;
 119
 120        for (i = 0; i < cb->nr_pages; i++) {
 121                page = cb->compressed_pages[i];
 122                csum = ~(u32)0;
 123
 124                kaddr = kmap_atomic(page);
 125                csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
 126                btrfs_csum_final(csum, (char *)&csum);
 127                kunmap_atomic(kaddr);
 128
 129                if (csum != *cb_sum) {
 130                        btrfs_info(BTRFS_I(inode)->root->fs_info,
 131                           "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
 132                           btrfs_ino(inode), disk_start, csum, *cb_sum,
 133                           cb->mirror_num);
 134                        ret = -EIO;
 135                        goto fail;
 136                }
 137                cb_sum++;
 138
 139        }
 140        ret = 0;
 141fail:
 142        return ret;
 143}
 144
 145/* when we finish reading compressed pages from the disk, we
 146 * decompress them and then run the bio end_io routines on the
 147 * decompressed pages (in the inode address space).
 148 *
 149 * This allows the checksumming and other IO error handling routines
 150 * to work normally
 151 *
 152 * The compressed pages are freed here, and it must be run
 153 * in process context
 154 */
 155static void end_compressed_bio_read(struct bio *bio, int err)
 156{
 157        struct compressed_bio *cb = bio->bi_private;
 158        struct inode *inode;
 159        struct page *page;
 160        unsigned long index;
 161        int ret;
 162
 163        if (err)
 164                cb->errors = 1;
 165
 166        /* if there are more bios still pending for this compressed
 167         * extent, just exit
 168         */
 169        if (!atomic_dec_and_test(&cb->pending_bios))
 170                goto out;
 171
 172        inode = cb->inode;
 173        ret = check_compressed_csum(inode, cb,
 174                                    (u64)bio->bi_iter.bi_sector << 9);
 175        if (ret)
 176                goto csum_failed;
 177
 178        /* ok, we're the last bio for this extent, lets start
 179         * the decompression.
 180         */
 181        ret = btrfs_decompress_biovec(cb->compress_type,
 182                                      cb->compressed_pages,
 183                                      cb->start,
 184                                      cb->orig_bio->bi_io_vec,
 185                                      cb->orig_bio->bi_vcnt,
 186                                      cb->compressed_len);
 187csum_failed:
 188        if (ret)
 189                cb->errors = 1;
 190
 191        /* release the compressed pages */
 192        index = 0;
 193        for (index = 0; index < cb->nr_pages; index++) {
 194                page = cb->compressed_pages[index];
 195                page->mapping = NULL;
 196                page_cache_release(page);
 197        }
 198
 199        /* do io completion on the original bio */
 200        if (cb->errors) {
 201                bio_io_error(cb->orig_bio);
 202        } else {
 203                int i;
 204                struct bio_vec *bvec;
 205
 206                /*
 207                 * we have verified the checksum already, set page
 208                 * checked so the end_io handlers know about it
 209                 */
 210                bio_for_each_segment_all(bvec, cb->orig_bio, i)
 211                        SetPageChecked(bvec->bv_page);
 212
 213                bio_endio(cb->orig_bio, 0);
 214        }
 215
 216        /* finally free the cb struct */
 217        kfree(cb->compressed_pages);
 218        kfree(cb);
 219out:
 220        bio_put(bio);
 221}
 222
 223/*
 224 * Clear the writeback bits on all of the file
 225 * pages for a compressed write
 226 */
 227static noinline void end_compressed_writeback(struct inode *inode,
 228                                              const struct compressed_bio *cb)
 229{
 230        unsigned long index = cb->start >> PAGE_CACHE_SHIFT;
 231        unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_CACHE_SHIFT;
 232        struct page *pages[16];
 233        unsigned long nr_pages = end_index - index + 1;
 234        int i;
 235        int ret;
 236
 237        if (cb->errors)
 238                mapping_set_error(inode->i_mapping, -EIO);
 239
 240        while (nr_pages > 0) {
 241                ret = find_get_pages_contig(inode->i_mapping, index,
 242                                     min_t(unsigned long,
 243                                     nr_pages, ARRAY_SIZE(pages)), pages);
 244                if (ret == 0) {
 245                        nr_pages -= 1;
 246                        index += 1;
 247                        continue;
 248                }
 249                for (i = 0; i < ret; i++) {
 250                        if (cb->errors)
 251                                SetPageError(pages[i]);
 252                        end_page_writeback(pages[i]);
 253                        page_cache_release(pages[i]);
 254                }
 255                nr_pages -= ret;
 256                index += ret;
 257        }
 258        /* the inode may be gone now */
 259}
 260
 261/*
 262 * do the cleanup once all the compressed pages hit the disk.
 263 * This will clear writeback on the file pages and free the compressed
 264 * pages.
 265 *
 266 * This also calls the writeback end hooks for the file pages so that
 267 * metadata and checksums can be updated in the file.
 268 */
 269static void end_compressed_bio_write(struct bio *bio, int err)
 270{
 271        struct extent_io_tree *tree;
 272        struct compressed_bio *cb = bio->bi_private;
 273        struct inode *inode;
 274        struct page *page;
 275        unsigned long index;
 276
 277        if (err)
 278                cb->errors = 1;
 279
 280        /* if there are more bios still pending for this compressed
 281         * extent, just exit
 282         */
 283        if (!atomic_dec_and_test(&cb->pending_bios))
 284                goto out;
 285
 286        /* ok, we're the last bio for this extent, step one is to
 287         * call back into the FS and do all the end_io operations
 288         */
 289        inode = cb->inode;
 290        tree = &BTRFS_I(inode)->io_tree;
 291        cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 292        tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
 293                                         cb->start,
 294                                         cb->start + cb->len - 1,
 295                                         NULL,
 296                                         err ? 0 : 1);
 297        cb->compressed_pages[0]->mapping = NULL;
 298
 299        end_compressed_writeback(inode, cb);
 300        /* note, our inode could be gone now */
 301
 302        /*
 303         * release the compressed pages, these came from alloc_page and
 304         * are not attached to the inode at all
 305         */
 306        index = 0;
 307        for (index = 0; index < cb->nr_pages; index++) {
 308                page = cb->compressed_pages[index];
 309                page->mapping = NULL;
 310                page_cache_release(page);
 311        }
 312
 313        /* finally free the cb struct */
 314        kfree(cb->compressed_pages);
 315        kfree(cb);
 316out:
 317        bio_put(bio);
 318}
 319
 320/*
 321 * worker function to build and submit bios for previously compressed pages.
 322 * The corresponding pages in the inode should be marked for writeback
 323 * and the compressed pages should have a reference on them for dropping
 324 * when the IO is complete.
 325 *
 326 * This also checksums the file bytes and gets things ready for
 327 * the end io hooks.
 328 */
 329int btrfs_submit_compressed_write(struct inode *inode, u64 start,
 330                                 unsigned long len, u64 disk_start,
 331                                 unsigned long compressed_len,
 332                                 struct page **compressed_pages,
 333                                 unsigned long nr_pages)
 334{
 335        struct bio *bio = NULL;
 336        struct btrfs_root *root = BTRFS_I(inode)->root;
 337        struct compressed_bio *cb;
 338        unsigned long bytes_left;
 339        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 340        int pg_index = 0;
 341        struct page *page;
 342        u64 first_byte = disk_start;
 343        struct block_device *bdev;
 344        int ret;
 345        int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 346
 347        WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
 348        cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 349        if (!cb)
 350                return -ENOMEM;
 351        atomic_set(&cb->pending_bios, 0);
 352        cb->errors = 0;
 353        cb->inode = inode;
 354        cb->start = start;
 355        cb->len = len;
 356        cb->mirror_num = 0;
 357        cb->compressed_pages = compressed_pages;
 358        cb->compressed_len = compressed_len;
 359        cb->orig_bio = NULL;
 360        cb->nr_pages = nr_pages;
 361
 362        bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 363
 364        bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 365        if (!bio) {
 366                kfree(cb);
 367                return -ENOMEM;
 368        }
 369        bio->bi_private = cb;
 370        bio->bi_end_io = end_compressed_bio_write;
 371        atomic_inc(&cb->pending_bios);
 372
 373        /* create and submit bios for the compressed pages */
 374        bytes_left = compressed_len;
 375        for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 376                page = compressed_pages[pg_index];
 377                page->mapping = inode->i_mapping;
 378                if (bio->bi_iter.bi_size)
 379                        ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
 380                                                           PAGE_CACHE_SIZE,
 381                                                           bio, 0);
 382                else
 383                        ret = 0;
 384
 385                page->mapping = NULL;
 386                if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
 387                    PAGE_CACHE_SIZE) {
 388                        bio_get(bio);
 389
 390                        /*
 391                         * inc the count before we submit the bio so
 392                         * we know the end IO handler won't happen before
 393                         * we inc the count.  Otherwise, the cb might get
 394                         * freed before we're done setting it up
 395                         */
 396                        atomic_inc(&cb->pending_bios);
 397                        ret = btrfs_bio_wq_end_io(root->fs_info, bio,
 398                                        BTRFS_WQ_ENDIO_DATA);
 399                        BUG_ON(ret); /* -ENOMEM */
 400
 401                        if (!skip_sum) {
 402                                ret = btrfs_csum_one_bio(root, inode, bio,
 403                                                         start, 1);
 404                                BUG_ON(ret); /* -ENOMEM */
 405                        }
 406
 407                        ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 408                        BUG_ON(ret); /* -ENOMEM */
 409
 410                        bio_put(bio);
 411
 412                        bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 413                        BUG_ON(!bio);
 414                        bio->bi_private = cb;
 415                        bio->bi_end_io = end_compressed_bio_write;
 416                        bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
 417                }
 418                if (bytes_left < PAGE_CACHE_SIZE) {
 419                        btrfs_info(BTRFS_I(inode)->root->fs_info,
 420                                        "bytes left %lu compress len %lu nr %lu",
 421                               bytes_left, cb->compressed_len, cb->nr_pages);
 422                }
 423                bytes_left -= PAGE_CACHE_SIZE;
 424                first_byte += PAGE_CACHE_SIZE;
 425                cond_resched();
 426        }
 427        bio_get(bio);
 428
 429        ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 430        BUG_ON(ret); /* -ENOMEM */
 431
 432        if (!skip_sum) {
 433                ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
 434                BUG_ON(ret); /* -ENOMEM */
 435        }
 436
 437        ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 438        BUG_ON(ret); /* -ENOMEM */
 439
 440        bio_put(bio);
 441        return 0;
 442}
 443
 444static noinline int add_ra_bio_pages(struct inode *inode,
 445                                     u64 compressed_end,
 446                                     struct compressed_bio *cb)
 447{
 448        unsigned long end_index;
 449        unsigned long pg_index;
 450        u64 last_offset;
 451        u64 isize = i_size_read(inode);
 452        int ret;
 453        struct page *page;
 454        unsigned long nr_pages = 0;
 455        struct extent_map *em;
 456        struct address_space *mapping = inode->i_mapping;
 457        struct extent_map_tree *em_tree;
 458        struct extent_io_tree *tree;
 459        u64 end;
 460        int misses = 0;
 461
 462        page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
 463        last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
 464        em_tree = &BTRFS_I(inode)->extent_tree;
 465        tree = &BTRFS_I(inode)->io_tree;
 466
 467        if (isize == 0)
 468                return 0;
 469
 470        end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
 471
 472        while (last_offset < compressed_end) {
 473                pg_index = last_offset >> PAGE_CACHE_SHIFT;
 474
 475                if (pg_index > end_index)
 476                        break;
 477
 478                rcu_read_lock();
 479                page = radix_tree_lookup(&mapping->page_tree, pg_index);
 480                rcu_read_unlock();
 481                if (page && !radix_tree_exceptional_entry(page)) {
 482                        misses++;
 483                        if (misses > 4)
 484                                break;
 485                        goto next;
 486                }
 487
 488                page = __page_cache_alloc(mapping_gfp_mask(mapping) &
 489                                                                ~__GFP_FS);
 490                if (!page)
 491                        break;
 492
 493                if (add_to_page_cache_lru(page, mapping, pg_index,
 494                                                                GFP_NOFS)) {
 495                        page_cache_release(page);
 496                        goto next;
 497                }
 498
 499                end = last_offset + PAGE_CACHE_SIZE - 1;
 500                /*
 501                 * at this point, we have a locked page in the page cache
 502                 * for these bytes in the file.  But, we have to make
 503                 * sure they map to this compressed extent on disk.
 504                 */
 505                set_page_extent_mapped(page);
 506                lock_extent(tree, last_offset, end);
 507                read_lock(&em_tree->lock);
 508                em = lookup_extent_mapping(em_tree, last_offset,
 509                                           PAGE_CACHE_SIZE);
 510                read_unlock(&em_tree->lock);
 511
 512                if (!em || last_offset < em->start ||
 513                    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
 514                    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 515                        free_extent_map(em);
 516                        unlock_extent(tree, last_offset, end);
 517                        unlock_page(page);
 518                        page_cache_release(page);
 519                        break;
 520                }
 521                free_extent_map(em);
 522
 523                if (page->index == end_index) {
 524                        char *userpage;
 525                        size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
 526
 527                        if (zero_offset) {
 528                                int zeros;
 529                                zeros = PAGE_CACHE_SIZE - zero_offset;
 530                                userpage = kmap_atomic(page);
 531                                memset(userpage + zero_offset, 0, zeros);
 532                                flush_dcache_page(page);
 533                                kunmap_atomic(userpage);
 534                        }
 535                }
 536
 537                ret = bio_add_page(cb->orig_bio, page,
 538                                   PAGE_CACHE_SIZE, 0);
 539
 540                if (ret == PAGE_CACHE_SIZE) {
 541                        nr_pages++;
 542                        page_cache_release(page);
 543                } else {
 544                        unlock_extent(tree, last_offset, end);
 545                        unlock_page(page);
 546                        page_cache_release(page);
 547                        break;
 548                }
 549next:
 550                last_offset += PAGE_CACHE_SIZE;
 551        }
 552        return 0;
 553}
 554
 555/*
 556 * for a compressed read, the bio we get passed has all the inode pages
 557 * in it.  We don't actually do IO on those pages but allocate new ones
 558 * to hold the compressed pages on disk.
 559 *
 560 * bio->bi_iter.bi_sector points to the compressed extent on disk
 561 * bio->bi_io_vec points to all of the inode pages
 562 * bio->bi_vcnt is a count of pages
 563 *
 564 * After the compressed pages are read, we copy the bytes into the
 565 * bio we were passed and then call the bio end_io calls
 566 */
 567int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 568                                 int mirror_num, unsigned long bio_flags)
 569{
 570        struct extent_io_tree *tree;
 571        struct extent_map_tree *em_tree;
 572        struct compressed_bio *cb;
 573        struct btrfs_root *root = BTRFS_I(inode)->root;
 574        unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 575        unsigned long compressed_len;
 576        unsigned long nr_pages;
 577        unsigned long pg_index;
 578        struct page *page;
 579        struct block_device *bdev;
 580        struct bio *comp_bio;
 581        u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
 582        u64 em_len;
 583        u64 em_start;
 584        struct extent_map *em;
 585        int ret = -ENOMEM;
 586        int faili = 0;
 587        u32 *sums;
 588
 589        tree = &BTRFS_I(inode)->io_tree;
 590        em_tree = &BTRFS_I(inode)->extent_tree;
 591
 592        /* we need the actual starting offset of this extent in the file */
 593        read_lock(&em_tree->lock);
 594        em = lookup_extent_mapping(em_tree,
 595                                   page_offset(bio->bi_io_vec->bv_page),
 596                                   PAGE_CACHE_SIZE);
 597        read_unlock(&em_tree->lock);
 598        if (!em)
 599                return -EIO;
 600
 601        compressed_len = em->block_len;
 602        cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 603        if (!cb)
 604                goto out;
 605
 606        atomic_set(&cb->pending_bios, 0);
 607        cb->errors = 0;
 608        cb->inode = inode;
 609        cb->mirror_num = mirror_num;
 610        sums = &cb->sums;
 611
 612        cb->start = em->orig_start;
 613        em_len = em->len;
 614        em_start = em->start;
 615
 616        free_extent_map(em);
 617        em = NULL;
 618
 619        cb->len = uncompressed_len;
 620        cb->compressed_len = compressed_len;
 621        cb->compress_type = extent_compress_type(bio_flags);
 622        cb->orig_bio = bio;
 623
 624        nr_pages = DIV_ROUND_UP(compressed_len, PAGE_CACHE_SIZE);
 625        cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
 626                                       GFP_NOFS);
 627        if (!cb->compressed_pages)
 628                goto fail1;
 629
 630        bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 631
 632        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 633                cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 634                                                              __GFP_HIGHMEM);
 635                if (!cb->compressed_pages[pg_index]) {
 636                        faili = pg_index - 1;
 637                        ret = -ENOMEM;
 638                        goto fail2;
 639                }
 640        }
 641        faili = nr_pages - 1;
 642        cb->nr_pages = nr_pages;
 643
 644        /* In the parent-locked case, we only locked the range we are
 645         * interested in.  In all other cases, we can opportunistically
 646         * cache decompressed data that goes beyond the requested range. */
 647        if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
 648                add_ra_bio_pages(inode, em_start + em_len, cb);
 649
 650        /* include any pages we added in add_ra-bio_pages */
 651        uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 652        cb->len = uncompressed_len;
 653
 654        comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
 655        if (!comp_bio)
 656                goto fail2;
 657        comp_bio->bi_private = cb;
 658        comp_bio->bi_end_io = end_compressed_bio_read;
 659        atomic_inc(&cb->pending_bios);
 660
 661        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 662                page = cb->compressed_pages[pg_index];
 663                page->mapping = inode->i_mapping;
 664                page->index = em_start >> PAGE_CACHE_SHIFT;
 665
 666                if (comp_bio->bi_iter.bi_size)
 667                        ret = tree->ops->merge_bio_hook(READ, page, 0,
 668                                                        PAGE_CACHE_SIZE,
 669                                                        comp_bio, 0);
 670                else
 671                        ret = 0;
 672
 673                page->mapping = NULL;
 674                if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
 675                    PAGE_CACHE_SIZE) {
 676                        bio_get(comp_bio);
 677
 678                        ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
 679                                        BTRFS_WQ_ENDIO_DATA);
 680                        BUG_ON(ret); /* -ENOMEM */
 681
 682                        /*
 683                         * inc the count before we submit the bio so
 684                         * we know the end IO handler won't happen before
 685                         * we inc the count.  Otherwise, the cb might get
 686                         * freed before we're done setting it up
 687                         */
 688                        atomic_inc(&cb->pending_bios);
 689
 690                        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 691                                ret = btrfs_lookup_bio_sums(root, inode,
 692                                                        comp_bio, sums);
 693                                BUG_ON(ret); /* -ENOMEM */
 694                        }
 695                        sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 696                                             root->sectorsize);
 697
 698                        ret = btrfs_map_bio(root, READ, comp_bio,
 699                                            mirror_num, 0);
 700                        if (ret)
 701                                bio_endio(comp_bio, ret);
 702
 703                        bio_put(comp_bio);
 704
 705                        comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
 706                                                        GFP_NOFS);
 707                        BUG_ON(!comp_bio);
 708                        comp_bio->bi_private = cb;
 709                        comp_bio->bi_end_io = end_compressed_bio_read;
 710
 711                        bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
 712                }
 713                cur_disk_byte += PAGE_CACHE_SIZE;
 714        }
 715        bio_get(comp_bio);
 716
 717        ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
 718                        BTRFS_WQ_ENDIO_DATA);
 719        BUG_ON(ret); /* -ENOMEM */
 720
 721        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 722                ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
 723                BUG_ON(ret); /* -ENOMEM */
 724        }
 725
 726        ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
 727        if (ret)
 728                bio_endio(comp_bio, ret);
 729
 730        bio_put(comp_bio);
 731        return 0;
 732
 733fail2:
 734        while (faili >= 0) {
 735                __free_page(cb->compressed_pages[faili]);
 736                faili--;
 737        }
 738
 739        kfree(cb->compressed_pages);
 740fail1:
 741        kfree(cb);
 742out:
 743        free_extent_map(em);
 744        return ret;
 745}
 746
 747static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
 748static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
 749static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
 750static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
 751static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
 752
 753static struct btrfs_compress_op *btrfs_compress_op[] = {
 754        &btrfs_zlib_compress,
 755        &btrfs_lzo_compress,
 756};
 757
 758void __init btrfs_init_compress(void)
 759{
 760        int i;
 761
 762        for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 763                INIT_LIST_HEAD(&comp_idle_workspace[i]);
 764                spin_lock_init(&comp_workspace_lock[i]);
 765                atomic_set(&comp_alloc_workspace[i], 0);
 766                init_waitqueue_head(&comp_workspace_wait[i]);
 767        }
 768}
 769
 770/*
 771 * this finds an available workspace or allocates a new one
 772 * ERR_PTR is returned if things go bad.
 773 */
 774static struct list_head *find_workspace(int type)
 775{
 776        struct list_head *workspace;
 777        int cpus = num_online_cpus();
 778        int idx = type - 1;
 779
 780        struct list_head *idle_workspace        = &comp_idle_workspace[idx];
 781        spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
 782        atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
 783        wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
 784        int *num_workspace                      = &comp_num_workspace[idx];
 785again:
 786        spin_lock(workspace_lock);
 787        if (!list_empty(idle_workspace)) {
 788                workspace = idle_workspace->next;
 789                list_del(workspace);
 790                (*num_workspace)--;
 791                spin_unlock(workspace_lock);
 792                return workspace;
 793
 794        }
 795        if (atomic_read(alloc_workspace) > cpus) {
 796                DEFINE_WAIT(wait);
 797
 798                spin_unlock(workspace_lock);
 799                prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
 800                if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
 801                        schedule();
 802                finish_wait(workspace_wait, &wait);
 803                goto again;
 804        }
 805        atomic_inc(alloc_workspace);
 806        spin_unlock(workspace_lock);
 807
 808        workspace = btrfs_compress_op[idx]->alloc_workspace();
 809        if (IS_ERR(workspace)) {
 810                atomic_dec(alloc_workspace);
 811                wake_up(workspace_wait);
 812        }
 813        return workspace;
 814}
 815
 816/*
 817 * put a workspace struct back on the list or free it if we have enough
 818 * idle ones sitting around
 819 */
 820static void free_workspace(int type, struct list_head *workspace)
 821{
 822        int idx = type - 1;
 823        struct list_head *idle_workspace        = &comp_idle_workspace[idx];
 824        spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
 825        atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
 826        wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
 827        int *num_workspace                      = &comp_num_workspace[idx];
 828
 829        spin_lock(workspace_lock);
 830        if (*num_workspace < num_online_cpus()) {
 831                list_add(workspace, idle_workspace);
 832                (*num_workspace)++;
 833                spin_unlock(workspace_lock);
 834                goto wake;
 835        }
 836        spin_unlock(workspace_lock);
 837
 838        btrfs_compress_op[idx]->free_workspace(workspace);
 839        atomic_dec(alloc_workspace);
 840wake:
 841        smp_mb();
 842        if (waitqueue_active(workspace_wait))
 843                wake_up(workspace_wait);
 844}
 845
 846/*
 847 * cleanup function for module exit
 848 */
 849static void free_workspaces(void)
 850{
 851        struct list_head *workspace;
 852        int i;
 853
 854        for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 855                while (!list_empty(&comp_idle_workspace[i])) {
 856                        workspace = comp_idle_workspace[i].next;
 857                        list_del(workspace);
 858                        btrfs_compress_op[i]->free_workspace(workspace);
 859                        atomic_dec(&comp_alloc_workspace[i]);
 860                }
 861        }
 862}
 863
 864/*
 865 * given an address space and start/len, compress the bytes.
 866 *
 867 * pages are allocated to hold the compressed result and stored
 868 * in 'pages'
 869 *
 870 * out_pages is used to return the number of pages allocated.  There
 871 * may be pages allocated even if we return an error
 872 *
 873 * total_in is used to return the number of bytes actually read.  It
 874 * may be smaller then len if we had to exit early because we
 875 * ran out of room in the pages array or because we cross the
 876 * max_out threshold.
 877 *
 878 * total_out is used to return the total number of compressed bytes
 879 *
 880 * max_out tells us the max number of bytes that we're allowed to
 881 * stuff into pages
 882 */
 883int btrfs_compress_pages(int type, struct address_space *mapping,
 884                         u64 start, unsigned long len,
 885                         struct page **pages,
 886                         unsigned long nr_dest_pages,
 887                         unsigned long *out_pages,
 888                         unsigned long *total_in,
 889                         unsigned long *total_out,
 890                         unsigned long max_out)
 891{
 892        struct list_head *workspace;
 893        int ret;
 894
 895        workspace = find_workspace(type);
 896        if (IS_ERR(workspace))
 897                return PTR_ERR(workspace);
 898
 899        ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
 900                                                      start, len, pages,
 901                                                      nr_dest_pages, out_pages,
 902                                                      total_in, total_out,
 903                                                      max_out);
 904        free_workspace(type, workspace);
 905        return ret;
 906}
 907
 908/*
 909 * pages_in is an array of pages with compressed data.
 910 *
 911 * disk_start is the starting logical offset of this array in the file
 912 *
 913 * bvec is a bio_vec of pages from the file that we want to decompress into
 914 *
 915 * vcnt is the count of pages in the biovec
 916 *
 917 * srclen is the number of bytes in pages_in
 918 *
 919 * The basic idea is that we have a bio that was created by readpages.
 920 * The pages in the bio are for the uncompressed data, and they may not
 921 * be contiguous.  They all correspond to the range of bytes covered by
 922 * the compressed extent.
 923 */
 924static int btrfs_decompress_biovec(int type, struct page **pages_in,
 925                                   u64 disk_start, struct bio_vec *bvec,
 926                                   int vcnt, size_t srclen)
 927{
 928        struct list_head *workspace;
 929        int ret;
 930
 931        workspace = find_workspace(type);
 932        if (IS_ERR(workspace))
 933                return PTR_ERR(workspace);
 934
 935        ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
 936                                                         disk_start,
 937                                                         bvec, vcnt, srclen);
 938        free_workspace(type, workspace);
 939        return ret;
 940}
 941
 942/*
 943 * a less complex decompression routine.  Our compressed data fits in a
 944 * single page, and we want to read a single page out of it.
 945 * start_byte tells us the offset into the compressed data we're interested in
 946 */
 947int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
 948                     unsigned long start_byte, size_t srclen, size_t destlen)
 949{
 950        struct list_head *workspace;
 951        int ret;
 952
 953        workspace = find_workspace(type);
 954        if (IS_ERR(workspace))
 955                return PTR_ERR(workspace);
 956
 957        ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
 958                                                  dest_page, start_byte,
 959                                                  srclen, destlen);
 960
 961        free_workspace(type, workspace);
 962        return ret;
 963}
 964
 965void btrfs_exit_compress(void)
 966{
 967        free_workspaces();
 968}
 969
 970/*
 971 * Copy uncompressed data from working buffer to pages.
 972 *
 973 * buf_start is the byte offset we're of the start of our workspace buffer.
 974 *
 975 * total_out is the last byte of the buffer
 976 */
 977int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
 978                              unsigned long total_out, u64 disk_start,
 979                              struct bio_vec *bvec, int vcnt,
 980                              unsigned long *pg_index,
 981                              unsigned long *pg_offset)
 982{
 983        unsigned long buf_offset;
 984        unsigned long current_buf_start;
 985        unsigned long start_byte;
 986        unsigned long working_bytes = total_out - buf_start;
 987        unsigned long bytes;
 988        char *kaddr;
 989        struct page *page_out = bvec[*pg_index].bv_page;
 990
 991        /*
 992         * start byte is the first byte of the page we're currently
 993         * copying into relative to the start of the compressed data.
 994         */
 995        start_byte = page_offset(page_out) - disk_start;
 996
 997        /* we haven't yet hit data corresponding to this page */
 998        if (total_out <= start_byte)
 999                return 1;
1000
1001        /*
1002         * the start of the data we care about is offset into
1003         * the middle of our working buffer
1004         */
1005        if (total_out > start_byte && buf_start < start_byte) {
1006                buf_offset = start_byte - buf_start;
1007                working_bytes -= buf_offset;
1008        } else {
1009                buf_offset = 0;
1010        }
1011        current_buf_start = buf_start;
1012
1013        /* copy bytes from the working buffer into the pages */
1014        while (working_bytes > 0) {
1015                bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1016                            PAGE_CACHE_SIZE - buf_offset);
1017                bytes = min(bytes, working_bytes);
1018                kaddr = kmap_atomic(page_out);
1019                memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1020                kunmap_atomic(kaddr);
1021                flush_dcache_page(page_out);
1022
1023                *pg_offset += bytes;
1024                buf_offset += bytes;
1025                working_bytes -= bytes;
1026                current_buf_start += bytes;
1027
1028                /* check if we need to pick another page */
1029                if (*pg_offset == PAGE_CACHE_SIZE) {
1030                        (*pg_index)++;
1031                        if (*pg_index >= vcnt)
1032                                return 0;
1033
1034                        page_out = bvec[*pg_index].bv_page;
1035                        *pg_offset = 0;
1036                        start_byte = page_offset(page_out) - disk_start;
1037
1038                        /*
1039                         * make sure our new page is covered by this
1040                         * working buffer
1041                         */
1042                        if (total_out <= start_byte)
1043                                return 1;
1044
1045                        /*
1046                         * the next page in the biovec might not be adjacent
1047                         * to the last page, but it might still be found
1048                         * inside this working buffer. bump our offset pointer
1049                         */
1050                        if (total_out > start_byte &&
1051                            current_buf_start < start_byte) {
1052                                buf_offset = start_byte - buf_start;
1053                                working_bytes = total_out - start_byte;
1054                                current_buf_start = buf_start + buf_offset;
1055                        }
1056                }
1057        }
1058
1059        return 1;
1060}
1061
1062/*
1063 * When uncompressing data, we need to make sure and zero any parts of
1064 * the biovec that were not filled in by the decompression code.  pg_index
1065 * and pg_offset indicate the last page and the last offset of that page
1066 * that have been filled in.  This will zero everything remaining in the
1067 * biovec.
1068 */
1069void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
1070                                   unsigned long pg_index,
1071                                   unsigned long pg_offset)
1072{
1073        while (pg_index < vcnt) {
1074                struct page *page = bvec[pg_index].bv_page;
1075                unsigned long off = bvec[pg_index].bv_offset;
1076                unsigned long len = bvec[pg_index].bv_len;
1077
1078                if (pg_offset < off)
1079                        pg_offset = off;
1080                if (pg_offset < off + len) {
1081                        unsigned long bytes = off + len - pg_offset;
1082                        char *kaddr;
1083
1084                        kaddr = kmap_atomic(page);
1085                        memset(kaddr + pg_offset, 0, bytes);
1086                        kunmap_atomic(kaddr);
1087                }
1088                pg_index++;
1089                pg_offset = 0;
1090        }
1091}
1092