linux/fs/btrfs/extent_io.c
<<
>>
Prefs
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
   7#include <linux/spinlock.h>
   8#include <linux/blkdev.h>
   9#include <linux/swap.h>
  10#include <linux/writeback.h>
  11#include <linux/pagevec.h>
  12#include <linux/prefetch.h>
  13#include <linux/cleancache.h>
  14#include "extent_io.h"
  15#include "extent_map.h"
  16#include "ctree.h"
  17#include "btrfs_inode.h"
  18#include "volumes.h"
  19#include "check-integrity.h"
  20#include "locking.h"
  21#include "rcu-string.h"
  22#include "backref.h"
  23
  24static struct kmem_cache *extent_state_cache;
  25static struct kmem_cache *extent_buffer_cache;
  26static struct bio_set *btrfs_bioset;
  27
  28static inline bool extent_state_in_tree(const struct extent_state *state)
  29{
  30        return !RB_EMPTY_NODE(&state->rb_node);
  31}
  32
  33#ifdef CONFIG_BTRFS_DEBUG
  34static LIST_HEAD(buffers);
  35static LIST_HEAD(states);
  36
  37static DEFINE_SPINLOCK(leak_lock);
  38
  39static inline
  40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
  41{
  42        unsigned long flags;
  43
  44        spin_lock_irqsave(&leak_lock, flags);
  45        list_add(new, head);
  46        spin_unlock_irqrestore(&leak_lock, flags);
  47}
  48
  49static inline
  50void btrfs_leak_debug_del(struct list_head *entry)
  51{
  52        unsigned long flags;
  53
  54        spin_lock_irqsave(&leak_lock, flags);
  55        list_del(entry);
  56        spin_unlock_irqrestore(&leak_lock, flags);
  57}
  58
  59static inline
  60void btrfs_leak_debug_check(void)
  61{
  62        struct extent_state *state;
  63        struct extent_buffer *eb;
  64
  65        while (!list_empty(&states)) {
  66                state = list_entry(states.next, struct extent_state, leak_list);
  67                pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  68                       state->start, state->end, state->state,
  69                       extent_state_in_tree(state),
  70                       atomic_read(&state->refs));
  71                list_del(&state->leak_list);
  72                kmem_cache_free(extent_state_cache, state);
  73        }
  74
  75        while (!list_empty(&buffers)) {
  76                eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  77                printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
  78                       "refs %d\n",
  79                       eb->start, eb->len, atomic_read(&eb->refs));
  80                list_del(&eb->leak_list);
  81                kmem_cache_free(extent_buffer_cache, eb);
  82        }
  83}
  84
  85#define btrfs_debug_check_extent_io_range(tree, start, end)             \
  86        __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
  87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
  88                struct extent_io_tree *tree, u64 start, u64 end)
  89{
  90        struct inode *inode;
  91        u64 isize;
  92
  93        if (!tree->mapping)
  94                return;
  95
  96        inode = tree->mapping->host;
  97        isize = i_size_read(inode);
  98        if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
  99                printk_ratelimited(KERN_DEBUG
 100                    "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
 101                                caller, btrfs_ino(inode), isize, start, end);
 102        }
 103}
 104#else
 105#define btrfs_leak_debug_add(new, head) do {} while (0)
 106#define btrfs_leak_debug_del(entry)     do {} while (0)
 107#define btrfs_leak_debug_check()        do {} while (0)
 108#define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
 109#endif
 110
 111#define BUFFER_LRU_MAX 64
 112
 113struct tree_entry {
 114        u64 start;
 115        u64 end;
 116        struct rb_node rb_node;
 117};
 118
 119struct extent_page_data {
 120        struct bio *bio;
 121        struct extent_io_tree *tree;
 122        get_extent_t *get_extent;
 123        unsigned long bio_flags;
 124
 125        /* tells writepage not to lock the state bits for this range
 126         * it still does the unlocking
 127         */
 128        unsigned int extent_locked:1;
 129
 130        /* tells the submit_bio code to use a WRITE_SYNC */
 131        unsigned int sync_io:1;
 132};
 133
 134static noinline void flush_write_bio(void *data);
 135static inline struct btrfs_fs_info *
 136tree_fs_info(struct extent_io_tree *tree)
 137{
 138        if (!tree->mapping)
 139                return NULL;
 140        return btrfs_sb(tree->mapping->host->i_sb);
 141}
 142
 143int __init extent_io_init(void)
 144{
 145        extent_state_cache = kmem_cache_create("btrfs_extent_state",
 146                        sizeof(struct extent_state), 0,
 147                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 148        if (!extent_state_cache)
 149                return -ENOMEM;
 150
 151        extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 152                        sizeof(struct extent_buffer), 0,
 153                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 154        if (!extent_buffer_cache)
 155                goto free_state_cache;
 156
 157        btrfs_bioset = bioset_create(BIO_POOL_SIZE,
 158                                     offsetof(struct btrfs_io_bio, bio));
 159        if (!btrfs_bioset)
 160                goto free_buffer_cache;
 161
 162        if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
 163                goto free_bioset;
 164
 165        return 0;
 166
 167free_bioset:
 168        bioset_free(btrfs_bioset);
 169        btrfs_bioset = NULL;
 170
 171free_buffer_cache:
 172        kmem_cache_destroy(extent_buffer_cache);
 173        extent_buffer_cache = NULL;
 174
 175free_state_cache:
 176        kmem_cache_destroy(extent_state_cache);
 177        extent_state_cache = NULL;
 178        return -ENOMEM;
 179}
 180
 181void extent_io_exit(void)
 182{
 183        btrfs_leak_debug_check();
 184
 185        /*
 186         * Make sure all delayed rcu free are flushed before we
 187         * destroy caches.
 188         */
 189        rcu_barrier();
 190        if (extent_state_cache)
 191                kmem_cache_destroy(extent_state_cache);
 192        if (extent_buffer_cache)
 193                kmem_cache_destroy(extent_buffer_cache);
 194        if (btrfs_bioset)
 195                bioset_free(btrfs_bioset);
 196}
 197
 198void extent_io_tree_init(struct extent_io_tree *tree,
 199                         struct address_space *mapping)
 200{
 201        tree->state = RB_ROOT;
 202        tree->ops = NULL;
 203        tree->dirty_bytes = 0;
 204        spin_lock_init(&tree->lock);
 205        tree->mapping = mapping;
 206}
 207
 208static struct extent_state *alloc_extent_state(gfp_t mask)
 209{
 210        struct extent_state *state;
 211
 212        state = kmem_cache_alloc(extent_state_cache, mask);
 213        if (!state)
 214                return state;
 215        state->state = 0;
 216        state->private = 0;
 217        RB_CLEAR_NODE(&state->rb_node);
 218        btrfs_leak_debug_add(&state->leak_list, &states);
 219        atomic_set(&state->refs, 1);
 220        init_waitqueue_head(&state->wq);
 221        trace_alloc_extent_state(state, mask, _RET_IP_);
 222        return state;
 223}
 224
 225void free_extent_state(struct extent_state *state)
 226{
 227        if (!state)
 228                return;
 229        if (atomic_dec_and_test(&state->refs)) {
 230                WARN_ON(extent_state_in_tree(state));
 231                btrfs_leak_debug_del(&state->leak_list);
 232                trace_free_extent_state(state, _RET_IP_);
 233                kmem_cache_free(extent_state_cache, state);
 234        }
 235}
 236
 237static struct rb_node *tree_insert(struct rb_root *root,
 238                                   struct rb_node *search_start,
 239                                   u64 offset,
 240                                   struct rb_node *node,
 241                                   struct rb_node ***p_in,
 242                                   struct rb_node **parent_in)
 243{
 244        struct rb_node **p;
 245        struct rb_node *parent = NULL;
 246        struct tree_entry *entry;
 247
 248        if (p_in && parent_in) {
 249                p = *p_in;
 250                parent = *parent_in;
 251                goto do_insert;
 252        }
 253
 254        p = search_start ? &search_start : &root->rb_node;
 255        while (*p) {
 256                parent = *p;
 257                entry = rb_entry(parent, struct tree_entry, rb_node);
 258
 259                if (offset < entry->start)
 260                        p = &(*p)->rb_left;
 261                else if (offset > entry->end)
 262                        p = &(*p)->rb_right;
 263                else
 264                        return parent;
 265        }
 266
 267do_insert:
 268        rb_link_node(node, parent, p);
 269        rb_insert_color(node, root);
 270        return NULL;
 271}
 272
 273static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 274                                      struct rb_node **prev_ret,
 275                                      struct rb_node **next_ret,
 276                                      struct rb_node ***p_ret,
 277                                      struct rb_node **parent_ret)
 278{
 279        struct rb_root *root = &tree->state;
 280        struct rb_node **n = &root->rb_node;
 281        struct rb_node *prev = NULL;
 282        struct rb_node *orig_prev = NULL;
 283        struct tree_entry *entry;
 284        struct tree_entry *prev_entry = NULL;
 285
 286        while (*n) {
 287                prev = *n;
 288                entry = rb_entry(prev, struct tree_entry, rb_node);
 289                prev_entry = entry;
 290
 291                if (offset < entry->start)
 292                        n = &(*n)->rb_left;
 293                else if (offset > entry->end)
 294                        n = &(*n)->rb_right;
 295                else
 296                        return *n;
 297        }
 298
 299        if (p_ret)
 300                *p_ret = n;
 301        if (parent_ret)
 302                *parent_ret = prev;
 303
 304        if (prev_ret) {
 305                orig_prev = prev;
 306                while (prev && offset > prev_entry->end) {
 307                        prev = rb_next(prev);
 308                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 309                }
 310                *prev_ret = prev;
 311                prev = orig_prev;
 312        }
 313
 314        if (next_ret) {
 315                prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 316                while (prev && offset < prev_entry->start) {
 317                        prev = rb_prev(prev);
 318                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 319                }
 320                *next_ret = prev;
 321        }
 322        return NULL;
 323}
 324
 325static inline struct rb_node *
 326tree_search_for_insert(struct extent_io_tree *tree,
 327                       u64 offset,
 328                       struct rb_node ***p_ret,
 329                       struct rb_node **parent_ret)
 330{
 331        struct rb_node *prev = NULL;
 332        struct rb_node *ret;
 333
 334        ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
 335        if (!ret)
 336                return prev;
 337        return ret;
 338}
 339
 340static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 341                                          u64 offset)
 342{
 343        return tree_search_for_insert(tree, offset, NULL, NULL);
 344}
 345
 346static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 347                     struct extent_state *other)
 348{
 349        if (tree->ops && tree->ops->merge_extent_hook)
 350                tree->ops->merge_extent_hook(tree->mapping->host, new,
 351                                             other);
 352}
 353
 354/*
 355 * utility function to look for merge candidates inside a given range.
 356 * Any extents with matching state are merged together into a single
 357 * extent in the tree.  Extents with EXTENT_IO in their state field
 358 * are not merged because the end_io handlers need to be able to do
 359 * operations on them without sleeping (or doing allocations/splits).
 360 *
 361 * This should be called with the tree lock held.
 362 */
 363static void merge_state(struct extent_io_tree *tree,
 364                        struct extent_state *state)
 365{
 366        struct extent_state *other;
 367        struct rb_node *other_node;
 368
 369        if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 370                return;
 371
 372        other_node = rb_prev(&state->rb_node);
 373        if (other_node) {
 374                other = rb_entry(other_node, struct extent_state, rb_node);
 375                if (other->end == state->start - 1 &&
 376                    other->state == state->state) {
 377                        merge_cb(tree, state, other);
 378                        state->start = other->start;
 379                        rb_erase(&other->rb_node, &tree->state);
 380                        RB_CLEAR_NODE(&other->rb_node);
 381                        free_extent_state(other);
 382                }
 383        }
 384        other_node = rb_next(&state->rb_node);
 385        if (other_node) {
 386                other = rb_entry(other_node, struct extent_state, rb_node);
 387                if (other->start == state->end + 1 &&
 388                    other->state == state->state) {
 389                        merge_cb(tree, state, other);
 390                        state->end = other->end;
 391                        rb_erase(&other->rb_node, &tree->state);
 392                        RB_CLEAR_NODE(&other->rb_node);
 393                        free_extent_state(other);
 394                }
 395        }
 396}
 397
 398static void set_state_cb(struct extent_io_tree *tree,
 399                         struct extent_state *state, unsigned *bits)
 400{
 401        if (tree->ops && tree->ops->set_bit_hook)
 402                tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 403}
 404
 405static void clear_state_cb(struct extent_io_tree *tree,
 406                           struct extent_state *state, unsigned *bits)
 407{
 408        if (tree->ops && tree->ops->clear_bit_hook)
 409                tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 410}
 411
 412static void set_state_bits(struct extent_io_tree *tree,
 413                           struct extent_state *state, unsigned *bits);
 414
 415/*
 416 * insert an extent_state struct into the tree.  'bits' are set on the
 417 * struct before it is inserted.
 418 *
 419 * This may return -EEXIST if the extent is already there, in which case the
 420 * state struct is freed.
 421 *
 422 * The tree lock is not taken internally.  This is a utility function and
 423 * probably isn't what you want to call (see set/clear_extent_bit).
 424 */
 425static int insert_state(struct extent_io_tree *tree,
 426                        struct extent_state *state, u64 start, u64 end,
 427                        struct rb_node ***p,
 428                        struct rb_node **parent,
 429                        unsigned *bits)
 430{
 431        struct rb_node *node;
 432
 433        if (end < start)
 434                WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
 435                       end, start);
 436        state->start = start;
 437        state->end = end;
 438
 439        set_state_bits(tree, state, bits);
 440
 441        node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 442        if (node) {
 443                struct extent_state *found;
 444                found = rb_entry(node, struct extent_state, rb_node);
 445                printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
 446                       "%llu %llu\n",
 447                       found->start, found->end, start, end);
 448                return -EEXIST;
 449        }
 450        merge_state(tree, state);
 451        return 0;
 452}
 453
 454static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 455                     u64 split)
 456{
 457        if (tree->ops && tree->ops->split_extent_hook)
 458                tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 459}
 460
 461/*
 462 * split a given extent state struct in two, inserting the preallocated
 463 * struct 'prealloc' as the newly created second half.  'split' indicates an
 464 * offset inside 'orig' where it should be split.
 465 *
 466 * Before calling,
 467 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 468 * are two extent state structs in the tree:
 469 * prealloc: [orig->start, split - 1]
 470 * orig: [ split, orig->end ]
 471 *
 472 * The tree locks are not taken by this function. They need to be held
 473 * by the caller.
 474 */
 475static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 476                       struct extent_state *prealloc, u64 split)
 477{
 478        struct rb_node *node;
 479
 480        split_cb(tree, orig, split);
 481
 482        prealloc->start = orig->start;
 483        prealloc->end = split - 1;
 484        prealloc->state = orig->state;
 485        orig->start = split;
 486
 487        node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 488                           &prealloc->rb_node, NULL, NULL);
 489        if (node) {
 490                free_extent_state(prealloc);
 491                return -EEXIST;
 492        }
 493        return 0;
 494}
 495
 496static struct extent_state *next_state(struct extent_state *state)
 497{
 498        struct rb_node *next = rb_next(&state->rb_node);
 499        if (next)
 500                return rb_entry(next, struct extent_state, rb_node);
 501        else
 502                return NULL;
 503}
 504
 505/*
 506 * utility function to clear some bits in an extent state struct.
 507 * it will optionally wake up any one waiting on this state (wake == 1).
 508 *
 509 * If no bits are set on the state struct after clearing things, the
 510 * struct is freed and removed from the tree
 511 */
 512static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 513                                            struct extent_state *state,
 514                                            unsigned *bits, int wake)
 515{
 516        struct extent_state *next;
 517        unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
 518
 519        if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 520                u64 range = state->end - state->start + 1;
 521                WARN_ON(range > tree->dirty_bytes);
 522                tree->dirty_bytes -= range;
 523        }
 524        clear_state_cb(tree, state, bits);
 525        state->state &= ~bits_to_clear;
 526        if (wake)
 527                wake_up(&state->wq);
 528        if (state->state == 0) {
 529                next = next_state(state);
 530                if (extent_state_in_tree(state)) {
 531                        rb_erase(&state->rb_node, &tree->state);
 532                        RB_CLEAR_NODE(&state->rb_node);
 533                        free_extent_state(state);
 534                } else {
 535                        WARN_ON(1);
 536                }
 537        } else {
 538                merge_state(tree, state);
 539                next = next_state(state);
 540        }
 541        return next;
 542}
 543
 544static struct extent_state *
 545alloc_extent_state_atomic(struct extent_state *prealloc)
 546{
 547        if (!prealloc)
 548                prealloc = alloc_extent_state(GFP_ATOMIC);
 549
 550        return prealloc;
 551}
 552
 553static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 554{
 555        btrfs_panic(tree_fs_info(tree), err, "Locking error: "
 556                    "Extent tree was modified by another "
 557                    "thread while locked.");
 558}
 559
 560/*
 561 * clear some bits on a range in the tree.  This may require splitting
 562 * or inserting elements in the tree, so the gfp mask is used to
 563 * indicate which allocations or sleeping are allowed.
 564 *
 565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 566 * the given range from the tree regardless of state (ie for truncate).
 567 *
 568 * the range [start, end] is inclusive.
 569 *
 570 * This takes the tree lock, and returns 0 on success and < 0 on error.
 571 */
 572int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 573                     unsigned bits, int wake, int delete,
 574                     struct extent_state **cached_state,
 575                     gfp_t mask)
 576{
 577        struct extent_state *state;
 578        struct extent_state *cached;
 579        struct extent_state *prealloc = NULL;
 580        struct rb_node *node;
 581        u64 last_end;
 582        int err;
 583        int clear = 0;
 584
 585        btrfs_debug_check_extent_io_range(tree, start, end);
 586
 587        if (bits & EXTENT_DELALLOC)
 588                bits |= EXTENT_NORESERVE;
 589
 590        if (delete)
 591                bits |= ~EXTENT_CTLBITS;
 592        bits |= EXTENT_FIRST_DELALLOC;
 593
 594        if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 595                clear = 1;
 596again:
 597        if (!prealloc && (mask & __GFP_WAIT)) {
 598                /*
 599                 * Don't care for allocation failure here because we might end
 600                 * up not needing the pre-allocated extent state at all, which
 601                 * is the case if we only have in the tree extent states that
 602                 * cover our input range and don't cover too any other range.
 603                 * If we end up needing a new extent state we allocate it later.
 604                 */
 605                prealloc = alloc_extent_state(mask);
 606        }
 607
 608        spin_lock(&tree->lock);
 609        if (cached_state) {
 610                cached = *cached_state;
 611
 612                if (clear) {
 613                        *cached_state = NULL;
 614                        cached_state = NULL;
 615                }
 616
 617                if (cached && extent_state_in_tree(cached) &&
 618                    cached->start <= start && cached->end > start) {
 619                        if (clear)
 620                                atomic_dec(&cached->refs);
 621                        state = cached;
 622                        goto hit_next;
 623                }
 624                if (clear)
 625                        free_extent_state(cached);
 626        }
 627        /*
 628         * this search will find the extents that end after
 629         * our range starts
 630         */
 631        node = tree_search(tree, start);
 632        if (!node)
 633                goto out;
 634        state = rb_entry(node, struct extent_state, rb_node);
 635hit_next:
 636        if (state->start > end)
 637                goto out;
 638        WARN_ON(state->end < start);
 639        last_end = state->end;
 640
 641        /* the state doesn't have the wanted bits, go ahead */
 642        if (!(state->state & bits)) {
 643                state = next_state(state);
 644                goto next;
 645        }
 646
 647        /*
 648         *     | ---- desired range ---- |
 649         *  | state | or
 650         *  | ------------- state -------------- |
 651         *
 652         * We need to split the extent we found, and may flip
 653         * bits on second half.
 654         *
 655         * If the extent we found extends past our range, we
 656         * just split and search again.  It'll get split again
 657         * the next time though.
 658         *
 659         * If the extent we found is inside our range, we clear
 660         * the desired bit on it.
 661         */
 662
 663        if (state->start < start) {
 664                prealloc = alloc_extent_state_atomic(prealloc);
 665                BUG_ON(!prealloc);
 666                err = split_state(tree, state, prealloc, start);
 667                if (err)
 668                        extent_io_tree_panic(tree, err);
 669
 670                prealloc = NULL;
 671                if (err)
 672                        goto out;
 673                if (state->end <= end) {
 674                        state = clear_state_bit(tree, state, &bits, wake);
 675                        goto next;
 676                }
 677                goto search_again;
 678        }
 679        /*
 680         * | ---- desired range ---- |
 681         *                        | state |
 682         * We need to split the extent, and clear the bit
 683         * on the first half
 684         */
 685        if (state->start <= end && state->end > end) {
 686                prealloc = alloc_extent_state_atomic(prealloc);
 687                BUG_ON(!prealloc);
 688                err = split_state(tree, state, prealloc, end + 1);
 689                if (err)
 690                        extent_io_tree_panic(tree, err);
 691
 692                if (wake)
 693                        wake_up(&state->wq);
 694
 695                clear_state_bit(tree, prealloc, &bits, wake);
 696
 697                prealloc = NULL;
 698                goto out;
 699        }
 700
 701        state = clear_state_bit(tree, state, &bits, wake);
 702next:
 703        if (last_end == (u64)-1)
 704                goto out;
 705        start = last_end + 1;
 706        if (start <= end && state && !need_resched())
 707                goto hit_next;
 708        goto search_again;
 709
 710out:
 711        spin_unlock(&tree->lock);
 712        if (prealloc)
 713                free_extent_state(prealloc);
 714
 715        return 0;
 716
 717search_again:
 718        if (start > end)
 719                goto out;
 720        spin_unlock(&tree->lock);
 721        if (mask & __GFP_WAIT)
 722                cond_resched();
 723        goto again;
 724}
 725
 726static void wait_on_state(struct extent_io_tree *tree,
 727                          struct extent_state *state)
 728                __releases(tree->lock)
 729                __acquires(tree->lock)
 730{
 731        DEFINE_WAIT(wait);
 732        prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 733        spin_unlock(&tree->lock);
 734        schedule();
 735        spin_lock(&tree->lock);
 736        finish_wait(&state->wq, &wait);
 737}
 738
 739/*
 740 * waits for one or more bits to clear on a range in the state tree.
 741 * The range [start, end] is inclusive.
 742 * The tree lock is taken by this function
 743 */
 744static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 745                            unsigned long bits)
 746{
 747        struct extent_state *state;
 748        struct rb_node *node;
 749
 750        btrfs_debug_check_extent_io_range(tree, start, end);
 751
 752        spin_lock(&tree->lock);
 753again:
 754        while (1) {
 755                /*
 756                 * this search will find all the extents that end after
 757                 * our range starts
 758                 */
 759                node = tree_search(tree, start);
 760process_node:
 761                if (!node)
 762                        break;
 763
 764                state = rb_entry(node, struct extent_state, rb_node);
 765
 766                if (state->start > end)
 767                        goto out;
 768
 769                if (state->state & bits) {
 770                        start = state->start;
 771                        atomic_inc(&state->refs);
 772                        wait_on_state(tree, state);
 773                        free_extent_state(state);
 774                        goto again;
 775                }
 776                start = state->end + 1;
 777
 778                if (start > end)
 779                        break;
 780
 781                if (!cond_resched_lock(&tree->lock)) {
 782                        node = rb_next(node);
 783                        goto process_node;
 784                }
 785        }
 786out:
 787        spin_unlock(&tree->lock);
 788}
 789
 790static void set_state_bits(struct extent_io_tree *tree,
 791                           struct extent_state *state,
 792                           unsigned *bits)
 793{
 794        unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
 795
 796        set_state_cb(tree, state, bits);
 797        if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 798                u64 range = state->end - state->start + 1;
 799                tree->dirty_bytes += range;
 800        }
 801        state->state |= bits_to_set;
 802}
 803
 804static void cache_state_if_flags(struct extent_state *state,
 805                                 struct extent_state **cached_ptr,
 806                                 unsigned flags)
 807{
 808        if (cached_ptr && !(*cached_ptr)) {
 809                if (!flags || (state->state & flags)) {
 810                        *cached_ptr = state;
 811                        atomic_inc(&state->refs);
 812                }
 813        }
 814}
 815
 816static void cache_state(struct extent_state *state,
 817                        struct extent_state **cached_ptr)
 818{
 819        return cache_state_if_flags(state, cached_ptr,
 820                                    EXTENT_IOBITS | EXTENT_BOUNDARY);
 821}
 822
 823/*
 824 * set some bits on a range in the tree.  This may require allocations or
 825 * sleeping, so the gfp mask is used to indicate what is allowed.
 826 *
 827 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 828 * part of the range already has the desired bits set.  The start of the
 829 * existing range is returned in failed_start in this case.
 830 *
 831 * [start, end] is inclusive This takes the tree lock.
 832 */
 833
 834static int __must_check
 835__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 836                 unsigned bits, unsigned exclusive_bits,
 837                 u64 *failed_start, struct extent_state **cached_state,
 838                 gfp_t mask)
 839{
 840        struct extent_state *state;
 841        struct extent_state *prealloc = NULL;
 842        struct rb_node *node;
 843        struct rb_node **p;
 844        struct rb_node *parent;
 845        int err = 0;
 846        u64 last_start;
 847        u64 last_end;
 848
 849        btrfs_debug_check_extent_io_range(tree, start, end);
 850
 851        bits |= EXTENT_FIRST_DELALLOC;
 852again:
 853        if (!prealloc && (mask & __GFP_WAIT)) {
 854                prealloc = alloc_extent_state(mask);
 855                BUG_ON(!prealloc);
 856        }
 857
 858        spin_lock(&tree->lock);
 859        if (cached_state && *cached_state) {
 860                state = *cached_state;
 861                if (state->start <= start && state->end > start &&
 862                    extent_state_in_tree(state)) {
 863                        node = &state->rb_node;
 864                        goto hit_next;
 865                }
 866        }
 867        /*
 868         * this search will find all the extents that end after
 869         * our range starts.
 870         */
 871        node = tree_search_for_insert(tree, start, &p, &parent);
 872        if (!node) {
 873                prealloc = alloc_extent_state_atomic(prealloc);
 874                BUG_ON(!prealloc);
 875                err = insert_state(tree, prealloc, start, end,
 876                                   &p, &parent, &bits);
 877                if (err)
 878                        extent_io_tree_panic(tree, err);
 879
 880                cache_state(prealloc, cached_state);
 881                prealloc = NULL;
 882                goto out;
 883        }
 884        state = rb_entry(node, struct extent_state, rb_node);
 885hit_next:
 886        last_start = state->start;
 887        last_end = state->end;
 888
 889        /*
 890         * | ---- desired range ---- |
 891         * | state |
 892         *
 893         * Just lock what we found and keep going
 894         */
 895        if (state->start == start && state->end <= end) {
 896                if (state->state & exclusive_bits) {
 897                        *failed_start = state->start;
 898                        err = -EEXIST;
 899                        goto out;
 900                }
 901
 902                set_state_bits(tree, state, &bits);
 903                cache_state(state, cached_state);
 904                merge_state(tree, state);
 905                if (last_end == (u64)-1)
 906                        goto out;
 907                start = last_end + 1;
 908                state = next_state(state);
 909                if (start < end && state && state->start == start &&
 910                    !need_resched())
 911                        goto hit_next;
 912                goto search_again;
 913        }
 914
 915        /*
 916         *     | ---- desired range ---- |
 917         * | state |
 918         *   or
 919         * | ------------- state -------------- |
 920         *
 921         * We need to split the extent we found, and may flip bits on
 922         * second half.
 923         *
 924         * If the extent we found extends past our
 925         * range, we just split and search again.  It'll get split
 926         * again the next time though.
 927         *
 928         * If the extent we found is inside our range, we set the
 929         * desired bit on it.
 930         */
 931        if (state->start < start) {
 932                if (state->state & exclusive_bits) {
 933                        *failed_start = start;
 934                        err = -EEXIST;
 935                        goto out;
 936                }
 937
 938                prealloc = alloc_extent_state_atomic(prealloc);
 939                BUG_ON(!prealloc);
 940                err = split_state(tree, state, prealloc, start);
 941                if (err)
 942                        extent_io_tree_panic(tree, err);
 943
 944                prealloc = NULL;
 945                if (err)
 946                        goto out;
 947                if (state->end <= end) {
 948                        set_state_bits(tree, state, &bits);
 949                        cache_state(state, cached_state);
 950                        merge_state(tree, state);
 951                        if (last_end == (u64)-1)
 952                                goto out;
 953                        start = last_end + 1;
 954                        state = next_state(state);
 955                        if (start < end && state && state->start == start &&
 956                            !need_resched())
 957                                goto hit_next;
 958                }
 959                goto search_again;
 960        }
 961        /*
 962         * | ---- desired range ---- |
 963         *     | state | or               | state |
 964         *
 965         * There's a hole, we need to insert something in it and
 966         * ignore the extent we found.
 967         */
 968        if (state->start > start) {
 969                u64 this_end;
 970                if (end < last_start)
 971                        this_end = end;
 972                else
 973                        this_end = last_start - 1;
 974
 975                prealloc = alloc_extent_state_atomic(prealloc);
 976                BUG_ON(!prealloc);
 977
 978                /*
 979                 * Avoid to free 'prealloc' if it can be merged with
 980                 * the later extent.
 981                 */
 982                err = insert_state(tree, prealloc, start, this_end,
 983                                   NULL, NULL, &bits);
 984                if (err)
 985                        extent_io_tree_panic(tree, err);
 986
 987                cache_state(prealloc, cached_state);
 988                prealloc = NULL;
 989                start = this_end + 1;
 990                goto search_again;
 991        }
 992        /*
 993         * | ---- desired range ---- |
 994         *                        | state |
 995         * We need to split the extent, and set the bit
 996         * on the first half
 997         */
 998        if (state->start <= end && state->end > end) {
 999                if (state->state & exclusive_bits) {
1000                        *failed_start = start;
1001                        err = -EEXIST;
1002                        goto out;
1003                }
1004
1005                prealloc = alloc_extent_state_atomic(prealloc);
1006                BUG_ON(!prealloc);
1007                err = split_state(tree, state, prealloc, end + 1);
1008                if (err)
1009                        extent_io_tree_panic(tree, err);
1010
1011                set_state_bits(tree, prealloc, &bits);
1012                cache_state(prealloc, cached_state);
1013                merge_state(tree, prealloc);
1014                prealloc = NULL;
1015                goto out;
1016        }
1017
1018        goto search_again;
1019
1020out:
1021        spin_unlock(&tree->lock);
1022        if (prealloc)
1023                free_extent_state(prealloc);
1024
1025        return err;
1026
1027search_again:
1028        if (start > end)
1029                goto out;
1030        spin_unlock(&tree->lock);
1031        if (mask & __GFP_WAIT)
1032                cond_resched();
1033        goto again;
1034}
1035
1036int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1037                   unsigned bits, u64 * failed_start,
1038                   struct extent_state **cached_state, gfp_t mask)
1039{
1040        return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1041                                cached_state, mask);
1042}
1043
1044
1045/**
1046 * convert_extent_bit - convert all bits in a given range from one bit to
1047 *                      another
1048 * @tree:       the io tree to search
1049 * @start:      the start offset in bytes
1050 * @end:        the end offset in bytes (inclusive)
1051 * @bits:       the bits to set in this range
1052 * @clear_bits: the bits to clear in this range
1053 * @cached_state:       state that we're going to cache
1054 * @mask:       the allocation mask
1055 *
1056 * This will go through and set bits for the given range.  If any states exist
1057 * already in this range they are set with the given bit and cleared of the
1058 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1059 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1060 * boundary bits like LOCK.
1061 */
1062int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1063                       unsigned bits, unsigned clear_bits,
1064                       struct extent_state **cached_state, gfp_t mask)
1065{
1066        struct extent_state *state;
1067        struct extent_state *prealloc = NULL;
1068        struct rb_node *node;
1069        struct rb_node **p;
1070        struct rb_node *parent;
1071        int err = 0;
1072        u64 last_start;
1073        u64 last_end;
1074        bool first_iteration = true;
1075
1076        btrfs_debug_check_extent_io_range(tree, start, end);
1077
1078again:
1079        if (!prealloc && (mask & __GFP_WAIT)) {
1080                /*
1081                 * Best effort, don't worry if extent state allocation fails
1082                 * here for the first iteration. We might have a cached state
1083                 * that matches exactly the target range, in which case no
1084                 * extent state allocations are needed. We'll only know this
1085                 * after locking the tree.
1086                 */
1087                prealloc = alloc_extent_state(mask);
1088                if (!prealloc && !first_iteration)
1089                        return -ENOMEM;
1090        }
1091
1092        spin_lock(&tree->lock);
1093        if (cached_state && *cached_state) {
1094                state = *cached_state;
1095                if (state->start <= start && state->end > start &&
1096                    extent_state_in_tree(state)) {
1097                        node = &state->rb_node;
1098                        goto hit_next;
1099                }
1100        }
1101
1102        /*
1103         * this search will find all the extents that end after
1104         * our range starts.
1105         */
1106        node = tree_search_for_insert(tree, start, &p, &parent);
1107        if (!node) {
1108                prealloc = alloc_extent_state_atomic(prealloc);
1109                if (!prealloc) {
1110                        err = -ENOMEM;
1111                        goto out;
1112                }
1113                err = insert_state(tree, prealloc, start, end,
1114                                   &p, &parent, &bits);
1115                if (err)
1116                        extent_io_tree_panic(tree, err);
1117                cache_state(prealloc, cached_state);
1118                prealloc = NULL;
1119                goto out;
1120        }
1121        state = rb_entry(node, struct extent_state, rb_node);
1122hit_next:
1123        last_start = state->start;
1124        last_end = state->end;
1125
1126        /*
1127         * | ---- desired range ---- |
1128         * | state |
1129         *
1130         * Just lock what we found and keep going
1131         */
1132        if (state->start == start && state->end <= end) {
1133                set_state_bits(tree, state, &bits);
1134                cache_state(state, cached_state);
1135                state = clear_state_bit(tree, state, &clear_bits, 0);
1136                if (last_end == (u64)-1)
1137                        goto out;
1138                start = last_end + 1;
1139                if (start < end && state && state->start == start &&
1140                    !need_resched())
1141                        goto hit_next;
1142                goto search_again;
1143        }
1144
1145        /*
1146         *     | ---- desired range ---- |
1147         * | state |
1148         *   or
1149         * | ------------- state -------------- |
1150         *
1151         * We need to split the extent we found, and may flip bits on
1152         * second half.
1153         *
1154         * If the extent we found extends past our
1155         * range, we just split and search again.  It'll get split
1156         * again the next time though.
1157         *
1158         * If the extent we found is inside our range, we set the
1159         * desired bit on it.
1160         */
1161        if (state->start < start) {
1162                prealloc = alloc_extent_state_atomic(prealloc);
1163                if (!prealloc) {
1164                        err = -ENOMEM;
1165                        goto out;
1166                }
1167                err = split_state(tree, state, prealloc, start);
1168                if (err)
1169                        extent_io_tree_panic(tree, err);
1170                prealloc = NULL;
1171                if (err)
1172                        goto out;
1173                if (state->end <= end) {
1174                        set_state_bits(tree, state, &bits);
1175                        cache_state(state, cached_state);
1176                        state = clear_state_bit(tree, state, &clear_bits, 0);
1177                        if (last_end == (u64)-1)
1178                                goto out;
1179                        start = last_end + 1;
1180                        if (start < end && state && state->start == start &&
1181                            !need_resched())
1182                                goto hit_next;
1183                }
1184                goto search_again;
1185        }
1186        /*
1187         * | ---- desired range ---- |
1188         *     | state | or               | state |
1189         *
1190         * There's a hole, we need to insert something in it and
1191         * ignore the extent we found.
1192         */
1193        if (state->start > start) {
1194                u64 this_end;
1195                if (end < last_start)
1196                        this_end = end;
1197                else
1198                        this_end = last_start - 1;
1199
1200                prealloc = alloc_extent_state_atomic(prealloc);
1201                if (!prealloc) {
1202                        err = -ENOMEM;
1203                        goto out;
1204                }
1205
1206                /*
1207                 * Avoid to free 'prealloc' if it can be merged with
1208                 * the later extent.
1209                 */
1210                err = insert_state(tree, prealloc, start, this_end,
1211                                   NULL, NULL, &bits);
1212                if (err)
1213                        extent_io_tree_panic(tree, err);
1214                cache_state(prealloc, cached_state);
1215                prealloc = NULL;
1216                start = this_end + 1;
1217                goto search_again;
1218        }
1219        /*
1220         * | ---- desired range ---- |
1221         *                        | state |
1222         * We need to split the extent, and set the bit
1223         * on the first half
1224         */
1225        if (state->start <= end && state->end > end) {
1226                prealloc = alloc_extent_state_atomic(prealloc);
1227                if (!prealloc) {
1228                        err = -ENOMEM;
1229                        goto out;
1230                }
1231
1232                err = split_state(tree, state, prealloc, end + 1);
1233                if (err)
1234                        extent_io_tree_panic(tree, err);
1235
1236                set_state_bits(tree, prealloc, &bits);
1237                cache_state(prealloc, cached_state);
1238                clear_state_bit(tree, prealloc, &clear_bits, 0);
1239                prealloc = NULL;
1240                goto out;
1241        }
1242
1243        goto search_again;
1244
1245out:
1246        spin_unlock(&tree->lock);
1247        if (prealloc)
1248                free_extent_state(prealloc);
1249
1250        return err;
1251
1252search_again:
1253        if (start > end)
1254                goto out;
1255        spin_unlock(&tree->lock);
1256        if (mask & __GFP_WAIT)
1257                cond_resched();
1258        first_iteration = false;
1259        goto again;
1260}
1261
1262/* wrappers around set/clear extent bit */
1263int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1264                     gfp_t mask)
1265{
1266        return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1267                              NULL, mask);
1268}
1269
1270int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1271                    unsigned bits, gfp_t mask)
1272{
1273        return set_extent_bit(tree, start, end, bits, NULL,
1274                              NULL, mask);
1275}
1276
1277int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1278                      unsigned bits, gfp_t mask)
1279{
1280        return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1281}
1282
1283int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1284                        struct extent_state **cached_state, gfp_t mask)
1285{
1286        return set_extent_bit(tree, start, end,
1287                              EXTENT_DELALLOC | EXTENT_UPTODATE,
1288                              NULL, cached_state, mask);
1289}
1290
1291int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1292                      struct extent_state **cached_state, gfp_t mask)
1293{
1294        return set_extent_bit(tree, start, end,
1295                              EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1296                              NULL, cached_state, mask);
1297}
1298
1299int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1300                       gfp_t mask)
1301{
1302        return clear_extent_bit(tree, start, end,
1303                                EXTENT_DIRTY | EXTENT_DELALLOC |
1304                                EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1305}
1306
1307int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1308                     gfp_t mask)
1309{
1310        return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1311                              NULL, mask);
1312}
1313
1314int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1315                        struct extent_state **cached_state, gfp_t mask)
1316{
1317        return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1318                              cached_state, mask);
1319}
1320
1321int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1322                          struct extent_state **cached_state, gfp_t mask)
1323{
1324        return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1325                                cached_state, mask);
1326}
1327
1328/*
1329 * either insert or lock state struct between start and end use mask to tell
1330 * us if waiting is desired.
1331 */
1332int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1333                     unsigned bits, struct extent_state **cached_state)
1334{
1335        int err;
1336        u64 failed_start;
1337
1338        while (1) {
1339                err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1340                                       EXTENT_LOCKED, &failed_start,
1341                                       cached_state, GFP_NOFS);
1342                if (err == -EEXIST) {
1343                        wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1344                        start = failed_start;
1345                } else
1346                        break;
1347                WARN_ON(start > end);
1348        }
1349        return err;
1350}
1351
1352int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1353{
1354        return lock_extent_bits(tree, start, end, 0, NULL);
1355}
1356
1357int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1358{
1359        int err;
1360        u64 failed_start;
1361
1362        err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1363                               &failed_start, NULL, GFP_NOFS);
1364        if (err == -EEXIST) {
1365                if (failed_start > start)
1366                        clear_extent_bit(tree, start, failed_start - 1,
1367                                         EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1368                return 0;
1369        }
1370        return 1;
1371}
1372
1373int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1374                         struct extent_state **cached, gfp_t mask)
1375{
1376        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1377                                mask);
1378}
1379
1380int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1381{
1382        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1383                                GFP_NOFS);
1384}
1385
1386int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1387{
1388        unsigned long index = start >> PAGE_CACHE_SHIFT;
1389        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1390        struct page *page;
1391
1392        while (index <= end_index) {
1393                page = find_get_page(inode->i_mapping, index);
1394                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1395                clear_page_dirty_for_io(page);
1396                page_cache_release(page);
1397                index++;
1398        }
1399        return 0;
1400}
1401
1402int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1403{
1404        unsigned long index = start >> PAGE_CACHE_SHIFT;
1405        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1406        struct page *page;
1407
1408        while (index <= end_index) {
1409                page = find_get_page(inode->i_mapping, index);
1410                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1411                __set_page_dirty_nobuffers(page);
1412                account_page_redirty(page);
1413                page_cache_release(page);
1414                index++;
1415        }
1416        return 0;
1417}
1418
1419/*
1420 * helper function to set both pages and extents in the tree writeback
1421 */
1422static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1423{
1424        unsigned long index = start >> PAGE_CACHE_SHIFT;
1425        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1426        struct page *page;
1427
1428        while (index <= end_index) {
1429                page = find_get_page(tree->mapping, index);
1430                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1431                set_page_writeback(page);
1432                page_cache_release(page);
1433                index++;
1434        }
1435        return 0;
1436}
1437
1438/* find the first state struct with 'bits' set after 'start', and
1439 * return it.  tree->lock must be held.  NULL will returned if
1440 * nothing was found after 'start'
1441 */
1442static struct extent_state *
1443find_first_extent_bit_state(struct extent_io_tree *tree,
1444                            u64 start, unsigned bits)
1445{
1446        struct rb_node *node;
1447        struct extent_state *state;
1448
1449        /*
1450         * this search will find all the extents that end after
1451         * our range starts.
1452         */
1453        node = tree_search(tree, start);
1454        if (!node)
1455                goto out;
1456
1457        while (1) {
1458                state = rb_entry(node, struct extent_state, rb_node);
1459                if (state->end >= start && (state->state & bits))
1460                        return state;
1461
1462                node = rb_next(node);
1463                if (!node)
1464                        break;
1465        }
1466out:
1467        return NULL;
1468}
1469
1470/*
1471 * find the first offset in the io tree with 'bits' set. zero is
1472 * returned if we find something, and *start_ret and *end_ret are
1473 * set to reflect the state struct that was found.
1474 *
1475 * If nothing was found, 1 is returned. If found something, return 0.
1476 */
1477int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1478                          u64 *start_ret, u64 *end_ret, unsigned bits,
1479                          struct extent_state **cached_state)
1480{
1481        struct extent_state *state;
1482        struct rb_node *n;
1483        int ret = 1;
1484
1485        spin_lock(&tree->lock);
1486        if (cached_state && *cached_state) {
1487                state = *cached_state;
1488                if (state->end == start - 1 && extent_state_in_tree(state)) {
1489                        n = rb_next(&state->rb_node);
1490                        while (n) {
1491                                state = rb_entry(n, struct extent_state,
1492                                                 rb_node);
1493                                if (state->state & bits)
1494                                        goto got_it;
1495                                n = rb_next(n);
1496                        }
1497                        free_extent_state(*cached_state);
1498                        *cached_state = NULL;
1499                        goto out;
1500                }
1501                free_extent_state(*cached_state);
1502                *cached_state = NULL;
1503        }
1504
1505        state = find_first_extent_bit_state(tree, start, bits);
1506got_it:
1507        if (state) {
1508                cache_state_if_flags(state, cached_state, 0);
1509                *start_ret = state->start;
1510                *end_ret = state->end;
1511                ret = 0;
1512        }
1513out:
1514        spin_unlock(&tree->lock);
1515        return ret;
1516}
1517
1518/*
1519 * find a contiguous range of bytes in the file marked as delalloc, not
1520 * more than 'max_bytes'.  start and end are used to return the range,
1521 *
1522 * 1 is returned if we find something, 0 if nothing was in the tree
1523 */
1524static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1525                                        u64 *start, u64 *end, u64 max_bytes,
1526                                        struct extent_state **cached_state)
1527{
1528        struct rb_node *node;
1529        struct extent_state *state;
1530        u64 cur_start = *start;
1531        u64 found = 0;
1532        u64 total_bytes = 0;
1533
1534        spin_lock(&tree->lock);
1535
1536        /*
1537         * this search will find all the extents that end after
1538         * our range starts.
1539         */
1540        node = tree_search(tree, cur_start);
1541        if (!node) {
1542                if (!found)
1543                        *end = (u64)-1;
1544                goto out;
1545        }
1546
1547        while (1) {
1548                state = rb_entry(node, struct extent_state, rb_node);
1549                if (found && (state->start != cur_start ||
1550                              (state->state & EXTENT_BOUNDARY))) {
1551                        goto out;
1552                }
1553                if (!(state->state & EXTENT_DELALLOC)) {
1554                        if (!found)
1555                                *end = state->end;
1556                        goto out;
1557                }
1558                if (!found) {
1559                        *start = state->start;
1560                        *cached_state = state;
1561                        atomic_inc(&state->refs);
1562                }
1563                found++;
1564                *end = state->end;
1565                cur_start = state->end + 1;
1566                node = rb_next(node);
1567                total_bytes += state->end - state->start + 1;
1568                if (total_bytes >= max_bytes)
1569                        break;
1570                if (!node)
1571                        break;
1572        }
1573out:
1574        spin_unlock(&tree->lock);
1575        return found;
1576}
1577
1578static noinline void __unlock_for_delalloc(struct inode *inode,
1579                                           struct page *locked_page,
1580                                           u64 start, u64 end)
1581{
1582        int ret;
1583        struct page *pages[16];
1584        unsigned long index = start >> PAGE_CACHE_SHIFT;
1585        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1586        unsigned long nr_pages = end_index - index + 1;
1587        int i;
1588
1589        if (index == locked_page->index && end_index == index)
1590                return;
1591
1592        while (nr_pages > 0) {
1593                ret = find_get_pages_contig(inode->i_mapping, index,
1594                                     min_t(unsigned long, nr_pages,
1595                                     ARRAY_SIZE(pages)), pages);
1596                for (i = 0; i < ret; i++) {
1597                        if (pages[i] != locked_page)
1598                                unlock_page(pages[i]);
1599                        page_cache_release(pages[i]);
1600                }
1601                nr_pages -= ret;
1602                index += ret;
1603                cond_resched();
1604        }
1605}
1606
1607static noinline int lock_delalloc_pages(struct inode *inode,
1608                                        struct page *locked_page,
1609                                        u64 delalloc_start,
1610                                        u64 delalloc_end)
1611{
1612        unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1613        unsigned long start_index = index;
1614        unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1615        unsigned long pages_locked = 0;
1616        struct page *pages[16];
1617        unsigned long nrpages;
1618        int ret;
1619        int i;
1620
1621        /* the caller is responsible for locking the start index */
1622        if (index == locked_page->index && index == end_index)
1623                return 0;
1624
1625        /* skip the page at the start index */
1626        nrpages = end_index - index + 1;
1627        while (nrpages > 0) {
1628                ret = find_get_pages_contig(inode->i_mapping, index,
1629                                     min_t(unsigned long,
1630                                     nrpages, ARRAY_SIZE(pages)), pages);
1631                if (ret == 0) {
1632                        ret = -EAGAIN;
1633                        goto done;
1634                }
1635                /* now we have an array of pages, lock them all */
1636                for (i = 0; i < ret; i++) {
1637                        /*
1638                         * the caller is taking responsibility for
1639                         * locked_page
1640                         */
1641                        if (pages[i] != locked_page) {
1642                                lock_page(pages[i]);
1643                                if (!PageDirty(pages[i]) ||
1644                                    pages[i]->mapping != inode->i_mapping) {
1645                                        ret = -EAGAIN;
1646                                        unlock_page(pages[i]);
1647                                        page_cache_release(pages[i]);
1648                                        goto done;
1649                                }
1650                        }
1651                        page_cache_release(pages[i]);
1652                        pages_locked++;
1653                }
1654                nrpages -= ret;
1655                index += ret;
1656                cond_resched();
1657        }
1658        ret = 0;
1659done:
1660        if (ret && pages_locked) {
1661                __unlock_for_delalloc(inode, locked_page,
1662                              delalloc_start,
1663                              ((u64)(start_index + pages_locked - 1)) <<
1664                              PAGE_CACHE_SHIFT);
1665        }
1666        return ret;
1667}
1668
1669/*
1670 * find a contiguous range of bytes in the file marked as delalloc, not
1671 * more than 'max_bytes'.  start and end are used to return the range,
1672 *
1673 * 1 is returned if we find something, 0 if nothing was in the tree
1674 */
1675STATIC u64 find_lock_delalloc_range(struct inode *inode,
1676                                    struct extent_io_tree *tree,
1677                                    struct page *locked_page, u64 *start,
1678                                    u64 *end, u64 max_bytes)
1679{
1680        u64 delalloc_start;
1681        u64 delalloc_end;
1682        u64 found;
1683        struct extent_state *cached_state = NULL;
1684        int ret;
1685        int loops = 0;
1686
1687again:
1688        /* step one, find a bunch of delalloc bytes starting at start */
1689        delalloc_start = *start;
1690        delalloc_end = 0;
1691        found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1692                                    max_bytes, &cached_state);
1693        if (!found || delalloc_end <= *start) {
1694                *start = delalloc_start;
1695                *end = delalloc_end;
1696                free_extent_state(cached_state);
1697                return 0;
1698        }
1699
1700        /*
1701         * start comes from the offset of locked_page.  We have to lock
1702         * pages in order, so we can't process delalloc bytes before
1703         * locked_page
1704         */
1705        if (delalloc_start < *start)
1706                delalloc_start = *start;
1707
1708        /*
1709         * make sure to limit the number of pages we try to lock down
1710         */
1711        if (delalloc_end + 1 - delalloc_start > max_bytes)
1712                delalloc_end = delalloc_start + max_bytes - 1;
1713
1714        /* step two, lock all the pages after the page that has start */
1715        ret = lock_delalloc_pages(inode, locked_page,
1716                                  delalloc_start, delalloc_end);
1717        if (ret == -EAGAIN) {
1718                /* some of the pages are gone, lets avoid looping by
1719                 * shortening the size of the delalloc range we're searching
1720                 */
1721                free_extent_state(cached_state);
1722                cached_state = NULL;
1723                if (!loops) {
1724                        max_bytes = PAGE_CACHE_SIZE;
1725                        loops = 1;
1726                        goto again;
1727                } else {
1728                        found = 0;
1729                        goto out_failed;
1730                }
1731        }
1732        BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1733
1734        /* step three, lock the state bits for the whole range */
1735        lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1736
1737        /* then test to make sure it is all still delalloc */
1738        ret = test_range_bit(tree, delalloc_start, delalloc_end,
1739                             EXTENT_DELALLOC, 1, cached_state);
1740        if (!ret) {
1741                unlock_extent_cached(tree, delalloc_start, delalloc_end,
1742                                     &cached_state, GFP_NOFS);
1743                __unlock_for_delalloc(inode, locked_page,
1744                              delalloc_start, delalloc_end);
1745                cond_resched();
1746                goto again;
1747        }
1748        free_extent_state(cached_state);
1749        *start = delalloc_start;
1750        *end = delalloc_end;
1751out_failed:
1752        return found;
1753}
1754
1755int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1756                                 struct page *locked_page,
1757                                 unsigned clear_bits,
1758                                 unsigned long page_ops)
1759{
1760        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1761        int ret;
1762        struct page *pages[16];
1763        unsigned long index = start >> PAGE_CACHE_SHIFT;
1764        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1765        unsigned long nr_pages = end_index - index + 1;
1766        int i;
1767
1768        clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1769        if (page_ops == 0)
1770                return 0;
1771
1772        if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1773                mapping_set_error(inode->i_mapping, -EIO);
1774
1775        while (nr_pages > 0) {
1776                ret = find_get_pages_contig(inode->i_mapping, index,
1777                                     min_t(unsigned long,
1778                                     nr_pages, ARRAY_SIZE(pages)), pages);
1779                for (i = 0; i < ret; i++) {
1780
1781                        if (page_ops & PAGE_SET_PRIVATE2)
1782                                SetPagePrivate2(pages[i]);
1783
1784                        if (pages[i] == locked_page) {
1785                                page_cache_release(pages[i]);
1786                                continue;
1787                        }
1788                        if (page_ops & PAGE_CLEAR_DIRTY)
1789                                clear_page_dirty_for_io(pages[i]);
1790                        if (page_ops & PAGE_SET_WRITEBACK)
1791                                set_page_writeback(pages[i]);
1792                        if (page_ops & PAGE_SET_ERROR)
1793                                SetPageError(pages[i]);
1794                        if (page_ops & PAGE_END_WRITEBACK)
1795                                end_page_writeback(pages[i]);
1796                        if (page_ops & PAGE_UNLOCK)
1797                                unlock_page(pages[i]);
1798                        page_cache_release(pages[i]);
1799                }
1800                nr_pages -= ret;
1801                index += ret;
1802                cond_resched();
1803        }
1804        return 0;
1805}
1806
1807/*
1808 * count the number of bytes in the tree that have a given bit(s)
1809 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1810 * cached.  The total number found is returned.
1811 */
1812u64 count_range_bits(struct extent_io_tree *tree,
1813                     u64 *start, u64 search_end, u64 max_bytes,
1814                     unsigned bits, int contig)
1815{
1816        struct rb_node *node;
1817        struct extent_state *state;
1818        u64 cur_start = *start;
1819        u64 total_bytes = 0;
1820        u64 last = 0;
1821        int found = 0;
1822
1823        if (WARN_ON(search_end <= cur_start))
1824                return 0;
1825
1826        spin_lock(&tree->lock);
1827        if (cur_start == 0 && bits == EXTENT_DIRTY) {
1828                total_bytes = tree->dirty_bytes;
1829                goto out;
1830        }
1831        /*
1832         * this search will find all the extents that end after
1833         * our range starts.
1834         */
1835        node = tree_search(tree, cur_start);
1836        if (!node)
1837                goto out;
1838
1839        while (1) {
1840                state = rb_entry(node, struct extent_state, rb_node);
1841                if (state->start > search_end)
1842                        break;
1843                if (contig && found && state->start > last + 1)
1844                        break;
1845                if (state->end >= cur_start && (state->state & bits) == bits) {
1846                        total_bytes += min(search_end, state->end) + 1 -
1847                                       max(cur_start, state->start);
1848                        if (total_bytes >= max_bytes)
1849                                break;
1850                        if (!found) {
1851                                *start = max(cur_start, state->start);
1852                                found = 1;
1853                        }
1854                        last = state->end;
1855                } else if (contig && found) {
1856                        break;
1857                }
1858                node = rb_next(node);
1859                if (!node)
1860                        break;
1861        }
1862out:
1863        spin_unlock(&tree->lock);
1864        return total_bytes;
1865}
1866
1867/*
1868 * set the private field for a given byte offset in the tree.  If there isn't
1869 * an extent_state there already, this does nothing.
1870 */
1871static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1872{
1873        struct rb_node *node;
1874        struct extent_state *state;
1875        int ret = 0;
1876
1877        spin_lock(&tree->lock);
1878        /*
1879         * this search will find all the extents that end after
1880         * our range starts.
1881         */
1882        node = tree_search(tree, start);
1883        if (!node) {
1884                ret = -ENOENT;
1885                goto out;
1886        }
1887        state = rb_entry(node, struct extent_state, rb_node);
1888        if (state->start != start) {
1889                ret = -ENOENT;
1890                goto out;
1891        }
1892        state->private = private;
1893out:
1894        spin_unlock(&tree->lock);
1895        return ret;
1896}
1897
1898int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1899{
1900        struct rb_node *node;
1901        struct extent_state *state;
1902        int ret = 0;
1903
1904        spin_lock(&tree->lock);
1905        /*
1906         * this search will find all the extents that end after
1907         * our range starts.
1908         */
1909        node = tree_search(tree, start);
1910        if (!node) {
1911                ret = -ENOENT;
1912                goto out;
1913        }
1914        state = rb_entry(node, struct extent_state, rb_node);
1915        if (state->start != start) {
1916                ret = -ENOENT;
1917                goto out;
1918        }
1919        *private = state->private;
1920out:
1921        spin_unlock(&tree->lock);
1922        return ret;
1923}
1924
1925/*
1926 * searches a range in the state tree for a given mask.
1927 * If 'filled' == 1, this returns 1 only if every extent in the tree
1928 * has the bits set.  Otherwise, 1 is returned if any bit in the
1929 * range is found set.
1930 */
1931int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1932                   unsigned bits, int filled, struct extent_state *cached)
1933{
1934        struct extent_state *state = NULL;
1935        struct rb_node *node;
1936        int bitset = 0;
1937
1938        spin_lock(&tree->lock);
1939        if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1940            cached->end > start)
1941                node = &cached->rb_node;
1942        else
1943                node = tree_search(tree, start);
1944        while (node && start <= end) {
1945                state = rb_entry(node, struct extent_state, rb_node);
1946
1947                if (filled && state->start > start) {
1948                        bitset = 0;
1949                        break;
1950                }
1951
1952                if (state->start > end)
1953                        break;
1954
1955                if (state->state & bits) {
1956                        bitset = 1;
1957                        if (!filled)
1958                                break;
1959                } else if (filled) {
1960                        bitset = 0;
1961                        break;
1962                }
1963
1964                if (state->end == (u64)-1)
1965                        break;
1966
1967                start = state->end + 1;
1968                if (start > end)
1969                        break;
1970                node = rb_next(node);
1971                if (!node) {
1972                        if (filled)
1973                                bitset = 0;
1974                        break;
1975                }
1976        }
1977        spin_unlock(&tree->lock);
1978        return bitset;
1979}
1980
1981/*
1982 * helper function to set a given page up to date if all the
1983 * extents in the tree for that page are up to date
1984 */
1985static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1986{
1987        u64 start = page_offset(page);
1988        u64 end = start + PAGE_CACHE_SIZE - 1;
1989        if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1990                SetPageUptodate(page);
1991}
1992
1993int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1994{
1995        int ret;
1996        int err = 0;
1997        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1998
1999        set_state_private(failure_tree, rec->start, 0);
2000        ret = clear_extent_bits(failure_tree, rec->start,
2001                                rec->start + rec->len - 1,
2002                                EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2003        if (ret)
2004                err = ret;
2005
2006        ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2007                                rec->start + rec->len - 1,
2008                                EXTENT_DAMAGED, GFP_NOFS);
2009        if (ret && !err)
2010                err = ret;
2011
2012        kfree(rec);
2013        return err;
2014}
2015
2016/*
2017 * this bypasses the standard btrfs submit functions deliberately, as
2018 * the standard behavior is to write all copies in a raid setup. here we only
2019 * want to write the one bad copy. so we do the mapping for ourselves and issue
2020 * submit_bio directly.
2021 * to avoid any synchronization issues, wait for the data after writing, which
2022 * actually prevents the read that triggered the error from finishing.
2023 * currently, there can be no more than two copies of every data bit. thus,
2024 * exactly one rewrite is required.
2025 */
2026int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2027                      struct page *page, unsigned int pg_offset, int mirror_num)
2028{
2029        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2030        struct bio *bio;
2031        struct btrfs_device *dev;
2032        u64 map_length = 0;
2033        u64 sector;
2034        struct btrfs_bio *bbio = NULL;
2035        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2036        int ret;
2037
2038        ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2039        BUG_ON(!mirror_num);
2040
2041        /* we can't repair anything in raid56 yet */
2042        if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2043                return 0;
2044
2045        bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2046        if (!bio)
2047                return -EIO;
2048        bio->bi_iter.bi_size = 0;
2049        map_length = length;
2050
2051        ret = btrfs_map_block(fs_info, WRITE, logical,
2052                              &map_length, &bbio, mirror_num);
2053        if (ret) {
2054                bio_put(bio);
2055                return -EIO;
2056        }
2057        BUG_ON(mirror_num != bbio->mirror_num);
2058        sector = bbio->stripes[mirror_num-1].physical >> 9;
2059        bio->bi_iter.bi_sector = sector;
2060        dev = bbio->stripes[mirror_num-1].dev;
2061        btrfs_put_bbio(bbio);
2062        if (!dev || !dev->bdev || !dev->writeable) {
2063                bio_put(bio);
2064                return -EIO;
2065        }
2066        bio->bi_bdev = dev->bdev;
2067        bio_add_page(bio, page, length, pg_offset);
2068
2069        if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2070                /* try to remap that extent elsewhere? */
2071                bio_put(bio);
2072                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2073                return -EIO;
2074        }
2075
2076        printk_ratelimited_in_rcu(KERN_INFO
2077                                  "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2078                                  btrfs_ino(inode), start,
2079                                  rcu_str_deref(dev->name), sector);
2080        bio_put(bio);
2081        return 0;
2082}
2083
2084int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2085                         int mirror_num)
2086{
2087        u64 start = eb->start;
2088        unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2089        int ret = 0;
2090
2091        if (root->fs_info->sb->s_flags & MS_RDONLY)
2092                return -EROFS;
2093
2094        for (i = 0; i < num_pages; i++) {
2095                struct page *p = eb->pages[i];
2096
2097                ret = repair_io_failure(root->fs_info->btree_inode, start,
2098                                        PAGE_CACHE_SIZE, start, p,
2099                                        start - page_offset(p), mirror_num);
2100                if (ret)
2101                        break;
2102                start += PAGE_CACHE_SIZE;
2103        }
2104
2105        return ret;
2106}
2107
2108/*
2109 * each time an IO finishes, we do a fast check in the IO failure tree
2110 * to see if we need to process or clean up an io_failure_record
2111 */
2112int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2113                     unsigned int pg_offset)
2114{
2115        u64 private;
2116        u64 private_failure;
2117        struct io_failure_record *failrec;
2118        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2119        struct extent_state *state;
2120        int num_copies;
2121        int ret;
2122
2123        private = 0;
2124        ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2125                                (u64)-1, 1, EXTENT_DIRTY, 0);
2126        if (!ret)
2127                return 0;
2128
2129        ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2130                                &private_failure);
2131        if (ret)
2132                return 0;
2133
2134        failrec = (struct io_failure_record *)(unsigned long) private_failure;
2135        BUG_ON(!failrec->this_mirror);
2136
2137        if (failrec->in_validation) {
2138                /* there was no real error, just free the record */
2139                pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2140                         failrec->start);
2141                goto out;
2142        }
2143        if (fs_info->sb->s_flags & MS_RDONLY)
2144                goto out;
2145
2146        spin_lock(&BTRFS_I(inode)->io_tree.lock);
2147        state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2148                                            failrec->start,
2149                                            EXTENT_LOCKED);
2150        spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2151
2152        if (state && state->start <= failrec->start &&
2153            state->end >= failrec->start + failrec->len - 1) {
2154                num_copies = btrfs_num_copies(fs_info, failrec->logical,
2155                                              failrec->len);
2156                if (num_copies > 1)  {
2157                        repair_io_failure(inode, start, failrec->len,
2158                                          failrec->logical, page,
2159                                          pg_offset, failrec->failed_mirror);
2160                }
2161        }
2162
2163out:
2164        free_io_failure(inode, failrec);
2165
2166        return 0;
2167}
2168
2169/*
2170 * Can be called when
2171 * - hold extent lock
2172 * - under ordered extent
2173 * - the inode is freeing
2174 */
2175void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2176{
2177        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2178        struct io_failure_record *failrec;
2179        struct extent_state *state, *next;
2180
2181        if (RB_EMPTY_ROOT(&failure_tree->state))
2182                return;
2183
2184        spin_lock(&failure_tree->lock);
2185        state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2186        while (state) {
2187                if (state->start > end)
2188                        break;
2189
2190                ASSERT(state->end <= end);
2191
2192                next = next_state(state);
2193
2194                failrec = (struct io_failure_record *)(unsigned long)state->private;
2195                free_extent_state(state);
2196                kfree(failrec);
2197
2198                state = next;
2199        }
2200        spin_unlock(&failure_tree->lock);
2201}
2202
2203int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2204                                struct io_failure_record **failrec_ret)
2205{
2206        struct io_failure_record *failrec;
2207        u64 private;
2208        struct extent_map *em;
2209        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2210        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2211        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2212        int ret;
2213        u64 logical;
2214
2215        ret = get_state_private(failure_tree, start, &private);
2216        if (ret) {
2217                failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2218                if (!failrec)
2219                        return -ENOMEM;
2220
2221                failrec->start = start;
2222                failrec->len = end - start + 1;
2223                failrec->this_mirror = 0;
2224                failrec->bio_flags = 0;
2225                failrec->in_validation = 0;
2226
2227                read_lock(&em_tree->lock);
2228                em = lookup_extent_mapping(em_tree, start, failrec->len);
2229                if (!em) {
2230                        read_unlock(&em_tree->lock);
2231                        kfree(failrec);
2232                        return -EIO;
2233                }
2234
2235                if (em->start > start || em->start + em->len <= start) {
2236                        free_extent_map(em);
2237                        em = NULL;
2238                }
2239                read_unlock(&em_tree->lock);
2240                if (!em) {
2241                        kfree(failrec);
2242                        return -EIO;
2243                }
2244
2245                logical = start - em->start;
2246                logical = em->block_start + logical;
2247                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2248                        logical = em->block_start;
2249                        failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2250                        extent_set_compress_type(&failrec->bio_flags,
2251                                                 em->compress_type);
2252                }
2253
2254                pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2255                         logical, start, failrec->len);
2256
2257                failrec->logical = logical;
2258                free_extent_map(em);
2259
2260                /* set the bits in the private failure tree */
2261                ret = set_extent_bits(failure_tree, start, end,
2262                                        EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2263                if (ret >= 0)
2264                        ret = set_state_private(failure_tree, start,
2265                                                (u64)(unsigned long)failrec);
2266                /* set the bits in the inode's tree */
2267                if (ret >= 0)
2268                        ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2269                                                GFP_NOFS);
2270                if (ret < 0) {
2271                        kfree(failrec);
2272                        return ret;
2273                }
2274        } else {
2275                failrec = (struct io_failure_record *)(unsigned long)private;
2276                pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2277                         failrec->logical, failrec->start, failrec->len,
2278                         failrec->in_validation);
2279                /*
2280                 * when data can be on disk more than twice, add to failrec here
2281                 * (e.g. with a list for failed_mirror) to make
2282                 * clean_io_failure() clean all those errors at once.
2283                 */
2284        }
2285
2286        *failrec_ret = failrec;
2287
2288        return 0;
2289}
2290
2291int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2292                           struct io_failure_record *failrec, int failed_mirror)
2293{
2294        int num_copies;
2295
2296        num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2297                                      failrec->logical, failrec->len);
2298        if (num_copies == 1) {
2299                /*
2300                 * we only have a single copy of the data, so don't bother with
2301                 * all the retry and error correction code that follows. no
2302                 * matter what the error is, it is very likely to persist.
2303                 */
2304                pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2305                         num_copies, failrec->this_mirror, failed_mirror);
2306                return 0;
2307        }
2308
2309        /*
2310         * there are two premises:
2311         *      a) deliver good data to the caller
2312         *      b) correct the bad sectors on disk
2313         */
2314        if (failed_bio->bi_vcnt > 1) {
2315                /*
2316                 * to fulfill b), we need to know the exact failing sectors, as
2317                 * we don't want to rewrite any more than the failed ones. thus,
2318                 * we need separate read requests for the failed bio
2319                 *
2320                 * if the following BUG_ON triggers, our validation request got
2321                 * merged. we need separate requests for our algorithm to work.
2322                 */
2323                BUG_ON(failrec->in_validation);
2324                failrec->in_validation = 1;
2325                failrec->this_mirror = failed_mirror;
2326        } else {
2327                /*
2328                 * we're ready to fulfill a) and b) alongside. get a good copy
2329                 * of the failed sector and if we succeed, we have setup
2330                 * everything for repair_io_failure to do the rest for us.
2331                 */
2332                if (failrec->in_validation) {
2333                        BUG_ON(failrec->this_mirror != failed_mirror);
2334                        failrec->in_validation = 0;
2335                        failrec->this_mirror = 0;
2336                }
2337                failrec->failed_mirror = failed_mirror;
2338                failrec->this_mirror++;
2339                if (failrec->this_mirror == failed_mirror)
2340                        failrec->this_mirror++;
2341        }
2342
2343        if (failrec->this_mirror > num_copies) {
2344                pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2345                         num_copies, failrec->this_mirror, failed_mirror);
2346                return 0;
2347        }
2348
2349        return 1;
2350}
2351
2352
2353struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2354                                    struct io_failure_record *failrec,
2355                                    struct page *page, int pg_offset, int icsum,
2356                                    bio_end_io_t *endio_func, void *data)
2357{
2358        struct bio *bio;
2359        struct btrfs_io_bio *btrfs_failed_bio;
2360        struct btrfs_io_bio *btrfs_bio;
2361
2362        bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2363        if (!bio)
2364                return NULL;
2365
2366        bio->bi_end_io = endio_func;
2367        bio->bi_iter.bi_sector = failrec->logical >> 9;
2368        bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2369        bio->bi_iter.bi_size = 0;
2370        bio->bi_private = data;
2371
2372        btrfs_failed_bio = btrfs_io_bio(failed_bio);
2373        if (btrfs_failed_bio->csum) {
2374                struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2375                u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2376
2377                btrfs_bio = btrfs_io_bio(bio);
2378                btrfs_bio->csum = btrfs_bio->csum_inline;
2379                icsum *= csum_size;
2380                memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2381                       csum_size);
2382        }
2383
2384        bio_add_page(bio, page, failrec->len, pg_offset);
2385
2386        return bio;
2387}
2388
2389/*
2390 * this is a generic handler for readpage errors (default
2391 * readpage_io_failed_hook). if other copies exist, read those and write back
2392 * good data to the failed position. does not investigate in remapping the
2393 * failed extent elsewhere, hoping the device will be smart enough to do this as
2394 * needed
2395 */
2396
2397static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2398                              struct page *page, u64 start, u64 end,
2399                              int failed_mirror)
2400{
2401        struct io_failure_record *failrec;
2402        struct inode *inode = page->mapping->host;
2403        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2404        struct bio *bio;
2405        int read_mode;
2406        int ret;
2407
2408        BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2409
2410        ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2411        if (ret)
2412                return ret;
2413
2414        ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2415        if (!ret) {
2416                free_io_failure(inode, failrec);
2417                return -EIO;
2418        }
2419
2420        if (failed_bio->bi_vcnt > 1)
2421                read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2422        else
2423                read_mode = READ_SYNC;
2424
2425        phy_offset >>= inode->i_sb->s_blocksize_bits;
2426        bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2427                                      start - page_offset(page),
2428                                      (int)phy_offset, failed_bio->bi_end_io,
2429                                      NULL);
2430        if (!bio) {
2431                free_io_failure(inode, failrec);
2432                return -EIO;
2433        }
2434
2435        pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2436                 read_mode, failrec->this_mirror, failrec->in_validation);
2437
2438        ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2439                                         failrec->this_mirror,
2440                                         failrec->bio_flags, 0);
2441        if (ret) {
2442                free_io_failure(inode, failrec);
2443                bio_put(bio);
2444        }
2445
2446        return ret;
2447}
2448
2449/* lots and lots of room for performance fixes in the end_bio funcs */
2450
2451int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2452{
2453        int uptodate = (err == 0);
2454        struct extent_io_tree *tree;
2455        int ret = 0;
2456
2457        tree = &BTRFS_I(page->mapping->host)->io_tree;
2458
2459        if (tree->ops && tree->ops->writepage_end_io_hook) {
2460                ret = tree->ops->writepage_end_io_hook(page, start,
2461                                               end, NULL, uptodate);
2462                if (ret)
2463                        uptodate = 0;
2464        }
2465
2466        if (!uptodate) {
2467                ClearPageUptodate(page);
2468                SetPageError(page);
2469                ret = ret < 0 ? ret : -EIO;
2470                mapping_set_error(page->mapping, ret);
2471        }
2472        return 0;
2473}
2474
2475/*
2476 * after a writepage IO is done, we need to:
2477 * clear the uptodate bits on error
2478 * clear the writeback bits in the extent tree for this IO
2479 * end_page_writeback if the page has no more pending IO
2480 *
2481 * Scheduling is not allowed, so the extent state tree is expected
2482 * to have one and only one object corresponding to this IO.
2483 */
2484static void end_bio_extent_writepage(struct bio *bio, int err)
2485{
2486        struct bio_vec *bvec;
2487        u64 start;
2488        u64 end;
2489        int i;
2490
2491        bio_for_each_segment_all(bvec, bio, i) {
2492                struct page *page = bvec->bv_page;
2493
2494                /* We always issue full-page reads, but if some block
2495                 * in a page fails to read, blk_update_request() will
2496                 * advance bv_offset and adjust bv_len to compensate.
2497                 * Print a warning for nonzero offsets, and an error
2498                 * if they don't add up to a full page.  */
2499                if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2500                        if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2501                                btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2502                                   "partial page write in btrfs with offset %u and length %u",
2503                                        bvec->bv_offset, bvec->bv_len);
2504                        else
2505                                btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2506                                   "incomplete page write in btrfs with offset %u and "
2507                                   "length %u",
2508                                        bvec->bv_offset, bvec->bv_len);
2509                }
2510
2511                start = page_offset(page);
2512                end = start + bvec->bv_offset + bvec->bv_len - 1;
2513
2514                if (end_extent_writepage(page, err, start, end))
2515                        continue;
2516
2517                end_page_writeback(page);
2518        }
2519
2520        bio_put(bio);
2521}
2522
2523static void
2524endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2525                              int uptodate)
2526{
2527        struct extent_state *cached = NULL;
2528        u64 end = start + len - 1;
2529
2530        if (uptodate && tree->track_uptodate)
2531                set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2532        unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2533}
2534
2535/*
2536 * after a readpage IO is done, we need to:
2537 * clear the uptodate bits on error
2538 * set the uptodate bits if things worked
2539 * set the page up to date if all extents in the tree are uptodate
2540 * clear the lock bit in the extent tree
2541 * unlock the page if there are no other extents locked for it
2542 *
2543 * Scheduling is not allowed, so the extent state tree is expected
2544 * to have one and only one object corresponding to this IO.
2545 */
2546static void end_bio_extent_readpage(struct bio *bio, int err)
2547{
2548        struct bio_vec *bvec;
2549        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2550        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2551        struct extent_io_tree *tree;
2552        u64 offset = 0;
2553        u64 start;
2554        u64 end;
2555        u64 len;
2556        u64 extent_start = 0;
2557        u64 extent_len = 0;
2558        int mirror;
2559        int ret;
2560        int i;
2561
2562        if (err)
2563                uptodate = 0;
2564
2565        bio_for_each_segment_all(bvec, bio, i) {
2566                struct page *page = bvec->bv_page;
2567                struct inode *inode = page->mapping->host;
2568
2569                pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2570                         "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err,
2571                         io_bio->mirror_num);
2572                tree = &BTRFS_I(inode)->io_tree;
2573
2574                /* We always issue full-page reads, but if some block
2575                 * in a page fails to read, blk_update_request() will
2576                 * advance bv_offset and adjust bv_len to compensate.
2577                 * Print a warning for nonzero offsets, and an error
2578                 * if they don't add up to a full page.  */
2579                if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2580                        if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2581                                btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2582                                   "partial page read in btrfs with offset %u and length %u",
2583                                        bvec->bv_offset, bvec->bv_len);
2584                        else
2585                                btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2586                                   "incomplete page read in btrfs with offset %u and "
2587                                   "length %u",
2588                                        bvec->bv_offset, bvec->bv_len);
2589                }
2590
2591                start = page_offset(page);
2592                end = start + bvec->bv_offset + bvec->bv_len - 1;
2593                len = bvec->bv_len;
2594
2595                mirror = io_bio->mirror_num;
2596                if (likely(uptodate && tree->ops &&
2597                           tree->ops->readpage_end_io_hook)) {
2598                        ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2599                                                              page, start, end,
2600                                                              mirror);
2601                        if (ret)
2602                                uptodate = 0;
2603                        else
2604                                clean_io_failure(inode, start, page, 0);
2605                }
2606
2607                if (likely(uptodate))
2608                        goto readpage_ok;
2609
2610                if (tree->ops && tree->ops->readpage_io_failed_hook) {
2611                        ret = tree->ops->readpage_io_failed_hook(page, mirror);
2612                        if (!ret && !err &&
2613                            test_bit(BIO_UPTODATE, &bio->bi_flags))
2614                                uptodate = 1;
2615                } else {
2616                        /*
2617                         * The generic bio_readpage_error handles errors the
2618                         * following way: If possible, new read requests are
2619                         * created and submitted and will end up in
2620                         * end_bio_extent_readpage as well (if we're lucky, not
2621                         * in the !uptodate case). In that case it returns 0 and
2622                         * we just go on with the next page in our bio. If it
2623                         * can't handle the error it will return -EIO and we
2624                         * remain responsible for that page.
2625                         */
2626                        ret = bio_readpage_error(bio, offset, page, start, end,
2627                                                 mirror);
2628                        if (ret == 0) {
2629                                uptodate =
2630                                        test_bit(BIO_UPTODATE, &bio->bi_flags);
2631                                if (err)
2632                                        uptodate = 0;
2633                                offset += len;
2634                                continue;
2635                        }
2636                }
2637readpage_ok:
2638                if (likely(uptodate)) {
2639                        loff_t i_size = i_size_read(inode);
2640                        pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2641                        unsigned off;
2642
2643                        /* Zero out the end if this page straddles i_size */
2644                        off = i_size & (PAGE_CACHE_SIZE-1);
2645                        if (page->index == end_index && off)
2646                                zero_user_segment(page, off, PAGE_CACHE_SIZE);
2647                        SetPageUptodate(page);
2648                } else {
2649                        ClearPageUptodate(page);
2650                        SetPageError(page);
2651                }
2652                unlock_page(page);
2653                offset += len;
2654
2655                if (unlikely(!uptodate)) {
2656                        if (extent_len) {
2657                                endio_readpage_release_extent(tree,
2658                                                              extent_start,
2659                                                              extent_len, 1);
2660                                extent_start = 0;
2661                                extent_len = 0;
2662                        }
2663                        endio_readpage_release_extent(tree, start,
2664                                                      end - start + 1, 0);
2665                } else if (!extent_len) {
2666                        extent_start = start;
2667                        extent_len = end + 1 - start;
2668                } else if (extent_start + extent_len == start) {
2669                        extent_len += end + 1 - start;
2670                } else {
2671                        endio_readpage_release_extent(tree, extent_start,
2672                                                      extent_len, uptodate);
2673                        extent_start = start;
2674                        extent_len = end + 1 - start;
2675                }
2676        }
2677
2678        if (extent_len)
2679                endio_readpage_release_extent(tree, extent_start, extent_len,
2680                                              uptodate);
2681        if (io_bio->end_io)
2682                io_bio->end_io(io_bio, err);
2683        bio_put(bio);
2684}
2685
2686/*
2687 * this allocates from the btrfs_bioset.  We're returning a bio right now
2688 * but you can call btrfs_io_bio for the appropriate container_of magic
2689 */
2690struct bio *
2691btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2692                gfp_t gfp_flags)
2693{
2694        struct btrfs_io_bio *btrfs_bio;
2695        struct bio *bio;
2696
2697        bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2698
2699        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2700                while (!bio && (nr_vecs /= 2)) {
2701                        bio = bio_alloc_bioset(gfp_flags,
2702                                               nr_vecs, btrfs_bioset);
2703                }
2704        }
2705
2706        if (bio) {
2707                bio->bi_bdev = bdev;
2708                bio->bi_iter.bi_sector = first_sector;
2709                btrfs_bio = btrfs_io_bio(bio);
2710                btrfs_bio->csum = NULL;
2711                btrfs_bio->csum_allocated = NULL;
2712                btrfs_bio->end_io = NULL;
2713        }
2714        return bio;
2715}
2716
2717struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2718{
2719        struct btrfs_io_bio *btrfs_bio;
2720        struct bio *new;
2721
2722        new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2723        if (new) {
2724                btrfs_bio = btrfs_io_bio(new);
2725                btrfs_bio->csum = NULL;
2726                btrfs_bio->csum_allocated = NULL;
2727                btrfs_bio->end_io = NULL;
2728        }
2729        return new;
2730}
2731
2732/* this also allocates from the btrfs_bioset */
2733struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2734{
2735        struct btrfs_io_bio *btrfs_bio;
2736        struct bio *bio;
2737
2738        bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2739        if (bio) {
2740                btrfs_bio = btrfs_io_bio(bio);
2741                btrfs_bio->csum = NULL;
2742                btrfs_bio->csum_allocated = NULL;
2743                btrfs_bio->end_io = NULL;
2744        }
2745        return bio;
2746}
2747
2748
2749static int __must_check submit_one_bio(int rw, struct bio *bio,
2750                                       int mirror_num, unsigned long bio_flags)
2751{
2752        int ret = 0;
2753        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2754        struct page *page = bvec->bv_page;
2755        struct extent_io_tree *tree = bio->bi_private;
2756        u64 start;
2757
2758        start = page_offset(page) + bvec->bv_offset;
2759
2760        bio->bi_private = NULL;
2761
2762        bio_get(bio);
2763
2764        if (tree->ops && tree->ops->submit_bio_hook)
2765                ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2766                                           mirror_num, bio_flags, start);
2767        else
2768                btrfsic_submit_bio(rw, bio);
2769
2770        if (bio_flagged(bio, BIO_EOPNOTSUPP))
2771                ret = -EOPNOTSUPP;
2772        bio_put(bio);
2773        return ret;
2774}
2775
2776static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2777                     unsigned long offset, size_t size, struct bio *bio,
2778                     unsigned long bio_flags)
2779{
2780        int ret = 0;
2781        if (tree->ops && tree->ops->merge_bio_hook)
2782                ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2783                                                bio_flags);
2784        BUG_ON(ret < 0);
2785        return ret;
2786
2787}
2788
2789static int submit_extent_page(int rw, struct extent_io_tree *tree,
2790                              struct page *page, sector_t sector,
2791                              size_t size, unsigned long offset,
2792                              struct block_device *bdev,
2793                              struct bio **bio_ret,
2794                              unsigned long max_pages,
2795                              bio_end_io_t end_io_func,
2796                              int mirror_num,
2797                              unsigned long prev_bio_flags,
2798                              unsigned long bio_flags)
2799{
2800        int ret = 0;
2801        struct bio *bio;
2802        int nr;
2803        int contig = 0;
2804        int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2805        int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2806        size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2807
2808        if (bio_ret && *bio_ret) {
2809                bio = *bio_ret;
2810                if (old_compressed)
2811                        contig = bio->bi_iter.bi_sector == sector;
2812                else
2813                        contig = bio_end_sector(bio) == sector;
2814
2815                if (prev_bio_flags != bio_flags || !contig ||
2816                    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2817                    bio_add_page(bio, page, page_size, offset) < page_size) {
2818                        ret = submit_one_bio(rw, bio, mirror_num,
2819                                             prev_bio_flags);
2820                        if (ret < 0) {
2821                                *bio_ret = NULL;
2822                                return ret;
2823                        }
2824                        bio = NULL;
2825                } else {
2826                        return 0;
2827                }
2828        }
2829        if (this_compressed)
2830                nr = BIO_MAX_PAGES;
2831        else
2832                nr = bio_get_nr_vecs(bdev);
2833
2834        bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2835        if (!bio)
2836                return -ENOMEM;
2837
2838        bio_add_page(bio, page, page_size, offset);
2839        bio->bi_end_io = end_io_func;
2840        bio->bi_private = tree;
2841
2842        if (bio_ret)
2843                *bio_ret = bio;
2844        else
2845                ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2846
2847        return ret;
2848}
2849
2850static void attach_extent_buffer_page(struct extent_buffer *eb,
2851                                      struct page *page)
2852{
2853        if (!PagePrivate(page)) {
2854                SetPagePrivate(page);
2855                page_cache_get(page);
2856                set_page_private(page, (unsigned long)eb);
2857        } else {
2858                WARN_ON(page->private != (unsigned long)eb);
2859        }
2860}
2861
2862void set_page_extent_mapped(struct page *page)
2863{
2864        if (!PagePrivate(page)) {
2865                SetPagePrivate(page);
2866                page_cache_get(page);
2867                set_page_private(page, EXTENT_PAGE_PRIVATE);
2868        }
2869}
2870
2871static struct extent_map *
2872__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2873                 u64 start, u64 len, get_extent_t *get_extent,
2874                 struct extent_map **em_cached)
2875{
2876        struct extent_map *em;
2877
2878        if (em_cached && *em_cached) {
2879                em = *em_cached;
2880                if (extent_map_in_tree(em) && start >= em->start &&
2881                    start < extent_map_end(em)) {
2882                        atomic_inc(&em->refs);
2883                        return em;
2884                }
2885
2886                free_extent_map(em);
2887                *em_cached = NULL;
2888        }
2889
2890        em = get_extent(inode, page, pg_offset, start, len, 0);
2891        if (em_cached && !IS_ERR_OR_NULL(em)) {
2892                BUG_ON(*em_cached);
2893                atomic_inc(&em->refs);
2894                *em_cached = em;
2895        }
2896        return em;
2897}
2898/*
2899 * basic readpage implementation.  Locked extent state structs are inserted
2900 * into the tree that are removed when the IO is done (by the end_io
2901 * handlers)
2902 * XXX JDM: This needs looking at to ensure proper page locking
2903 */
2904static int __do_readpage(struct extent_io_tree *tree,
2905                         struct page *page,
2906                         get_extent_t *get_extent,
2907                         struct extent_map **em_cached,
2908                         struct bio **bio, int mirror_num,
2909                         unsigned long *bio_flags, int rw)
2910{
2911        struct inode *inode = page->mapping->host;
2912        u64 start = page_offset(page);
2913        u64 page_end = start + PAGE_CACHE_SIZE - 1;
2914        u64 end;
2915        u64 cur = start;
2916        u64 extent_offset;
2917        u64 last_byte = i_size_read(inode);
2918        u64 block_start;
2919        u64 cur_end;
2920        sector_t sector;
2921        struct extent_map *em;
2922        struct block_device *bdev;
2923        int ret;
2924        int nr = 0;
2925        int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2926        size_t pg_offset = 0;
2927        size_t iosize;
2928        size_t disk_io_size;
2929        size_t blocksize = inode->i_sb->s_blocksize;
2930        unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2931
2932        set_page_extent_mapped(page);
2933
2934        end = page_end;
2935        if (!PageUptodate(page)) {
2936                if (cleancache_get_page(page) == 0) {
2937                        BUG_ON(blocksize != PAGE_SIZE);
2938                        unlock_extent(tree, start, end);
2939                        goto out;
2940                }
2941        }
2942
2943        if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2944                char *userpage;
2945                size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2946
2947                if (zero_offset) {
2948                        iosize = PAGE_CACHE_SIZE - zero_offset;
2949                        userpage = kmap_atomic(page);
2950                        memset(userpage + zero_offset, 0, iosize);
2951                        flush_dcache_page(page);
2952                        kunmap_atomic(userpage);
2953                }
2954        }
2955        while (cur <= end) {
2956                unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2957
2958                if (cur >= last_byte) {
2959                        char *userpage;
2960                        struct extent_state *cached = NULL;
2961
2962                        iosize = PAGE_CACHE_SIZE - pg_offset;
2963                        userpage = kmap_atomic(page);
2964                        memset(userpage + pg_offset, 0, iosize);
2965                        flush_dcache_page(page);
2966                        kunmap_atomic(userpage);
2967                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2968                                            &cached, GFP_NOFS);
2969                        if (!parent_locked)
2970                                unlock_extent_cached(tree, cur,
2971                                                     cur + iosize - 1,
2972                                                     &cached, GFP_NOFS);
2973                        break;
2974                }
2975                em = __get_extent_map(inode, page, pg_offset, cur,
2976                                      end - cur + 1, get_extent, em_cached);
2977                if (IS_ERR_OR_NULL(em)) {
2978                        SetPageError(page);
2979                        if (!parent_locked)
2980                                unlock_extent(tree, cur, end);
2981                        break;
2982                }
2983                extent_offset = cur - em->start;
2984                BUG_ON(extent_map_end(em) <= cur);
2985                BUG_ON(end < cur);
2986
2987                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2988                        this_bio_flag |= EXTENT_BIO_COMPRESSED;
2989                        extent_set_compress_type(&this_bio_flag,
2990                                                 em->compress_type);
2991                }
2992
2993                iosize = min(extent_map_end(em) - cur, end - cur + 1);
2994                cur_end = min(extent_map_end(em) - 1, end);
2995                iosize = ALIGN(iosize, blocksize);
2996                if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2997                        disk_io_size = em->block_len;
2998                        sector = em->block_start >> 9;
2999                } else {
3000                        sector = (em->block_start + extent_offset) >> 9;
3001                        disk_io_size = iosize;
3002                }
3003                bdev = em->bdev;
3004                block_start = em->block_start;
3005                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3006                        block_start = EXTENT_MAP_HOLE;
3007                free_extent_map(em);
3008                em = NULL;
3009
3010                /* we've found a hole, just zero and go on */
3011                if (block_start == EXTENT_MAP_HOLE) {
3012                        char *userpage;
3013                        struct extent_state *cached = NULL;
3014
3015                        userpage = kmap_atomic(page);
3016                        memset(userpage + pg_offset, 0, iosize);
3017                        flush_dcache_page(page);
3018                        kunmap_atomic(userpage);
3019
3020                        set_extent_uptodate(tree, cur, cur + iosize - 1,
3021                                            &cached, GFP_NOFS);
3022                        unlock_extent_cached(tree, cur, cur + iosize - 1,
3023                                             &cached, GFP_NOFS);
3024                        cur = cur + iosize;
3025                        pg_offset += iosize;
3026                        continue;
3027                }
3028                /* the get_extent function already copied into the page */
3029                if (test_range_bit(tree, cur, cur_end,
3030                                   EXTENT_UPTODATE, 1, NULL)) {
3031                        check_page_uptodate(tree, page);
3032                        if (!parent_locked)
3033                                unlock_extent(tree, cur, cur + iosize - 1);
3034                        cur = cur + iosize;
3035                        pg_offset += iosize;
3036                        continue;
3037                }
3038                /* we have an inline extent but it didn't get marked up
3039                 * to date.  Error out
3040                 */
3041                if (block_start == EXTENT_MAP_INLINE) {
3042                        SetPageError(page);
3043                        if (!parent_locked)
3044                                unlock_extent(tree, cur, cur + iosize - 1);
3045                        cur = cur + iosize;
3046                        pg_offset += iosize;
3047                        continue;
3048                }
3049
3050                pnr -= page->index;
3051                ret = submit_extent_page(rw, tree, page,
3052                                         sector, disk_io_size, pg_offset,
3053                                         bdev, bio, pnr,
3054                                         end_bio_extent_readpage, mirror_num,
3055                                         *bio_flags,
3056                                         this_bio_flag);
3057                if (!ret) {
3058                        nr++;
3059                        *bio_flags = this_bio_flag;
3060                } else {
3061                        SetPageError(page);
3062                        if (!parent_locked)
3063                                unlock_extent(tree, cur, cur + iosize - 1);
3064                }
3065                cur = cur + iosize;
3066                pg_offset += iosize;
3067        }
3068out:
3069        if (!nr) {
3070                if (!PageError(page))
3071                        SetPageUptodate(page);
3072                unlock_page(page);
3073        }
3074        return 0;
3075}
3076
3077static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3078                                             struct page *pages[], int nr_pages,
3079                                             u64 start, u64 end,
3080                                             get_extent_t *get_extent,
3081                                             struct extent_map **em_cached,
3082                                             struct bio **bio, int mirror_num,
3083                                             unsigned long *bio_flags, int rw)
3084{
3085        struct inode *inode;
3086        struct btrfs_ordered_extent *ordered;
3087        int index;
3088
3089        inode = pages[0]->mapping->host;
3090        while (1) {
3091                lock_extent(tree, start, end);
3092                ordered = btrfs_lookup_ordered_range(inode, start,
3093                                                     end - start + 1);
3094                if (!ordered)
3095                        break;
3096                unlock_extent(tree, start, end);
3097                btrfs_start_ordered_extent(inode, ordered, 1);
3098                btrfs_put_ordered_extent(ordered);
3099        }
3100
3101        for (index = 0; index < nr_pages; index++) {
3102                __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3103                              mirror_num, bio_flags, rw);
3104                page_cache_release(pages[index]);
3105        }
3106}
3107
3108static void __extent_readpages(struct extent_io_tree *tree,
3109                               struct page *pages[],
3110                               int nr_pages, get_extent_t *get_extent,
3111                               struct extent_map **em_cached,
3112                               struct bio **bio, int mirror_num,
3113                               unsigned long *bio_flags, int rw)
3114{
3115        u64 start = 0;
3116        u64 end = 0;
3117        u64 page_start;
3118        int index;
3119        int first_index = 0;
3120
3121        for (index = 0; index < nr_pages; index++) {
3122                page_start = page_offset(pages[index]);
3123                if (!end) {
3124                        start = page_start;
3125                        end = start + PAGE_CACHE_SIZE - 1;
3126                        first_index = index;
3127                } else if (end + 1 == page_start) {
3128                        end += PAGE_CACHE_SIZE;
3129                } else {
3130                        __do_contiguous_readpages(tree, &pages[first_index],
3131                                                  index - first_index, start,
3132                                                  end, get_extent, em_cached,
3133                                                  bio, mirror_num, bio_flags,
3134                                                  rw);
3135                        start = page_start;
3136                        end = start + PAGE_CACHE_SIZE - 1;
3137                        first_index = index;
3138                }
3139        }
3140
3141        if (end)
3142                __do_contiguous_readpages(tree, &pages[first_index],
3143                                          index - first_index, start,
3144                                          end, get_extent, em_cached, bio,
3145                                          mirror_num, bio_flags, rw);
3146}
3147
3148static int __extent_read_full_page(struct extent_io_tree *tree,
3149                                   struct page *page,
3150                                   get_extent_t *get_extent,
3151                                   struct bio **bio, int mirror_num,
3152                                   unsigned long *bio_flags, int rw)
3153{
3154        struct inode *inode = page->mapping->host;
3155        struct btrfs_ordered_extent *ordered;
3156        u64 start = page_offset(page);
3157        u64 end = start + PAGE_CACHE_SIZE - 1;
3158        int ret;
3159
3160        while (1) {
3161                lock_extent(tree, start, end);
3162                ordered = btrfs_lookup_ordered_extent(inode, start);
3163                if (!ordered)
3164                        break;
3165                unlock_extent(tree, start, end);
3166                btrfs_start_ordered_extent(inode, ordered, 1);
3167                btrfs_put_ordered_extent(ordered);
3168        }
3169
3170        ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3171                            bio_flags, rw);
3172        return ret;
3173}
3174
3175int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3176                            get_extent_t *get_extent, int mirror_num)
3177{
3178        struct bio *bio = NULL;
3179        unsigned long bio_flags = 0;
3180        int ret;
3181
3182        ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3183                                      &bio_flags, READ);
3184        if (bio)
3185                ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3186        return ret;
3187}
3188
3189int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3190                                 get_extent_t *get_extent, int mirror_num)
3191{
3192        struct bio *bio = NULL;
3193        unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3194        int ret;
3195
3196        ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3197                                      &bio_flags, READ);
3198        if (bio)
3199                ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3200        return ret;
3201}
3202
3203static noinline void update_nr_written(struct page *page,
3204                                      struct writeback_control *wbc,
3205                                      unsigned long nr_written)
3206{
3207        wbc->nr_to_write -= nr_written;
3208        if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3209            wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3210                page->mapping->writeback_index = page->index + nr_written;
3211}
3212
3213/*
3214 * helper for __extent_writepage, doing all of the delayed allocation setup.
3215 *
3216 * This returns 1 if our fill_delalloc function did all the work required
3217 * to write the page (copy into inline extent).  In this case the IO has
3218 * been started and the page is already unlocked.
3219 *
3220 * This returns 0 if all went well (page still locked)
3221 * This returns < 0 if there were errors (page still locked)
3222 */
3223static noinline_for_stack int writepage_delalloc(struct inode *inode,
3224                              struct page *page, struct writeback_control *wbc,
3225                              struct extent_page_data *epd,
3226                              u64 delalloc_start,
3227                              unsigned long *nr_written)
3228{
3229        struct extent_io_tree *tree = epd->tree;
3230        u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3231        u64 nr_delalloc;
3232        u64 delalloc_to_write = 0;
3233        u64 delalloc_end = 0;
3234        int ret;
3235        int page_started = 0;
3236
3237        if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3238                return 0;
3239
3240        while (delalloc_end < page_end) {
3241                nr_delalloc = find_lock_delalloc_range(inode, tree,
3242                                               page,
3243                                               &delalloc_start,
3244                                               &delalloc_end,
3245                                               BTRFS_MAX_EXTENT_SIZE);
3246                if (nr_delalloc == 0) {
3247                        delalloc_start = delalloc_end + 1;
3248                        continue;
3249                }
3250                ret = tree->ops->fill_delalloc(inode, page,
3251                                               delalloc_start,
3252                                               delalloc_end,
3253                                               &page_started,
3254                                               nr_written);
3255                /* File system has been set read-only */
3256                if (ret) {
3257                        SetPageError(page);
3258                        /* fill_delalloc should be return < 0 for error
3259                         * but just in case, we use > 0 here meaning the
3260                         * IO is started, so we don't want to return > 0
3261                         * unless things are going well.
3262                         */
3263                        ret = ret < 0 ? ret : -EIO;
3264                        goto done;
3265                }
3266                /*
3267                 * delalloc_end is already one less than the total
3268                 * length, so we don't subtract one from
3269                 * PAGE_CACHE_SIZE
3270                 */
3271                delalloc_to_write += (delalloc_end - delalloc_start +
3272                                      PAGE_CACHE_SIZE) >>
3273                                      PAGE_CACHE_SHIFT;
3274                delalloc_start = delalloc_end + 1;
3275        }
3276        if (wbc->nr_to_write < delalloc_to_write) {
3277                int thresh = 8192;
3278
3279                if (delalloc_to_write < thresh * 2)
3280                        thresh = delalloc_to_write;
3281                wbc->nr_to_write = min_t(u64, delalloc_to_write,
3282                                         thresh);
3283        }
3284
3285        /* did the fill delalloc function already unlock and start
3286         * the IO?
3287         */
3288        if (page_started) {
3289                /*
3290                 * we've unlocked the page, so we can't update
3291                 * the mapping's writeback index, just update
3292                 * nr_to_write.
3293                 */
3294                wbc->nr_to_write -= *nr_written;
3295                return 1;
3296        }
3297
3298        ret = 0;
3299
3300done:
3301        return ret;
3302}
3303
3304/*
3305 * helper for __extent_writepage.  This calls the writepage start hooks,
3306 * and does the loop to map the page into extents and bios.
3307 *
3308 * We return 1 if the IO is started and the page is unlocked,
3309 * 0 if all went well (page still locked)
3310 * < 0 if there were errors (page still locked)
3311 */
3312static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3313                                 struct page *page,
3314                                 struct writeback_control *wbc,
3315                                 struct extent_page_data *epd,
3316                                 loff_t i_size,
3317                                 unsigned long nr_written,
3318                                 int write_flags, int *nr_ret)
3319{
3320        struct extent_io_tree *tree = epd->tree;
3321        u64 start = page_offset(page);
3322        u64 page_end = start + PAGE_CACHE_SIZE - 1;
3323        u64 end;
3324        u64 cur = start;
3325        u64 extent_offset;
3326        u64 block_start;
3327        u64 iosize;
3328        sector_t sector;
3329        struct extent_state *cached_state = NULL;
3330        struct extent_map *em;
3331        struct block_device *bdev;
3332        size_t pg_offset = 0;
3333        size_t blocksize;
3334        int ret = 0;
3335        int nr = 0;
3336        bool compressed;
3337
3338        if (tree->ops && tree->ops->writepage_start_hook) {
3339                ret = tree->ops->writepage_start_hook(page, start,
3340                                                      page_end);
3341                if (ret) {
3342                        /* Fixup worker will requeue */
3343                        if (ret == -EBUSY)
3344                                wbc->pages_skipped++;
3345                        else
3346                                redirty_page_for_writepage(wbc, page);
3347
3348                        update_nr_written(page, wbc, nr_written);
3349                        unlock_page(page);
3350                        ret = 1;
3351                        goto done_unlocked;
3352                }
3353        }
3354
3355        /*
3356         * we don't want to touch the inode after unlocking the page,
3357         * so we update the mapping writeback index now
3358         */
3359        update_nr_written(page, wbc, nr_written + 1);
3360
3361        end = page_end;
3362        if (i_size <= start) {
3363                if (tree->ops && tree->ops->writepage_end_io_hook)
3364                        tree->ops->writepage_end_io_hook(page, start,
3365                                                         page_end, NULL, 1);
3366                goto done;
3367        }
3368
3369        blocksize = inode->i_sb->s_blocksize;
3370
3371        while (cur <= end) {
3372                u64 em_end;
3373                if (cur >= i_size) {
3374                        if (tree->ops && tree->ops->writepage_end_io_hook)
3375                                tree->ops->writepage_end_io_hook(page, cur,
3376                                                         page_end, NULL, 1);
3377                        break;
3378                }
3379                em = epd->get_extent(inode, page, pg_offset, cur,
3380                                     end - cur + 1, 1);
3381                if (IS_ERR_OR_NULL(em)) {
3382                        SetPageError(page);
3383                        ret = PTR_ERR_OR_ZERO(em);
3384                        break;
3385                }
3386
3387                extent_offset = cur - em->start;
3388                em_end = extent_map_end(em);
3389                BUG_ON(em_end <= cur);
3390                BUG_ON(end < cur);
3391                iosize = min(em_end - cur, end - cur + 1);
3392                iosize = ALIGN(iosize, blocksize);
3393                sector = (em->block_start + extent_offset) >> 9;
3394                bdev = em->bdev;
3395                block_start = em->block_start;
3396                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3397                free_extent_map(em);
3398                em = NULL;
3399
3400                /*
3401                 * compressed and inline extents are written through other
3402                 * paths in the FS
3403                 */
3404                if (compressed || block_start == EXTENT_MAP_HOLE ||
3405                    block_start == EXTENT_MAP_INLINE) {
3406                        /*
3407                         * end_io notification does not happen here for
3408                         * compressed extents
3409                         */
3410                        if (!compressed && tree->ops &&
3411                            tree->ops->writepage_end_io_hook)
3412                                tree->ops->writepage_end_io_hook(page, cur,
3413                                                         cur + iosize - 1,
3414                                                         NULL, 1);
3415                        else if (compressed) {
3416                                /* we don't want to end_page_writeback on
3417                                 * a compressed extent.  this happens
3418                                 * elsewhere
3419                                 */
3420                                nr++;
3421                        }
3422
3423                        cur += iosize;
3424                        pg_offset += iosize;
3425                        continue;
3426                }
3427
3428                if (tree->ops && tree->ops->writepage_io_hook) {
3429                        ret = tree->ops->writepage_io_hook(page, cur,
3430                                                cur + iosize - 1);
3431                } else {
3432                        ret = 0;
3433                }
3434                if (ret) {
3435                        SetPageError(page);
3436                } else {
3437                        unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3438
3439                        set_range_writeback(tree, cur, cur + iosize - 1);
3440                        if (!PageWriteback(page)) {
3441                                btrfs_err(BTRFS_I(inode)->root->fs_info,
3442                                           "page %lu not writeback, cur %llu end %llu",
3443                                       page->index, cur, end);
3444                        }
3445
3446                        ret = submit_extent_page(write_flags, tree, page,
3447                                                 sector, iosize, pg_offset,
3448                                                 bdev, &epd->bio, max_nr,
3449                                                 end_bio_extent_writepage,
3450                                                 0, 0, 0);
3451                        if (ret)
3452                                SetPageError(page);
3453                }
3454                cur = cur + iosize;
3455                pg_offset += iosize;
3456                nr++;
3457        }
3458done:
3459        *nr_ret = nr;
3460
3461done_unlocked:
3462
3463        /* drop our reference on any cached states */
3464        free_extent_state(cached_state);
3465        return ret;
3466}
3467
3468/*
3469 * the writepage semantics are similar to regular writepage.  extent
3470 * records are inserted to lock ranges in the tree, and as dirty areas
3471 * are found, they are marked writeback.  Then the lock bits are removed
3472 * and the end_io handler clears the writeback ranges
3473 */
3474static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3475                              void *data)
3476{
3477        struct inode *inode = page->mapping->host;
3478        struct extent_page_data *epd = data;
3479        u64 start = page_offset(page);
3480        u64 page_end = start + PAGE_CACHE_SIZE - 1;
3481        int ret;
3482        int nr = 0;
3483        size_t pg_offset = 0;
3484        loff_t i_size = i_size_read(inode);
3485        unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3486        int write_flags;
3487        unsigned long nr_written = 0;
3488
3489        if (wbc->sync_mode == WB_SYNC_ALL)
3490                write_flags = WRITE_SYNC;
3491        else
3492                write_flags = WRITE;
3493
3494        trace___extent_writepage(page, inode, wbc);
3495
3496        WARN_ON(!PageLocked(page));
3497
3498        ClearPageError(page);
3499
3500        pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3501        if (page->index > end_index ||
3502           (page->index == end_index && !pg_offset)) {
3503                page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3504                unlock_page(page);
3505                return 0;
3506        }
3507
3508        if (page->index == end_index) {
3509                char *userpage;
3510
3511                userpage = kmap_atomic(page);
3512                memset(userpage + pg_offset, 0,
3513                       PAGE_CACHE_SIZE - pg_offset);
3514                kunmap_atomic(userpage);
3515                flush_dcache_page(page);
3516        }
3517
3518        pg_offset = 0;
3519
3520        set_page_extent_mapped(page);
3521
3522        ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3523        if (ret == 1)
3524                goto done_unlocked;
3525        if (ret)
3526                goto done;
3527
3528        ret = __extent_writepage_io(inode, page, wbc, epd,
3529                                    i_size, nr_written, write_flags, &nr);
3530        if (ret == 1)
3531                goto done_unlocked;
3532
3533done:
3534        if (nr == 0) {
3535                /* make sure the mapping tag for page dirty gets cleared */
3536                set_page_writeback(page);
3537                end_page_writeback(page);
3538        }
3539        if (PageError(page)) {
3540                ret = ret < 0 ? ret : -EIO;
3541                end_extent_writepage(page, ret, start, page_end);
3542        }
3543        unlock_page(page);
3544        return ret;
3545
3546done_unlocked:
3547        return 0;
3548}
3549
3550void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3551{
3552        wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3553                       TASK_UNINTERRUPTIBLE);
3554}
3555
3556static noinline_for_stack int
3557lock_extent_buffer_for_io(struct extent_buffer *eb,
3558                          struct btrfs_fs_info *fs_info,
3559                          struct extent_page_data *epd)
3560{
3561        unsigned long i, num_pages;
3562        int flush = 0;
3563        int ret = 0;
3564
3565        if (!btrfs_try_tree_write_lock(eb)) {
3566                flush = 1;
3567                flush_write_bio(epd);
3568                btrfs_tree_lock(eb);
3569        }
3570
3571        if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3572                btrfs_tree_unlock(eb);
3573                if (!epd->sync_io)
3574                        return 0;
3575                if (!flush) {
3576                        flush_write_bio(epd);
3577                        flush = 1;
3578                }
3579                while (1) {
3580                        wait_on_extent_buffer_writeback(eb);
3581                        btrfs_tree_lock(eb);
3582                        if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3583                                break;
3584                        btrfs_tree_unlock(eb);
3585                }
3586        }
3587
3588        /*
3589         * We need to do this to prevent races in people who check if the eb is
3590         * under IO since we can end up having no IO bits set for a short period
3591         * of time.
3592         */
3593        spin_lock(&eb->refs_lock);
3594        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3595                set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3596                spin_unlock(&eb->refs_lock);
3597                btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3598                __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3599                                     -eb->len,
3600                                     fs_info->dirty_metadata_batch);
3601                ret = 1;
3602        } else {
3603                spin_unlock(&eb->refs_lock);
3604        }
3605
3606        btrfs_tree_unlock(eb);
3607
3608        if (!ret)
3609                return ret;
3610
3611        num_pages = num_extent_pages(eb->start, eb->len);
3612        for (i = 0; i < num_pages; i++) {
3613                struct page *p = eb->pages[i];
3614
3615                if (!trylock_page(p)) {
3616                        if (!flush) {
3617                                flush_write_bio(epd);
3618                                flush = 1;
3619                        }
3620                        lock_page(p);
3621                }
3622        }
3623
3624        return ret;
3625}
3626
3627static void end_extent_buffer_writeback(struct extent_buffer *eb)
3628{
3629        clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3630        smp_mb__after_atomic();
3631        wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3632}
3633
3634static void set_btree_ioerr(struct page *page)
3635{
3636        struct extent_buffer *eb = (struct extent_buffer *)page->private;
3637        struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3638
3639        SetPageError(page);
3640        if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3641                return;
3642
3643        /*
3644         * If writeback for a btree extent that doesn't belong to a log tree
3645         * failed, increment the counter transaction->eb_write_errors.
3646         * We do this because while the transaction is running and before it's
3647         * committing (when we call filemap_fdata[write|wait]_range against
3648         * the btree inode), we might have
3649         * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3650         * returns an error or an error happens during writeback, when we're
3651         * committing the transaction we wouldn't know about it, since the pages
3652         * can be no longer dirty nor marked anymore for writeback (if a
3653         * subsequent modification to the extent buffer didn't happen before the
3654         * transaction commit), which makes filemap_fdata[write|wait]_range not
3655         * able to find the pages tagged with SetPageError at transaction
3656         * commit time. So if this happens we must abort the transaction,
3657         * otherwise we commit a super block with btree roots that point to
3658         * btree nodes/leafs whose content on disk is invalid - either garbage
3659         * or the content of some node/leaf from a past generation that got
3660         * cowed or deleted and is no longer valid.
3661         *
3662         * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3663         * not be enough - we need to distinguish between log tree extents vs
3664         * non-log tree extents, and the next filemap_fdatawait_range() call
3665         * will catch and clear such errors in the mapping - and that call might
3666         * be from a log sync and not from a transaction commit. Also, checking
3667         * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3668         * not done and would not be reliable - the eb might have been released
3669         * from memory and reading it back again means that flag would not be
3670         * set (since it's a runtime flag, not persisted on disk).
3671         *
3672         * Using the flags below in the btree inode also makes us achieve the
3673         * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3674         * writeback for all dirty pages and before filemap_fdatawait_range()
3675         * is called, the writeback for all dirty pages had already finished
3676         * with errors - because we were not using AS_EIO/AS_ENOSPC,
3677         * filemap_fdatawait_range() would return success, as it could not know
3678         * that writeback errors happened (the pages were no longer tagged for
3679         * writeback).
3680         */
3681        switch (eb->log_index) {
3682        case -1:
3683                set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3684                break;
3685        case 0:
3686                set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3687                break;
3688        case 1:
3689                set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3690                break;
3691        default:
3692                BUG(); /* unexpected, logic error */
3693        }
3694}
3695
3696static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3697{
3698        struct bio_vec *bvec;
3699        struct extent_buffer *eb;
3700        int i, done;
3701
3702        bio_for_each_segment_all(bvec, bio, i) {
3703                struct page *page = bvec->bv_page;
3704
3705                eb = (struct extent_buffer *)page->private;
3706                BUG_ON(!eb);
3707                done = atomic_dec_and_test(&eb->io_pages);
3708
3709                if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3710                        ClearPageUptodate(page);
3711                        set_btree_ioerr(page);
3712                }
3713
3714                end_page_writeback(page);
3715
3716                if (!done)
3717                        continue;
3718
3719                end_extent_buffer_writeback(eb);
3720        }
3721
3722        bio_put(bio);
3723}
3724
3725static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3726                        struct btrfs_fs_info *fs_info,
3727                        struct writeback_control *wbc,
3728                        struct extent_page_data *epd)
3729{
3730        struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3731        struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3732        u64 offset = eb->start;
3733        unsigned long i, num_pages;
3734        unsigned long bio_flags = 0;
3735        int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3736        int ret = 0;
3737
3738        clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3739        num_pages = num_extent_pages(eb->start, eb->len);
3740        atomic_set(&eb->io_pages, num_pages);
3741        if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3742                bio_flags = EXTENT_BIO_TREE_LOG;
3743
3744        for (i = 0; i < num_pages; i++) {
3745                struct page *p = eb->pages[i];
3746
3747                clear_page_dirty_for_io(p);
3748                set_page_writeback(p);
3749                ret = submit_extent_page(rw, tree, p, offset >> 9,
3750                                         PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3751                                         -1, end_bio_extent_buffer_writepage,
3752                                         0, epd->bio_flags, bio_flags);
3753                epd->bio_flags = bio_flags;
3754                if (ret) {
3755                        set_btree_ioerr(p);
3756                        end_page_writeback(p);
3757                        if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3758                                end_extent_buffer_writeback(eb);
3759                        ret = -EIO;
3760                        break;
3761                }
3762                offset += PAGE_CACHE_SIZE;
3763                update_nr_written(p, wbc, 1);
3764                unlock_page(p);
3765        }
3766
3767        if (unlikely(ret)) {
3768                for (; i < num_pages; i++) {
3769                        struct page *p = eb->pages[i];
3770                        clear_page_dirty_for_io(p);
3771                        unlock_page(p);
3772                }
3773        }
3774
3775        return ret;
3776}
3777
3778int btree_write_cache_pages(struct address_space *mapping,
3779                                   struct writeback_control *wbc)
3780{
3781        struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3782        struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3783        struct extent_buffer *eb, *prev_eb = NULL;
3784        struct extent_page_data epd = {
3785                .bio = NULL,
3786                .tree = tree,
3787                .extent_locked = 0,
3788                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3789                .bio_flags = 0,
3790        };
3791        int ret = 0;
3792        int done = 0;
3793        int nr_to_write_done = 0;
3794        struct pagevec pvec;
3795        int nr_pages;
3796        pgoff_t index;
3797        pgoff_t end;            /* Inclusive */
3798        int scanned = 0;
3799        int tag;
3800
3801        pagevec_init(&pvec, 0);
3802        if (wbc->range_cyclic) {
3803                index = mapping->writeback_index; /* Start from prev offset */
3804                end = -1;
3805        } else {
3806                index = wbc->range_start >> PAGE_CACHE_SHIFT;
3807                end = wbc->range_end >> PAGE_CACHE_SHIFT;
3808                scanned = 1;
3809        }
3810        if (wbc->sync_mode == WB_SYNC_ALL)
3811                tag = PAGECACHE_TAG_TOWRITE;
3812        else
3813                tag = PAGECACHE_TAG_DIRTY;
3814retry:
3815        if (wbc->sync_mode == WB_SYNC_ALL)
3816                tag_pages_for_writeback(mapping, index, end);
3817        while (!done && !nr_to_write_done && (index <= end) &&
3818               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3819                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3820                unsigned i;
3821
3822                scanned = 1;
3823                for (i = 0; i < nr_pages; i++) {
3824                        struct page *page = pvec.pages[i];
3825
3826                        if (!PagePrivate(page))
3827                                continue;
3828
3829                        if (!wbc->range_cyclic && page->index > end) {
3830                                done = 1;
3831                                break;
3832                        }
3833
3834                        spin_lock(&mapping->private_lock);
3835                        if (!PagePrivate(page)) {
3836                                spin_unlock(&mapping->private_lock);
3837                                continue;
3838                        }
3839
3840                        eb = (struct extent_buffer *)page->private;
3841
3842                        /*
3843                         * Shouldn't happen and normally this would be a BUG_ON
3844                         * but no sense in crashing the users box for something
3845                         * we can survive anyway.
3846                         */
3847                        if (WARN_ON(!eb)) {
3848                                spin_unlock(&mapping->private_lock);
3849                                continue;
3850                        }
3851
3852                        if (eb == prev_eb) {
3853                                spin_unlock(&mapping->private_lock);
3854                                continue;
3855                        }
3856
3857                        ret = atomic_inc_not_zero(&eb->refs);
3858                        spin_unlock(&mapping->private_lock);
3859                        if (!ret)
3860                                continue;
3861
3862                        prev_eb = eb;
3863                        ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3864                        if (!ret) {
3865                                free_extent_buffer(eb);
3866                                continue;
3867                        }
3868
3869                        ret = write_one_eb(eb, fs_info, wbc, &epd);
3870                        if (ret) {
3871                                done = 1;
3872                                free_extent_buffer(eb);
3873                                break;
3874                        }
3875                        free_extent_buffer(eb);
3876
3877                        /*
3878                         * the filesystem may choose to bump up nr_to_write.
3879                         * We have to make sure to honor the new nr_to_write
3880                         * at any time
3881                         */
3882                        nr_to_write_done = wbc->nr_to_write <= 0;
3883                }
3884                pagevec_release(&pvec);
3885                cond_resched();
3886        }
3887        if (!scanned && !done) {
3888                /*
3889                 * We hit the last page and there is more work to be done: wrap
3890                 * back to the start of the file
3891                 */
3892                scanned = 1;
3893                index = 0;
3894                goto retry;
3895        }
3896        flush_write_bio(&epd);
3897        return ret;
3898}
3899
3900/**
3901 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3902 * @mapping: address space structure to write
3903 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3904 * @writepage: function called for each page
3905 * @data: data passed to writepage function
3906 *
3907 * If a page is already under I/O, write_cache_pages() skips it, even
3908 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3909 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3910 * and msync() need to guarantee that all the data which was dirty at the time
3911 * the call was made get new I/O started against them.  If wbc->sync_mode is
3912 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3913 * existing IO to complete.
3914 */
3915static int extent_write_cache_pages(struct extent_io_tree *tree,
3916                             struct address_space *mapping,
3917                             struct writeback_control *wbc,
3918                             writepage_t writepage, void *data,
3919                             void (*flush_fn)(void *))
3920{
3921        struct inode *inode = mapping->host;
3922        int ret = 0;
3923        int done = 0;
3924        int err = 0;
3925        int nr_to_write_done = 0;
3926        struct pagevec pvec;
3927        int nr_pages;
3928        pgoff_t index;
3929        pgoff_t end;            /* Inclusive */
3930        int scanned = 0;
3931        int tag;
3932
3933        /*
3934         * We have to hold onto the inode so that ordered extents can do their
3935         * work when the IO finishes.  The alternative to this is failing to add
3936         * an ordered extent if the igrab() fails there and that is a huge pain
3937         * to deal with, so instead just hold onto the inode throughout the
3938         * writepages operation.  If it fails here we are freeing up the inode
3939         * anyway and we'd rather not waste our time writing out stuff that is
3940         * going to be truncated anyway.
3941         */
3942        if (!igrab(inode))
3943                return 0;
3944
3945        pagevec_init(&pvec, 0);
3946        if (wbc->range_cyclic) {
3947                index = mapping->writeback_index; /* Start from prev offset */
3948                end = -1;
3949        } else {
3950                index = wbc->range_start >> PAGE_CACHE_SHIFT;
3951                end = wbc->range_end >> PAGE_CACHE_SHIFT;
3952                scanned = 1;
3953        }
3954        if (wbc->sync_mode == WB_SYNC_ALL)
3955                tag = PAGECACHE_TAG_TOWRITE;
3956        else
3957                tag = PAGECACHE_TAG_DIRTY;
3958retry:
3959        if (wbc->sync_mode == WB_SYNC_ALL)
3960                tag_pages_for_writeback(mapping, index, end);
3961        while (!done && !nr_to_write_done && (index <= end) &&
3962               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3963                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3964                unsigned i;
3965
3966                scanned = 1;
3967                for (i = 0; i < nr_pages; i++) {
3968                        struct page *page = pvec.pages[i];
3969
3970                        /*
3971                         * At this point we hold neither mapping->tree_lock nor
3972                         * lock on the page itself: the page may be truncated or
3973                         * invalidated (changing page->mapping to NULL), or even
3974                         * swizzled back from swapper_space to tmpfs file
3975                         * mapping
3976                         */
3977                        if (!trylock_page(page)) {
3978                                flush_fn(data);
3979                                lock_page(page);
3980                        }
3981
3982                        if (unlikely(page->mapping != mapping)) {
3983                                unlock_page(page);
3984                                continue;
3985                        }
3986
3987                        if (!wbc->range_cyclic && page->index > end) {
3988                                done = 1;
3989                                unlock_page(page);
3990                                continue;
3991                        }
3992
3993                        if (wbc->sync_mode != WB_SYNC_NONE) {
3994                                if (PageWriteback(page))
3995                                        flush_fn(data);
3996                                wait_on_page_writeback(page);
3997                        }
3998
3999                        if (PageWriteback(page) ||
4000                            !clear_page_dirty_for_io(page)) {
4001                                unlock_page(page);
4002                                continue;
4003                        }
4004
4005                        ret = (*writepage)(page, wbc, data);
4006
4007                        if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4008                                unlock_page(page);
4009                                ret = 0;
4010                        }
4011                        if (!err && ret < 0)
4012                                err = ret;
4013
4014                        /*
4015                         * the filesystem may choose to bump up nr_to_write.
4016                         * We have to make sure to honor the new nr_to_write
4017                         * at any time
4018                         */
4019                        nr_to_write_done = wbc->nr_to_write <= 0;
4020                }
4021                pagevec_release(&pvec);
4022                cond_resched();
4023        }
4024        if (!scanned && !done && !err) {
4025                /*
4026                 * We hit the last page and there is more work to be done: wrap
4027                 * back to the start of the file
4028                 */
4029                scanned = 1;
4030                index = 0;
4031                goto retry;
4032        }
4033        btrfs_add_delayed_iput(inode);
4034        return err;
4035}
4036
4037static void flush_epd_write_bio(struct extent_page_data *epd)
4038{
4039        if (epd->bio) {
4040                int rw = WRITE;
4041                int ret;
4042
4043                if (epd->sync_io)
4044                        rw = WRITE_SYNC;
4045
4046                ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4047                BUG_ON(ret < 0); /* -ENOMEM */
4048                epd->bio = NULL;
4049        }
4050}
4051
4052static noinline void flush_write_bio(void *data)
4053{
4054        struct extent_page_data *epd = data;
4055        flush_epd_write_bio(epd);
4056}
4057
4058int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4059                          get_extent_t *get_extent,
4060                          struct writeback_control *wbc)
4061{
4062        int ret;
4063        struct extent_page_data epd = {
4064                .bio = NULL,
4065                .tree = tree,
4066                .get_extent = get_extent,
4067                .extent_locked = 0,
4068                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4069                .bio_flags = 0,
4070        };
4071
4072        ret = __extent_writepage(page, wbc, &epd);
4073
4074        flush_epd_write_bio(&epd);
4075        return ret;
4076}
4077
4078int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4079                              u64 start, u64 end, get_extent_t *get_extent,
4080                              int mode)
4081{
4082        int ret = 0;
4083        struct address_space *mapping = inode->i_mapping;
4084        struct page *page;
4085        unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4086                PAGE_CACHE_SHIFT;
4087
4088        struct extent_page_data epd = {
4089                .bio = NULL,
4090                .tree = tree,
4091                .get_extent = get_extent,
4092                .extent_locked = 1,
4093                .sync_io = mode == WB_SYNC_ALL,
4094                .bio_flags = 0,
4095        };
4096        struct writeback_control wbc_writepages = {
4097                .sync_mode      = mode,
4098                .nr_to_write    = nr_pages * 2,
4099                .range_start    = start,
4100                .range_end      = end + 1,
4101        };
4102
4103        while (start <= end) {
4104                page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4105                if (clear_page_dirty_for_io(page))
4106                        ret = __extent_writepage(page, &wbc_writepages, &epd);
4107                else {
4108                        if (tree->ops && tree->ops->writepage_end_io_hook)
4109                                tree->ops->writepage_end_io_hook(page, start,
4110                                                 start + PAGE_CACHE_SIZE - 1,
4111                                                 NULL, 1);
4112                        unlock_page(page);
4113                }
4114                page_cache_release(page);
4115                start += PAGE_CACHE_SIZE;
4116        }
4117
4118        flush_epd_write_bio(&epd);
4119        return ret;
4120}
4121
4122int extent_writepages(struct extent_io_tree *tree,
4123                      struct address_space *mapping,
4124                      get_extent_t *get_extent,
4125                      struct writeback_control *wbc)
4126{
4127        int ret = 0;
4128        struct extent_page_data epd = {
4129                .bio = NULL,
4130                .tree = tree,
4131                .get_extent = get_extent,
4132                .extent_locked = 0,
4133                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4134                .bio_flags = 0,
4135        };
4136
4137        ret = extent_write_cache_pages(tree, mapping, wbc,
4138                                       __extent_writepage, &epd,
4139                                       flush_write_bio);
4140        flush_epd_write_bio(&epd);
4141        return ret;
4142}
4143
4144int extent_readpages(struct extent_io_tree *tree,
4145                     struct address_space *mapping,
4146                     struct list_head *pages, unsigned nr_pages,
4147                     get_extent_t get_extent)
4148{
4149        struct bio *bio = NULL;
4150        unsigned page_idx;
4151        unsigned long bio_flags = 0;
4152        struct page *pagepool[16];
4153        struct page *page;
4154        struct extent_map *em_cached = NULL;
4155        int nr = 0;
4156
4157        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4158                page = list_entry(pages->prev, struct page, lru);
4159
4160                prefetchw(&page->flags);
4161                list_del(&page->lru);
4162                if (add_to_page_cache_lru(page, mapping,
4163                                        page->index, GFP_NOFS)) {
4164                        page_cache_release(page);
4165                        continue;
4166                }
4167
4168                pagepool[nr++] = page;
4169                if (nr < ARRAY_SIZE(pagepool))
4170                        continue;
4171                __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4172                                   &bio, 0, &bio_flags, READ);
4173                nr = 0;
4174        }
4175        if (nr)
4176                __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4177                                   &bio, 0, &bio_flags, READ);
4178
4179        if (em_cached)
4180                free_extent_map(em_cached);
4181
4182        BUG_ON(!list_empty(pages));
4183        if (bio)
4184                return submit_one_bio(READ, bio, 0, bio_flags);
4185        return 0;
4186}
4187
4188/*
4189 * basic invalidatepage code, this waits on any locked or writeback
4190 * ranges corresponding to the page, and then deletes any extent state
4191 * records from the tree
4192 */
4193int extent_invalidatepage(struct extent_io_tree *tree,
4194                          struct page *page, unsigned long offset)
4195{
4196        struct extent_state *cached_state = NULL;
4197        u64 start = page_offset(page);
4198        u64 end = start + PAGE_CACHE_SIZE - 1;
4199        size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4200
4201        start += ALIGN(offset, blocksize);
4202        if (start > end)
4203                return 0;
4204
4205        lock_extent_bits(tree, start, end, 0, &cached_state);
4206        wait_on_page_writeback(page);
4207        clear_extent_bit(tree, start, end,
4208                         EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4209                         EXTENT_DO_ACCOUNTING,
4210                         1, 1, &cached_state, GFP_NOFS);
4211        return 0;
4212}
4213
4214/*
4215 * a helper for releasepage, this tests for areas of the page that
4216 * are locked or under IO and drops the related state bits if it is safe
4217 * to drop the page.
4218 */
4219static int try_release_extent_state(struct extent_map_tree *map,
4220                                    struct extent_io_tree *tree,
4221                                    struct page *page, gfp_t mask)
4222{
4223        u64 start = page_offset(page);
4224        u64 end = start + PAGE_CACHE_SIZE - 1;
4225        int ret = 1;
4226
4227        if (test_range_bit(tree, start, end,
4228                           EXTENT_IOBITS, 0, NULL))
4229                ret = 0;
4230        else {
4231                if ((mask & GFP_NOFS) == GFP_NOFS)
4232                        mask = GFP_NOFS;
4233                /*
4234                 * at this point we can safely clear everything except the
4235                 * locked bit and the nodatasum bit
4236                 */
4237                ret = clear_extent_bit(tree, start, end,
4238                                 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4239                                 0, 0, NULL, mask);
4240
4241                /* if clear_extent_bit failed for enomem reasons,
4242                 * we can't allow the release to continue.
4243                 */
4244                if (ret < 0)
4245                        ret = 0;
4246                else
4247                        ret = 1;
4248        }
4249        return ret;
4250}
4251
4252/*
4253 * a helper for releasepage.  As long as there are no locked extents
4254 * in the range corresponding to the page, both state records and extent
4255 * map records are removed
4256 */
4257int try_release_extent_mapping(struct extent_map_tree *map,
4258                               struct extent_io_tree *tree, struct page *page,
4259                               gfp_t mask)
4260{
4261        struct extent_map *em;
4262        u64 start = page_offset(page);
4263        u64 end = start + PAGE_CACHE_SIZE - 1;
4264
4265        if ((mask & __GFP_WAIT) &&
4266            page->mapping->host->i_size > 16 * 1024 * 1024) {
4267                u64 len;
4268                while (start <= end) {
4269                        len = end - start + 1;
4270                        write_lock(&map->lock);
4271                        em = lookup_extent_mapping(map, start, len);
4272                        if (!em) {
4273                                write_unlock(&map->lock);
4274                                break;
4275                        }
4276                        if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4277                            em->start != start) {
4278                                write_unlock(&map->lock);
4279                                free_extent_map(em);
4280                                break;
4281                        }
4282                        if (!test_range_bit(tree, em->start,
4283                                            extent_map_end(em) - 1,
4284                                            EXTENT_LOCKED | EXTENT_WRITEBACK,
4285                                            0, NULL)) {
4286                                remove_extent_mapping(map, em);
4287                                /* once for the rb tree */
4288                                free_extent_map(em);
4289                        }
4290                        start = extent_map_end(em);
4291                        write_unlock(&map->lock);
4292
4293                        /* once for us */
4294                        free_extent_map(em);
4295                }
4296        }
4297        return try_release_extent_state(map, tree, page, mask);
4298}
4299
4300/*
4301 * helper function for fiemap, which doesn't want to see any holes.
4302 * This maps until we find something past 'last'
4303 */
4304static struct extent_map *get_extent_skip_holes(struct inode *inode,
4305                                                u64 offset,
4306                                                u64 last,
4307                                                get_extent_t *get_extent)
4308{
4309        u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4310        struct extent_map *em;
4311        u64 len;
4312
4313        if (offset >= last)
4314                return NULL;
4315
4316        while (1) {
4317                len = last - offset;
4318                if (len == 0)
4319                        break;
4320                len = ALIGN(len, sectorsize);
4321                em = get_extent(inode, NULL, 0, offset, len, 0);
4322                if (IS_ERR_OR_NULL(em))
4323                        return em;
4324
4325                /* if this isn't a hole return it */
4326                if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4327                    em->block_start != EXTENT_MAP_HOLE) {
4328                        return em;
4329                }
4330
4331                /* this is a hole, advance to the next extent */
4332                offset = extent_map_end(em);
4333                free_extent_map(em);
4334                if (offset >= last)
4335                        break;
4336        }
4337        return NULL;
4338}
4339
4340int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4341                __u64 start, __u64 len, get_extent_t *get_extent)
4342{
4343        int ret = 0;
4344        u64 off = start;
4345        u64 max = start + len;
4346        u32 flags = 0;
4347        u32 found_type;
4348        u64 last;
4349        u64 last_for_get_extent = 0;
4350        u64 disko = 0;
4351        u64 isize = i_size_read(inode);
4352        struct btrfs_key found_key;
4353        struct extent_map *em = NULL;
4354        struct extent_state *cached_state = NULL;
4355        struct btrfs_path *path;
4356        struct btrfs_root *root = BTRFS_I(inode)->root;
4357        int end = 0;
4358        u64 em_start = 0;
4359        u64 em_len = 0;
4360        u64 em_end = 0;
4361
4362        if (len == 0)
4363                return -EINVAL;
4364
4365        path = btrfs_alloc_path();
4366        if (!path)
4367                return -ENOMEM;
4368        path->leave_spinning = 1;
4369
4370        start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4371        len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4372
4373        /*
4374         * lookup the last file extent.  We're not using i_size here
4375         * because there might be preallocation past i_size
4376         */
4377        ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4378                                       0);
4379        if (ret < 0) {
4380                btrfs_free_path(path);
4381                return ret;
4382        }
4383        WARN_ON(!ret);
4384        path->slots[0]--;
4385        btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4386        found_type = found_key.type;
4387
4388        /* No extents, but there might be delalloc bits */
4389        if (found_key.objectid != btrfs_ino(inode) ||
4390            found_type != BTRFS_EXTENT_DATA_KEY) {
4391                /* have to trust i_size as the end */
4392                last = (u64)-1;
4393                last_for_get_extent = isize;
4394        } else {
4395                /*
4396                 * remember the start of the last extent.  There are a
4397                 * bunch of different factors that go into the length of the
4398                 * extent, so its much less complex to remember where it started
4399                 */
4400                last = found_key.offset;
4401                last_for_get_extent = last + 1;
4402        }
4403        btrfs_release_path(path);
4404
4405        /*
4406         * we might have some extents allocated but more delalloc past those
4407         * extents.  so, we trust isize unless the start of the last extent is
4408         * beyond isize
4409         */
4410        if (last < isize) {
4411                last = (u64)-1;
4412                last_for_get_extent = isize;
4413        }
4414
4415        lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4416                         &cached_state);
4417
4418        em = get_extent_skip_holes(inode, start, last_for_get_extent,
4419                                   get_extent);
4420        if (!em)
4421                goto out;
4422        if (IS_ERR(em)) {
4423                ret = PTR_ERR(em);
4424                goto out;
4425        }
4426
4427        while (!end) {
4428                u64 offset_in_extent = 0;
4429
4430                /* break if the extent we found is outside the range */
4431                if (em->start >= max || extent_map_end(em) < off)
4432                        break;
4433
4434                /*
4435                 * get_extent may return an extent that starts before our
4436                 * requested range.  We have to make sure the ranges
4437                 * we return to fiemap always move forward and don't
4438                 * overlap, so adjust the offsets here
4439                 */
4440                em_start = max(em->start, off);
4441
4442                /*
4443                 * record the offset from the start of the extent
4444                 * for adjusting the disk offset below.  Only do this if the
4445                 * extent isn't compressed since our in ram offset may be past
4446                 * what we have actually allocated on disk.
4447                 */
4448                if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4449                        offset_in_extent = em_start - em->start;
4450                em_end = extent_map_end(em);
4451                em_len = em_end - em_start;
4452                disko = 0;
4453                flags = 0;
4454
4455                /*
4456                 * bump off for our next call to get_extent
4457                 */
4458                off = extent_map_end(em);
4459                if (off >= max)
4460                        end = 1;
4461
4462                if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4463                        end = 1;
4464                        flags |= FIEMAP_EXTENT_LAST;
4465                } else if (em->block_start == EXTENT_MAP_INLINE) {
4466                        flags |= (FIEMAP_EXTENT_DATA_INLINE |
4467                                  FIEMAP_EXTENT_NOT_ALIGNED);
4468                } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4469                        flags |= (FIEMAP_EXTENT_DELALLOC |
4470                                  FIEMAP_EXTENT_UNKNOWN);
4471                } else if (fieinfo->fi_extents_max) {
4472                        u64 bytenr = em->block_start -
4473                                (em->start - em->orig_start);
4474
4475                        disko = em->block_start + offset_in_extent;
4476
4477                        /*
4478                         * As btrfs supports shared space, this information
4479                         * can be exported to userspace tools via
4480                         * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4481                         * then we're just getting a count and we can skip the
4482                         * lookup stuff.
4483                         */
4484                        ret = btrfs_check_shared(NULL, root->fs_info,
4485                                                 root->objectid,
4486                                                 btrfs_ino(inode), bytenr);
4487                        if (ret < 0)
4488                                goto out_free;
4489                        if (ret)
4490                                flags |= FIEMAP_EXTENT_SHARED;
4491                        ret = 0;
4492                }
4493                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4494                        flags |= FIEMAP_EXTENT_ENCODED;
4495
4496                free_extent_map(em);
4497                em = NULL;
4498                if ((em_start >= last) || em_len == (u64)-1 ||
4499                   (last == (u64)-1 && isize <= em_end)) {
4500                        flags |= FIEMAP_EXTENT_LAST;
4501                        end = 1;
4502                }
4503
4504                /* now scan forward to see if this is really the last extent. */
4505                em = get_extent_skip_holes(inode, off, last_for_get_extent,
4506                                           get_extent);
4507                if (IS_ERR(em)) {
4508                        ret = PTR_ERR(em);
4509                        goto out;
4510                }
4511                if (!em) {
4512                        flags |= FIEMAP_EXTENT_LAST;
4513                        end = 1;
4514                }
4515                ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4516                                              em_len, flags);
4517                if (ret)
4518                        goto out_free;
4519        }
4520out_free:
4521        free_extent_map(em);
4522out:
4523        btrfs_free_path(path);
4524        unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4525                             &cached_state, GFP_NOFS);
4526        return ret;
4527}
4528
4529static void __free_extent_buffer(struct extent_buffer *eb)
4530{
4531        btrfs_leak_debug_del(&eb->leak_list);
4532        kmem_cache_free(extent_buffer_cache, eb);
4533}
4534
4535int extent_buffer_under_io(struct extent_buffer *eb)
4536{
4537        return (atomic_read(&eb->io_pages) ||
4538                test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4539                test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4540}
4541
4542/*
4543 * Helper for releasing extent buffer page.
4544 */
4545static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4546{
4547        unsigned long index;
4548        struct page *page;
4549        int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4550
4551        BUG_ON(extent_buffer_under_io(eb));
4552
4553        index = num_extent_pages(eb->start, eb->len);
4554        if (index == 0)
4555                return;
4556
4557        do {
4558                index--;
4559                page = eb->pages[index];
4560                if (page && mapped) {
4561                        spin_lock(&page->mapping->private_lock);
4562                        /*
4563                         * We do this since we'll remove the pages after we've
4564                         * removed the eb from the radix tree, so we could race
4565                         * and have this page now attached to the new eb.  So
4566                         * only clear page_private if it's still connected to
4567                         * this eb.
4568                         */
4569                        if (PagePrivate(page) &&
4570                            page->private == (unsigned long)eb) {
4571                                BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4572                                BUG_ON(PageDirty(page));
4573                                BUG_ON(PageWriteback(page));
4574                                /*
4575                                 * We need to make sure we haven't be attached
4576                                 * to a new eb.
4577                                 */
4578                                ClearPagePrivate(page);
4579                                set_page_private(page, 0);
4580                                /* One for the page private */
4581                                page_cache_release(page);
4582                        }
4583                        spin_unlock(&page->mapping->private_lock);
4584
4585                }
4586                if (page) {
4587                        /* One for when we alloced the page */
4588                        page_cache_release(page);
4589                }
4590        } while (index != 0);
4591}
4592
4593/*
4594 * Helper for releasing the extent buffer.
4595 */
4596static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4597{
4598        btrfs_release_extent_buffer_page(eb);
4599        __free_extent_buffer(eb);
4600}
4601
4602static struct extent_buffer *
4603__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4604                      unsigned long len)
4605{
4606        struct extent_buffer *eb = NULL;
4607
4608        eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS);
4609        if (eb == NULL)
4610                return NULL;
4611        eb->start = start;
4612        eb->len = len;
4613        eb->fs_info = fs_info;
4614        eb->bflags = 0;
4615        rwlock_init(&eb->lock);
4616        atomic_set(&eb->write_locks, 0);
4617        atomic_set(&eb->read_locks, 0);
4618        atomic_set(&eb->blocking_readers, 0);
4619        atomic_set(&eb->blocking_writers, 0);
4620        atomic_set(&eb->spinning_readers, 0);
4621        atomic_set(&eb->spinning_writers, 0);
4622        eb->lock_nested = 0;
4623        init_waitqueue_head(&eb->write_lock_wq);
4624        init_waitqueue_head(&eb->read_lock_wq);
4625
4626        btrfs_leak_debug_add(&eb->leak_list, &buffers);
4627
4628        spin_lock_init(&eb->refs_lock);
4629        atomic_set(&eb->refs, 1);
4630        atomic_set(&eb->io_pages, 0);
4631
4632        /*
4633         * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4634         */
4635        BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4636                > MAX_INLINE_EXTENT_BUFFER_SIZE);
4637        BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4638
4639        return eb;
4640}
4641
4642struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4643{
4644        unsigned long i;
4645        struct page *p;
4646        struct extent_buffer *new;
4647        unsigned long num_pages = num_extent_pages(src->start, src->len);
4648
4649        new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4650        if (new == NULL)
4651                return NULL;
4652
4653        for (i = 0; i < num_pages; i++) {
4654                p = alloc_page(GFP_NOFS);
4655                if (!p) {
4656                        btrfs_release_extent_buffer(new);
4657                        return NULL;
4658                }
4659                attach_extent_buffer_page(new, p);
4660                WARN_ON(PageDirty(p));
4661                SetPageUptodate(p);
4662                new->pages[i] = p;
4663        }
4664
4665        copy_extent_buffer(new, src, 0, 0, src->len);
4666        set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4667        set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4668
4669        return new;
4670}
4671
4672struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4673                                                u64 start)
4674{
4675        struct extent_buffer *eb;
4676        unsigned long len;
4677        unsigned long num_pages;
4678        unsigned long i;
4679
4680        if (!fs_info) {
4681                /*
4682                 * Called only from tests that don't always have a fs_info
4683                 * available, but we know that nodesize is 4096
4684                 */
4685                len = 4096;
4686        } else {
4687                len = fs_info->tree_root->nodesize;
4688        }
4689        num_pages = num_extent_pages(0, len);
4690
4691        eb = __alloc_extent_buffer(fs_info, start, len);
4692        if (!eb)
4693                return NULL;
4694
4695        for (i = 0; i < num_pages; i++) {
4696                eb->pages[i] = alloc_page(GFP_NOFS);
4697                if (!eb->pages[i])
4698                        goto err;
4699        }
4700        set_extent_buffer_uptodate(eb);
4701        btrfs_set_header_nritems(eb, 0);
4702        set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4703
4704        return eb;
4705err:
4706        for (; i > 0; i--)
4707                __free_page(eb->pages[i - 1]);
4708        __free_extent_buffer(eb);
4709        return NULL;
4710}
4711
4712static void check_buffer_tree_ref(struct extent_buffer *eb)
4713{
4714        int refs;
4715        /* the ref bit is tricky.  We have to make sure it is set
4716         * if we have the buffer dirty.   Otherwise the
4717         * code to free a buffer can end up dropping a dirty
4718         * page
4719         *
4720         * Once the ref bit is set, it won't go away while the
4721         * buffer is dirty or in writeback, and it also won't
4722         * go away while we have the reference count on the
4723         * eb bumped.
4724         *
4725         * We can't just set the ref bit without bumping the
4726         * ref on the eb because free_extent_buffer might
4727         * see the ref bit and try to clear it.  If this happens
4728         * free_extent_buffer might end up dropping our original
4729         * ref by mistake and freeing the page before we are able
4730         * to add one more ref.
4731         *
4732         * So bump the ref count first, then set the bit.  If someone
4733         * beat us to it, drop the ref we added.
4734         */
4735        refs = atomic_read(&eb->refs);
4736        if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4737                return;
4738
4739        spin_lock(&eb->refs_lock);
4740        if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4741                atomic_inc(&eb->refs);
4742        spin_unlock(&eb->refs_lock);
4743}
4744
4745static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4746                struct page *accessed)
4747{
4748        unsigned long num_pages, i;
4749
4750        check_buffer_tree_ref(eb);
4751
4752        num_pages = num_extent_pages(eb->start, eb->len);
4753        for (i = 0; i < num_pages; i++) {
4754                struct page *p = eb->pages[i];
4755
4756                if (p != accessed)
4757                        mark_page_accessed(p);
4758        }
4759}
4760
4761struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4762                                         u64 start)
4763{
4764        struct extent_buffer *eb;
4765
4766        rcu_read_lock();
4767        eb = radix_tree_lookup(&fs_info->buffer_radix,
4768                               start >> PAGE_CACHE_SHIFT);
4769        if (eb && atomic_inc_not_zero(&eb->refs)) {
4770                rcu_read_unlock();
4771                mark_extent_buffer_accessed(eb, NULL);
4772                return eb;
4773        }
4774        rcu_read_unlock();
4775
4776        return NULL;
4777}
4778
4779#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4780struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4781                                               u64 start)
4782{
4783        struct extent_buffer *eb, *exists = NULL;
4784        int ret;
4785
4786        eb = find_extent_buffer(fs_info, start);
4787        if (eb)
4788                return eb;
4789        eb = alloc_dummy_extent_buffer(fs_info, start);
4790        if (!eb)
4791                return NULL;
4792        eb->fs_info = fs_info;
4793again:
4794        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4795        if (ret)
4796                goto free_eb;
4797        spin_lock(&fs_info->buffer_lock);
4798        ret = radix_tree_insert(&fs_info->buffer_radix,
4799                                start >> PAGE_CACHE_SHIFT, eb);
4800        spin_unlock(&fs_info->buffer_lock);
4801        radix_tree_preload_end();
4802        if (ret == -EEXIST) {
4803                exists = find_extent_buffer(fs_info, start);
4804                if (exists)
4805                        goto free_eb;
4806                else
4807                        goto again;
4808        }
4809        check_buffer_tree_ref(eb);
4810        set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4811
4812        /*
4813         * We will free dummy extent buffer's if they come into
4814         * free_extent_buffer with a ref count of 2, but if we are using this we
4815         * want the buffers to stay in memory until we're done with them, so
4816         * bump the ref count again.
4817         */
4818        atomic_inc(&eb->refs);
4819        return eb;
4820free_eb:
4821        btrfs_release_extent_buffer(eb);
4822        return exists;
4823}
4824#endif
4825
4826struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4827                                          u64 start)
4828{
4829        unsigned long len = fs_info->tree_root->nodesize;
4830        unsigned long num_pages = num_extent_pages(start, len);
4831        unsigned long i;
4832        unsigned long index = start >> PAGE_CACHE_SHIFT;
4833        struct extent_buffer *eb;
4834        struct extent_buffer *exists = NULL;
4835        struct page *p;
4836        struct address_space *mapping = fs_info->btree_inode->i_mapping;
4837        int uptodate = 1;
4838        int ret;
4839
4840        eb = find_extent_buffer(fs_info, start);
4841        if (eb)
4842                return eb;
4843
4844        eb = __alloc_extent_buffer(fs_info, start, len);
4845        if (!eb)
4846                return NULL;
4847
4848        for (i = 0; i < num_pages; i++, index++) {
4849                p = find_or_create_page(mapping, index, GFP_NOFS);
4850                if (!p)
4851                        goto free_eb;
4852
4853                spin_lock(&mapping->private_lock);
4854                if (PagePrivate(p)) {
4855                        /*
4856                         * We could have already allocated an eb for this page
4857                         * and attached one so lets see if we can get a ref on
4858                         * the existing eb, and if we can we know it's good and
4859                         * we can just return that one, else we know we can just
4860                         * overwrite page->private.
4861                         */
4862                        exists = (struct extent_buffer *)p->private;
4863                        if (atomic_inc_not_zero(&exists->refs)) {
4864                                spin_unlock(&mapping->private_lock);
4865                                unlock_page(p);
4866                                page_cache_release(p);
4867                                mark_extent_buffer_accessed(exists, p);
4868                                goto free_eb;
4869                        }
4870
4871                        /*
4872                         * Do this so attach doesn't complain and we need to
4873                         * drop the ref the old guy had.
4874                         */
4875                        ClearPagePrivate(p);
4876                        WARN_ON(PageDirty(p));
4877                        page_cache_release(p);
4878                }
4879                attach_extent_buffer_page(eb, p);
4880                spin_unlock(&mapping->private_lock);
4881                WARN_ON(PageDirty(p));
4882                eb->pages[i] = p;
4883                if (!PageUptodate(p))
4884                        uptodate = 0;
4885
4886                /*
4887                 * see below about how we avoid a nasty race with release page
4888                 * and why we unlock later
4889                 */
4890        }
4891        if (uptodate)
4892                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4893again:
4894        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4895        if (ret)
4896                goto free_eb;
4897
4898        spin_lock(&fs_info->buffer_lock);
4899        ret = radix_tree_insert(&fs_info->buffer_radix,
4900                                start >> PAGE_CACHE_SHIFT, eb);
4901        spin_unlock(&fs_info->buffer_lock);
4902        radix_tree_preload_end();
4903        if (ret == -EEXIST) {
4904                exists = find_extent_buffer(fs_info, start);
4905                if (exists)
4906                        goto free_eb;
4907                else
4908                        goto again;
4909        }
4910        /* add one reference for the tree */
4911        check_buffer_tree_ref(eb);
4912        set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4913
4914        /*
4915         * there is a race where release page may have
4916         * tried to find this extent buffer in the radix
4917         * but failed.  It will tell the VM it is safe to
4918         * reclaim the, and it will clear the page private bit.
4919         * We must make sure to set the page private bit properly
4920         * after the extent buffer is in the radix tree so
4921         * it doesn't get lost
4922         */
4923        SetPageChecked(eb->pages[0]);
4924        for (i = 1; i < num_pages; i++) {
4925                p = eb->pages[i];
4926                ClearPageChecked(p);
4927                unlock_page(p);
4928        }
4929        unlock_page(eb->pages[0]);
4930        return eb;
4931
4932free_eb:
4933        for (i = 0; i < num_pages; i++) {
4934                if (eb->pages[i])
4935                        unlock_page(eb->pages[i]);
4936        }
4937
4938        WARN_ON(!atomic_dec_and_test(&eb->refs));
4939        btrfs_release_extent_buffer(eb);
4940        return exists;
4941}
4942
4943static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4944{
4945        struct extent_buffer *eb =
4946                        container_of(head, struct extent_buffer, rcu_head);
4947
4948        __free_extent_buffer(eb);
4949}
4950
4951/* Expects to have eb->eb_lock already held */
4952static int release_extent_buffer(struct extent_buffer *eb)
4953{
4954        WARN_ON(atomic_read(&eb->refs) == 0);
4955        if (atomic_dec_and_test(&eb->refs)) {
4956                if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4957                        struct btrfs_fs_info *fs_info = eb->fs_info;
4958
4959                        spin_unlock(&eb->refs_lock);
4960
4961                        spin_lock(&fs_info->buffer_lock);
4962                        radix_tree_delete(&fs_info->buffer_radix,
4963                                          eb->start >> PAGE_CACHE_SHIFT);
4964                        spin_unlock(&fs_info->buffer_lock);
4965                } else {
4966                        spin_unlock(&eb->refs_lock);
4967                }
4968
4969                /* Should be safe to release our pages at this point */
4970                btrfs_release_extent_buffer_page(eb);
4971#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4972                if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
4973                        __free_extent_buffer(eb);
4974                        return 1;
4975                }
4976#endif
4977                call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4978                return 1;
4979        }
4980        spin_unlock(&eb->refs_lock);
4981
4982        return 0;
4983}
4984
4985void free_extent_buffer(struct extent_buffer *eb)
4986{
4987        int refs;
4988        int old;
4989        if (!eb)
4990                return;
4991
4992        while (1) {
4993                refs = atomic_read(&eb->refs);
4994                if (refs <= 3)
4995                        break;
4996                old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4997                if (old == refs)
4998                        return;
4999        }
5000
5001        spin_lock(&eb->refs_lock);
5002        if (atomic_read(&eb->refs) == 2 &&
5003            test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5004                atomic_dec(&eb->refs);
5005
5006        if (atomic_read(&eb->refs) == 2 &&
5007            test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5008            !extent_buffer_under_io(eb) &&
5009            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5010                atomic_dec(&eb->refs);
5011
5012        /*
5013         * I know this is terrible, but it's temporary until we stop tracking
5014         * the uptodate bits and such for the extent buffers.
5015         */
5016        release_extent_buffer(eb);
5017}
5018
5019void free_extent_buffer_stale(struct extent_buffer *eb)
5020{
5021        if (!eb)
5022                return;
5023
5024        spin_lock(&eb->refs_lock);
5025        set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5026
5027        if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5028            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5029                atomic_dec(&eb->refs);
5030        release_extent_buffer(eb);
5031}
5032
5033void clear_extent_buffer_dirty(struct extent_buffer *eb)
5034{
5035        unsigned long i;
5036        unsigned long num_pages;
5037        struct page *page;
5038
5039        num_pages = num_extent_pages(eb->start, eb->len);
5040
5041        for (i = 0; i < num_pages; i++) {
5042                page = eb->pages[i];
5043                if (!PageDirty(page))
5044                        continue;
5045
5046                lock_page(page);
5047                WARN_ON(!PagePrivate(page));
5048
5049                clear_page_dirty_for_io(page);
5050                spin_lock_irq(&page->mapping->tree_lock);
5051                if (!PageDirty(page)) {
5052                        radix_tree_tag_clear(&page->mapping->page_tree,
5053                                                page_index(page),
5054                                                PAGECACHE_TAG_DIRTY);
5055                }
5056                spin_unlock_irq(&page->mapping->tree_lock);
5057                ClearPageError(page);
5058                unlock_page(page);
5059        }
5060        WARN_ON(atomic_read(&eb->refs) == 0);
5061}
5062
5063int set_extent_buffer_dirty(struct extent_buffer *eb)
5064{
5065        unsigned long i;
5066        unsigned long num_pages;
5067        int was_dirty = 0;
5068
5069        check_buffer_tree_ref(eb);
5070
5071        was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5072
5073        num_pages = num_extent_pages(eb->start, eb->len);
5074        WARN_ON(atomic_read(&eb->refs) == 0);
5075        WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5076
5077        for (i = 0; i < num_pages; i++)
5078                set_page_dirty(eb->pages[i]);
5079        return was_dirty;
5080}
5081
5082int clear_extent_buffer_uptodate(struct extent_buffer *eb)
5083{
5084        unsigned long i;
5085        struct page *page;
5086        unsigned long num_pages;
5087
5088        clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5089        num_pages = num_extent_pages(eb->start, eb->len);
5090        for (i = 0; i < num_pages; i++) {
5091                page = eb->pages[i];
5092                if (page)
5093                        ClearPageUptodate(page);
5094        }
5095        return 0;
5096}
5097
5098int set_extent_buffer_uptodate(struct extent_buffer *eb)
5099{
5100        unsigned long i;
5101        struct page *page;
5102        unsigned long num_pages;
5103
5104        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5105        num_pages = num_extent_pages(eb->start, eb->len);
5106        for (i = 0; i < num_pages; i++) {
5107                page = eb->pages[i];
5108                SetPageUptodate(page);
5109        }
5110        return 0;
5111}
5112
5113int extent_buffer_uptodate(struct extent_buffer *eb)
5114{
5115        return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5116}
5117
5118int read_extent_buffer_pages(struct extent_io_tree *tree,
5119                             struct extent_buffer *eb, u64 start, int wait,
5120                             get_extent_t *get_extent, int mirror_num)
5121{
5122        unsigned long i;
5123        unsigned long start_i;
5124        struct page *page;
5125        int err;
5126        int ret = 0;
5127        int locked_pages = 0;
5128        int all_uptodate = 1;
5129        unsigned long num_pages;
5130        unsigned long num_reads = 0;
5131        struct bio *bio = NULL;
5132        unsigned long bio_flags = 0;
5133
5134        if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5135                return 0;
5136
5137        if (start) {
5138                WARN_ON(start < eb->start);
5139                start_i = (start >> PAGE_CACHE_SHIFT) -
5140                        (eb->start >> PAGE_CACHE_SHIFT);
5141        } else {
5142                start_i = 0;
5143        }
5144
5145        num_pages = num_extent_pages(eb->start, eb->len);
5146        for (i = start_i; i < num_pages; i++) {
5147                page = eb->pages[i];
5148                if (wait == WAIT_NONE) {
5149                        if (!trylock_page(page))
5150                                goto unlock_exit;
5151                } else {
5152                        lock_page(page);
5153                }
5154                locked_pages++;
5155                if (!PageUptodate(page)) {
5156                        num_reads++;
5157                        all_uptodate = 0;
5158                }
5159        }
5160        if (all_uptodate) {
5161                if (start_i == 0)
5162                        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5163                goto unlock_exit;
5164        }
5165
5166        clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5167        eb->read_mirror = 0;
5168        atomic_set(&eb->io_pages, num_reads);
5169        for (i = start_i; i < num_pages; i++) {
5170                page = eb->pages[i];
5171                if (!PageUptodate(page)) {
5172                        ClearPageError(page);
5173                        err = __extent_read_full_page(tree, page,
5174                                                      get_extent, &bio,
5175                                                      mirror_num, &bio_flags,
5176                                                      READ | REQ_META);
5177                        if (err)
5178                                ret = err;
5179                } else {
5180                        unlock_page(page);
5181                }
5182        }
5183
5184        if (bio) {
5185                err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5186                                     bio_flags);
5187                if (err)
5188                        return err;
5189        }
5190
5191        if (ret || wait != WAIT_COMPLETE)
5192                return ret;
5193
5194        for (i = start_i; i < num_pages; i++) {
5195                page = eb->pages[i];
5196                wait_on_page_locked(page);
5197                if (!PageUptodate(page))
5198                        ret = -EIO;
5199        }
5200
5201        return ret;
5202
5203unlock_exit:
5204        i = start_i;
5205        while (locked_pages > 0) {
5206                page = eb->pages[i];
5207                i++;
5208                unlock_page(page);
5209                locked_pages--;
5210        }
5211        return ret;
5212}
5213
5214void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5215                        unsigned long start,
5216                        unsigned long len)
5217{
5218        size_t cur;
5219        size_t offset;
5220        struct page *page;
5221        char *kaddr;
5222        char *dst = (char *)dstv;
5223        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5224        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5225
5226        WARN_ON(start > eb->len);
5227        WARN_ON(start + len > eb->start + eb->len);
5228
5229        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5230
5231        while (len > 0) {
5232                page = eb->pages[i];
5233
5234                cur = min(len, (PAGE_CACHE_SIZE - offset));
5235                kaddr = page_address(page);
5236                memcpy(dst, kaddr + offset, cur);
5237
5238                dst += cur;
5239                len -= cur;
5240                offset = 0;
5241                i++;
5242        }
5243}
5244
5245int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5246                        unsigned long start,
5247                        unsigned long len)
5248{
5249        size_t cur;
5250        size_t offset;
5251        struct page *page;
5252        char *kaddr;
5253        char __user *dst = (char __user *)dstv;
5254        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5255        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5256        int ret = 0;
5257
5258        WARN_ON(start > eb->len);
5259        WARN_ON(start + len > eb->start + eb->len);
5260
5261        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5262
5263        while (len > 0) {
5264                page = eb->pages[i];
5265
5266                cur = min(len, (PAGE_CACHE_SIZE - offset));
5267                kaddr = page_address(page);
5268                if (copy_to_user(dst, kaddr + offset, cur)) {
5269                        ret = -EFAULT;
5270                        break;
5271                }
5272
5273                dst += cur;
5274                len -= cur;
5275                offset = 0;
5276                i++;
5277        }
5278
5279        return ret;
5280}
5281
5282int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5283                               unsigned long min_len, char **map,
5284                               unsigned long *map_start,
5285                               unsigned long *map_len)
5286{
5287        size_t offset = start & (PAGE_CACHE_SIZE - 1);
5288        char *kaddr;
5289        struct page *p;
5290        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5291        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5292        unsigned long end_i = (start_offset + start + min_len - 1) >>
5293                PAGE_CACHE_SHIFT;
5294
5295        if (i != end_i)
5296                return -EINVAL;
5297
5298        if (i == 0) {
5299                offset = start_offset;
5300                *map_start = 0;
5301        } else {
5302                offset = 0;
5303                *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5304        }
5305
5306        if (start + min_len > eb->len) {
5307                WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5308                       "wanted %lu %lu\n",
5309                       eb->start, eb->len, start, min_len);
5310                return -EINVAL;
5311        }
5312
5313        p = eb->pages[i];
5314        kaddr = page_address(p);
5315        *map = kaddr + offset;
5316        *map_len = PAGE_CACHE_SIZE - offset;
5317        return 0;
5318}
5319
5320int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5321                          unsigned long start,
5322                          unsigned long len)
5323{
5324        size_t cur;
5325        size_t offset;
5326        struct page *page;
5327        char *kaddr;
5328        char *ptr = (char *)ptrv;
5329        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5330        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5331        int ret = 0;
5332
5333        WARN_ON(start > eb->len);
5334        WARN_ON(start + len > eb->start + eb->len);
5335
5336        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5337
5338        while (len > 0) {
5339                page = eb->pages[i];
5340
5341                cur = min(len, (PAGE_CACHE_SIZE - offset));
5342
5343                kaddr = page_address(page);
5344                ret = memcmp(ptr, kaddr + offset, cur);
5345                if (ret)
5346                        break;
5347
5348                ptr += cur;
5349                len -= cur;
5350                offset = 0;
5351                i++;
5352        }
5353        return ret;
5354}
5355
5356void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5357                         unsigned long start, unsigned long len)
5358{
5359        size_t cur;
5360        size_t offset;
5361        struct page *page;
5362        char *kaddr;
5363        char *src = (char *)srcv;
5364        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5365        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5366
5367        WARN_ON(start > eb->len);
5368        WARN_ON(start + len > eb->start + eb->len);
5369
5370        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5371
5372        while (len > 0) {
5373                page = eb->pages[i];
5374                WARN_ON(!PageUptodate(page));
5375
5376                cur = min(len, PAGE_CACHE_SIZE - offset);
5377                kaddr = page_address(page);
5378                memcpy(kaddr + offset, src, cur);
5379
5380                src += cur;
5381                len -= cur;
5382                offset = 0;
5383                i++;
5384        }
5385}
5386
5387void memset_extent_buffer(struct extent_buffer *eb, char c,
5388                          unsigned long start, unsigned long len)
5389{
5390        size_t cur;
5391        size_t offset;
5392        struct page *page;
5393        char *kaddr;
5394        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5395        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5396
5397        WARN_ON(start > eb->len);
5398        WARN_ON(start + len > eb->start + eb->len);
5399
5400        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5401
5402        while (len > 0) {
5403                page = eb->pages[i];
5404                WARN_ON(!PageUptodate(page));
5405
5406                cur = min(len, PAGE_CACHE_SIZE - offset);
5407                kaddr = page_address(page);
5408                memset(kaddr + offset, c, cur);
5409
5410                len -= cur;
5411                offset = 0;
5412                i++;
5413        }
5414}
5415
5416void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5417                        unsigned long dst_offset, unsigned long src_offset,
5418                        unsigned long len)
5419{
5420        u64 dst_len = dst->len;
5421        size_t cur;
5422        size_t offset;
5423        struct page *page;
5424        char *kaddr;
5425        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5426        unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5427
5428        WARN_ON(src->len != dst_len);
5429
5430        offset = (start_offset + dst_offset) &
5431                (PAGE_CACHE_SIZE - 1);
5432
5433        while (len > 0) {
5434                page = dst->pages[i];
5435                WARN_ON(!PageUptodate(page));
5436
5437                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5438
5439                kaddr = page_address(page);
5440                read_extent_buffer(src, kaddr + offset, src_offset, cur);
5441
5442                src_offset += cur;
5443                len -= cur;
5444                offset = 0;
5445                i++;
5446        }
5447}
5448
5449static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5450{
5451        unsigned long distance = (src > dst) ? src - dst : dst - src;
5452        return distance < len;
5453}
5454
5455static void copy_pages(struct page *dst_page, struct page *src_page,
5456                       unsigned long dst_off, unsigned long src_off,
5457                       unsigned long len)
5458{
5459        char *dst_kaddr = page_address(dst_page);
5460        char *src_kaddr;
5461        int must_memmove = 0;
5462
5463        if (dst_page != src_page) {
5464                src_kaddr = page_address(src_page);
5465        } else {
5466                src_kaddr = dst_kaddr;
5467                if (areas_overlap(src_off, dst_off, len))
5468                        must_memmove = 1;
5469        }
5470
5471        if (must_memmove)
5472                memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5473        else
5474                memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5475}
5476
5477void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5478                           unsigned long src_offset, unsigned long len)
5479{
5480        size_t cur;
5481        size_t dst_off_in_page;
5482        size_t src_off_in_page;
5483        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5484        unsigned long dst_i;
5485        unsigned long src_i;
5486
5487        if (src_offset + len > dst->len) {
5488                printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5489                       "len %lu dst len %lu\n", src_offset, len, dst->len);
5490                BUG_ON(1);
5491        }
5492        if (dst_offset + len > dst->len) {
5493                printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5494                       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5495                BUG_ON(1);
5496        }
5497
5498        while (len > 0) {
5499                dst_off_in_page = (start_offset + dst_offset) &
5500                        (PAGE_CACHE_SIZE - 1);
5501                src_off_in_page = (start_offset + src_offset) &
5502                        (PAGE_CACHE_SIZE - 1);
5503
5504                dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5505                src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5506
5507                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5508                                               src_off_in_page));
5509                cur = min_t(unsigned long, cur,
5510                        (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5511
5512                copy_pages(dst->pages[dst_i], dst->pages[src_i],
5513                           dst_off_in_page, src_off_in_page, cur);
5514
5515                src_offset += cur;
5516                dst_offset += cur;
5517                len -= cur;
5518        }
5519}
5520
5521void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5522                           unsigned long src_offset, unsigned long len)
5523{
5524        size_t cur;
5525        size_t dst_off_in_page;
5526        size_t src_off_in_page;
5527        unsigned long dst_end = dst_offset + len - 1;
5528        unsigned long src_end = src_offset + len - 1;
5529        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5530        unsigned long dst_i;
5531        unsigned long src_i;
5532
5533        if (src_offset + len > dst->len) {
5534                printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5535                       "len %lu len %lu\n", src_offset, len, dst->len);
5536                BUG_ON(1);
5537        }
5538        if (dst_offset + len > dst->len) {
5539                printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5540                       "len %lu len %lu\n", dst_offset, len, dst->len);
5541                BUG_ON(1);
5542        }
5543        if (dst_offset < src_offset) {
5544                memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5545                return;
5546        }
5547        while (len > 0) {
5548                dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5549                src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5550
5551                dst_off_in_page = (start_offset + dst_end) &
5552                        (PAGE_CACHE_SIZE - 1);
5553                src_off_in_page = (start_offset + src_end) &
5554                        (PAGE_CACHE_SIZE - 1);
5555
5556                cur = min_t(unsigned long, len, src_off_in_page + 1);
5557                cur = min(cur, dst_off_in_page + 1);
5558                copy_pages(dst->pages[dst_i], dst->pages[src_i],
5559                           dst_off_in_page - cur + 1,
5560                           src_off_in_page - cur + 1, cur);
5561
5562                dst_end -= cur;
5563                src_end -= cur;
5564                len -= cur;
5565        }
5566}
5567
5568int try_release_extent_buffer(struct page *page)
5569{
5570        struct extent_buffer *eb;
5571
5572        /*
5573         * We need to make sure noboody is attaching this page to an eb right
5574         * now.
5575         */
5576        spin_lock(&page->mapping->private_lock);
5577        if (!PagePrivate(page)) {
5578                spin_unlock(&page->mapping->private_lock);
5579                return 1;
5580        }
5581
5582        eb = (struct extent_buffer *)page->private;
5583        BUG_ON(!eb);
5584
5585        /*
5586         * This is a little awful but should be ok, we need to make sure that
5587         * the eb doesn't disappear out from under us while we're looking at
5588         * this page.
5589         */
5590        spin_lock(&eb->refs_lock);
5591        if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5592                spin_unlock(&eb->refs_lock);
5593                spin_unlock(&page->mapping->private_lock);
5594                return 0;
5595        }
5596        spin_unlock(&page->mapping->private_lock);
5597
5598        /*
5599         * If tree ref isn't set then we know the ref on this eb is a real ref,
5600         * so just return, this page will likely be freed soon anyway.
5601         */
5602        if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5603                spin_unlock(&eb->refs_lock);
5604                return 0;
5605        }
5606
5607        return release_extent_buffer(eb);
5608}
5609