linux/fs/btrfs/inode.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/statfs.h>
  34#include <linux/compat.h>
  35#include <linux/aio.h>
  36#include <linux/bit_spinlock.h>
  37#include <linux/xattr.h>
  38#include <linux/posix_acl.h>
  39#include <linux/falloc.h>
  40#include <linux/slab.h>
  41#include <linux/ratelimit.h>
  42#include <linux/mount.h>
  43#include <linux/btrfs.h>
  44#include <linux/blkdev.h>
  45#include <linux/posix_acl_xattr.h>
  46#include "ctree.h"
  47#include "disk-io.h"
  48#include "transaction.h"
  49#include "btrfs_inode.h"
  50#include "print-tree.h"
  51#include "ordered-data.h"
  52#include "xattr.h"
  53#include "tree-log.h"
  54#include "volumes.h"
  55#include "compression.h"
  56#include "locking.h"
  57#include "free-space-cache.h"
  58#include "inode-map.h"
  59#include "backref.h"
  60#include "hash.h"
  61#include "props.h"
  62
  63struct btrfs_iget_args {
  64        struct btrfs_key *location;
  65        struct btrfs_root *root;
  66};
  67
  68static const struct inode_operations btrfs_dir_inode_operations;
  69static const struct inode_operations btrfs_symlink_inode_operations;
  70static const struct inode_operations btrfs_dir_ro_inode_operations;
  71static const struct inode_operations btrfs_special_inode_operations;
  72static const struct inode_operations btrfs_file_inode_operations;
  73static const struct address_space_operations btrfs_aops;
  74static const struct address_space_operations btrfs_symlink_aops;
  75static const struct file_operations btrfs_dir_file_operations;
  76static struct extent_io_ops btrfs_extent_io_ops;
  77
  78static struct kmem_cache *btrfs_inode_cachep;
  79static struct kmem_cache *btrfs_delalloc_work_cachep;
  80struct kmem_cache *btrfs_trans_handle_cachep;
  81struct kmem_cache *btrfs_transaction_cachep;
  82struct kmem_cache *btrfs_path_cachep;
  83struct kmem_cache *btrfs_free_space_cachep;
  84
  85#define S_SHIFT 12
  86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
  87        [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
  88        [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
  89        [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
  90        [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
  91        [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
  92        [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
  93        [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
  94};
  95
  96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
  97static int btrfs_truncate(struct inode *inode);
  98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
  99static noinline int cow_file_range(struct inode *inode,
 100                                   struct page *locked_page,
 101                                   u64 start, u64 end, int *page_started,
 102                                   unsigned long *nr_written, int unlock);
 103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
 104                                           u64 len, u64 orig_start,
 105                                           u64 block_start, u64 block_len,
 106                                           u64 orig_block_len, u64 ram_bytes,
 107                                           int type);
 108
 109static int btrfs_dirty_inode(struct inode *inode);
 110
 111#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 112void btrfs_test_inode_set_ops(struct inode *inode)
 113{
 114        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
 115}
 116#endif
 117
 118static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
 119                                     struct inode *inode,  struct inode *dir,
 120                                     const struct qstr *qstr)
 121{
 122        int err;
 123
 124        err = btrfs_init_acl(trans, inode, dir);
 125        if (!err)
 126                err = btrfs_xattr_security_init(trans, inode, dir, qstr);
 127        return err;
 128}
 129
 130/*
 131 * this does all the hard work for inserting an inline extent into
 132 * the btree.  The caller should have done a btrfs_drop_extents so that
 133 * no overlapping inline items exist in the btree
 134 */
 135static int insert_inline_extent(struct btrfs_trans_handle *trans,
 136                                struct btrfs_path *path, int extent_inserted,
 137                                struct btrfs_root *root, struct inode *inode,
 138                                u64 start, size_t size, size_t compressed_size,
 139                                int compress_type,
 140                                struct page **compressed_pages)
 141{
 142        struct extent_buffer *leaf;
 143        struct page *page = NULL;
 144        char *kaddr;
 145        unsigned long ptr;
 146        struct btrfs_file_extent_item *ei;
 147        int err = 0;
 148        int ret;
 149        size_t cur_size = size;
 150        unsigned long offset;
 151
 152        if (compressed_size && compressed_pages)
 153                cur_size = compressed_size;
 154
 155        inode_add_bytes(inode, size);
 156
 157        if (!extent_inserted) {
 158                struct btrfs_key key;
 159                size_t datasize;
 160
 161                key.objectid = btrfs_ino(inode);
 162                key.offset = start;
 163                key.type = BTRFS_EXTENT_DATA_KEY;
 164
 165                datasize = btrfs_file_extent_calc_inline_size(cur_size);
 166                path->leave_spinning = 1;
 167                ret = btrfs_insert_empty_item(trans, root, path, &key,
 168                                              datasize);
 169                if (ret) {
 170                        err = ret;
 171                        goto fail;
 172                }
 173        }
 174        leaf = path->nodes[0];
 175        ei = btrfs_item_ptr(leaf, path->slots[0],
 176                            struct btrfs_file_extent_item);
 177        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
 178        btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
 179        btrfs_set_file_extent_encryption(leaf, ei, 0);
 180        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
 181        btrfs_set_file_extent_ram_bytes(leaf, ei, size);
 182        ptr = btrfs_file_extent_inline_start(ei);
 183
 184        if (compress_type != BTRFS_COMPRESS_NONE) {
 185                struct page *cpage;
 186                int i = 0;
 187                while (compressed_size > 0) {
 188                        cpage = compressed_pages[i];
 189                        cur_size = min_t(unsigned long, compressed_size,
 190                                       PAGE_CACHE_SIZE);
 191
 192                        kaddr = kmap_atomic(cpage);
 193                        write_extent_buffer(leaf, kaddr, ptr, cur_size);
 194                        kunmap_atomic(kaddr);
 195
 196                        i++;
 197                        ptr += cur_size;
 198                        compressed_size -= cur_size;
 199                }
 200                btrfs_set_file_extent_compression(leaf, ei,
 201                                                  compress_type);
 202        } else {
 203                page = find_get_page(inode->i_mapping,
 204                                     start >> PAGE_CACHE_SHIFT);
 205                btrfs_set_file_extent_compression(leaf, ei, 0);
 206                kaddr = kmap_atomic(page);
 207                offset = start & (PAGE_CACHE_SIZE - 1);
 208                write_extent_buffer(leaf, kaddr + offset, ptr, size);
 209                kunmap_atomic(kaddr);
 210                page_cache_release(page);
 211        }
 212        btrfs_mark_buffer_dirty(leaf);
 213        btrfs_release_path(path);
 214
 215        /*
 216         * we're an inline extent, so nobody can
 217         * extend the file past i_size without locking
 218         * a page we already have locked.
 219         *
 220         * We must do any isize and inode updates
 221         * before we unlock the pages.  Otherwise we
 222         * could end up racing with unlink.
 223         */
 224        BTRFS_I(inode)->disk_i_size = inode->i_size;
 225        ret = btrfs_update_inode(trans, root, inode);
 226
 227        return ret;
 228fail:
 229        return err;
 230}
 231
 232
 233/*
 234 * conditionally insert an inline extent into the file.  This
 235 * does the checks required to make sure the data is small enough
 236 * to fit as an inline extent.
 237 */
 238static noinline int cow_file_range_inline(struct btrfs_root *root,
 239                                          struct inode *inode, u64 start,
 240                                          u64 end, size_t compressed_size,
 241                                          int compress_type,
 242                                          struct page **compressed_pages)
 243{
 244        struct btrfs_trans_handle *trans;
 245        u64 isize = i_size_read(inode);
 246        u64 actual_end = min(end + 1, isize);
 247        u64 inline_len = actual_end - start;
 248        u64 aligned_end = ALIGN(end, root->sectorsize);
 249        u64 data_len = inline_len;
 250        int ret;
 251        struct btrfs_path *path;
 252        int extent_inserted = 0;
 253        u32 extent_item_size;
 254
 255        if (compressed_size)
 256                data_len = compressed_size;
 257
 258        if (start > 0 ||
 259            actual_end > PAGE_CACHE_SIZE ||
 260            data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
 261            (!compressed_size &&
 262            (actual_end & (root->sectorsize - 1)) == 0) ||
 263            end + 1 < isize ||
 264            data_len > root->fs_info->max_inline) {
 265                return 1;
 266        }
 267
 268        path = btrfs_alloc_path();
 269        if (!path)
 270                return -ENOMEM;
 271
 272        trans = btrfs_join_transaction(root);
 273        if (IS_ERR(trans)) {
 274                btrfs_free_path(path);
 275                return PTR_ERR(trans);
 276        }
 277        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
 278
 279        if (compressed_size && compressed_pages)
 280                extent_item_size = btrfs_file_extent_calc_inline_size(
 281                   compressed_size);
 282        else
 283                extent_item_size = btrfs_file_extent_calc_inline_size(
 284                    inline_len);
 285
 286        ret = __btrfs_drop_extents(trans, root, inode, path,
 287                                   start, aligned_end, NULL,
 288                                   1, 1, extent_item_size, &extent_inserted);
 289        if (ret) {
 290                btrfs_abort_transaction(trans, root, ret);
 291                goto out;
 292        }
 293
 294        if (isize > actual_end)
 295                inline_len = min_t(u64, isize, actual_end);
 296        ret = insert_inline_extent(trans, path, extent_inserted,
 297                                   root, inode, start,
 298                                   inline_len, compressed_size,
 299                                   compress_type, compressed_pages);
 300        if (ret && ret != -ENOSPC) {
 301                btrfs_abort_transaction(trans, root, ret);
 302                goto out;
 303        } else if (ret == -ENOSPC) {
 304                ret = 1;
 305                goto out;
 306        }
 307
 308        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
 309        btrfs_delalloc_release_metadata(inode, end + 1 - start);
 310        btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
 311out:
 312        btrfs_free_path(path);
 313        btrfs_end_transaction(trans, root);
 314        return ret;
 315}
 316
 317struct async_extent {
 318        u64 start;
 319        u64 ram_size;
 320        u64 compressed_size;
 321        struct page **pages;
 322        unsigned long nr_pages;
 323        int compress_type;
 324        struct list_head list;
 325};
 326
 327struct async_cow {
 328        struct inode *inode;
 329        struct btrfs_root *root;
 330        struct page *locked_page;
 331        u64 start;
 332        u64 end;
 333        struct list_head extents;
 334        struct btrfs_work work;
 335};
 336
 337static noinline int add_async_extent(struct async_cow *cow,
 338                                     u64 start, u64 ram_size,
 339                                     u64 compressed_size,
 340                                     struct page **pages,
 341                                     unsigned long nr_pages,
 342                                     int compress_type)
 343{
 344        struct async_extent *async_extent;
 345
 346        async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
 347        BUG_ON(!async_extent); /* -ENOMEM */
 348        async_extent->start = start;
 349        async_extent->ram_size = ram_size;
 350        async_extent->compressed_size = compressed_size;
 351        async_extent->pages = pages;
 352        async_extent->nr_pages = nr_pages;
 353        async_extent->compress_type = compress_type;
 354        list_add_tail(&async_extent->list, &cow->extents);
 355        return 0;
 356}
 357
 358static inline int inode_need_compress(struct inode *inode)
 359{
 360        struct btrfs_root *root = BTRFS_I(inode)->root;
 361
 362        /* force compress */
 363        if (btrfs_test_opt(root, FORCE_COMPRESS))
 364                return 1;
 365        /* bad compression ratios */
 366        if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
 367                return 0;
 368        if (btrfs_test_opt(root, COMPRESS) ||
 369            BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
 370            BTRFS_I(inode)->force_compress)
 371                return 1;
 372        return 0;
 373}
 374
 375/*
 376 * we create compressed extents in two phases.  The first
 377 * phase compresses a range of pages that have already been
 378 * locked (both pages and state bits are locked).
 379 *
 380 * This is done inside an ordered work queue, and the compression
 381 * is spread across many cpus.  The actual IO submission is step
 382 * two, and the ordered work queue takes care of making sure that
 383 * happens in the same order things were put onto the queue by
 384 * writepages and friends.
 385 *
 386 * If this code finds it can't get good compression, it puts an
 387 * entry onto the work queue to write the uncompressed bytes.  This
 388 * makes sure that both compressed inodes and uncompressed inodes
 389 * are written in the same order that the flusher thread sent them
 390 * down.
 391 */
 392static noinline void compress_file_range(struct inode *inode,
 393                                        struct page *locked_page,
 394                                        u64 start, u64 end,
 395                                        struct async_cow *async_cow,
 396                                        int *num_added)
 397{
 398        struct btrfs_root *root = BTRFS_I(inode)->root;
 399        u64 num_bytes;
 400        u64 blocksize = root->sectorsize;
 401        u64 actual_end;
 402        u64 isize = i_size_read(inode);
 403        int ret = 0;
 404        struct page **pages = NULL;
 405        unsigned long nr_pages;
 406        unsigned long nr_pages_ret = 0;
 407        unsigned long total_compressed = 0;
 408        unsigned long total_in = 0;
 409        unsigned long max_compressed = 128 * 1024;
 410        unsigned long max_uncompressed = 128 * 1024;
 411        int i;
 412        int will_compress;
 413        int compress_type = root->fs_info->compress_type;
 414        int redirty = 0;
 415
 416        /* if this is a small write inside eof, kick off a defrag */
 417        if ((end - start + 1) < 16 * 1024 &&
 418            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 419                btrfs_add_inode_defrag(NULL, inode);
 420
 421        actual_end = min_t(u64, isize, end + 1);
 422again:
 423        will_compress = 0;
 424        nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
 425        nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
 426
 427        /*
 428         * we don't want to send crud past the end of i_size through
 429         * compression, that's just a waste of CPU time.  So, if the
 430         * end of the file is before the start of our current
 431         * requested range of bytes, we bail out to the uncompressed
 432         * cleanup code that can deal with all of this.
 433         *
 434         * It isn't really the fastest way to fix things, but this is a
 435         * very uncommon corner.
 436         */
 437        if (actual_end <= start)
 438                goto cleanup_and_bail_uncompressed;
 439
 440        total_compressed = actual_end - start;
 441
 442        /*
 443         * skip compression for a small file range(<=blocksize) that
 444         * isn't an inline extent, since it dosen't save disk space at all.
 445         */
 446        if (total_compressed <= blocksize &&
 447           (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 448                goto cleanup_and_bail_uncompressed;
 449
 450        /* we want to make sure that amount of ram required to uncompress
 451         * an extent is reasonable, so we limit the total size in ram
 452         * of a compressed extent to 128k.  This is a crucial number
 453         * because it also controls how easily we can spread reads across
 454         * cpus for decompression.
 455         *
 456         * We also want to make sure the amount of IO required to do
 457         * a random read is reasonably small, so we limit the size of
 458         * a compressed extent to 128k.
 459         */
 460        total_compressed = min(total_compressed, max_uncompressed);
 461        num_bytes = ALIGN(end - start + 1, blocksize);
 462        num_bytes = max(blocksize,  num_bytes);
 463        total_in = 0;
 464        ret = 0;
 465
 466        /*
 467         * we do compression for mount -o compress and when the
 468         * inode has not been flagged as nocompress.  This flag can
 469         * change at any time if we discover bad compression ratios.
 470         */
 471        if (inode_need_compress(inode)) {
 472                WARN_ON(pages);
 473                pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
 474                if (!pages) {
 475                        /* just bail out to the uncompressed code */
 476                        goto cont;
 477                }
 478
 479                if (BTRFS_I(inode)->force_compress)
 480                        compress_type = BTRFS_I(inode)->force_compress;
 481
 482                /*
 483                 * we need to call clear_page_dirty_for_io on each
 484                 * page in the range.  Otherwise applications with the file
 485                 * mmap'd can wander in and change the page contents while
 486                 * we are compressing them.
 487                 *
 488                 * If the compression fails for any reason, we set the pages
 489                 * dirty again later on.
 490                 */
 491                extent_range_clear_dirty_for_io(inode, start, end);
 492                redirty = 1;
 493                ret = btrfs_compress_pages(compress_type,
 494                                           inode->i_mapping, start,
 495                                           total_compressed, pages,
 496                                           nr_pages, &nr_pages_ret,
 497                                           &total_in,
 498                                           &total_compressed,
 499                                           max_compressed);
 500
 501                if (!ret) {
 502                        unsigned long offset = total_compressed &
 503                                (PAGE_CACHE_SIZE - 1);
 504                        struct page *page = pages[nr_pages_ret - 1];
 505                        char *kaddr;
 506
 507                        /* zero the tail end of the last page, we might be
 508                         * sending it down to disk
 509                         */
 510                        if (offset) {
 511                                kaddr = kmap_atomic(page);
 512                                memset(kaddr + offset, 0,
 513                                       PAGE_CACHE_SIZE - offset);
 514                                kunmap_atomic(kaddr);
 515                        }
 516                        will_compress = 1;
 517                }
 518        }
 519cont:
 520        if (start == 0) {
 521                /* lets try to make an inline extent */
 522                if (ret || total_in < (actual_end - start)) {
 523                        /* we didn't compress the entire range, try
 524                         * to make an uncompressed inline extent.
 525                         */
 526                        ret = cow_file_range_inline(root, inode, start, end,
 527                                                    0, 0, NULL);
 528                } else {
 529                        /* try making a compressed inline extent */
 530                        ret = cow_file_range_inline(root, inode, start, end,
 531                                                    total_compressed,
 532                                                    compress_type, pages);
 533                }
 534                if (ret <= 0) {
 535                        unsigned long clear_flags = EXTENT_DELALLOC |
 536                                EXTENT_DEFRAG;
 537                        unsigned long page_error_op;
 538
 539                        clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
 540                        page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
 541
 542                        /*
 543                         * inline extent creation worked or returned error,
 544                         * we don't need to create any more async work items.
 545                         * Unlock and free up our temp pages.
 546                         */
 547                        extent_clear_unlock_delalloc(inode, start, end, NULL,
 548                                                     clear_flags, PAGE_UNLOCK |
 549                                                     PAGE_CLEAR_DIRTY |
 550                                                     PAGE_SET_WRITEBACK |
 551                                                     page_error_op |
 552                                                     PAGE_END_WRITEBACK);
 553                        goto free_pages_out;
 554                }
 555        }
 556
 557        if (will_compress) {
 558                /*
 559                 * we aren't doing an inline extent round the compressed size
 560                 * up to a block size boundary so the allocator does sane
 561                 * things
 562                 */
 563                total_compressed = ALIGN(total_compressed, blocksize);
 564
 565                /*
 566                 * one last check to make sure the compression is really a
 567                 * win, compare the page count read with the blocks on disk
 568                 */
 569                total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
 570                if (total_compressed >= total_in) {
 571                        will_compress = 0;
 572                } else {
 573                        num_bytes = total_in;
 574                }
 575        }
 576        if (!will_compress && pages) {
 577                /*
 578                 * the compression code ran but failed to make things smaller,
 579                 * free any pages it allocated and our page pointer array
 580                 */
 581                for (i = 0; i < nr_pages_ret; i++) {
 582                        WARN_ON(pages[i]->mapping);
 583                        page_cache_release(pages[i]);
 584                }
 585                kfree(pages);
 586                pages = NULL;
 587                total_compressed = 0;
 588                nr_pages_ret = 0;
 589
 590                /* flag the file so we don't compress in the future */
 591                if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
 592                    !(BTRFS_I(inode)->force_compress)) {
 593                        BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 594                }
 595        }
 596        if (will_compress) {
 597                *num_added += 1;
 598
 599                /* the async work queues will take care of doing actual
 600                 * allocation on disk for these compressed pages,
 601                 * and will submit them to the elevator.
 602                 */
 603                add_async_extent(async_cow, start, num_bytes,
 604                                 total_compressed, pages, nr_pages_ret,
 605                                 compress_type);
 606
 607                if (start + num_bytes < end) {
 608                        start += num_bytes;
 609                        pages = NULL;
 610                        cond_resched();
 611                        goto again;
 612                }
 613        } else {
 614cleanup_and_bail_uncompressed:
 615                /*
 616                 * No compression, but we still need to write the pages in
 617                 * the file we've been given so far.  redirty the locked
 618                 * page if it corresponds to our extent and set things up
 619                 * for the async work queue to run cow_file_range to do
 620                 * the normal delalloc dance
 621                 */
 622                if (page_offset(locked_page) >= start &&
 623                    page_offset(locked_page) <= end) {
 624                        __set_page_dirty_nobuffers(locked_page);
 625                        /* unlocked later on in the async handlers */
 626                }
 627                if (redirty)
 628                        extent_range_redirty_for_io(inode, start, end);
 629                add_async_extent(async_cow, start, end - start + 1,
 630                                 0, NULL, 0, BTRFS_COMPRESS_NONE);
 631                *num_added += 1;
 632        }
 633
 634        return;
 635
 636free_pages_out:
 637        for (i = 0; i < nr_pages_ret; i++) {
 638                WARN_ON(pages[i]->mapping);
 639                page_cache_release(pages[i]);
 640        }
 641        kfree(pages);
 642}
 643
 644static void free_async_extent_pages(struct async_extent *async_extent)
 645{
 646        int i;
 647
 648        if (!async_extent->pages)
 649                return;
 650
 651        for (i = 0; i < async_extent->nr_pages; i++) {
 652                WARN_ON(async_extent->pages[i]->mapping);
 653                page_cache_release(async_extent->pages[i]);
 654        }
 655        kfree(async_extent->pages);
 656        async_extent->nr_pages = 0;
 657        async_extent->pages = NULL;
 658}
 659
 660/*
 661 * phase two of compressed writeback.  This is the ordered portion
 662 * of the code, which only gets called in the order the work was
 663 * queued.  We walk all the async extents created by compress_file_range
 664 * and send them down to the disk.
 665 */
 666static noinline void submit_compressed_extents(struct inode *inode,
 667                                              struct async_cow *async_cow)
 668{
 669        struct async_extent *async_extent;
 670        u64 alloc_hint = 0;
 671        struct btrfs_key ins;
 672        struct extent_map *em;
 673        struct btrfs_root *root = BTRFS_I(inode)->root;
 674        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 675        struct extent_io_tree *io_tree;
 676        int ret = 0;
 677
 678again:
 679        while (!list_empty(&async_cow->extents)) {
 680                async_extent = list_entry(async_cow->extents.next,
 681                                          struct async_extent, list);
 682                list_del(&async_extent->list);
 683
 684                io_tree = &BTRFS_I(inode)->io_tree;
 685
 686retry:
 687                /* did the compression code fall back to uncompressed IO? */
 688                if (!async_extent->pages) {
 689                        int page_started = 0;
 690                        unsigned long nr_written = 0;
 691
 692                        lock_extent(io_tree, async_extent->start,
 693                                         async_extent->start +
 694                                         async_extent->ram_size - 1);
 695
 696                        /* allocate blocks */
 697                        ret = cow_file_range(inode, async_cow->locked_page,
 698                                             async_extent->start,
 699                                             async_extent->start +
 700                                             async_extent->ram_size - 1,
 701                                             &page_started, &nr_written, 0);
 702
 703                        /* JDM XXX */
 704
 705                        /*
 706                         * if page_started, cow_file_range inserted an
 707                         * inline extent and took care of all the unlocking
 708                         * and IO for us.  Otherwise, we need to submit
 709                         * all those pages down to the drive.
 710                         */
 711                        if (!page_started && !ret)
 712                                extent_write_locked_range(io_tree,
 713                                                  inode, async_extent->start,
 714                                                  async_extent->start +
 715                                                  async_extent->ram_size - 1,
 716                                                  btrfs_get_extent,
 717                                                  WB_SYNC_ALL);
 718                        else if (ret)
 719                                unlock_page(async_cow->locked_page);
 720                        kfree(async_extent);
 721                        cond_resched();
 722                        continue;
 723                }
 724
 725                lock_extent(io_tree, async_extent->start,
 726                            async_extent->start + async_extent->ram_size - 1);
 727
 728                ret = btrfs_reserve_extent(root,
 729                                           async_extent->compressed_size,
 730                                           async_extent->compressed_size,
 731                                           0, alloc_hint, &ins, 1, 1);
 732                if (ret) {
 733                        free_async_extent_pages(async_extent);
 734
 735                        if (ret == -ENOSPC) {
 736                                unlock_extent(io_tree, async_extent->start,
 737                                              async_extent->start +
 738                                              async_extent->ram_size - 1);
 739
 740                                /*
 741                                 * we need to redirty the pages if we decide to
 742                                 * fallback to uncompressed IO, otherwise we
 743                                 * will not submit these pages down to lower
 744                                 * layers.
 745                                 */
 746                                extent_range_redirty_for_io(inode,
 747                                                async_extent->start,
 748                                                async_extent->start +
 749                                                async_extent->ram_size - 1);
 750
 751                                goto retry;
 752                        }
 753                        goto out_free;
 754                }
 755
 756                /*
 757                 * here we're doing allocation and writeback of the
 758                 * compressed pages
 759                 */
 760                btrfs_drop_extent_cache(inode, async_extent->start,
 761                                        async_extent->start +
 762                                        async_extent->ram_size - 1, 0);
 763
 764                em = alloc_extent_map();
 765                if (!em) {
 766                        ret = -ENOMEM;
 767                        goto out_free_reserve;
 768                }
 769                em->start = async_extent->start;
 770                em->len = async_extent->ram_size;
 771                em->orig_start = em->start;
 772                em->mod_start = em->start;
 773                em->mod_len = em->len;
 774
 775                em->block_start = ins.objectid;
 776                em->block_len = ins.offset;
 777                em->orig_block_len = ins.offset;
 778                em->ram_bytes = async_extent->ram_size;
 779                em->bdev = root->fs_info->fs_devices->latest_bdev;
 780                em->compress_type = async_extent->compress_type;
 781                set_bit(EXTENT_FLAG_PINNED, &em->flags);
 782                set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 783                em->generation = -1;
 784
 785                while (1) {
 786                        write_lock(&em_tree->lock);
 787                        ret = add_extent_mapping(em_tree, em, 1);
 788                        write_unlock(&em_tree->lock);
 789                        if (ret != -EEXIST) {
 790                                free_extent_map(em);
 791                                break;
 792                        }
 793                        btrfs_drop_extent_cache(inode, async_extent->start,
 794                                                async_extent->start +
 795                                                async_extent->ram_size - 1, 0);
 796                }
 797
 798                if (ret)
 799                        goto out_free_reserve;
 800
 801                ret = btrfs_add_ordered_extent_compress(inode,
 802                                                async_extent->start,
 803                                                ins.objectid,
 804                                                async_extent->ram_size,
 805                                                ins.offset,
 806                                                BTRFS_ORDERED_COMPRESSED,
 807                                                async_extent->compress_type);
 808                if (ret) {
 809                        btrfs_drop_extent_cache(inode, async_extent->start,
 810                                                async_extent->start +
 811                                                async_extent->ram_size - 1, 0);
 812                        goto out_free_reserve;
 813                }
 814
 815                /*
 816                 * clear dirty, set writeback and unlock the pages.
 817                 */
 818                extent_clear_unlock_delalloc(inode, async_extent->start,
 819                                async_extent->start +
 820                                async_extent->ram_size - 1,
 821                                NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
 822                                PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
 823                                PAGE_SET_WRITEBACK);
 824                ret = btrfs_submit_compressed_write(inode,
 825                                    async_extent->start,
 826                                    async_extent->ram_size,
 827                                    ins.objectid,
 828                                    ins.offset, async_extent->pages,
 829                                    async_extent->nr_pages);
 830                if (ret) {
 831                        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
 832                        struct page *p = async_extent->pages[0];
 833                        const u64 start = async_extent->start;
 834                        const u64 end = start + async_extent->ram_size - 1;
 835
 836                        p->mapping = inode->i_mapping;
 837                        tree->ops->writepage_end_io_hook(p, start, end,
 838                                                         NULL, 0);
 839                        p->mapping = NULL;
 840                        extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
 841                                                     PAGE_END_WRITEBACK |
 842                                                     PAGE_SET_ERROR);
 843                        free_async_extent_pages(async_extent);
 844                }
 845                alloc_hint = ins.objectid + ins.offset;
 846                kfree(async_extent);
 847                cond_resched();
 848        }
 849        return;
 850out_free_reserve:
 851        btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
 852out_free:
 853        extent_clear_unlock_delalloc(inode, async_extent->start,
 854                                     async_extent->start +
 855                                     async_extent->ram_size - 1,
 856                                     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
 857                                     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
 858                                     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
 859                                     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
 860                                     PAGE_SET_ERROR);
 861        free_async_extent_pages(async_extent);
 862        kfree(async_extent);
 863        goto again;
 864}
 865
 866static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
 867                                      u64 num_bytes)
 868{
 869        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 870        struct extent_map *em;
 871        u64 alloc_hint = 0;
 872
 873        read_lock(&em_tree->lock);
 874        em = search_extent_mapping(em_tree, start, num_bytes);
 875        if (em) {
 876                /*
 877                 * if block start isn't an actual block number then find the
 878                 * first block in this inode and use that as a hint.  If that
 879                 * block is also bogus then just don't worry about it.
 880                 */
 881                if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
 882                        free_extent_map(em);
 883                        em = search_extent_mapping(em_tree, 0, 0);
 884                        if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
 885                                alloc_hint = em->block_start;
 886                        if (em)
 887                                free_extent_map(em);
 888                } else {
 889                        alloc_hint = em->block_start;
 890                        free_extent_map(em);
 891                }
 892        }
 893        read_unlock(&em_tree->lock);
 894
 895        return alloc_hint;
 896}
 897
 898/*
 899 * when extent_io.c finds a delayed allocation range in the file,
 900 * the call backs end up in this code.  The basic idea is to
 901 * allocate extents on disk for the range, and create ordered data structs
 902 * in ram to track those extents.
 903 *
 904 * locked_page is the page that writepage had locked already.  We use
 905 * it to make sure we don't do extra locks or unlocks.
 906 *
 907 * *page_started is set to one if we unlock locked_page and do everything
 908 * required to start IO on it.  It may be clean and already done with
 909 * IO when we return.
 910 */
 911static noinline int cow_file_range(struct inode *inode,
 912                                   struct page *locked_page,
 913                                   u64 start, u64 end, int *page_started,
 914                                   unsigned long *nr_written,
 915                                   int unlock)
 916{
 917        struct btrfs_root *root = BTRFS_I(inode)->root;
 918        u64 alloc_hint = 0;
 919        u64 num_bytes;
 920        unsigned long ram_size;
 921        u64 disk_num_bytes;
 922        u64 cur_alloc_size;
 923        u64 blocksize = root->sectorsize;
 924        struct btrfs_key ins;
 925        struct extent_map *em;
 926        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 927        int ret = 0;
 928
 929        if (btrfs_is_free_space_inode(inode)) {
 930                WARN_ON_ONCE(1);
 931                ret = -EINVAL;
 932                goto out_unlock;
 933        }
 934
 935        num_bytes = ALIGN(end - start + 1, blocksize);
 936        num_bytes = max(blocksize,  num_bytes);
 937        disk_num_bytes = num_bytes;
 938
 939        /* if this is a small write inside eof, kick off defrag */
 940        if (num_bytes < 64 * 1024 &&
 941            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 942                btrfs_add_inode_defrag(NULL, inode);
 943
 944        if (start == 0) {
 945                /* lets try to make an inline extent */
 946                ret = cow_file_range_inline(root, inode, start, end, 0, 0,
 947                                            NULL);
 948                if (ret == 0) {
 949                        extent_clear_unlock_delalloc(inode, start, end, NULL,
 950                                     EXTENT_LOCKED | EXTENT_DELALLOC |
 951                                     EXTENT_DEFRAG, PAGE_UNLOCK |
 952                                     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
 953                                     PAGE_END_WRITEBACK);
 954
 955                        *nr_written = *nr_written +
 956                             (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
 957                        *page_started = 1;
 958                        goto out;
 959                } else if (ret < 0) {
 960                        goto out_unlock;
 961                }
 962        }
 963
 964        BUG_ON(disk_num_bytes >
 965               btrfs_super_total_bytes(root->fs_info->super_copy));
 966
 967        alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
 968        btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
 969
 970        while (disk_num_bytes > 0) {
 971                unsigned long op;
 972
 973                cur_alloc_size = disk_num_bytes;
 974                ret = btrfs_reserve_extent(root, cur_alloc_size,
 975                                           root->sectorsize, 0, alloc_hint,
 976                                           &ins, 1, 1);
 977                if (ret < 0)
 978                        goto out_unlock;
 979
 980                em = alloc_extent_map();
 981                if (!em) {
 982                        ret = -ENOMEM;
 983                        goto out_reserve;
 984                }
 985                em->start = start;
 986                em->orig_start = em->start;
 987                ram_size = ins.offset;
 988                em->len = ins.offset;
 989                em->mod_start = em->start;
 990                em->mod_len = em->len;
 991
 992                em->block_start = ins.objectid;
 993                em->block_len = ins.offset;
 994                em->orig_block_len = ins.offset;
 995                em->ram_bytes = ram_size;
 996                em->bdev = root->fs_info->fs_devices->latest_bdev;
 997                set_bit(EXTENT_FLAG_PINNED, &em->flags);
 998                em->generation = -1;
 999
1000                while (1) {
1001                        write_lock(&em_tree->lock);
1002                        ret = add_extent_mapping(em_tree, em, 1);
1003                        write_unlock(&em_tree->lock);
1004                        if (ret != -EEXIST) {
1005                                free_extent_map(em);
1006                                break;
1007                        }
1008                        btrfs_drop_extent_cache(inode, start,
1009                                                start + ram_size - 1, 0);
1010                }
1011                if (ret)
1012                        goto out_reserve;
1013
1014                cur_alloc_size = ins.offset;
1015                ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1016                                               ram_size, cur_alloc_size, 0);
1017                if (ret)
1018                        goto out_drop_extent_cache;
1019
1020                if (root->root_key.objectid ==
1021                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1022                        ret = btrfs_reloc_clone_csums(inode, start,
1023                                                      cur_alloc_size);
1024                        if (ret)
1025                                goto out_drop_extent_cache;
1026                }
1027
1028                if (disk_num_bytes < cur_alloc_size)
1029                        break;
1030
1031                /* we're not doing compressed IO, don't unlock the first
1032                 * page (which the caller expects to stay locked), don't
1033                 * clear any dirty bits and don't set any writeback bits
1034                 *
1035                 * Do set the Private2 bit so we know this page was properly
1036                 * setup for writepage
1037                 */
1038                op = unlock ? PAGE_UNLOCK : 0;
1039                op |= PAGE_SET_PRIVATE2;
1040
1041                extent_clear_unlock_delalloc(inode, start,
1042                                             start + ram_size - 1, locked_page,
1043                                             EXTENT_LOCKED | EXTENT_DELALLOC,
1044                                             op);
1045                disk_num_bytes -= cur_alloc_size;
1046                num_bytes -= cur_alloc_size;
1047                alloc_hint = ins.objectid + ins.offset;
1048                start += cur_alloc_size;
1049        }
1050out:
1051        return ret;
1052
1053out_drop_extent_cache:
1054        btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1055out_reserve:
1056        btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1057out_unlock:
1058        extent_clear_unlock_delalloc(inode, start, end, locked_page,
1059                                     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1060                                     EXTENT_DELALLOC | EXTENT_DEFRAG,
1061                                     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1062                                     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1063        goto out;
1064}
1065
1066/*
1067 * work queue call back to started compression on a file and pages
1068 */
1069static noinline void async_cow_start(struct btrfs_work *work)
1070{
1071        struct async_cow *async_cow;
1072        int num_added = 0;
1073        async_cow = container_of(work, struct async_cow, work);
1074
1075        compress_file_range(async_cow->inode, async_cow->locked_page,
1076                            async_cow->start, async_cow->end, async_cow,
1077                            &num_added);
1078        if (num_added == 0) {
1079                btrfs_add_delayed_iput(async_cow->inode);
1080                async_cow->inode = NULL;
1081        }
1082}
1083
1084/*
1085 * work queue call back to submit previously compressed pages
1086 */
1087static noinline void async_cow_submit(struct btrfs_work *work)
1088{
1089        struct async_cow *async_cow;
1090        struct btrfs_root *root;
1091        unsigned long nr_pages;
1092
1093        async_cow = container_of(work, struct async_cow, work);
1094
1095        root = async_cow->root;
1096        nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1097                PAGE_CACHE_SHIFT;
1098
1099        if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1100            5 * 1024 * 1024 &&
1101            waitqueue_active(&root->fs_info->async_submit_wait))
1102                wake_up(&root->fs_info->async_submit_wait);
1103
1104        if (async_cow->inode)
1105                submit_compressed_extents(async_cow->inode, async_cow);
1106}
1107
1108static noinline void async_cow_free(struct btrfs_work *work)
1109{
1110        struct async_cow *async_cow;
1111        async_cow = container_of(work, struct async_cow, work);
1112        if (async_cow->inode)
1113                btrfs_add_delayed_iput(async_cow->inode);
1114        kfree(async_cow);
1115}
1116
1117static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1118                                u64 start, u64 end, int *page_started,
1119                                unsigned long *nr_written)
1120{
1121        struct async_cow *async_cow;
1122        struct btrfs_root *root = BTRFS_I(inode)->root;
1123        unsigned long nr_pages;
1124        u64 cur_end;
1125        int limit = 10 * 1024 * 1024;
1126
1127        clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1128                         1, 0, NULL, GFP_NOFS);
1129        while (start < end) {
1130                async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1131                BUG_ON(!async_cow); /* -ENOMEM */
1132                async_cow->inode = igrab(inode);
1133                async_cow->root = root;
1134                async_cow->locked_page = locked_page;
1135                async_cow->start = start;
1136
1137                if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1138                    !btrfs_test_opt(root, FORCE_COMPRESS))
1139                        cur_end = end;
1140                else
1141                        cur_end = min(end, start + 512 * 1024 - 1);
1142
1143                async_cow->end = cur_end;
1144                INIT_LIST_HEAD(&async_cow->extents);
1145
1146                btrfs_init_work(&async_cow->work,
1147                                btrfs_delalloc_helper,
1148                                async_cow_start, async_cow_submit,
1149                                async_cow_free);
1150
1151                nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1152                        PAGE_CACHE_SHIFT;
1153                atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1154
1155                btrfs_queue_work(root->fs_info->delalloc_workers,
1156                                 &async_cow->work);
1157
1158                if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1159                        wait_event(root->fs_info->async_submit_wait,
1160                           (atomic_read(&root->fs_info->async_delalloc_pages) <
1161                            limit));
1162                }
1163
1164                while (atomic_read(&root->fs_info->async_submit_draining) &&
1165                      atomic_read(&root->fs_info->async_delalloc_pages)) {
1166                        wait_event(root->fs_info->async_submit_wait,
1167                          (atomic_read(&root->fs_info->async_delalloc_pages) ==
1168                           0));
1169                }
1170
1171                *nr_written += nr_pages;
1172                start = cur_end + 1;
1173        }
1174        *page_started = 1;
1175        return 0;
1176}
1177
1178static noinline int csum_exist_in_range(struct btrfs_root *root,
1179                                        u64 bytenr, u64 num_bytes)
1180{
1181        int ret;
1182        struct btrfs_ordered_sum *sums;
1183        LIST_HEAD(list);
1184
1185        ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1186                                       bytenr + num_bytes - 1, &list, 0);
1187        if (ret == 0 && list_empty(&list))
1188                return 0;
1189
1190        while (!list_empty(&list)) {
1191                sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1192                list_del(&sums->list);
1193                kfree(sums);
1194        }
1195        return 1;
1196}
1197
1198/*
1199 * when nowcow writeback call back.  This checks for snapshots or COW copies
1200 * of the extents that exist in the file, and COWs the file as required.
1201 *
1202 * If no cow copies or snapshots exist, we write directly to the existing
1203 * blocks on disk
1204 */
1205static noinline int run_delalloc_nocow(struct inode *inode,
1206                                       struct page *locked_page,
1207                              u64 start, u64 end, int *page_started, int force,
1208                              unsigned long *nr_written)
1209{
1210        struct btrfs_root *root = BTRFS_I(inode)->root;
1211        struct btrfs_trans_handle *trans;
1212        struct extent_buffer *leaf;
1213        struct btrfs_path *path;
1214        struct btrfs_file_extent_item *fi;
1215        struct btrfs_key found_key;
1216        u64 cow_start;
1217        u64 cur_offset;
1218        u64 extent_end;
1219        u64 extent_offset;
1220        u64 disk_bytenr;
1221        u64 num_bytes;
1222        u64 disk_num_bytes;
1223        u64 ram_bytes;
1224        int extent_type;
1225        int ret, err;
1226        int type;
1227        int nocow;
1228        int check_prev = 1;
1229        bool nolock;
1230        u64 ino = btrfs_ino(inode);
1231
1232        path = btrfs_alloc_path();
1233        if (!path) {
1234                extent_clear_unlock_delalloc(inode, start, end, locked_page,
1235                                             EXTENT_LOCKED | EXTENT_DELALLOC |
1236                                             EXTENT_DO_ACCOUNTING |
1237                                             EXTENT_DEFRAG, PAGE_UNLOCK |
1238                                             PAGE_CLEAR_DIRTY |
1239                                             PAGE_SET_WRITEBACK |
1240                                             PAGE_END_WRITEBACK);
1241                return -ENOMEM;
1242        }
1243
1244        nolock = btrfs_is_free_space_inode(inode);
1245
1246        if (nolock)
1247                trans = btrfs_join_transaction_nolock(root);
1248        else
1249                trans = btrfs_join_transaction(root);
1250
1251        if (IS_ERR(trans)) {
1252                extent_clear_unlock_delalloc(inode, start, end, locked_page,
1253                                             EXTENT_LOCKED | EXTENT_DELALLOC |
1254                                             EXTENT_DO_ACCOUNTING |
1255                                             EXTENT_DEFRAG, PAGE_UNLOCK |
1256                                             PAGE_CLEAR_DIRTY |
1257                                             PAGE_SET_WRITEBACK |
1258                                             PAGE_END_WRITEBACK);
1259                btrfs_free_path(path);
1260                return PTR_ERR(trans);
1261        }
1262
1263        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1264
1265        cow_start = (u64)-1;
1266        cur_offset = start;
1267        while (1) {
1268                ret = btrfs_lookup_file_extent(trans, root, path, ino,
1269                                               cur_offset, 0);
1270                if (ret < 0)
1271                        goto error;
1272                if (ret > 0 && path->slots[0] > 0 && check_prev) {
1273                        leaf = path->nodes[0];
1274                        btrfs_item_key_to_cpu(leaf, &found_key,
1275                                              path->slots[0] - 1);
1276                        if (found_key.objectid == ino &&
1277                            found_key.type == BTRFS_EXTENT_DATA_KEY)
1278                                path->slots[0]--;
1279                }
1280                check_prev = 0;
1281next_slot:
1282                leaf = path->nodes[0];
1283                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1284                        ret = btrfs_next_leaf(root, path);
1285                        if (ret < 0)
1286                                goto error;
1287                        if (ret > 0)
1288                                break;
1289                        leaf = path->nodes[0];
1290                }
1291
1292                nocow = 0;
1293                disk_bytenr = 0;
1294                num_bytes = 0;
1295                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1296
1297                if (found_key.objectid > ino ||
1298                    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1299                    found_key.offset > end)
1300                        break;
1301
1302                if (found_key.offset > cur_offset) {
1303                        extent_end = found_key.offset;
1304                        extent_type = 0;
1305                        goto out_check;
1306                }
1307
1308                fi = btrfs_item_ptr(leaf, path->slots[0],
1309                                    struct btrfs_file_extent_item);
1310                extent_type = btrfs_file_extent_type(leaf, fi);
1311
1312                ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1313                if (extent_type == BTRFS_FILE_EXTENT_REG ||
1314                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1315                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1316                        extent_offset = btrfs_file_extent_offset(leaf, fi);
1317                        extent_end = found_key.offset +
1318                                btrfs_file_extent_num_bytes(leaf, fi);
1319                        disk_num_bytes =
1320                                btrfs_file_extent_disk_num_bytes(leaf, fi);
1321                        if (extent_end <= start) {
1322                                path->slots[0]++;
1323                                goto next_slot;
1324                        }
1325                        if (disk_bytenr == 0)
1326                                goto out_check;
1327                        if (btrfs_file_extent_compression(leaf, fi) ||
1328                            btrfs_file_extent_encryption(leaf, fi) ||
1329                            btrfs_file_extent_other_encoding(leaf, fi))
1330                                goto out_check;
1331                        if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1332                                goto out_check;
1333                        if (btrfs_extent_readonly(root, disk_bytenr))
1334                                goto out_check;
1335                        if (btrfs_cross_ref_exist(trans, root, ino,
1336                                                  found_key.offset -
1337                                                  extent_offset, disk_bytenr))
1338                                goto out_check;
1339                        disk_bytenr += extent_offset;
1340                        disk_bytenr += cur_offset - found_key.offset;
1341                        num_bytes = min(end + 1, extent_end) - cur_offset;
1342                        /*
1343                         * if there are pending snapshots for this root,
1344                         * we fall into common COW way.
1345                         */
1346                        if (!nolock) {
1347                                err = btrfs_start_write_no_snapshoting(root);
1348                                if (!err)
1349                                        goto out_check;
1350                        }
1351                        /*
1352                         * force cow if csum exists in the range.
1353                         * this ensure that csum for a given extent are
1354                         * either valid or do not exist.
1355                         */
1356                        if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1357                                goto out_check;
1358                        nocow = 1;
1359                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1360                        extent_end = found_key.offset +
1361                                btrfs_file_extent_inline_len(leaf,
1362                                                     path->slots[0], fi);
1363                        extent_end = ALIGN(extent_end, root->sectorsize);
1364                } else {
1365                        BUG_ON(1);
1366                }
1367out_check:
1368                if (extent_end <= start) {
1369                        path->slots[0]++;
1370                        if (!nolock && nocow)
1371                                btrfs_end_write_no_snapshoting(root);
1372                        goto next_slot;
1373                }
1374                if (!nocow) {
1375                        if (cow_start == (u64)-1)
1376                                cow_start = cur_offset;
1377                        cur_offset = extent_end;
1378                        if (cur_offset > end)
1379                                break;
1380                        path->slots[0]++;
1381                        goto next_slot;
1382                }
1383
1384                btrfs_release_path(path);
1385                if (cow_start != (u64)-1) {
1386                        ret = cow_file_range(inode, locked_page,
1387                                             cow_start, found_key.offset - 1,
1388                                             page_started, nr_written, 1);
1389                        if (ret) {
1390                                if (!nolock && nocow)
1391                                        btrfs_end_write_no_snapshoting(root);
1392                                goto error;
1393                        }
1394                        cow_start = (u64)-1;
1395                }
1396
1397                if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1398                        struct extent_map *em;
1399                        struct extent_map_tree *em_tree;
1400                        em_tree = &BTRFS_I(inode)->extent_tree;
1401                        em = alloc_extent_map();
1402                        BUG_ON(!em); /* -ENOMEM */
1403                        em->start = cur_offset;
1404                        em->orig_start = found_key.offset - extent_offset;
1405                        em->len = num_bytes;
1406                        em->block_len = num_bytes;
1407                        em->block_start = disk_bytenr;
1408                        em->orig_block_len = disk_num_bytes;
1409                        em->ram_bytes = ram_bytes;
1410                        em->bdev = root->fs_info->fs_devices->latest_bdev;
1411                        em->mod_start = em->start;
1412                        em->mod_len = em->len;
1413                        set_bit(EXTENT_FLAG_PINNED, &em->flags);
1414                        set_bit(EXTENT_FLAG_FILLING, &em->flags);
1415                        em->generation = -1;
1416                        while (1) {
1417                                write_lock(&em_tree->lock);
1418                                ret = add_extent_mapping(em_tree, em, 1);
1419                                write_unlock(&em_tree->lock);
1420                                if (ret != -EEXIST) {
1421                                        free_extent_map(em);
1422                                        break;
1423                                }
1424                                btrfs_drop_extent_cache(inode, em->start,
1425                                                em->start + em->len - 1, 0);
1426                        }
1427                        type = BTRFS_ORDERED_PREALLOC;
1428                } else {
1429                        type = BTRFS_ORDERED_NOCOW;
1430                }
1431
1432                ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1433                                               num_bytes, num_bytes, type);
1434                BUG_ON(ret); /* -ENOMEM */
1435
1436                if (root->root_key.objectid ==
1437                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1438                        ret = btrfs_reloc_clone_csums(inode, cur_offset,
1439                                                      num_bytes);
1440                        if (ret) {
1441                                if (!nolock && nocow)
1442                                        btrfs_end_write_no_snapshoting(root);
1443                                goto error;
1444                        }
1445                }
1446
1447                extent_clear_unlock_delalloc(inode, cur_offset,
1448                                             cur_offset + num_bytes - 1,
1449                                             locked_page, EXTENT_LOCKED |
1450                                             EXTENT_DELALLOC, PAGE_UNLOCK |
1451                                             PAGE_SET_PRIVATE2);
1452                if (!nolock && nocow)
1453                        btrfs_end_write_no_snapshoting(root);
1454                cur_offset = extent_end;
1455                if (cur_offset > end)
1456                        break;
1457        }
1458        btrfs_release_path(path);
1459
1460        if (cur_offset <= end && cow_start == (u64)-1) {
1461                cow_start = cur_offset;
1462                cur_offset = end;
1463        }
1464
1465        if (cow_start != (u64)-1) {
1466                ret = cow_file_range(inode, locked_page, cow_start, end,
1467                                     page_started, nr_written, 1);
1468                if (ret)
1469                        goto error;
1470        }
1471
1472error:
1473        err = btrfs_end_transaction(trans, root);
1474        if (!ret)
1475                ret = err;
1476
1477        if (ret && cur_offset < end)
1478                extent_clear_unlock_delalloc(inode, cur_offset, end,
1479                                             locked_page, EXTENT_LOCKED |
1480                                             EXTENT_DELALLOC | EXTENT_DEFRAG |
1481                                             EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1482                                             PAGE_CLEAR_DIRTY |
1483                                             PAGE_SET_WRITEBACK |
1484                                             PAGE_END_WRITEBACK);
1485        btrfs_free_path(path);
1486        return ret;
1487}
1488
1489static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1490{
1491
1492        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1493            !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1494                return 0;
1495
1496        /*
1497         * @defrag_bytes is a hint value, no spinlock held here,
1498         * if is not zero, it means the file is defragging.
1499         * Force cow if given extent needs to be defragged.
1500         */
1501        if (BTRFS_I(inode)->defrag_bytes &&
1502            test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1503                           EXTENT_DEFRAG, 0, NULL))
1504                return 1;
1505
1506        return 0;
1507}
1508
1509/*
1510 * extent_io.c call back to do delayed allocation processing
1511 */
1512static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1513                              u64 start, u64 end, int *page_started,
1514                              unsigned long *nr_written)
1515{
1516        int ret;
1517        int force_cow = need_force_cow(inode, start, end);
1518
1519        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1520                ret = run_delalloc_nocow(inode, locked_page, start, end,
1521                                         page_started, 1, nr_written);
1522        } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1523                ret = run_delalloc_nocow(inode, locked_page, start, end,
1524                                         page_started, 0, nr_written);
1525        } else if (!inode_need_compress(inode)) {
1526                ret = cow_file_range(inode, locked_page, start, end,
1527                                      page_started, nr_written, 1);
1528        } else {
1529                set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1530                        &BTRFS_I(inode)->runtime_flags);
1531                ret = cow_file_range_async(inode, locked_page, start, end,
1532                                           page_started, nr_written);
1533        }
1534        return ret;
1535}
1536
1537static void btrfs_split_extent_hook(struct inode *inode,
1538                                    struct extent_state *orig, u64 split)
1539{
1540        u64 size;
1541
1542        /* not delalloc, ignore it */
1543        if (!(orig->state & EXTENT_DELALLOC))
1544                return;
1545
1546        size = orig->end - orig->start + 1;
1547        if (size > BTRFS_MAX_EXTENT_SIZE) {
1548                u64 num_extents;
1549                u64 new_size;
1550
1551                /*
1552                 * See the explanation in btrfs_merge_extent_hook, the same
1553                 * applies here, just in reverse.
1554                 */
1555                new_size = orig->end - split + 1;
1556                num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1557                                        BTRFS_MAX_EXTENT_SIZE);
1558                new_size = split - orig->start;
1559                num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1560                                        BTRFS_MAX_EXTENT_SIZE);
1561                if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1562                              BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1563                        return;
1564        }
1565
1566        spin_lock(&BTRFS_I(inode)->lock);
1567        BTRFS_I(inode)->outstanding_extents++;
1568        spin_unlock(&BTRFS_I(inode)->lock);
1569}
1570
1571/*
1572 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1573 * extents so we can keep track of new extents that are just merged onto old
1574 * extents, such as when we are doing sequential writes, so we can properly
1575 * account for the metadata space we'll need.
1576 */
1577static void btrfs_merge_extent_hook(struct inode *inode,
1578                                    struct extent_state *new,
1579                                    struct extent_state *other)
1580{
1581        u64 new_size, old_size;
1582        u64 num_extents;
1583
1584        /* not delalloc, ignore it */
1585        if (!(other->state & EXTENT_DELALLOC))
1586                return;
1587
1588        if (new->start > other->start)
1589                new_size = new->end - other->start + 1;
1590        else
1591                new_size = other->end - new->start + 1;
1592
1593        /* we're not bigger than the max, unreserve the space and go */
1594        if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1595                spin_lock(&BTRFS_I(inode)->lock);
1596                BTRFS_I(inode)->outstanding_extents--;
1597                spin_unlock(&BTRFS_I(inode)->lock);
1598                return;
1599        }
1600
1601        /*
1602         * We have to add up either side to figure out how many extents were
1603         * accounted for before we merged into one big extent.  If the number of
1604         * extents we accounted for is <= the amount we need for the new range
1605         * then we can return, otherwise drop.  Think of it like this
1606         *
1607         * [ 4k][MAX_SIZE]
1608         *
1609         * So we've grown the extent by a MAX_SIZE extent, this would mean we
1610         * need 2 outstanding extents, on one side we have 1 and the other side
1611         * we have 1 so they are == and we can return.  But in this case
1612         *
1613         * [MAX_SIZE+4k][MAX_SIZE+4k]
1614         *
1615         * Each range on their own accounts for 2 extents, but merged together
1616         * they are only 3 extents worth of accounting, so we need to drop in
1617         * this case.
1618         */
1619        old_size = other->end - other->start + 1;
1620        num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1621                                BTRFS_MAX_EXTENT_SIZE);
1622        old_size = new->end - new->start + 1;
1623        num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1624                                 BTRFS_MAX_EXTENT_SIZE);
1625
1626        if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1627                      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1628                return;
1629
1630        spin_lock(&BTRFS_I(inode)->lock);
1631        BTRFS_I(inode)->outstanding_extents--;
1632        spin_unlock(&BTRFS_I(inode)->lock);
1633}
1634
1635static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1636                                      struct inode *inode)
1637{
1638        spin_lock(&root->delalloc_lock);
1639        if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1640                list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1641                              &root->delalloc_inodes);
1642                set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1643                        &BTRFS_I(inode)->runtime_flags);
1644                root->nr_delalloc_inodes++;
1645                if (root->nr_delalloc_inodes == 1) {
1646                        spin_lock(&root->fs_info->delalloc_root_lock);
1647                        BUG_ON(!list_empty(&root->delalloc_root));
1648                        list_add_tail(&root->delalloc_root,
1649                                      &root->fs_info->delalloc_roots);
1650                        spin_unlock(&root->fs_info->delalloc_root_lock);
1651                }
1652        }
1653        spin_unlock(&root->delalloc_lock);
1654}
1655
1656static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1657                                     struct inode *inode)
1658{
1659        spin_lock(&root->delalloc_lock);
1660        if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1661                list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1662                clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1663                          &BTRFS_I(inode)->runtime_flags);
1664                root->nr_delalloc_inodes--;
1665                if (!root->nr_delalloc_inodes) {
1666                        spin_lock(&root->fs_info->delalloc_root_lock);
1667                        BUG_ON(list_empty(&root->delalloc_root));
1668                        list_del_init(&root->delalloc_root);
1669                        spin_unlock(&root->fs_info->delalloc_root_lock);
1670                }
1671        }
1672        spin_unlock(&root->delalloc_lock);
1673}
1674
1675/*
1676 * extent_io.c set_bit_hook, used to track delayed allocation
1677 * bytes in this file, and to maintain the list of inodes that
1678 * have pending delalloc work to be done.
1679 */
1680static void btrfs_set_bit_hook(struct inode *inode,
1681                               struct extent_state *state, unsigned *bits)
1682{
1683
1684        if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1685                WARN_ON(1);
1686        /*
1687         * set_bit and clear bit hooks normally require _irqsave/restore
1688         * but in this case, we are only testing for the DELALLOC
1689         * bit, which is only set or cleared with irqs on
1690         */
1691        if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1692                struct btrfs_root *root = BTRFS_I(inode)->root;
1693                u64 len = state->end + 1 - state->start;
1694                bool do_list = !btrfs_is_free_space_inode(inode);
1695
1696                if (*bits & EXTENT_FIRST_DELALLOC) {
1697                        *bits &= ~EXTENT_FIRST_DELALLOC;
1698                } else {
1699                        spin_lock(&BTRFS_I(inode)->lock);
1700                        BTRFS_I(inode)->outstanding_extents++;
1701                        spin_unlock(&BTRFS_I(inode)->lock);
1702                }
1703
1704                /* For sanity tests */
1705                if (btrfs_test_is_dummy_root(root))
1706                        return;
1707
1708                __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1709                                     root->fs_info->delalloc_batch);
1710                spin_lock(&BTRFS_I(inode)->lock);
1711                BTRFS_I(inode)->delalloc_bytes += len;
1712                if (*bits & EXTENT_DEFRAG)
1713                        BTRFS_I(inode)->defrag_bytes += len;
1714                if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1715                                         &BTRFS_I(inode)->runtime_flags))
1716                        btrfs_add_delalloc_inodes(root, inode);
1717                spin_unlock(&BTRFS_I(inode)->lock);
1718        }
1719}
1720
1721/*
1722 * extent_io.c clear_bit_hook, see set_bit_hook for why
1723 */
1724static void btrfs_clear_bit_hook(struct inode *inode,
1725                                 struct extent_state *state,
1726                                 unsigned *bits)
1727{
1728        u64 len = state->end + 1 - state->start;
1729        u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1730                                    BTRFS_MAX_EXTENT_SIZE);
1731
1732        spin_lock(&BTRFS_I(inode)->lock);
1733        if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1734                BTRFS_I(inode)->defrag_bytes -= len;
1735        spin_unlock(&BTRFS_I(inode)->lock);
1736
1737        /*
1738         * set_bit and clear bit hooks normally require _irqsave/restore
1739         * but in this case, we are only testing for the DELALLOC
1740         * bit, which is only set or cleared with irqs on
1741         */
1742        if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1743                struct btrfs_root *root = BTRFS_I(inode)->root;
1744                bool do_list = !btrfs_is_free_space_inode(inode);
1745
1746                if (*bits & EXTENT_FIRST_DELALLOC) {
1747                        *bits &= ~EXTENT_FIRST_DELALLOC;
1748                } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1749                        spin_lock(&BTRFS_I(inode)->lock);
1750                        BTRFS_I(inode)->outstanding_extents -= num_extents;
1751                        spin_unlock(&BTRFS_I(inode)->lock);
1752                }
1753
1754                /*
1755                 * We don't reserve metadata space for space cache inodes so we
1756                 * don't need to call dellalloc_release_metadata if there is an
1757                 * error.
1758                 */
1759                if (*bits & EXTENT_DO_ACCOUNTING &&
1760                    root != root->fs_info->tree_root)
1761                        btrfs_delalloc_release_metadata(inode, len);
1762
1763                /* For sanity tests. */
1764                if (btrfs_test_is_dummy_root(root))
1765                        return;
1766
1767                if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1768                    && do_list && !(state->state & EXTENT_NORESERVE))
1769                        btrfs_free_reserved_data_space(inode, len);
1770
1771                __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1772                                     root->fs_info->delalloc_batch);
1773                spin_lock(&BTRFS_I(inode)->lock);
1774                BTRFS_I(inode)->delalloc_bytes -= len;
1775                if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1776                    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1777                             &BTRFS_I(inode)->runtime_flags))
1778                        btrfs_del_delalloc_inode(root, inode);
1779                spin_unlock(&BTRFS_I(inode)->lock);
1780        }
1781}
1782
1783/*
1784 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1785 * we don't create bios that span stripes or chunks
1786 */
1787int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1788                         size_t size, struct bio *bio,
1789                         unsigned long bio_flags)
1790{
1791        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1792        u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1793        u64 length = 0;
1794        u64 map_length;
1795        int ret;
1796
1797        if (bio_flags & EXTENT_BIO_COMPRESSED)
1798                return 0;
1799
1800        length = bio->bi_iter.bi_size;
1801        map_length = length;
1802        ret = btrfs_map_block(root->fs_info, rw, logical,
1803                              &map_length, NULL, 0);
1804        /* Will always return 0 with map_multi == NULL */
1805        BUG_ON(ret < 0);
1806        if (map_length < length + size)
1807                return 1;
1808        return 0;
1809}
1810
1811/*
1812 * in order to insert checksums into the metadata in large chunks,
1813 * we wait until bio submission time.   All the pages in the bio are
1814 * checksummed and sums are attached onto the ordered extent record.
1815 *
1816 * At IO completion time the cums attached on the ordered extent record
1817 * are inserted into the btree
1818 */
1819static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1820                                    struct bio *bio, int mirror_num,
1821                                    unsigned long bio_flags,
1822                                    u64 bio_offset)
1823{
1824        struct btrfs_root *root = BTRFS_I(inode)->root;
1825        int ret = 0;
1826
1827        ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1828        BUG_ON(ret); /* -ENOMEM */
1829        return 0;
1830}
1831
1832/*
1833 * in order to insert checksums into the metadata in large chunks,
1834 * we wait until bio submission time.   All the pages in the bio are
1835 * checksummed and sums are attached onto the ordered extent record.
1836 *
1837 * At IO completion time the cums attached on the ordered extent record
1838 * are inserted into the btree
1839 */
1840static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1841                          int mirror_num, unsigned long bio_flags,
1842                          u64 bio_offset)
1843{
1844        struct btrfs_root *root = BTRFS_I(inode)->root;
1845        int ret;
1846
1847        ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1848        if (ret)
1849                bio_endio(bio, ret);
1850        return ret;
1851}
1852
1853/*
1854 * extent_io.c submission hook. This does the right thing for csum calculation
1855 * on write, or reading the csums from the tree before a read
1856 */
1857static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1858                          int mirror_num, unsigned long bio_flags,
1859                          u64 bio_offset)
1860{
1861        struct btrfs_root *root = BTRFS_I(inode)->root;
1862        int ret = 0;
1863        int skip_sum;
1864        int metadata = 0;
1865        int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1866
1867        skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1868
1869        if (btrfs_is_free_space_inode(inode))
1870                metadata = 2;
1871
1872        if (!(rw & REQ_WRITE)) {
1873                ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1874                if (ret)
1875                        goto out;
1876
1877                if (bio_flags & EXTENT_BIO_COMPRESSED) {
1878                        ret = btrfs_submit_compressed_read(inode, bio,
1879                                                           mirror_num,
1880                                                           bio_flags);
1881                        goto out;
1882                } else if (!skip_sum) {
1883                        ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1884                        if (ret)
1885                                goto out;
1886                }
1887                goto mapit;
1888        } else if (async && !skip_sum) {
1889                /* csum items have already been cloned */
1890                if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1891                        goto mapit;
1892                /* we're doing a write, do the async checksumming */
1893                ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1894                                   inode, rw, bio, mirror_num,
1895                                   bio_flags, bio_offset,
1896                                   __btrfs_submit_bio_start,
1897                                   __btrfs_submit_bio_done);
1898                goto out;
1899        } else if (!skip_sum) {
1900                ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1901                if (ret)
1902                        goto out;
1903        }
1904
1905mapit:
1906        ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1907
1908out:
1909        if (ret < 0)
1910                bio_endio(bio, ret);
1911        return ret;
1912}
1913
1914/*
1915 * given a list of ordered sums record them in the inode.  This happens
1916 * at IO completion time based on sums calculated at bio submission time.
1917 */
1918static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1919                             struct inode *inode, u64 file_offset,
1920                             struct list_head *list)
1921{
1922        struct btrfs_ordered_sum *sum;
1923
1924        list_for_each_entry(sum, list, list) {
1925                trans->adding_csums = 1;
1926                btrfs_csum_file_blocks(trans,
1927                       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1928                trans->adding_csums = 0;
1929        }
1930        return 0;
1931}
1932
1933int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1934                              struct extent_state **cached_state)
1935{
1936        WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1937        return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1938                                   cached_state, GFP_NOFS);
1939}
1940
1941/* see btrfs_writepage_start_hook for details on why this is required */
1942struct btrfs_writepage_fixup {
1943        struct page *page;
1944        struct btrfs_work work;
1945};
1946
1947static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1948{
1949        struct btrfs_writepage_fixup *fixup;
1950        struct btrfs_ordered_extent *ordered;
1951        struct extent_state *cached_state = NULL;
1952        struct page *page;
1953        struct inode *inode;
1954        u64 page_start;
1955        u64 page_end;
1956        int ret;
1957
1958        fixup = container_of(work, struct btrfs_writepage_fixup, work);
1959        page = fixup->page;
1960again:
1961        lock_page(page);
1962        if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1963                ClearPageChecked(page);
1964                goto out_page;
1965        }
1966
1967        inode = page->mapping->host;
1968        page_start = page_offset(page);
1969        page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1970
1971        lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1972                         &cached_state);
1973
1974        /* already ordered? We're done */
1975        if (PagePrivate2(page))
1976                goto out;
1977
1978        ordered = btrfs_lookup_ordered_extent(inode, page_start);
1979        if (ordered) {
1980                unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1981                                     page_end, &cached_state, GFP_NOFS);
1982                unlock_page(page);
1983                btrfs_start_ordered_extent(inode, ordered, 1);
1984                btrfs_put_ordered_extent(ordered);
1985                goto again;
1986        }
1987
1988        ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1989        if (ret) {
1990                mapping_set_error(page->mapping, ret);
1991                end_extent_writepage(page, ret, page_start, page_end);
1992                ClearPageChecked(page);
1993                goto out;
1994         }
1995
1996        btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1997        ClearPageChecked(page);
1998        set_page_dirty(page);
1999out:
2000        unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2001                             &cached_state, GFP_NOFS);
2002out_page:
2003        unlock_page(page);
2004        page_cache_release(page);
2005        kfree(fixup);
2006}
2007
2008/*
2009 * There are a few paths in the higher layers of the kernel that directly
2010 * set the page dirty bit without asking the filesystem if it is a
2011 * good idea.  This causes problems because we want to make sure COW
2012 * properly happens and the data=ordered rules are followed.
2013 *
2014 * In our case any range that doesn't have the ORDERED bit set
2015 * hasn't been properly setup for IO.  We kick off an async process
2016 * to fix it up.  The async helper will wait for ordered extents, set
2017 * the delalloc bit and make it safe to write the page.
2018 */
2019static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2020{
2021        struct inode *inode = page->mapping->host;
2022        struct btrfs_writepage_fixup *fixup;
2023        struct btrfs_root *root = BTRFS_I(inode)->root;
2024
2025        /* this page is properly in the ordered list */
2026        if (TestClearPagePrivate2(page))
2027                return 0;
2028
2029        if (PageChecked(page))
2030                return -EAGAIN;
2031
2032        fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2033        if (!fixup)
2034                return -EAGAIN;
2035
2036        SetPageChecked(page);
2037        page_cache_get(page);
2038        btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2039                        btrfs_writepage_fixup_worker, NULL, NULL);
2040        fixup->page = page;
2041        btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2042        return -EBUSY;
2043}
2044
2045static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2046                                       struct inode *inode, u64 file_pos,
2047                                       u64 disk_bytenr, u64 disk_num_bytes,
2048                                       u64 num_bytes, u64 ram_bytes,
2049                                       u8 compression, u8 encryption,
2050                                       u16 other_encoding, int extent_type)
2051{
2052        struct btrfs_root *root = BTRFS_I(inode)->root;
2053        struct btrfs_file_extent_item *fi;
2054        struct btrfs_path *path;
2055        struct extent_buffer *leaf;
2056        struct btrfs_key ins;
2057        int extent_inserted = 0;
2058        int ret;
2059
2060        path = btrfs_alloc_path();
2061        if (!path)
2062                return -ENOMEM;
2063
2064        /*
2065         * we may be replacing one extent in the tree with another.
2066         * The new extent is pinned in the extent map, and we don't want
2067         * to drop it from the cache until it is completely in the btree.
2068         *
2069         * So, tell btrfs_drop_extents to leave this extent in the cache.
2070         * the caller is expected to unpin it and allow it to be merged
2071         * with the others.
2072         */
2073        ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2074                                   file_pos + num_bytes, NULL, 0,
2075                                   1, sizeof(*fi), &extent_inserted);
2076        if (ret)
2077                goto out;
2078
2079        if (!extent_inserted) {
2080                ins.objectid = btrfs_ino(inode);
2081                ins.offset = file_pos;
2082                ins.type = BTRFS_EXTENT_DATA_KEY;
2083
2084                path->leave_spinning = 1;
2085                ret = btrfs_insert_empty_item(trans, root, path, &ins,
2086                                              sizeof(*fi));
2087                if (ret)
2088                        goto out;
2089        }
2090        leaf = path->nodes[0];
2091        fi = btrfs_item_ptr(leaf, path->slots[0],
2092                            struct btrfs_file_extent_item);
2093        btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2094        btrfs_set_file_extent_type(leaf, fi, extent_type);
2095        btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2096        btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2097        btrfs_set_file_extent_offset(leaf, fi, 0);
2098        btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2099        btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2100        btrfs_set_file_extent_compression(leaf, fi, compression);
2101        btrfs_set_file_extent_encryption(leaf, fi, encryption);
2102        btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2103
2104        btrfs_mark_buffer_dirty(leaf);
2105        btrfs_release_path(path);
2106
2107        inode_add_bytes(inode, num_bytes);
2108
2109        ins.objectid = disk_bytenr;
2110        ins.offset = disk_num_bytes;
2111        ins.type = BTRFS_EXTENT_ITEM_KEY;
2112        ret = btrfs_alloc_reserved_file_extent(trans, root,
2113                                        root->root_key.objectid,
2114                                        btrfs_ino(inode), file_pos, &ins);
2115out:
2116        btrfs_free_path(path);
2117
2118        return ret;
2119}
2120
2121/* snapshot-aware defrag */
2122struct sa_defrag_extent_backref {
2123        struct rb_node node;
2124        struct old_sa_defrag_extent *old;
2125        u64 root_id;
2126        u64 inum;
2127        u64 file_pos;
2128        u64 extent_offset;
2129        u64 num_bytes;
2130        u64 generation;
2131};
2132
2133struct old_sa_defrag_extent {
2134        struct list_head list;
2135        struct new_sa_defrag_extent *new;
2136
2137        u64 extent_offset;
2138        u64 bytenr;
2139        u64 offset;
2140        u64 len;
2141        int count;
2142};
2143
2144struct new_sa_defrag_extent {
2145        struct rb_root root;
2146        struct list_head head;
2147        struct btrfs_path *path;
2148        struct inode *inode;
2149        u64 file_pos;
2150        u64 len;
2151        u64 bytenr;
2152        u64 disk_len;
2153        u8 compress_type;
2154};
2155
2156static int backref_comp(struct sa_defrag_extent_backref *b1,
2157                        struct sa_defrag_extent_backref *b2)
2158{
2159        if (b1->root_id < b2->root_id)
2160                return -1;
2161        else if (b1->root_id > b2->root_id)
2162                return 1;
2163
2164        if (b1->inum < b2->inum)
2165                return -1;
2166        else if (b1->inum > b2->inum)
2167                return 1;
2168
2169        if (b1->file_pos < b2->file_pos)
2170                return -1;
2171        else if (b1->file_pos > b2->file_pos)
2172                return 1;
2173
2174        /*
2175         * [------------------------------] ===> (a range of space)
2176         *     |<--->|   |<---->| =============> (fs/file tree A)
2177         * |<---------------------------->| ===> (fs/file tree B)
2178         *
2179         * A range of space can refer to two file extents in one tree while
2180         * refer to only one file extent in another tree.
2181         *
2182         * So we may process a disk offset more than one time(two extents in A)
2183         * and locate at the same extent(one extent in B), then insert two same
2184         * backrefs(both refer to the extent in B).
2185         */
2186        return 0;
2187}
2188
2189static void backref_insert(struct rb_root *root,
2190                           struct sa_defrag_extent_backref *backref)
2191{
2192        struct rb_node **p = &root->rb_node;
2193        struct rb_node *parent = NULL;
2194        struct sa_defrag_extent_backref *entry;
2195        int ret;
2196
2197        while (*p) {
2198                parent = *p;
2199                entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2200
2201                ret = backref_comp(backref, entry);
2202                if (ret < 0)
2203                        p = &(*p)->rb_left;
2204                else
2205                        p = &(*p)->rb_right;
2206        }
2207
2208        rb_link_node(&backref->node, parent, p);
2209        rb_insert_color(&backref->node, root);
2210}
2211
2212/*
2213 * Note the backref might has changed, and in this case we just return 0.
2214 */
2215static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2216                                       void *ctx)
2217{
2218        struct btrfs_file_extent_item *extent;
2219        struct btrfs_fs_info *fs_info;
2220        struct old_sa_defrag_extent *old = ctx;
2221        struct new_sa_defrag_extent *new = old->new;
2222        struct btrfs_path *path = new->path;
2223        struct btrfs_key key;
2224        struct btrfs_root *root;
2225        struct sa_defrag_extent_backref *backref;
2226        struct extent_buffer *leaf;
2227        struct inode *inode = new->inode;
2228        int slot;
2229        int ret;
2230        u64 extent_offset;
2231        u64 num_bytes;
2232
2233        if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2234            inum == btrfs_ino(inode))
2235                return 0;
2236
2237        key.objectid = root_id;
2238        key.type = BTRFS_ROOT_ITEM_KEY;
2239        key.offset = (u64)-1;
2240
2241        fs_info = BTRFS_I(inode)->root->fs_info;
2242        root = btrfs_read_fs_root_no_name(fs_info, &key);
2243        if (IS_ERR(root)) {
2244                if (PTR_ERR(root) == -ENOENT)
2245                        return 0;
2246                WARN_ON(1);
2247                pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2248                         inum, offset, root_id);
2249                return PTR_ERR(root);
2250        }
2251
2252        key.objectid = inum;
2253        key.type = BTRFS_EXTENT_DATA_KEY;
2254        if (offset > (u64)-1 << 32)
2255                key.offset = 0;
2256        else
2257                key.offset = offset;
2258
2259        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2260        if (WARN_ON(ret < 0))
2261                return ret;
2262        ret = 0;
2263
2264        while (1) {
2265                cond_resched();
2266
2267                leaf = path->nodes[0];
2268                slot = path->slots[0];
2269
2270                if (slot >= btrfs_header_nritems(leaf)) {
2271                        ret = btrfs_next_leaf(root, path);
2272                        if (ret < 0) {
2273                                goto out;
2274                        } else if (ret > 0) {
2275                                ret = 0;
2276                                goto out;
2277                        }
2278                        continue;
2279                }
2280
2281                path->slots[0]++;
2282
2283                btrfs_item_key_to_cpu(leaf, &key, slot);
2284
2285                if (key.objectid > inum)
2286                        goto out;
2287
2288                if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2289                        continue;
2290
2291                extent = btrfs_item_ptr(leaf, slot,
2292                                        struct btrfs_file_extent_item);
2293
2294                if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2295                        continue;
2296
2297                /*
2298                 * 'offset' refers to the exact key.offset,
2299                 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2300                 * (key.offset - extent_offset).
2301                 */
2302                if (key.offset != offset)
2303                        continue;
2304
2305                extent_offset = btrfs_file_extent_offset(leaf, extent);
2306                num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2307
2308                if (extent_offset >= old->extent_offset + old->offset +
2309                    old->len || extent_offset + num_bytes <=
2310                    old->extent_offset + old->offset)
2311                        continue;
2312                break;
2313        }
2314
2315        backref = kmalloc(sizeof(*backref), GFP_NOFS);
2316        if (!backref) {
2317                ret = -ENOENT;
2318                goto out;
2319        }
2320
2321        backref->root_id = root_id;
2322        backref->inum = inum;
2323        backref->file_pos = offset;
2324        backref->num_bytes = num_bytes;
2325        backref->extent_offset = extent_offset;
2326        backref->generation = btrfs_file_extent_generation(leaf, extent);
2327        backref->old = old;
2328        backref_insert(&new->root, backref);
2329        old->count++;
2330out:
2331        btrfs_release_path(path);
2332        WARN_ON(ret);
2333        return ret;
2334}
2335
2336static noinline bool record_extent_backrefs(struct btrfs_path *path,
2337                                   struct new_sa_defrag_extent *new)
2338{
2339        struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2340        struct old_sa_defrag_extent *old, *tmp;
2341        int ret;
2342
2343        new->path = path;
2344
2345        list_for_each_entry_safe(old, tmp, &new->head, list) {
2346                ret = iterate_inodes_from_logical(old->bytenr +
2347                                                  old->extent_offset, fs_info,
2348                                                  path, record_one_backref,
2349                                                  old);
2350                if (ret < 0 && ret != -ENOENT)
2351                        return false;
2352
2353                /* no backref to be processed for this extent */
2354                if (!old->count) {
2355                        list_del(&old->list);
2356                        kfree(old);
2357                }
2358        }
2359
2360        if (list_empty(&new->head))
2361                return false;
2362
2363        return true;
2364}
2365
2366static int relink_is_mergable(struct extent_buffer *leaf,
2367                              struct btrfs_file_extent_item *fi,
2368                              struct new_sa_defrag_extent *new)
2369{
2370        if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2371                return 0;
2372
2373        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2374                return 0;
2375
2376        if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2377                return 0;
2378
2379        if (btrfs_file_extent_encryption(leaf, fi) ||
2380            btrfs_file_extent_other_encoding(leaf, fi))
2381                return 0;
2382
2383        return 1;
2384}
2385
2386/*
2387 * Note the backref might has changed, and in this case we just return 0.
2388 */
2389static noinline int relink_extent_backref(struct btrfs_path *path,
2390                                 struct sa_defrag_extent_backref *prev,
2391                                 struct sa_defrag_extent_backref *backref)
2392{
2393        struct btrfs_file_extent_item *extent;
2394        struct btrfs_file_extent_item *item;
2395        struct btrfs_ordered_extent *ordered;
2396        struct btrfs_trans_handle *trans;
2397        struct btrfs_fs_info *fs_info;
2398        struct btrfs_root *root;
2399        struct btrfs_key key;
2400        struct extent_buffer *leaf;
2401        struct old_sa_defrag_extent *old = backref->old;
2402        struct new_sa_defrag_extent *new = old->new;
2403        struct inode *src_inode = new->inode;
2404        struct inode *inode;
2405        struct extent_state *cached = NULL;
2406        int ret = 0;
2407        u64 start;
2408        u64 len;
2409        u64 lock_start;
2410        u64 lock_end;
2411        bool merge = false;
2412        int index;
2413
2414        if (prev && prev->root_id == backref->root_id &&
2415            prev->inum == backref->inum &&
2416            prev->file_pos + prev->num_bytes == backref->file_pos)
2417                merge = true;
2418
2419        /* step 1: get root */
2420        key.objectid = backref->root_id;
2421        key.type = BTRFS_ROOT_ITEM_KEY;
2422        key.offset = (u64)-1;
2423
2424        fs_info = BTRFS_I(src_inode)->root->fs_info;
2425        index = srcu_read_lock(&fs_info->subvol_srcu);
2426
2427        root = btrfs_read_fs_root_no_name(fs_info, &key);
2428        if (IS_ERR(root)) {
2429                srcu_read_unlock(&fs_info->subvol_srcu, index);
2430                if (PTR_ERR(root) == -ENOENT)
2431                        return 0;
2432                return PTR_ERR(root);
2433        }
2434
2435        if (btrfs_root_readonly(root)) {
2436                srcu_read_unlock(&fs_info->subvol_srcu, index);
2437                return 0;
2438        }
2439
2440        /* step 2: get inode */
2441        key.objectid = backref->inum;
2442        key.type = BTRFS_INODE_ITEM_KEY;
2443        key.offset = 0;
2444
2445        inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2446        if (IS_ERR(inode)) {
2447                srcu_read_unlock(&fs_info->subvol_srcu, index);
2448                return 0;
2449        }
2450
2451        srcu_read_unlock(&fs_info->subvol_srcu, index);
2452
2453        /* step 3: relink backref */
2454        lock_start = backref->file_pos;
2455        lock_end = backref->file_pos + backref->num_bytes - 1;
2456        lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2457                         0, &cached);
2458
2459        ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2460        if (ordered) {
2461                btrfs_put_ordered_extent(ordered);
2462                goto out_unlock;
2463        }
2464
2465        trans = btrfs_join_transaction(root);
2466        if (IS_ERR(trans)) {
2467                ret = PTR_ERR(trans);
2468                goto out_unlock;
2469        }
2470
2471        key.objectid = backref->inum;
2472        key.type = BTRFS_EXTENT_DATA_KEY;
2473        key.offset = backref->file_pos;
2474
2475        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2476        if (ret < 0) {
2477                goto out_free_path;
2478        } else if (ret > 0) {
2479                ret = 0;
2480                goto out_free_path;
2481        }
2482
2483        extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2484                                struct btrfs_file_extent_item);
2485
2486        if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2487            backref->generation)
2488                goto out_free_path;
2489
2490        btrfs_release_path(path);
2491
2492        start = backref->file_pos;
2493        if (backref->extent_offset < old->extent_offset + old->offset)
2494                start += old->extent_offset + old->offset -
2495                         backref->extent_offset;
2496
2497        len = min(backref->extent_offset + backref->num_bytes,
2498                  old->extent_offset + old->offset + old->len);
2499        len -= max(backref->extent_offset, old->extent_offset + old->offset);
2500
2501        ret = btrfs_drop_extents(trans, root, inode, start,
2502                                 start + len, 1);
2503        if (ret)
2504                goto out_free_path;
2505again:
2506        key.objectid = btrfs_ino(inode);
2507        key.type = BTRFS_EXTENT_DATA_KEY;
2508        key.offset = start;
2509
2510        path->leave_spinning = 1;
2511        if (merge) {
2512                struct btrfs_file_extent_item *fi;
2513                u64 extent_len;
2514                struct btrfs_key found_key;
2515
2516                ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2517                if (ret < 0)
2518                        goto out_free_path;
2519
2520                path->slots[0]--;
2521                leaf = path->nodes[0];
2522                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2523
2524                fi = btrfs_item_ptr(leaf, path->slots[0],
2525                                    struct btrfs_file_extent_item);
2526                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2527
2528                if (extent_len + found_key.offset == start &&
2529                    relink_is_mergable(leaf, fi, new)) {
2530                        btrfs_set_file_extent_num_bytes(leaf, fi,
2531                                                        extent_len + len);
2532                        btrfs_mark_buffer_dirty(leaf);
2533                        inode_add_bytes(inode, len);
2534
2535                        ret = 1;
2536                        goto out_free_path;
2537                } else {
2538                        merge = false;
2539                        btrfs_release_path(path);
2540                        goto again;
2541                }
2542        }
2543
2544        ret = btrfs_insert_empty_item(trans, root, path, &key,
2545                                        sizeof(*extent));
2546        if (ret) {
2547                btrfs_abort_transaction(trans, root, ret);
2548                goto out_free_path;
2549        }
2550
2551        leaf = path->nodes[0];
2552        item = btrfs_item_ptr(leaf, path->slots[0],
2553                                struct btrfs_file_extent_item);
2554        btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2555        btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2556        btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2557        btrfs_set_file_extent_num_bytes(leaf, item, len);
2558        btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2559        btrfs_set_file_extent_generation(leaf, item, trans->transid);
2560        btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2561        btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2562        btrfs_set_file_extent_encryption(leaf, item, 0);
2563        btrfs_set_file_extent_other_encoding(leaf, item, 0);
2564
2565        btrfs_mark_buffer_dirty(leaf);
2566        inode_add_bytes(inode, len);
2567        btrfs_release_path(path);
2568
2569        ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2570                        new->disk_len, 0,
2571                        backref->root_id, backref->inum,
2572                        new->file_pos, 0);      /* start - extent_offset */
2573        if (ret) {
2574                btrfs_abort_transaction(trans, root, ret);
2575                goto out_free_path;
2576        }
2577
2578        ret = 1;
2579out_free_path:
2580        btrfs_release_path(path);
2581        path->leave_spinning = 0;
2582        btrfs_end_transaction(trans, root);
2583out_unlock:
2584        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2585                             &cached, GFP_NOFS);
2586        iput(inode);
2587        return ret;
2588}
2589
2590static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2591{
2592        struct old_sa_defrag_extent *old, *tmp;
2593
2594        if (!new)
2595                return;
2596
2597        list_for_each_entry_safe(old, tmp, &new->head, list) {
2598                list_del(&old->list);
2599                kfree(old);
2600        }
2601        kfree(new);
2602}
2603
2604static void relink_file_extents(struct new_sa_defrag_extent *new)
2605{
2606        struct btrfs_path *path;
2607        struct sa_defrag_extent_backref *backref;
2608        struct sa_defrag_extent_backref *prev = NULL;
2609        struct inode *inode;
2610        struct btrfs_root *root;
2611        struct rb_node *node;
2612        int ret;
2613
2614        inode = new->inode;
2615        root = BTRFS_I(inode)->root;
2616
2617        path = btrfs_alloc_path();
2618        if (!path)
2619                return;
2620
2621        if (!record_extent_backrefs(path, new)) {
2622                btrfs_free_path(path);
2623                goto out;
2624        }
2625        btrfs_release_path(path);
2626
2627        while (1) {
2628                node = rb_first(&new->root);
2629                if (!node)
2630                        break;
2631                rb_erase(node, &new->root);
2632
2633                backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2634
2635                ret = relink_extent_backref(path, prev, backref);
2636                WARN_ON(ret < 0);
2637
2638                kfree(prev);
2639
2640                if (ret == 1)
2641                        prev = backref;
2642                else
2643                        prev = NULL;
2644                cond_resched();
2645        }
2646        kfree(prev);
2647
2648        btrfs_free_path(path);
2649out:
2650        free_sa_defrag_extent(new);
2651
2652        atomic_dec(&root->fs_info->defrag_running);
2653        wake_up(&root->fs_info->transaction_wait);
2654}
2655
2656static struct new_sa_defrag_extent *
2657record_old_file_extents(struct inode *inode,
2658                        struct btrfs_ordered_extent *ordered)
2659{
2660        struct btrfs_root *root = BTRFS_I(inode)->root;
2661        struct btrfs_path *path;
2662        struct btrfs_key key;
2663        struct old_sa_defrag_extent *old;
2664        struct new_sa_defrag_extent *new;
2665        int ret;
2666
2667        new = kmalloc(sizeof(*new), GFP_NOFS);
2668        if (!new)
2669                return NULL;
2670
2671        new->inode = inode;
2672        new->file_pos = ordered->file_offset;
2673        new->len = ordered->len;
2674        new->bytenr = ordered->start;
2675        new->disk_len = ordered->disk_len;
2676        new->compress_type = ordered->compress_type;
2677        new->root = RB_ROOT;
2678        INIT_LIST_HEAD(&new->head);
2679
2680        path = btrfs_alloc_path();
2681        if (!path)
2682                goto out_kfree;
2683
2684        key.objectid = btrfs_ino(inode);
2685        key.type = BTRFS_EXTENT_DATA_KEY;
2686        key.offset = new->file_pos;
2687
2688        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2689        if (ret < 0)
2690                goto out_free_path;
2691        if (ret > 0 && path->slots[0] > 0)
2692                path->slots[0]--;
2693
2694        /* find out all the old extents for the file range */
2695        while (1) {
2696                struct btrfs_file_extent_item *extent;
2697                struct extent_buffer *l;
2698                int slot;
2699                u64 num_bytes;
2700                u64 offset;
2701                u64 end;
2702                u64 disk_bytenr;
2703                u64 extent_offset;
2704
2705                l = path->nodes[0];
2706                slot = path->slots[0];
2707
2708                if (slot >= btrfs_header_nritems(l)) {
2709                        ret = btrfs_next_leaf(root, path);
2710                        if (ret < 0)
2711                                goto out_free_path;
2712                        else if (ret > 0)
2713                                break;
2714                        continue;
2715                }
2716
2717                btrfs_item_key_to_cpu(l, &key, slot);
2718
2719                if (key.objectid != btrfs_ino(inode))
2720                        break;
2721                if (key.type != BTRFS_EXTENT_DATA_KEY)
2722                        break;
2723                if (key.offset >= new->file_pos + new->len)
2724                        break;
2725
2726                extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2727
2728                num_bytes = btrfs_file_extent_num_bytes(l, extent);
2729                if (key.offset + num_bytes < new->file_pos)
2730                        goto next;
2731
2732                disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2733                if (!disk_bytenr)
2734                        goto next;
2735
2736                extent_offset = btrfs_file_extent_offset(l, extent);
2737
2738                old = kmalloc(sizeof(*old), GFP_NOFS);
2739                if (!old)
2740                        goto out_free_path;
2741
2742                offset = max(new->file_pos, key.offset);
2743                end = min(new->file_pos + new->len, key.offset + num_bytes);
2744
2745                old->bytenr = disk_bytenr;
2746                old->extent_offset = extent_offset;
2747                old->offset = offset - key.offset;
2748                old->len = end - offset;
2749                old->new = new;
2750                old->count = 0;
2751                list_add_tail(&old->list, &new->head);
2752next:
2753                path->slots[0]++;
2754                cond_resched();
2755        }
2756
2757        btrfs_free_path(path);
2758        atomic_inc(&root->fs_info->defrag_running);
2759
2760        return new;
2761
2762out_free_path:
2763        btrfs_free_path(path);
2764out_kfree:
2765        free_sa_defrag_extent(new);
2766        return NULL;
2767}
2768
2769static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2770                                         u64 start, u64 len)
2771{
2772        struct btrfs_block_group_cache *cache;
2773
2774        cache = btrfs_lookup_block_group(root->fs_info, start);
2775        ASSERT(cache);
2776
2777        spin_lock(&cache->lock);
2778        cache->delalloc_bytes -= len;
2779        spin_unlock(&cache->lock);
2780
2781        btrfs_put_block_group(cache);
2782}
2783
2784/* as ordered data IO finishes, this gets called so we can finish
2785 * an ordered extent if the range of bytes in the file it covers are
2786 * fully written.
2787 */
2788static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2789{
2790        struct inode *inode = ordered_extent->inode;
2791        struct btrfs_root *root = BTRFS_I(inode)->root;
2792        struct btrfs_trans_handle *trans = NULL;
2793        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2794        struct extent_state *cached_state = NULL;
2795        struct new_sa_defrag_extent *new = NULL;
2796        int compress_type = 0;
2797        int ret = 0;
2798        u64 logical_len = ordered_extent->len;
2799        bool nolock;
2800        bool truncated = false;
2801
2802        nolock = btrfs_is_free_space_inode(inode);
2803
2804        if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2805                ret = -EIO;
2806                goto out;
2807        }
2808
2809        btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2810                                     ordered_extent->file_offset +
2811                                     ordered_extent->len - 1);
2812
2813        if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2814                truncated = true;
2815                logical_len = ordered_extent->truncated_len;
2816                /* Truncated the entire extent, don't bother adding */
2817                if (!logical_len)
2818                        goto out;
2819        }
2820
2821        if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2822                BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2823                btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2824                if (nolock)
2825                        trans = btrfs_join_transaction_nolock(root);
2826                else
2827                        trans = btrfs_join_transaction(root);
2828                if (IS_ERR(trans)) {
2829                        ret = PTR_ERR(trans);
2830                        trans = NULL;
2831                        goto out;
2832                }
2833                trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2834                ret = btrfs_update_inode_fallback(trans, root, inode);
2835                if (ret) /* -ENOMEM or corruption */
2836                        btrfs_abort_transaction(trans, root, ret);
2837                goto out;
2838        }
2839
2840        lock_extent_bits(io_tree, ordered_extent->file_offset,
2841                         ordered_extent->file_offset + ordered_extent->len - 1,
2842                         0, &cached_state);
2843
2844        ret = test_range_bit(io_tree, ordered_extent->file_offset,
2845                        ordered_extent->file_offset + ordered_extent->len - 1,
2846                        EXTENT_DEFRAG, 1, cached_state);
2847        if (ret) {
2848                u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2849                if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2850                        /* the inode is shared */
2851                        new = record_old_file_extents(inode, ordered_extent);
2852
2853                clear_extent_bit(io_tree, ordered_extent->file_offset,
2854                        ordered_extent->file_offset + ordered_extent->len - 1,
2855                        EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2856        }
2857
2858        if (nolock)
2859                trans = btrfs_join_transaction_nolock(root);
2860        else
2861                trans = btrfs_join_transaction(root);
2862        if (IS_ERR(trans)) {
2863                ret = PTR_ERR(trans);
2864                trans = NULL;
2865                goto out_unlock;
2866        }
2867
2868        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2869
2870        if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2871                compress_type = ordered_extent->compress_type;
2872        if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2873                BUG_ON(compress_type);
2874                ret = btrfs_mark_extent_written(trans, inode,
2875                                                ordered_extent->file_offset,
2876                                                ordered_extent->file_offset +
2877                                                logical_len);
2878        } else {
2879                BUG_ON(root == root->fs_info->tree_root);
2880                ret = insert_reserved_file_extent(trans, inode,
2881                                                ordered_extent->file_offset,
2882                                                ordered_extent->start,
2883                                                ordered_extent->disk_len,
2884                                                logical_len, logical_len,
2885                                                compress_type, 0, 0,
2886                                                BTRFS_FILE_EXTENT_REG);
2887                if (!ret)
2888                        btrfs_release_delalloc_bytes(root,
2889                                                     ordered_extent->start,
2890                                                     ordered_extent->disk_len);
2891        }
2892        unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2893                           ordered_extent->file_offset, ordered_extent->len,
2894                           trans->transid);
2895        if (ret < 0) {
2896                btrfs_abort_transaction(trans, root, ret);
2897                goto out_unlock;
2898        }
2899
2900        add_pending_csums(trans, inode, ordered_extent->file_offset,
2901                          &ordered_extent->list);
2902
2903        btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2904        ret = btrfs_update_inode_fallback(trans, root, inode);
2905        if (ret) { /* -ENOMEM or corruption */
2906                btrfs_abort_transaction(trans, root, ret);
2907                goto out_unlock;
2908        }
2909        ret = 0;
2910out_unlock:
2911        unlock_extent_cached(io_tree, ordered_extent->file_offset,
2912                             ordered_extent->file_offset +
2913                             ordered_extent->len - 1, &cached_state, GFP_NOFS);
2914out:
2915        if (root != root->fs_info->tree_root)
2916                btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2917        if (trans)
2918                btrfs_end_transaction(trans, root);
2919
2920        if (ret || truncated) {
2921                u64 start, end;
2922
2923                if (truncated)
2924                        start = ordered_extent->file_offset + logical_len;
2925                else
2926                        start = ordered_extent->file_offset;
2927                end = ordered_extent->file_offset + ordered_extent->len - 1;
2928                clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2929
2930                /* Drop the cache for the part of the extent we didn't write. */
2931                btrfs_drop_extent_cache(inode, start, end, 0);
2932
2933                /*
2934                 * If the ordered extent had an IOERR or something else went
2935                 * wrong we need to return the space for this ordered extent
2936                 * back to the allocator.  We only free the extent in the
2937                 * truncated case if we didn't write out the extent at all.
2938                 */
2939                if ((ret || !logical_len) &&
2940                    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2941                    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2942                        btrfs_free_reserved_extent(root, ordered_extent->start,
2943                                                   ordered_extent->disk_len, 1);
2944        }
2945
2946
2947        /*
2948         * This needs to be done to make sure anybody waiting knows we are done
2949         * updating everything for this ordered extent.
2950         */
2951        btrfs_remove_ordered_extent(inode, ordered_extent);
2952
2953        /* for snapshot-aware defrag */
2954        if (new) {
2955                if (ret) {
2956                        free_sa_defrag_extent(new);
2957                        atomic_dec(&root->fs_info->defrag_running);
2958                } else {
2959                        relink_file_extents(new);
2960                }
2961        }
2962
2963        /* once for us */
2964        btrfs_put_ordered_extent(ordered_extent);
2965        /* once for the tree */
2966        btrfs_put_ordered_extent(ordered_extent);
2967
2968        return ret;
2969}
2970
2971static void finish_ordered_fn(struct btrfs_work *work)
2972{
2973        struct btrfs_ordered_extent *ordered_extent;
2974        ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2975        btrfs_finish_ordered_io(ordered_extent);
2976}
2977
2978static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2979                                struct extent_state *state, int uptodate)
2980{
2981        struct inode *inode = page->mapping->host;
2982        struct btrfs_root *root = BTRFS_I(inode)->root;
2983        struct btrfs_ordered_extent *ordered_extent = NULL;
2984        struct btrfs_workqueue *wq;
2985        btrfs_work_func_t func;
2986
2987        trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2988
2989        ClearPagePrivate2(page);
2990        if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2991                                            end - start + 1, uptodate))
2992                return 0;
2993
2994        if (btrfs_is_free_space_inode(inode)) {
2995                wq = root->fs_info->endio_freespace_worker;
2996                func = btrfs_freespace_write_helper;
2997        } else {
2998                wq = root->fs_info->endio_write_workers;
2999                func = btrfs_endio_write_helper;
3000        }
3001
3002        btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3003                        NULL);
3004        btrfs_queue_work(wq, &ordered_extent->work);
3005
3006        return 0;
3007}
3008
3009static int __readpage_endio_check(struct inode *inode,
3010                                  struct btrfs_io_bio *io_bio,
3011                                  int icsum, struct page *page,
3012                                  int pgoff, u64 start, size_t len)
3013{
3014        char *kaddr;
3015        u32 csum_expected;
3016        u32 csum = ~(u32)0;
3017        static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
3018                                      DEFAULT_RATELIMIT_BURST);
3019
3020        csum_expected = *(((u32 *)io_bio->csum) + icsum);
3021
3022        kaddr = kmap_atomic(page);
3023        csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3024        btrfs_csum_final(csum, (char *)&csum);
3025        if (csum != csum_expected)
3026                goto zeroit;
3027
3028        kunmap_atomic(kaddr);
3029        return 0;
3030zeroit:
3031        if (__ratelimit(&_rs))
3032                btrfs_warn(BTRFS_I(inode)->root->fs_info,
3033                           "csum failed ino %llu off %llu csum %u expected csum %u",
3034                           btrfs_ino(inode), start, csum, csum_expected);
3035        memset(kaddr + pgoff, 1, len);
3036        flush_dcache_page(page);
3037        kunmap_atomic(kaddr);
3038        if (csum_expected == 0)
3039                return 0;
3040        return -EIO;
3041}
3042
3043/*
3044 * when reads are done, we need to check csums to verify the data is correct
3045 * if there's a match, we allow the bio to finish.  If not, the code in
3046 * extent_io.c will try to find good copies for us.
3047 */
3048static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3049                                      u64 phy_offset, struct page *page,
3050                                      u64 start, u64 end, int mirror)
3051{
3052        size_t offset = start - page_offset(page);
3053        struct inode *inode = page->mapping->host;
3054        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3055        struct btrfs_root *root = BTRFS_I(inode)->root;
3056
3057        if (PageChecked(page)) {
3058                ClearPageChecked(page);
3059                return 0;
3060        }
3061
3062        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3063                return 0;
3064
3065        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3066            test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3067                clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3068                                  GFP_NOFS);
3069                return 0;
3070        }
3071
3072        phy_offset >>= inode->i_sb->s_blocksize_bits;
3073        return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3074                                      start, (size_t)(end - start + 1));
3075}
3076
3077struct delayed_iput {
3078        struct list_head list;
3079        struct inode *inode;
3080};
3081
3082/* JDM: If this is fs-wide, why can't we add a pointer to
3083 * btrfs_inode instead and avoid the allocation? */
3084void btrfs_add_delayed_iput(struct inode *inode)
3085{
3086        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3087        struct delayed_iput *delayed;
3088
3089        if (atomic_add_unless(&inode->i_count, -1, 1))
3090                return;
3091
3092        delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3093        delayed->inode = inode;
3094
3095        spin_lock(&fs_info->delayed_iput_lock);
3096        list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3097        spin_unlock(&fs_info->delayed_iput_lock);
3098}
3099
3100void btrfs_run_delayed_iputs(struct btrfs_root *root)
3101{
3102        LIST_HEAD(list);
3103        struct btrfs_fs_info *fs_info = root->fs_info;
3104        struct delayed_iput *delayed;
3105        int empty;
3106
3107        spin_lock(&fs_info->delayed_iput_lock);
3108        empty = list_empty(&fs_info->delayed_iputs);
3109        spin_unlock(&fs_info->delayed_iput_lock);
3110        if (empty)
3111                return;
3112
3113        spin_lock(&fs_info->delayed_iput_lock);
3114        list_splice_init(&fs_info->delayed_iputs, &list);
3115        spin_unlock(&fs_info->delayed_iput_lock);
3116
3117        while (!list_empty(&list)) {
3118                delayed = list_entry(list.next, struct delayed_iput, list);
3119                list_del(&delayed->list);
3120                iput(delayed->inode);
3121                kfree(delayed);
3122        }
3123}
3124
3125/*
3126 * This is called in transaction commit time. If there are no orphan
3127 * files in the subvolume, it removes orphan item and frees block_rsv
3128 * structure.
3129 */
3130void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3131                              struct btrfs_root *root)
3132{
3133        struct btrfs_block_rsv *block_rsv;
3134        int ret;
3135
3136        if (atomic_read(&root->orphan_inodes) ||
3137            root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3138                return;
3139
3140        spin_lock(&root->orphan_lock);
3141        if (atomic_read(&root->orphan_inodes)) {
3142                spin_unlock(&root->orphan_lock);
3143                return;
3144        }
3145
3146        if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3147                spin_unlock(&root->orphan_lock);
3148                return;
3149        }
3150
3151        block_rsv = root->orphan_block_rsv;
3152        root->orphan_block_rsv = NULL;
3153        spin_unlock(&root->orphan_lock);
3154
3155        if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3156            btrfs_root_refs(&root->root_item) > 0) {
3157                ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3158                                            root->root_key.objectid);
3159                if (ret)
3160                        btrfs_abort_transaction(trans, root, ret);
3161                else
3162                        clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3163                                  &root->state);
3164        }
3165
3166        if (block_rsv) {
3167                WARN_ON(block_rsv->size > 0);
3168                btrfs_free_block_rsv(root, block_rsv);
3169        }
3170}
3171
3172/*
3173 * This creates an orphan entry for the given inode in case something goes
3174 * wrong in the middle of an unlink/truncate.
3175 *
3176 * NOTE: caller of this function should reserve 5 units of metadata for
3177 *       this function.
3178 */
3179int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3180{
3181        struct btrfs_root *root = BTRFS_I(inode)->root;
3182        struct btrfs_block_rsv *block_rsv = NULL;
3183        int reserve = 0;
3184        int insert = 0;
3185        int ret;
3186
3187        if (!root->orphan_block_rsv) {
3188                block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3189                if (!block_rsv)
3190                        return -ENOMEM;
3191        }
3192
3193        spin_lock(&root->orphan_lock);
3194        if (!root->orphan_block_rsv) {
3195                root->orphan_block_rsv = block_rsv;
3196        } else if (block_rsv) {
3197                btrfs_free_block_rsv(root, block_rsv);
3198                block_rsv = NULL;
3199        }
3200
3201        if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3202                              &BTRFS_I(inode)->runtime_flags)) {
3203#if 0
3204                /*
3205                 * For proper ENOSPC handling, we should do orphan
3206                 * cleanup when mounting. But this introduces backward
3207                 * compatibility issue.
3208                 */
3209                if (!xchg(&root->orphan_item_inserted, 1))
3210                        insert = 2;
3211                else
3212                        insert = 1;
3213#endif
3214                insert = 1;
3215                atomic_inc(&root->orphan_inodes);
3216        }
3217
3218        if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3219                              &BTRFS_I(inode)->runtime_flags))
3220                reserve = 1;
3221        spin_unlock(&root->orphan_lock);
3222
3223        /* grab metadata reservation from transaction handle */
3224        if (reserve) {
3225                ret = btrfs_orphan_reserve_metadata(trans, inode);
3226                BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3227        }
3228
3229        /* insert an orphan item to track this unlinked/truncated file */
3230        if (insert >= 1) {
3231                ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3232                if (ret) {
3233                        atomic_dec(&root->orphan_inodes);
3234                        if (reserve) {
3235                                clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3236                                          &BTRFS_I(inode)->runtime_flags);
3237                                btrfs_orphan_release_metadata(inode);
3238                        }
3239                        if (ret != -EEXIST) {
3240                                clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3241                                          &BTRFS_I(inode)->runtime_flags);
3242                                btrfs_abort_transaction(trans, root, ret);
3243                                return ret;
3244                        }
3245                }
3246                ret = 0;
3247        }
3248
3249        /* insert an orphan item to track subvolume contains orphan files */
3250        if (insert >= 2) {
3251                ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3252                                               root->root_key.objectid);
3253                if (ret && ret != -EEXIST) {
3254                        btrfs_abort_transaction(trans, root, ret);
3255                        return ret;
3256                }
3257        }
3258        return 0;
3259}
3260
3261/*
3262 * We have done the truncate/delete so we can go ahead and remove the orphan
3263 * item for this particular inode.
3264 */
3265static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3266                            struct inode *inode)
3267{
3268        struct btrfs_root *root = BTRFS_I(inode)->root;
3269        int delete_item = 0;
3270        int release_rsv = 0;
3271        int ret = 0;
3272
3273        spin_lock(&root->orphan_lock);
3274        if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3275                               &BTRFS_I(inode)->runtime_flags))
3276                delete_item = 1;
3277
3278        if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3279                               &BTRFS_I(inode)->runtime_flags))
3280                release_rsv = 1;
3281        spin_unlock(&root->orphan_lock);
3282
3283        if (delete_item) {
3284                atomic_dec(&root->orphan_inodes);
3285                if (trans)
3286                        ret = btrfs_del_orphan_item(trans, root,
3287                                                    btrfs_ino(inode));
3288        }
3289
3290        if (release_rsv)
3291                btrfs_orphan_release_metadata(inode);
3292
3293        return ret;
3294}
3295
3296/*
3297 * this cleans up any orphans that may be left on the list from the last use
3298 * of this root.
3299 */
3300int btrfs_orphan_cleanup(struct btrfs_root *root)
3301{
3302        struct btrfs_path *path;
3303        struct extent_buffer *leaf;
3304        struct btrfs_key key, found_key;
3305        struct btrfs_trans_handle *trans;
3306        struct inode *inode;
3307        u64 last_objectid = 0;
3308        int ret = 0, nr_unlink = 0, nr_truncate = 0;
3309
3310        if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3311                return 0;
3312
3313        path = btrfs_alloc_path();
3314        if (!path) {
3315                ret = -ENOMEM;
3316                goto out;
3317        }
3318        path->reada = -1;
3319
3320        key.objectid = BTRFS_ORPHAN_OBJECTID;
3321        key.type = BTRFS_ORPHAN_ITEM_KEY;
3322        key.offset = (u64)-1;
3323
3324        while (1) {
3325                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3326                if (ret < 0)
3327                        goto out;
3328
3329                /*
3330                 * if ret == 0 means we found what we were searching for, which
3331                 * is weird, but possible, so only screw with path if we didn't
3332                 * find the key and see if we have stuff that matches
3333                 */
3334                if (ret > 0) {
3335                        ret = 0;
3336                        if (path->slots[0] == 0)
3337                                break;
3338                        path->slots[0]--;
3339                }
3340
3341                /* pull out the item */
3342                leaf = path->nodes[0];
3343                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3344
3345                /* make sure the item matches what we want */
3346                if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3347                        break;
3348                if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3349                        break;
3350
3351                /* release the path since we're done with it */
3352                btrfs_release_path(path);
3353
3354                /*
3355                 * this is where we are basically btrfs_lookup, without the
3356                 * crossing root thing.  we store the inode number in the
3357                 * offset of the orphan item.
3358                 */
3359
3360                if (found_key.offset == last_objectid) {
3361                        btrfs_err(root->fs_info,
3362                                "Error removing orphan entry, stopping orphan cleanup");
3363                        ret = -EINVAL;
3364                        goto out;
3365                }
3366
3367                last_objectid = found_key.offset;
3368
3369                found_key.objectid = found_key.offset;
3370                found_key.type = BTRFS_INODE_ITEM_KEY;
3371                found_key.offset = 0;
3372                inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3373                ret = PTR_ERR_OR_ZERO(inode);
3374                if (ret && ret != -ESTALE)
3375                        goto out;
3376
3377                if (ret == -ESTALE && root == root->fs_info->tree_root) {
3378                        struct btrfs_root *dead_root;
3379                        struct btrfs_fs_info *fs_info = root->fs_info;
3380                        int is_dead_root = 0;
3381
3382                        /*
3383                         * this is an orphan in the tree root. Currently these
3384                         * could come from 2 sources:
3385                         *  a) a snapshot deletion in progress
3386                         *  b) a free space cache inode
3387                         * We need to distinguish those two, as the snapshot
3388                         * orphan must not get deleted.
3389                         * find_dead_roots already ran before us, so if this
3390                         * is a snapshot deletion, we should find the root
3391                         * in the dead_roots list
3392                         */
3393                        spin_lock(&fs_info->trans_lock);
3394                        list_for_each_entry(dead_root, &fs_info->dead_roots,
3395                                            root_list) {
3396                                if (dead_root->root_key.objectid ==
3397                                    found_key.objectid) {
3398                                        is_dead_root = 1;
3399                                        break;
3400                                }
3401                        }
3402                        spin_unlock(&fs_info->trans_lock);
3403                        if (is_dead_root) {
3404                                /* prevent this orphan from being found again */
3405                                key.offset = found_key.objectid - 1;
3406                                continue;
3407                        }
3408                }
3409                /*
3410                 * Inode is already gone but the orphan item is still there,
3411                 * kill the orphan item.
3412                 */
3413                if (ret == -ESTALE) {
3414                        trans = btrfs_start_transaction(root, 1);
3415                        if (IS_ERR(trans)) {
3416                                ret = PTR_ERR(trans);
3417                                goto out;
3418                        }
3419                        btrfs_debug(root->fs_info, "auto deleting %Lu",
3420                                found_key.objectid);
3421                        ret = btrfs_del_orphan_item(trans, root,
3422                                                    found_key.objectid);
3423                        btrfs_end_transaction(trans, root);
3424                        if (ret)
3425                                goto out;
3426                        continue;
3427                }
3428
3429                /*
3430                 * add this inode to the orphan list so btrfs_orphan_del does
3431                 * the proper thing when we hit it
3432                 */
3433                set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3434                        &BTRFS_I(inode)->runtime_flags);
3435                atomic_inc(&root->orphan_inodes);
3436
3437                /* if we have links, this was a truncate, lets do that */
3438                if (inode->i_nlink) {
3439                        if (WARN_ON(!S_ISREG(inode->i_mode))) {
3440                                iput(inode);
3441                                continue;
3442                        }
3443                        nr_truncate++;
3444
3445                        /* 1 for the orphan item deletion. */
3446                        trans = btrfs_start_transaction(root, 1);
3447                        if (IS_ERR(trans)) {
3448                                iput(inode);
3449                                ret = PTR_ERR(trans);
3450                                goto out;
3451                        }
3452                        ret = btrfs_orphan_add(trans, inode);
3453                        btrfs_end_transaction(trans, root);
3454                        if (ret) {
3455                                iput(inode);
3456                                goto out;
3457                        }
3458
3459                        ret = btrfs_truncate(inode);
3460                        if (ret)
3461                                btrfs_orphan_del(NULL, inode);
3462                } else {
3463                        nr_unlink++;
3464                }
3465
3466                /* this will do delete_inode and everything for us */
3467                iput(inode);
3468                if (ret)
3469                        goto out;
3470        }
3471        /* release the path since we're done with it */
3472        btrfs_release_path(path);
3473
3474        root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3475
3476        if (root->orphan_block_rsv)
3477                btrfs_block_rsv_release(root, root->orphan_block_rsv,
3478                                        (u64)-1);
3479
3480        if (root->orphan_block_rsv ||
3481            test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3482                trans = btrfs_join_transaction(root);
3483                if (!IS_ERR(trans))
3484                        btrfs_end_transaction(trans, root);
3485        }
3486
3487        if (nr_unlink)
3488                btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3489        if (nr_truncate)
3490                btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3491
3492out:
3493        if (ret)
3494                btrfs_err(root->fs_info,
3495                        "could not do orphan cleanup %d", ret);
3496        btrfs_free_path(path);
3497        return ret;
3498}
3499
3500/*
3501 * very simple check to peek ahead in the leaf looking for xattrs.  If we
3502 * don't find any xattrs, we know there can't be any acls.
3503 *
3504 * slot is the slot the inode is in, objectid is the objectid of the inode
3505 */
3506static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3507                                          int slot, u64 objectid,
3508                                          int *first_xattr_slot)
3509{
3510        u32 nritems = btrfs_header_nritems(leaf);
3511        struct btrfs_key found_key;
3512        static u64 xattr_access = 0;
3513        static u64 xattr_default = 0;
3514        int scanned = 0;
3515
3516        if (!xattr_access) {
3517                xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3518                                        strlen(POSIX_ACL_XATTR_ACCESS));
3519                xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3520                                        strlen(POSIX_ACL_XATTR_DEFAULT));
3521        }
3522
3523        slot++;
3524        *first_xattr_slot = -1;
3525        while (slot < nritems) {
3526                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3527
3528                /* we found a different objectid, there must not be acls */
3529                if (found_key.objectid != objectid)
3530                        return 0;
3531
3532                /* we found an xattr, assume we've got an acl */
3533                if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3534                        if (*first_xattr_slot == -1)
3535                                *first_xattr_slot = slot;
3536                        if (found_key.offset == xattr_access ||
3537                            found_key.offset == xattr_default)
3538                                return 1;
3539                }
3540
3541                /*
3542                 * we found a key greater than an xattr key, there can't
3543                 * be any acls later on
3544                 */
3545                if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3546                        return 0;
3547
3548                slot++;
3549                scanned++;
3550
3551                /*
3552                 * it goes inode, inode backrefs, xattrs, extents,
3553                 * so if there are a ton of hard links to an inode there can
3554                 * be a lot of backrefs.  Don't waste time searching too hard,
3555                 * this is just an optimization
3556                 */
3557                if (scanned >= 8)
3558                        break;
3559        }
3560        /* we hit the end of the leaf before we found an xattr or
3561         * something larger than an xattr.  We have to assume the inode
3562         * has acls
3563         */
3564        if (*first_xattr_slot == -1)
3565                *first_xattr_slot = slot;
3566        return 1;
3567}
3568
3569/*
3570 * read an inode from the btree into the in-memory inode
3571 */
3572static void btrfs_read_locked_inode(struct inode *inode)
3573{
3574        struct btrfs_path *path;
3575        struct extent_buffer *leaf;
3576        struct btrfs_inode_item *inode_item;
3577        struct btrfs_root *root = BTRFS_I(inode)->root;
3578        struct btrfs_key location;
3579        unsigned long ptr;
3580        int maybe_acls;
3581        u32 rdev;
3582        int ret;
3583        bool filled = false;
3584        int first_xattr_slot;
3585
3586        ret = btrfs_fill_inode(inode, &rdev);
3587        if (!ret)
3588                filled = true;
3589
3590        path = btrfs_alloc_path();
3591        if (!path)
3592                goto make_bad;
3593
3594        memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3595
3596        ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3597        if (ret)
3598                goto make_bad;
3599
3600        leaf = path->nodes[0];
3601
3602        if (filled)
3603                goto cache_index;
3604
3605        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3606                                    struct btrfs_inode_item);
3607        inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3608        set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3609        i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3610        i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3611        btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3612
3613        inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3614        inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3615
3616        inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3617        inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3618
3619        inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3620        inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3621
3622        BTRFS_I(inode)->i_otime.tv_sec =
3623                btrfs_timespec_sec(leaf, &inode_item->otime);
3624        BTRFS_I(inode)->i_otime.tv_nsec =
3625                btrfs_timespec_nsec(leaf, &inode_item->otime);
3626
3627        inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3628        BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3629        BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3630
3631        /*
3632         * If we were modified in the current generation and evicted from memory
3633         * and then re-read we need to do a full sync since we don't have any
3634         * idea about which extents were modified before we were evicted from
3635         * cache.
3636         */
3637        if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3638                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3639                        &BTRFS_I(inode)->runtime_flags);
3640
3641        inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3642        inode->i_generation = BTRFS_I(inode)->generation;
3643        inode->i_rdev = 0;
3644        rdev = btrfs_inode_rdev(leaf, inode_item);
3645
3646        BTRFS_I(inode)->index_cnt = (u64)-1;
3647        BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3648
3649cache_index:
3650        path->slots[0]++;
3651        if (inode->i_nlink != 1 ||
3652            path->slots[0] >= btrfs_header_nritems(leaf))
3653                goto cache_acl;
3654
3655        btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3656        if (location.objectid != btrfs_ino(inode))
3657                goto cache_acl;
3658
3659        ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3660        if (location.type == BTRFS_INODE_REF_KEY) {
3661                struct btrfs_inode_ref *ref;
3662
3663                ref = (struct btrfs_inode_ref *)ptr;
3664                BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3665        } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3666                struct btrfs_inode_extref *extref;
3667
3668                extref = (struct btrfs_inode_extref *)ptr;
3669                BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3670                                                                     extref);
3671        }
3672cache_acl:
3673        /*
3674         * try to precache a NULL acl entry for files that don't have
3675         * any xattrs or acls
3676         */
3677        maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3678                                           btrfs_ino(inode), &first_xattr_slot);
3679        if (first_xattr_slot != -1) {
3680                path->slots[0] = first_xattr_slot;
3681                ret = btrfs_load_inode_props(inode, path);
3682                if (ret)
3683                        btrfs_err(root->fs_info,
3684                                  "error loading props for ino %llu (root %llu): %d",
3685                                  btrfs_ino(inode),
3686                                  root->root_key.objectid, ret);
3687        }
3688        btrfs_free_path(path);
3689
3690        if (!maybe_acls)
3691                cache_no_acl(inode);
3692
3693        switch (inode->i_mode & S_IFMT) {
3694        case S_IFREG:
3695                inode->i_mapping->a_ops = &btrfs_aops;
3696                BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3697                inode->i_fop = &btrfs_file_operations;
3698                inode->i_op = &btrfs_file_inode_operations;
3699                break;
3700        case S_IFDIR:
3701                inode->i_fop = &btrfs_dir_file_operations;
3702                if (root == root->fs_info->tree_root)
3703                        inode->i_op = &btrfs_dir_ro_inode_operations;
3704                else
3705                        inode->i_op = &btrfs_dir_inode_operations;
3706                break;
3707        case S_IFLNK:
3708                inode->i_op = &btrfs_symlink_inode_operations;
3709                inode->i_mapping->a_ops = &btrfs_symlink_aops;
3710                break;
3711        default:
3712                inode->i_op = &btrfs_special_inode_operations;
3713                init_special_inode(inode, inode->i_mode, rdev);
3714                break;
3715        }
3716
3717        btrfs_update_iflags(inode);
3718        return;
3719
3720make_bad:
3721        btrfs_free_path(path);
3722        make_bad_inode(inode);
3723}
3724
3725/*
3726 * given a leaf and an inode, copy the inode fields into the leaf
3727 */
3728static void fill_inode_item(struct btrfs_trans_handle *trans,
3729                            struct extent_buffer *leaf,
3730                            struct btrfs_inode_item *item,
3731                            struct inode *inode)
3732{
3733        struct btrfs_map_token token;
3734
3735        btrfs_init_map_token(&token);
3736
3737        btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3738        btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3739        btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3740                                   &token);
3741        btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3742        btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3743
3744        btrfs_set_token_timespec_sec(leaf, &item->atime,
3745                                     inode->i_atime.tv_sec, &token);
3746        btrfs_set_token_timespec_nsec(leaf, &item->atime,
3747                                      inode->i_atime.tv_nsec, &token);
3748
3749        btrfs_set_token_timespec_sec(leaf, &item->mtime,
3750                                     inode->i_mtime.tv_sec, &token);
3751        btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3752                                      inode->i_mtime.tv_nsec, &token);
3753
3754        btrfs_set_token_timespec_sec(leaf, &item->ctime,
3755                                     inode->i_ctime.tv_sec, &token);
3756        btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3757                                      inode->i_ctime.tv_nsec, &token);
3758
3759        btrfs_set_token_timespec_sec(leaf, &item->otime,
3760                                     BTRFS_I(inode)->i_otime.tv_sec, &token);
3761        btrfs_set_token_timespec_nsec(leaf, &item->otime,
3762                                      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3763
3764        btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3765                                     &token);
3766        btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3767                                         &token);
3768        btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3769        btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3770        btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3771        btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3772        btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3773}
3774
3775/*
3776 * copy everything in the in-memory inode into the btree.
3777 */
3778static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3779                                struct btrfs_root *root, struct inode *inode)
3780{
3781        struct btrfs_inode_item *inode_item;
3782        struct btrfs_path *path;
3783        struct extent_buffer *leaf;
3784        int ret;
3785
3786        path = btrfs_alloc_path();
3787        if (!path)
3788                return -ENOMEM;
3789
3790        path->leave_spinning = 1;
3791        ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3792                                 1);
3793        if (ret) {
3794                if (ret > 0)
3795                        ret = -ENOENT;
3796                goto failed;
3797        }
3798
3799        leaf = path->nodes[0];
3800        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3801                                    struct btrfs_inode_item);
3802
3803        fill_inode_item(trans, leaf, inode_item, inode);
3804        btrfs_mark_buffer_dirty(leaf);
3805        btrfs_set_inode_last_trans(trans, inode);
3806        ret = 0;
3807failed:
3808        btrfs_free_path(path);
3809        return ret;
3810}
3811
3812/*
3813 * copy everything in the in-memory inode into the btree.
3814 */
3815noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3816                                struct btrfs_root *root, struct inode *inode)
3817{
3818        int ret;
3819
3820        /*
3821         * If the inode is a free space inode, we can deadlock during commit
3822         * if we put it into the delayed code.
3823         *
3824         * The data relocation inode should also be directly updated
3825         * without delay
3826         */
3827        if (!btrfs_is_free_space_inode(inode)
3828            && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3829            && !root->fs_info->log_root_recovering) {
3830                btrfs_update_root_times(trans, root);
3831
3832                ret = btrfs_delayed_update_inode(trans, root, inode);
3833                if (!ret)
3834                        btrfs_set_inode_last_trans(trans, inode);
3835                return ret;
3836        }
3837
3838        return btrfs_update_inode_item(trans, root, inode);
3839}
3840
3841noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3842                                         struct btrfs_root *root,
3843                                         struct inode *inode)
3844{
3845        int ret;
3846
3847        ret = btrfs_update_inode(trans, root, inode);
3848        if (ret == -ENOSPC)
3849                return btrfs_update_inode_item(trans, root, inode);
3850        return ret;
3851}
3852
3853/*
3854 * unlink helper that gets used here in inode.c and in the tree logging
3855 * recovery code.  It remove a link in a directory with a given name, and
3856 * also drops the back refs in the inode to the directory
3857 */
3858static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3859                                struct btrfs_root *root,
3860                                struct inode *dir, struct inode *inode,
3861                                const char *name, int name_len)
3862{
3863        struct btrfs_path *path;
3864        int ret = 0;
3865        struct extent_buffer *leaf;
3866        struct btrfs_dir_item *di;
3867        struct btrfs_key key;
3868        u64 index;
3869        u64 ino = btrfs_ino(inode);
3870        u64 dir_ino = btrfs_ino(dir);
3871
3872        path = btrfs_alloc_path();
3873        if (!path) {
3874                ret = -ENOMEM;
3875                goto out;
3876        }
3877
3878        path->leave_spinning = 1;
3879        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3880                                    name, name_len, -1);
3881        if (IS_ERR(di)) {
3882                ret = PTR_ERR(di);
3883                goto err;
3884        }
3885        if (!di) {
3886                ret = -ENOENT;
3887                goto err;
3888        }
3889        leaf = path->nodes[0];
3890        btrfs_dir_item_key_to_cpu(leaf, di, &key);
3891        ret = btrfs_delete_one_dir_name(trans, root, path, di);
3892        if (ret)
3893                goto err;
3894        btrfs_release_path(path);
3895
3896        /*
3897         * If we don't have dir index, we have to get it by looking up
3898         * the inode ref, since we get the inode ref, remove it directly,
3899         * it is unnecessary to do delayed deletion.
3900         *
3901         * But if we have dir index, needn't search inode ref to get it.
3902         * Since the inode ref is close to the inode item, it is better
3903         * that we delay to delete it, and just do this deletion when
3904         * we update the inode item.
3905         */
3906        if (BTRFS_I(inode)->dir_index) {
3907                ret = btrfs_delayed_delete_inode_ref(inode);
3908                if (!ret) {
3909                        index = BTRFS_I(inode)->dir_index;
3910                        goto skip_backref;
3911                }
3912        }
3913
3914        ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3915                                  dir_ino, &index);
3916        if (ret) {
3917                btrfs_info(root->fs_info,
3918                        "failed to delete reference to %.*s, inode %llu parent %llu",
3919                        name_len, name, ino, dir_ino);
3920                btrfs_abort_transaction(trans, root, ret);
3921                goto err;
3922        }
3923skip_backref:
3924        ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3925        if (ret) {
3926                btrfs_abort_transaction(trans, root, ret);
3927                goto err;
3928        }
3929
3930        ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3931                                         inode, dir_ino);
3932        if (ret != 0 && ret != -ENOENT) {
3933                btrfs_abort_transaction(trans, root, ret);
3934                goto err;
3935        }
3936
3937        ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3938                                           dir, index);
3939        if (ret == -ENOENT)
3940                ret = 0;
3941        else if (ret)
3942                btrfs_abort_transaction(trans, root, ret);
3943err:
3944        btrfs_free_path(path);
3945        if (ret)
3946                goto out;
3947
3948        btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3949        inode_inc_iversion(inode);
3950        inode_inc_iversion(dir);
3951        inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3952        ret = btrfs_update_inode(trans, root, dir);
3953out:
3954        return ret;
3955}
3956
3957int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3958                       struct btrfs_root *root,
3959                       struct inode *dir, struct inode *inode,
3960                       const char *name, int name_len)
3961{
3962        int ret;
3963        ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3964        if (!ret) {
3965                drop_nlink(inode);
3966                ret = btrfs_update_inode(trans, root, inode);
3967        }
3968        return ret;
3969}
3970
3971/*
3972 * helper to start transaction for unlink and rmdir.
3973 *
3974 * unlink and rmdir are special in btrfs, they do not always free space, so
3975 * if we cannot make our reservations the normal way try and see if there is
3976 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3977 * allow the unlink to occur.
3978 */
3979static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3980{
3981        struct btrfs_trans_handle *trans;
3982        struct btrfs_root *root = BTRFS_I(dir)->root;
3983        int ret;
3984
3985        /*
3986         * 1 for the possible orphan item
3987         * 1 for the dir item
3988         * 1 for the dir index
3989         * 1 for the inode ref
3990         * 1 for the inode
3991         */
3992        trans = btrfs_start_transaction(root, 5);
3993        if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3994                return trans;
3995
3996        if (PTR_ERR(trans) == -ENOSPC) {
3997                u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3998
3999                trans = btrfs_start_transaction(root, 0);
4000                if (IS_ERR(trans))
4001                        return trans;
4002                ret = btrfs_cond_migrate_bytes(root->fs_info,
4003                                               &root->fs_info->trans_block_rsv,
4004                                               num_bytes, 5);
4005                if (ret) {
4006                        btrfs_end_transaction(trans, root);
4007                        return ERR_PTR(ret);
4008                }
4009                trans->block_rsv = &root->fs_info->trans_block_rsv;
4010                trans->bytes_reserved = num_bytes;
4011        }
4012        return trans;
4013}
4014
4015static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4016{
4017        struct btrfs_root *root = BTRFS_I(dir)->root;
4018        struct btrfs_trans_handle *trans;
4019        struct inode *inode = dentry->d_inode;
4020        int ret;
4021
4022        trans = __unlink_start_trans(dir);
4023        if (IS_ERR(trans))
4024                return PTR_ERR(trans);
4025
4026        btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
4027
4028        ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4029                                 dentry->d_name.name, dentry->d_name.len);
4030        if (ret)
4031                goto out;
4032
4033        if (inode->i_nlink == 0) {
4034                ret = btrfs_orphan_add(trans, inode);
4035                if (ret)
4036                        goto out;
4037        }
4038
4039out:
4040        btrfs_end_transaction(trans, root);
4041        btrfs_btree_balance_dirty(root);
4042        return ret;
4043}
4044
4045int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4046                        struct btrfs_root *root,
4047                        struct inode *dir, u64 objectid,
4048                        const char *name, int name_len)
4049{
4050        struct btrfs_path *path;
4051        struct extent_buffer *leaf;
4052        struct btrfs_dir_item *di;
4053        struct btrfs_key key;
4054        u64 index;
4055        int ret;
4056        u64 dir_ino = btrfs_ino(dir);
4057
4058        path = btrfs_alloc_path();
4059        if (!path)
4060                return -ENOMEM;
4061
4062        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4063                                   name, name_len, -1);
4064        if (IS_ERR_OR_NULL(di)) {
4065                if (!di)
4066                        ret = -ENOENT;
4067                else
4068                        ret = PTR_ERR(di);
4069                goto out;
4070        }
4071
4072        leaf = path->nodes[0];
4073        btrfs_dir_item_key_to_cpu(leaf, di, &key);
4074        WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4075        ret = btrfs_delete_one_dir_name(trans, root, path, di);
4076        if (ret) {
4077                btrfs_abort_transaction(trans, root, ret);
4078                goto out;
4079        }
4080        btrfs_release_path(path);
4081
4082        ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4083                                 objectid, root->root_key.objectid,
4084                                 dir_ino, &index, name, name_len);
4085        if (ret < 0) {
4086                if (ret != -ENOENT) {
4087                        btrfs_abort_transaction(trans, root, ret);
4088                        goto out;
4089                }
4090                di = btrfs_search_dir_index_item(root, path, dir_ino,
4091                                                 name, name_len);
4092                if (IS_ERR_OR_NULL(di)) {
4093                        if (!di)
4094                                ret = -ENOENT;
4095                        else
4096                                ret = PTR_ERR(di);
4097                        btrfs_abort_transaction(trans, root, ret);
4098                        goto out;
4099                }
4100
4101                leaf = path->nodes[0];
4102                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4103                btrfs_release_path(path);
4104                index = key.offset;
4105        }
4106        btrfs_release_path(path);
4107
4108        ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4109        if (ret) {
4110                btrfs_abort_transaction(trans, root, ret);
4111                goto out;
4112        }
4113
4114        btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4115        inode_inc_iversion(dir);
4116        dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4117        ret = btrfs_update_inode_fallback(trans, root, dir);
4118        if (ret)
4119                btrfs_abort_transaction(trans, root, ret);
4120out:
4121        btrfs_free_path(path);
4122        return ret;
4123}
4124
4125static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4126{
4127        struct inode *inode = dentry->d_inode;
4128        int err = 0;
4129        struct btrfs_root *root = BTRFS_I(dir)->root;
4130        struct btrfs_trans_handle *trans;
4131
4132        if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4133                return -ENOTEMPTY;
4134        if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4135                return -EPERM;
4136
4137        trans = __unlink_start_trans(dir);
4138        if (IS_ERR(trans))
4139                return PTR_ERR(trans);
4140
4141        if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4142                err = btrfs_unlink_subvol(trans, root, dir,
4143                                          BTRFS_I(inode)->location.objectid,
4144                                          dentry->d_name.name,
4145                                          dentry->d_name.len);
4146                goto out;
4147        }
4148
4149        err = btrfs_orphan_add(trans, inode);
4150        if (err)
4151                goto out;
4152
4153        /* now the directory is empty */
4154        err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4155                                 dentry->d_name.name, dentry->d_name.len);
4156        if (!err)
4157                btrfs_i_size_write(inode, 0);
4158out:
4159        btrfs_end_transaction(trans, root);
4160        btrfs_btree_balance_dirty(root);
4161
4162        return err;
4163}
4164
4165/*
4166 * this can truncate away extent items, csum items and directory items.
4167 * It starts at a high offset and removes keys until it can't find
4168 * any higher than new_size
4169 *
4170 * csum items that cross the new i_size are truncated to the new size
4171 * as well.
4172 *
4173 * min_type is the minimum key type to truncate down to.  If set to 0, this
4174 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4175 */
4176int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4177                               struct btrfs_root *root,
4178                               struct inode *inode,
4179                               u64 new_size, u32 min_type)
4180{
4181        struct btrfs_path *path;
4182        struct extent_buffer *leaf;
4183        struct btrfs_file_extent_item *fi;
4184        struct btrfs_key key;
4185        struct btrfs_key found_key;
4186        u64 extent_start = 0;
4187        u64 extent_num_bytes = 0;
4188        u64 extent_offset = 0;
4189        u64 item_end = 0;
4190        u64 last_size = (u64)-1;
4191        u32 found_type = (u8)-1;
4192        int found_extent;
4193        int del_item;
4194        int pending_del_nr = 0;
4195        int pending_del_slot = 0;
4196        int extent_type = -1;
4197        int ret;
4198        int err = 0;
4199        u64 ino = btrfs_ino(inode);
4200
4201        BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4202
4203        path = btrfs_alloc_path();
4204        if (!path)
4205                return -ENOMEM;
4206        path->reada = -1;
4207
4208        /*
4209         * We want to drop from the next block forward in case this new size is
4210         * not block aligned since we will be keeping the last block of the
4211         * extent just the way it is.
4212         */
4213        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4214            root == root->fs_info->tree_root)
4215                btrfs_drop_extent_cache(inode, ALIGN(new_size,
4216                                        root->sectorsize), (u64)-1, 0);
4217
4218        /*
4219         * This function is also used to drop the items in the log tree before
4220         * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4221         * it is used to drop the loged items. So we shouldn't kill the delayed
4222         * items.
4223         */
4224        if (min_type == 0 && root == BTRFS_I(inode)->root)
4225                btrfs_kill_delayed_inode_items(inode);
4226
4227        key.objectid = ino;
4228        key.offset = (u64)-1;
4229        key.type = (u8)-1;
4230
4231search_again:
4232        path->leave_spinning = 1;
4233        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4234        if (ret < 0) {
4235                err = ret;
4236                goto out;
4237        }
4238
4239        if (ret > 0) {
4240                /* there are no items in the tree for us to truncate, we're
4241                 * done
4242                 */
4243                if (path->slots[0] == 0)
4244                        goto out;
4245                path->slots[0]--;
4246        }
4247
4248        while (1) {
4249                fi = NULL;
4250                leaf = path->nodes[0];
4251                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4252                found_type = found_key.type;
4253
4254                if (found_key.objectid != ino)
4255                        break;
4256
4257                if (found_type < min_type)
4258                        break;
4259
4260                item_end = found_key.offset;
4261                if (found_type == BTRFS_EXTENT_DATA_KEY) {
4262                        fi = btrfs_item_ptr(leaf, path->slots[0],
4263                                            struct btrfs_file_extent_item);
4264                        extent_type = btrfs_file_extent_type(leaf, fi);
4265                        if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4266                                item_end +=
4267                                    btrfs_file_extent_num_bytes(leaf, fi);
4268                        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4269                                item_end += btrfs_file_extent_inline_len(leaf,
4270                                                         path->slots[0], fi);
4271                        }
4272                        item_end--;
4273                }
4274                if (found_type > min_type) {
4275                        del_item = 1;
4276                } else {
4277                        if (item_end < new_size)
4278                                break;
4279                        if (found_key.offset >= new_size)
4280                                del_item = 1;
4281                        else
4282                                del_item = 0;
4283                }
4284                found_extent = 0;
4285                /* FIXME, shrink the extent if the ref count is only 1 */
4286                if (found_type != BTRFS_EXTENT_DATA_KEY)
4287                        goto delete;
4288
4289                if (del_item)
4290                        last_size = found_key.offset;
4291                else
4292                        last_size = new_size;
4293
4294                if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4295                        u64 num_dec;
4296                        extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4297                        if (!del_item) {
4298                                u64 orig_num_bytes =
4299                                        btrfs_file_extent_num_bytes(leaf, fi);
4300                                extent_num_bytes = ALIGN(new_size -
4301                                                found_key.offset,
4302                                                root->sectorsize);
4303                                btrfs_set_file_extent_num_bytes(leaf, fi,
4304                                                         extent_num_bytes);
4305                                num_dec = (orig_num_bytes -
4306                                           extent_num_bytes);
4307                                if (test_bit(BTRFS_ROOT_REF_COWS,
4308                                             &root->state) &&
4309                                    extent_start != 0)
4310                                        inode_sub_bytes(inode, num_dec);
4311                                btrfs_mark_buffer_dirty(leaf);
4312                        } else {
4313                                extent_num_bytes =
4314                                        btrfs_file_extent_disk_num_bytes(leaf,
4315                                                                         fi);
4316                                extent_offset = found_key.offset -
4317                                        btrfs_file_extent_offset(leaf, fi);
4318
4319                                /* FIXME blocksize != 4096 */
4320                                num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4321                                if (extent_start != 0) {
4322                                        found_extent = 1;
4323                                        if (test_bit(BTRFS_ROOT_REF_COWS,
4324                                                     &root->state))
4325                                                inode_sub_bytes(inode, num_dec);
4326                                }
4327                        }
4328                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4329                        /*
4330                         * we can't truncate inline items that have had
4331                         * special encodings
4332                         */
4333                        if (!del_item &&
4334                            btrfs_file_extent_compression(leaf, fi) == 0 &&
4335                            btrfs_file_extent_encryption(leaf, fi) == 0 &&
4336                            btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4337                                u32 size = new_size - found_key.offset;
4338
4339                                if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4340                                        inode_sub_bytes(inode, item_end + 1 -
4341                                                        new_size);
4342
4343                                /*
4344                                 * update the ram bytes to properly reflect
4345                                 * the new size of our item
4346                                 */
4347                                btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4348                                size =
4349                                    btrfs_file_extent_calc_inline_size(size);
4350                                btrfs_truncate_item(root, path, size, 1);
4351                        } else if (test_bit(BTRFS_ROOT_REF_COWS,
4352                                            &root->state)) {
4353                                inode_sub_bytes(inode, item_end + 1 -
4354                                                found_key.offset);
4355                        }
4356                }
4357delete:
4358                if (del_item) {
4359                        if (!pending_del_nr) {
4360                                /* no pending yet, add ourselves */
4361                                pending_del_slot = path->slots[0];
4362                                pending_del_nr = 1;
4363                        } else if (pending_del_nr &&
4364                                   path->slots[0] + 1 == pending_del_slot) {
4365                                /* hop on the pending chunk */
4366                                pending_del_nr++;
4367                                pending_del_slot = path->slots[0];
4368                        } else {
4369                                BUG();
4370                        }
4371                } else {
4372                        break;
4373                }
4374                if (found_extent &&
4375                    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4376                     root == root->fs_info->tree_root)) {
4377                        btrfs_set_path_blocking(path);
4378                        ret = btrfs_free_extent(trans, root, extent_start,
4379                                                extent_num_bytes, 0,
4380                                                btrfs_header_owner(leaf),
4381                                                ino, extent_offset, 0);
4382                        BUG_ON(ret);
4383                }
4384
4385                if (found_type == BTRFS_INODE_ITEM_KEY)
4386                        break;
4387
4388                if (path->slots[0] == 0 ||
4389                    path->slots[0] != pending_del_slot) {
4390                        if (pending_del_nr) {
4391                                ret = btrfs_del_items(trans, root, path,
4392                                                pending_del_slot,
4393                                                pending_del_nr);
4394                                if (ret) {
4395                                        btrfs_abort_transaction(trans,
4396                                                                root, ret);
4397                                        goto error;
4398                                }
4399                                pending_del_nr = 0;
4400                        }
4401                        btrfs_release_path(path);
4402                        goto search_again;
4403                } else {
4404                        path->slots[0]--;
4405                }
4406        }
4407out:
4408        if (pending_del_nr) {
4409                ret = btrfs_del_items(trans, root, path, pending_del_slot,
4410                                      pending_del_nr);
4411                if (ret)
4412                        btrfs_abort_transaction(trans, root, ret);
4413        }
4414error:
4415        if (last_size != (u64)-1 &&
4416            root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4417                btrfs_ordered_update_i_size(inode, last_size, NULL);
4418        btrfs_free_path(path);
4419        return err;
4420}
4421
4422/*
4423 * btrfs_truncate_page - read, zero a chunk and write a page
4424 * @inode - inode that we're zeroing
4425 * @from - the offset to start zeroing
4426 * @len - the length to zero, 0 to zero the entire range respective to the
4427 *      offset
4428 * @front - zero up to the offset instead of from the offset on
4429 *
4430 * This will find the page for the "from" offset and cow the page and zero the
4431 * part we want to zero.  This is used with truncate and hole punching.
4432 */
4433int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4434                        int front)
4435{
4436        struct address_space *mapping = inode->i_mapping;
4437        struct btrfs_root *root = BTRFS_I(inode)->root;
4438        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4439        struct btrfs_ordered_extent *ordered;
4440        struct extent_state *cached_state = NULL;
4441        char *kaddr;
4442        u32 blocksize = root->sectorsize;
4443        pgoff_t index = from >> PAGE_CACHE_SHIFT;
4444        unsigned offset = from & (PAGE_CACHE_SIZE-1);
4445        struct page *page;
4446        gfp_t mask = btrfs_alloc_write_mask(mapping);
4447        int ret = 0;
4448        u64 page_start;
4449        u64 page_end;
4450
4451        if ((offset & (blocksize - 1)) == 0 &&
4452            (!len || ((len & (blocksize - 1)) == 0)))
4453                goto out;
4454        ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4455        if (ret)
4456                goto out;
4457
4458again:
4459        page = find_or_create_page(mapping, index, mask);
4460        if (!page) {
4461                btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4462                ret = -ENOMEM;
4463                goto out;
4464        }
4465
4466        page_start = page_offset(page);
4467        page_end = page_start + PAGE_CACHE_SIZE - 1;
4468
4469        if (!PageUptodate(page)) {
4470                ret = btrfs_readpage(NULL, page);
4471                lock_page(page);
4472                if (page->mapping != mapping) {
4473                        unlock_page(page);
4474                        page_cache_release(page);
4475                        goto again;
4476                }
4477                if (!PageUptodate(page)) {
4478                        ret = -EIO;
4479                        goto out_unlock;
4480                }
4481        }
4482        wait_on_page_writeback(page);
4483
4484        lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4485        set_page_extent_mapped(page);
4486
4487        ordered = btrfs_lookup_ordered_extent(inode, page_start);
4488        if (ordered) {
4489                unlock_extent_cached(io_tree, page_start, page_end,
4490                                     &cached_state, GFP_NOFS);
4491                unlock_page(page);
4492                page_cache_release(page);
4493                btrfs_start_ordered_extent(inode, ordered, 1);
4494                btrfs_put_ordered_extent(ordered);
4495                goto again;
4496        }
4497
4498        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4499                          EXTENT_DIRTY | EXTENT_DELALLOC |
4500                          EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4501                          0, 0, &cached_state, GFP_NOFS);
4502
4503        ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4504                                        &cached_state);
4505        if (ret) {
4506                unlock_extent_cached(io_tree, page_start, page_end,
4507                                     &cached_state, GFP_NOFS);
4508                goto out_unlock;
4509        }
4510
4511        if (offset != PAGE_CACHE_SIZE) {
4512                if (!len)
4513                        len = PAGE_CACHE_SIZE - offset;
4514                kaddr = kmap(page);
4515                if (front)
4516                        memset(kaddr, 0, offset);
4517                else
4518                        memset(kaddr + offset, 0, len);
4519                flush_dcache_page(page);
4520                kunmap(page);
4521        }
4522        ClearPageChecked(page);
4523        set_page_dirty(page);
4524        unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4525                             GFP_NOFS);
4526
4527out_unlock:
4528        if (ret)
4529                btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4530        unlock_page(page);
4531        page_cache_release(page);
4532out:
4533        return ret;
4534}
4535
4536static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4537                             u64 offset, u64 len)
4538{
4539        struct btrfs_trans_handle *trans;
4540        int ret;
4541
4542        /*
4543         * Still need to make sure the inode looks like it's been updated so
4544         * that any holes get logged if we fsync.
4545         */
4546        if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4547                BTRFS_I(inode)->last_trans = root->fs_info->generation;
4548                BTRFS_I(inode)->last_sub_trans = root->log_transid;
4549                BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4550                return 0;
4551        }
4552
4553        /*
4554         * 1 - for the one we're dropping
4555         * 1 - for the one we're adding
4556         * 1 - for updating the inode.
4557         */
4558        trans = btrfs_start_transaction(root, 3);
4559        if (IS_ERR(trans))
4560                return PTR_ERR(trans);
4561
4562        ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4563        if (ret) {
4564                btrfs_abort_transaction(trans, root, ret);
4565                btrfs_end_transaction(trans, root);
4566                return ret;
4567        }
4568
4569        ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4570                                       0, 0, len, 0, len, 0, 0, 0);
4571        if (ret)
4572                btrfs_abort_transaction(trans, root, ret);
4573        else
4574                btrfs_update_inode(trans, root, inode);
4575        btrfs_end_transaction(trans, root);
4576        return ret;
4577}
4578
4579/*
4580 * This function puts in dummy file extents for the area we're creating a hole
4581 * for.  So if we are truncating this file to a larger size we need to insert
4582 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4583 * the range between oldsize and size
4584 */
4585int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4586{
4587        struct btrfs_root *root = BTRFS_I(inode)->root;
4588        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4589        struct extent_map *em = NULL;
4590        struct extent_state *cached_state = NULL;
4591        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4592        u64 hole_start = ALIGN(oldsize, root->sectorsize);
4593        u64 block_end = ALIGN(size, root->sectorsize);
4594        u64 last_byte;
4595        u64 cur_offset;
4596        u64 hole_size;
4597        int err = 0;
4598
4599        /*
4600         * If our size started in the middle of a page we need to zero out the
4601         * rest of the page before we expand the i_size, otherwise we could
4602         * expose stale data.
4603         */
4604        err = btrfs_truncate_page(inode, oldsize, 0, 0);
4605        if (err)
4606                return err;
4607
4608        if (size <= hole_start)
4609                return 0;
4610
4611        while (1) {
4612                struct btrfs_ordered_extent *ordered;
4613
4614                lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4615                                 &cached_state);
4616                ordered = btrfs_lookup_ordered_range(inode, hole_start,
4617                                                     block_end - hole_start);
4618                if (!ordered)
4619                        break;
4620                unlock_extent_cached(io_tree, hole_start, block_end - 1,
4621                                     &cached_state, GFP_NOFS);
4622                btrfs_start_ordered_extent(inode, ordered, 1);
4623                btrfs_put_ordered_extent(ordered);
4624        }
4625
4626        cur_offset = hole_start;
4627        while (1) {
4628                em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4629                                block_end - cur_offset, 0);
4630                if (IS_ERR(em)) {
4631                        err = PTR_ERR(em);
4632                        em = NULL;
4633                        break;
4634                }
4635                last_byte = min(extent_map_end(em), block_end);
4636                last_byte = ALIGN(last_byte , root->sectorsize);
4637                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4638                        struct extent_map *hole_em;
4639                        hole_size = last_byte - cur_offset;
4640
4641                        err = maybe_insert_hole(root, inode, cur_offset,
4642                                                hole_size);
4643                        if (err)
4644                                break;
4645                        btrfs_drop_extent_cache(inode, cur_offset,
4646                                                cur_offset + hole_size - 1, 0);
4647                        hole_em = alloc_extent_map();
4648                        if (!hole_em) {
4649                                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4650                                        &BTRFS_I(inode)->runtime_flags);
4651                                goto next;
4652                        }
4653                        hole_em->start = cur_offset;
4654                        hole_em->len = hole_size;
4655                        hole_em->orig_start = cur_offset;
4656
4657                        hole_em->block_start = EXTENT_MAP_HOLE;
4658                        hole_em->block_len = 0;
4659                        hole_em->orig_block_len = 0;
4660                        hole_em->ram_bytes = hole_size;
4661                        hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4662                        hole_em->compress_type = BTRFS_COMPRESS_NONE;
4663                        hole_em->generation = root->fs_info->generation;
4664
4665                        while (1) {
4666                                write_lock(&em_tree->lock);
4667                                err = add_extent_mapping(em_tree, hole_em, 1);
4668                                write_unlock(&em_tree->lock);
4669                                if (err != -EEXIST)
4670                                        break;
4671                                btrfs_drop_extent_cache(inode, cur_offset,
4672                                                        cur_offset +
4673                                                        hole_size - 1, 0);
4674                        }
4675                        free_extent_map(hole_em);
4676                }
4677next:
4678                free_extent_map(em);
4679                em = NULL;
4680                cur_offset = last_byte;
4681                if (cur_offset >= block_end)
4682                        break;
4683        }
4684        free_extent_map(em);
4685        unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4686                             GFP_NOFS);
4687        return err;
4688}
4689
4690static int wait_snapshoting_atomic_t(atomic_t *a)
4691{
4692        schedule();
4693        return 0;
4694}
4695
4696static void wait_for_snapshot_creation(struct btrfs_root *root)
4697{
4698        while (true) {
4699                int ret;
4700
4701                ret = btrfs_start_write_no_snapshoting(root);
4702                if (ret)
4703                        break;
4704                wait_on_atomic_t(&root->will_be_snapshoted,
4705                                 wait_snapshoting_atomic_t,
4706                                 TASK_UNINTERRUPTIBLE);
4707        }
4708}
4709
4710static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4711{
4712        struct btrfs_root *root = BTRFS_I(inode)->root;
4713        struct btrfs_trans_handle *trans;
4714        loff_t oldsize = i_size_read(inode);
4715        loff_t newsize = attr->ia_size;
4716        int mask = attr->ia_valid;
4717        int ret;
4718
4719        /*
4720         * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4721         * special case where we need to update the times despite not having
4722         * these flags set.  For all other operations the VFS set these flags
4723         * explicitly if it wants a timestamp update.
4724         */
4725        if (newsize != oldsize) {
4726                inode_inc_iversion(inode);
4727                if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4728                        inode->i_ctime = inode->i_mtime =
4729                                current_fs_time(inode->i_sb);
4730        }
4731
4732        if (newsize > oldsize) {
4733                truncate_pagecache(inode, newsize);
4734                /*
4735                 * Don't do an expanding truncate while snapshoting is ongoing.
4736                 * This is to ensure the snapshot captures a fully consistent
4737                 * state of this file - if the snapshot captures this expanding
4738                 * truncation, it must capture all writes that happened before
4739                 * this truncation.
4740                 */
4741                wait_for_snapshot_creation(root);
4742                ret = btrfs_cont_expand(inode, oldsize, newsize);
4743                if (ret) {
4744                        btrfs_end_write_no_snapshoting(root);
4745                        return ret;
4746                }
4747
4748                trans = btrfs_start_transaction(root, 1);
4749                if (IS_ERR(trans)) {
4750                        btrfs_end_write_no_snapshoting(root);
4751                        return PTR_ERR(trans);
4752                }
4753
4754                i_size_write(inode, newsize);
4755                btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4756                ret = btrfs_update_inode(trans, root, inode);
4757                btrfs_end_write_no_snapshoting(root);
4758                btrfs_end_transaction(trans, root);
4759        } else {
4760
4761                /*
4762                 * We're truncating a file that used to have good data down to
4763                 * zero. Make sure it gets into the ordered flush list so that
4764                 * any new writes get down to disk quickly.
4765                 */
4766                if (newsize == 0)
4767                        set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4768                                &BTRFS_I(inode)->runtime_flags);
4769
4770                /*
4771                 * 1 for the orphan item we're going to add
4772                 * 1 for the orphan item deletion.
4773                 */
4774                trans = btrfs_start_transaction(root, 2);
4775                if (IS_ERR(trans))
4776                        return PTR_ERR(trans);
4777
4778                /*
4779                 * We need to do this in case we fail at _any_ point during the
4780                 * actual truncate.  Once we do the truncate_setsize we could
4781                 * invalidate pages which forces any outstanding ordered io to
4782                 * be instantly completed which will give us extents that need
4783                 * to be truncated.  If we fail to get an orphan inode down we
4784                 * could have left over extents that were never meant to live,
4785                 * so we need to garuntee from this point on that everything
4786                 * will be consistent.
4787                 */
4788                ret = btrfs_orphan_add(trans, inode);
4789                btrfs_end_transaction(trans, root);
4790                if (ret)
4791                        return ret;
4792
4793                /* we don't support swapfiles, so vmtruncate shouldn't fail */
4794                truncate_setsize(inode, newsize);
4795
4796                /* Disable nonlocked read DIO to avoid the end less truncate */
4797                btrfs_inode_block_unlocked_dio(inode);
4798                inode_dio_wait(inode);
4799                btrfs_inode_resume_unlocked_dio(inode);
4800
4801                ret = btrfs_truncate(inode);
4802                if (ret && inode->i_nlink) {
4803                        int err;
4804
4805                        /*
4806                         * failed to truncate, disk_i_size is only adjusted down
4807                         * as we remove extents, so it should represent the true
4808                         * size of the inode, so reset the in memory size and
4809                         * delete our orphan entry.
4810                         */
4811                        trans = btrfs_join_transaction(root);
4812                        if (IS_ERR(trans)) {
4813                                btrfs_orphan_del(NULL, inode);
4814                                return ret;
4815                        }
4816                        i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4817                        err = btrfs_orphan_del(trans, inode);
4818                        if (err)
4819                                btrfs_abort_transaction(trans, root, err);
4820                        btrfs_end_transaction(trans, root);
4821                }
4822        }
4823
4824        return ret;
4825}
4826
4827static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4828{
4829        struct inode *inode = dentry->d_inode;
4830        struct btrfs_root *root = BTRFS_I(inode)->root;
4831        int err;
4832
4833        if (btrfs_root_readonly(root))
4834                return -EROFS;
4835
4836        err = inode_change_ok(inode, attr);
4837        if (err)
4838                return err;
4839
4840        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4841                err = btrfs_setsize(inode, attr);
4842                if (err)
4843                        return err;
4844        }
4845
4846        if (attr->ia_valid) {
4847                setattr_copy(inode, attr);
4848                inode_inc_iversion(inode);
4849                err = btrfs_dirty_inode(inode);
4850
4851                if (!err && attr->ia_valid & ATTR_MODE)
4852                        err = posix_acl_chmod(inode, inode->i_mode);
4853        }
4854
4855        return err;
4856}
4857
4858/*
4859 * While truncating the inode pages during eviction, we get the VFS calling
4860 * btrfs_invalidatepage() against each page of the inode. This is slow because
4861 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4862 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4863 * extent_state structures over and over, wasting lots of time.
4864 *
4865 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4866 * those expensive operations on a per page basis and do only the ordered io
4867 * finishing, while we release here the extent_map and extent_state structures,
4868 * without the excessive merging and splitting.
4869 */
4870static void evict_inode_truncate_pages(struct inode *inode)
4871{
4872        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4873        struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4874        struct rb_node *node;
4875
4876        ASSERT(inode->i_state & I_FREEING);
4877        truncate_inode_pages_final(&inode->i_data);
4878
4879        write_lock(&map_tree->lock);
4880        while (!RB_EMPTY_ROOT(&map_tree->map)) {
4881                struct extent_map *em;
4882
4883                node = rb_first(&map_tree->map);
4884                em = rb_entry(node, struct extent_map, rb_node);
4885                clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4886                clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4887                remove_extent_mapping(map_tree, em);
4888                free_extent_map(em);
4889                if (need_resched()) {
4890                        write_unlock(&map_tree->lock);
4891                        cond_resched();
4892                        write_lock(&map_tree->lock);
4893                }
4894        }
4895        write_unlock(&map_tree->lock);
4896
4897        spin_lock(&io_tree->lock);
4898        while (!RB_EMPTY_ROOT(&io_tree->state)) {
4899                struct extent_state *state;
4900                struct extent_state *cached_state = NULL;
4901
4902                node = rb_first(&io_tree->state);
4903                state = rb_entry(node, struct extent_state, rb_node);
4904                atomic_inc(&state->refs);
4905                spin_unlock(&io_tree->lock);
4906
4907                lock_extent_bits(io_tree, state->start, state->end,
4908                                 0, &cached_state);
4909                clear_extent_bit(io_tree, state->start, state->end,
4910                                 EXTENT_LOCKED | EXTENT_DIRTY |
4911                                 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4912                                 EXTENT_DEFRAG, 1, 1,
4913                                 &cached_state, GFP_NOFS);
4914                free_extent_state(state);
4915
4916                cond_resched();
4917                spin_lock(&io_tree->lock);
4918        }
4919        spin_unlock(&io_tree->lock);
4920}
4921
4922void btrfs_evict_inode(struct inode *inode)
4923{
4924        struct btrfs_trans_handle *trans;
4925        struct btrfs_root *root = BTRFS_I(inode)->root;
4926        struct btrfs_block_rsv *rsv, *global_rsv;
4927        u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4928        int ret;
4929
4930        trace_btrfs_inode_evict(inode);
4931
4932        evict_inode_truncate_pages(inode);
4933
4934        if (inode->i_nlink &&
4935            ((btrfs_root_refs(&root->root_item) != 0 &&
4936              root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4937             btrfs_is_free_space_inode(inode)))
4938                goto no_delete;
4939
4940        if (is_bad_inode(inode)) {
4941                btrfs_orphan_del(NULL, inode);
4942                goto no_delete;
4943        }
4944        /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4945        btrfs_wait_ordered_range(inode, 0, (u64)-1);
4946
4947        btrfs_free_io_failure_record(inode, 0, (u64)-1);
4948
4949        if (root->fs_info->log_root_recovering) {
4950                BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4951                                 &BTRFS_I(inode)->runtime_flags));
4952                goto no_delete;
4953        }
4954
4955        if (inode->i_nlink > 0) {
4956                BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4957                       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4958                goto no_delete;
4959        }
4960
4961        ret = btrfs_commit_inode_delayed_inode(inode);
4962        if (ret) {
4963                btrfs_orphan_del(NULL, inode);
4964                goto no_delete;
4965        }
4966
4967        rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4968        if (!rsv) {
4969                btrfs_orphan_del(NULL, inode);
4970                goto no_delete;
4971        }
4972        rsv->size = min_size;
4973        rsv->failfast = 1;
4974        global_rsv = &root->fs_info->global_block_rsv;
4975
4976        btrfs_i_size_write(inode, 0);
4977
4978        /*
4979         * This is a bit simpler than btrfs_truncate since we've already
4980         * reserved our space for our orphan item in the unlink, so we just
4981         * need to reserve some slack space in case we add bytes and update
4982         * inode item when doing the truncate.
4983         */
4984        while (1) {
4985                ret = btrfs_block_rsv_refill(root, rsv, min_size,
4986                                             BTRFS_RESERVE_FLUSH_LIMIT);
4987
4988                /*
4989                 * Try and steal from the global reserve since we will
4990                 * likely not use this space anyway, we want to try as
4991                 * hard as possible to get this to work.
4992                 */
4993                if (ret)
4994                        ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4995
4996                if (ret) {
4997                        btrfs_warn(root->fs_info,
4998                                "Could not get space for a delete, will truncate on mount %d",
4999                                ret);
5000                        btrfs_orphan_del(NULL, inode);
5001                        btrfs_free_block_rsv(root, rsv);
5002                        goto no_delete;
5003                }
5004
5005                trans = btrfs_join_transaction(root);
5006                if (IS_ERR(trans)) {
5007                        btrfs_orphan_del(NULL, inode);
5008                        btrfs_free_block_rsv(root, rsv);
5009                        goto no_delete;
5010                }
5011
5012                trans->block_rsv = rsv;
5013
5014                ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5015                if (ret != -ENOSPC)
5016                        break;
5017
5018                trans->block_rsv = &root->fs_info->trans_block_rsv;
5019                btrfs_end_transaction(trans, root);
5020                trans = NULL;
5021                btrfs_btree_balance_dirty(root);
5022        }
5023
5024        btrfs_free_block_rsv(root, rsv);
5025
5026        /*
5027         * Errors here aren't a big deal, it just means we leave orphan items
5028         * in the tree.  They will be cleaned up on the next mount.
5029         */
5030        if (ret == 0) {
5031                trans->block_rsv = root->orphan_block_rsv;
5032                btrfs_orphan_del(trans, inode);
5033        } else {
5034                btrfs_orphan_del(NULL, inode);
5035        }
5036
5037        trans->block_rsv = &root->fs_info->trans_block_rsv;
5038        if (!(root == root->fs_info->tree_root ||
5039              root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5040                btrfs_return_ino(root, btrfs_ino(inode));
5041
5042        btrfs_end_transaction(trans, root);
5043        btrfs_btree_balance_dirty(root);
5044no_delete:
5045        btrfs_remove_delayed_node(inode);
5046        clear_inode(inode);
5047        return;
5048}
5049
5050/*
5051 * this returns the key found in the dir entry in the location pointer.
5052 * If no dir entries were found, location->objectid is 0.
5053 */
5054static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5055                               struct btrfs_key *location)
5056{
5057        const char *name = dentry->d_name.name;
5058        int namelen = dentry->d_name.len;
5059        struct btrfs_dir_item *di;
5060        struct btrfs_path *path;
5061        struct btrfs_root *root = BTRFS_I(dir)->root;
5062        int ret = 0;
5063
5064        path = btrfs_alloc_path();
5065        if (!path)
5066                return -ENOMEM;
5067
5068        di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5069                                    namelen, 0);
5070        if (IS_ERR(di))
5071                ret = PTR_ERR(di);
5072
5073        if (IS_ERR_OR_NULL(di))
5074                goto out_err;
5075
5076        btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5077out:
5078        btrfs_free_path(path);
5079        return ret;
5080out_err:
5081        location->objectid = 0;
5082        goto out;
5083}
5084
5085/*
5086 * when we hit a tree root in a directory, the btrfs part of the inode
5087 * needs to be changed to reflect the root directory of the tree root.  This
5088 * is kind of like crossing a mount point.
5089 */
5090static int fixup_tree_root_location(struct btrfs_root *root,
5091                                    struct inode *dir,
5092                                    struct dentry *dentry,
5093                                    struct btrfs_key *location,
5094                                    struct btrfs_root **sub_root)
5095{
5096        struct btrfs_path *path;
5097        struct btrfs_root *new_root;
5098        struct btrfs_root_ref *ref;
5099        struct extent_buffer *leaf;
5100        struct btrfs_key key;
5101        int ret;
5102        int err = 0;
5103
5104        path = btrfs_alloc_path();
5105        if (!path) {
5106                err = -ENOMEM;
5107                goto out;
5108        }
5109
5110        err = -ENOENT;
5111        key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5112        key.type = BTRFS_ROOT_REF_KEY;
5113        key.offset = location->objectid;
5114
5115        ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5116                                0, 0);
5117        if (ret) {
5118                if (ret < 0)
5119                        err = ret;
5120                goto out;
5121        }
5122
5123        leaf = path->nodes[0];
5124        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5125        if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5126            btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5127                goto out;
5128
5129        ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5130                                   (unsigned long)(ref + 1),
5131                                   dentry->d_name.len);
5132        if (ret)
5133                goto out;
5134
5135        btrfs_release_path(path);
5136
5137        new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5138        if (IS_ERR(new_root)) {
5139                err = PTR_ERR(new_root);
5140                goto out;
5141        }
5142
5143        *sub_root = new_root;
5144        location->objectid = btrfs_root_dirid(&new_root->root_item);
5145        location->type = BTRFS_INODE_ITEM_KEY;
5146        location->offset = 0;
5147        err = 0;
5148out:
5149        btrfs_free_path(path);
5150        return err;
5151}
5152
5153static void inode_tree_add(struct inode *inode)
5154{
5155        struct btrfs_root *root = BTRFS_I(inode)->root;
5156        struct btrfs_inode *entry;
5157        struct rb_node **p;
5158        struct rb_node *parent;
5159        struct rb_node *new = &BTRFS_I(inode)->rb_node;
5160        u64 ino = btrfs_ino(inode);
5161
5162        if (inode_unhashed(inode))
5163                return;
5164        parent = NULL;
5165        spin_lock(&root->inode_lock);
5166        p = &root->inode_tree.rb_node;
5167        while (*p) {
5168                parent = *p;
5169                entry = rb_entry(parent, struct btrfs_inode, rb_node);
5170
5171                if (ino < btrfs_ino(&entry->vfs_inode))
5172                        p = &parent->rb_left;
5173                else if (ino > btrfs_ino(&entry->vfs_inode))
5174                        p = &parent->rb_right;
5175                else {
5176                        WARN_ON(!(entry->vfs_inode.i_state &
5177                                  (I_WILL_FREE | I_FREEING)));
5178                        rb_replace_node(parent, new, &root->inode_tree);
5179                        RB_CLEAR_NODE(parent);
5180                        spin_unlock(&root->inode_lock);
5181                        return;
5182                }
5183        }
5184        rb_link_node(new, parent, p);
5185        rb_insert_color(new, &root->inode_tree);
5186        spin_unlock(&root->inode_lock);
5187}
5188
5189static void inode_tree_del(struct inode *inode)
5190{
5191        struct btrfs_root *root = BTRFS_I(inode)->root;
5192        int empty = 0;
5193
5194        spin_lock(&root->inode_lock);
5195        if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5196                rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5197                RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5198                empty = RB_EMPTY_ROOT(&root->inode_tree);
5199        }
5200        spin_unlock(&root->inode_lock);
5201
5202        if (empty && btrfs_root_refs(&root->root_item) == 0) {
5203                synchronize_srcu(&root->fs_info->subvol_srcu);
5204                spin_lock(&root->inode_lock);
5205                empty = RB_EMPTY_ROOT(&root->inode_tree);
5206                spin_unlock(&root->inode_lock);
5207                if (empty)
5208                        btrfs_add_dead_root(root);
5209        }
5210}
5211
5212void btrfs_invalidate_inodes(struct btrfs_root *root)
5213{
5214        struct rb_node *node;
5215        struct rb_node *prev;
5216        struct btrfs_inode *entry;
5217        struct inode *inode;
5218        u64 objectid = 0;
5219
5220        if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5221                WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5222
5223        spin_lock(&root->inode_lock);
5224again:
5225        node = root->inode_tree.rb_node;
5226        prev = NULL;
5227        while (node) {
5228                prev = node;
5229                entry = rb_entry(node, struct btrfs_inode, rb_node);
5230
5231                if (objectid < btrfs_ino(&entry->vfs_inode))
5232                        node = node->rb_left;
5233                else if (objectid > btrfs_ino(&entry->vfs_inode))
5234                        node = node->rb_right;
5235                else
5236                        break;
5237        }
5238        if (!node) {
5239                while (prev) {
5240                        entry = rb_entry(prev, struct btrfs_inode, rb_node);
5241                        if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5242                                node = prev;
5243                                break;
5244                        }
5245                        prev = rb_next(prev);
5246                }
5247        }
5248        while (node) {
5249                entry = rb_entry(node, struct btrfs_inode, rb_node);
5250                objectid = btrfs_ino(&entry->vfs_inode) + 1;
5251                inode = igrab(&entry->vfs_inode);
5252                if (inode) {
5253                        spin_unlock(&root->inode_lock);
5254                        if (atomic_read(&inode->i_count) > 1)
5255                                d_prune_aliases(inode);
5256                        /*
5257                         * btrfs_drop_inode will have it removed from
5258                         * the inode cache when its usage count
5259                         * hits zero.
5260                         */
5261                        iput(inode);
5262                        cond_resched();
5263                        spin_lock(&root->inode_lock);
5264                        goto again;
5265                }
5266
5267                if (cond_resched_lock(&root->inode_lock))
5268                        goto again;
5269
5270                node = rb_next(node);
5271        }
5272        spin_unlock(&root->inode_lock);
5273}
5274
5275static int btrfs_init_locked_inode(struct inode *inode, void *p)
5276{
5277        struct btrfs_iget_args *args = p;
5278        inode->i_ino = args->location->objectid;
5279        memcpy(&BTRFS_I(inode)->location, args->location,
5280               sizeof(*args->location));
5281        BTRFS_I(inode)->root = args->root;
5282        return 0;
5283}
5284
5285static int btrfs_find_actor(struct inode *inode, void *opaque)
5286{
5287        struct btrfs_iget_args *args = opaque;
5288        return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5289                args->root == BTRFS_I(inode)->root;
5290}
5291
5292static struct inode *btrfs_iget_locked(struct super_block *s,
5293                                       struct btrfs_key *location,
5294                                       struct btrfs_root *root)
5295{
5296        struct inode *inode;
5297        struct btrfs_iget_args args;
5298        unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5299
5300        args.location = location;
5301        args.root = root;
5302
5303        inode = iget5_locked(s, hashval, btrfs_find_actor,
5304                             btrfs_init_locked_inode,
5305                             (void *)&args);
5306        return inode;
5307}
5308
5309/* Get an inode object given its location and corresponding root.
5310 * Returns in *is_new if the inode was read from disk
5311 */
5312struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5313                         struct btrfs_root *root, int *new)
5314{
5315        struct inode *inode;
5316
5317        inode = btrfs_iget_locked(s, location, root);
5318        if (!inode)
5319                return ERR_PTR(-ENOMEM);
5320
5321        if (inode->i_state & I_NEW) {
5322                btrfs_read_locked_inode(inode);
5323                if (!is_bad_inode(inode)) {
5324                        inode_tree_add(inode);
5325                        unlock_new_inode(inode);
5326                        if (new)
5327                                *new = 1;
5328                } else {
5329                        unlock_new_inode(inode);
5330                        iput(inode);
5331                        inode = ERR_PTR(-ESTALE);
5332                }
5333        }
5334
5335        return inode;
5336}
5337
5338static struct inode *new_simple_dir(struct super_block *s,
5339                                    struct btrfs_key *key,
5340                                    struct btrfs_root *root)
5341{
5342        struct inode *inode = new_inode(s);
5343
5344        if (!inode)
5345                return ERR_PTR(-ENOMEM);
5346
5347        BTRFS_I(inode)->root = root;
5348        memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5349        set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5350
5351        inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5352        inode->i_op = &btrfs_dir_ro_inode_operations;
5353        inode->i_fop = &simple_dir_operations;
5354        inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5355        inode->i_mtime = CURRENT_TIME;
5356        inode->i_atime = inode->i_mtime;
5357        inode->i_ctime = inode->i_mtime;
5358        BTRFS_I(inode)->i_otime = inode->i_mtime;
5359
5360        return inode;
5361}
5362
5363struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5364{
5365        struct inode *inode;
5366        struct btrfs_root *root = BTRFS_I(dir)->root;
5367        struct btrfs_root *sub_root = root;
5368        struct btrfs_key location;
5369        int index;
5370        int ret = 0;
5371
5372        if (dentry->d_name.len > BTRFS_NAME_LEN)
5373                return ERR_PTR(-ENAMETOOLONG);
5374
5375        ret = btrfs_inode_by_name(dir, dentry, &location);
5376        if (ret < 0)
5377                return ERR_PTR(ret);
5378
5379        if (location.objectid == 0)
5380                return ERR_PTR(-ENOENT);
5381
5382        if (location.type == BTRFS_INODE_ITEM_KEY) {
5383                inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5384                return inode;
5385        }
5386
5387        BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5388
5389        index = srcu_read_lock(&root->fs_info->subvol_srcu);
5390        ret = fixup_tree_root_location(root, dir, dentry,
5391                                       &location, &sub_root);
5392        if (ret < 0) {
5393                if (ret != -ENOENT)
5394                        inode = ERR_PTR(ret);
5395                else
5396                        inode = new_simple_dir(dir->i_sb, &location, sub_root);
5397        } else {
5398                inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5399        }
5400        srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5401
5402        if (!IS_ERR(inode) && root != sub_root) {
5403                down_read(&root->fs_info->cleanup_work_sem);
5404                if (!(inode->i_sb->s_flags & MS_RDONLY))
5405                        ret = btrfs_orphan_cleanup(sub_root);
5406                up_read(&root->fs_info->cleanup_work_sem);
5407                if (ret) {
5408                        iput(inode);
5409                        inode = ERR_PTR(ret);
5410                }
5411        }
5412
5413        return inode;
5414}
5415
5416static int btrfs_dentry_delete(const struct dentry *dentry)
5417{
5418        struct btrfs_root *root;
5419        struct inode *inode = dentry->d_inode;
5420
5421        if (!inode && !IS_ROOT(dentry))
5422                inode = dentry->d_parent->d_inode;
5423
5424        if (inode) {
5425                root = BTRFS_I(inode)->root;
5426                if (btrfs_root_refs(&root->root_item) == 0)
5427                        return 1;
5428
5429                if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5430                        return 1;
5431        }
5432        return 0;
5433}
5434
5435static void btrfs_dentry_release(struct dentry *dentry)
5436{
5437        kfree(dentry->d_fsdata);
5438}
5439
5440static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5441                                   unsigned int flags)
5442{
5443        struct inode *inode;
5444
5445        inode = btrfs_lookup_dentry(dir, dentry);
5446        if (IS_ERR(inode)) {
5447                if (PTR_ERR(inode) == -ENOENT)
5448                        inode = NULL;
5449                else
5450                        return ERR_CAST(inode);
5451        }
5452
5453        return d_splice_alias(inode, dentry);
5454}
5455
5456unsigned char btrfs_filetype_table[] = {
5457        DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5458};
5459
5460static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5461{
5462        struct inode *inode = file_inode(file);
5463        struct btrfs_root *root = BTRFS_I(inode)->root;
5464        struct btrfs_item *item;
5465        struct btrfs_dir_item *di;
5466        struct btrfs_key key;
5467        struct btrfs_key found_key;
5468        struct btrfs_path *path;
5469        struct list_head ins_list;
5470        struct list_head del_list;
5471        int ret;
5472        struct extent_buffer *leaf;
5473        int slot;
5474        unsigned char d_type;
5475        int over = 0;
5476        u32 di_cur;
5477        u32 di_total;
5478        u32 di_len;
5479        int key_type = BTRFS_DIR_INDEX_KEY;
5480        char tmp_name[32];
5481        char *name_ptr;
5482        int name_len;
5483        int is_curr = 0;        /* ctx->pos points to the current index? */
5484
5485        /* FIXME, use a real flag for deciding about the key type */
5486        if (root->fs_info->tree_root == root)
5487                key_type = BTRFS_DIR_ITEM_KEY;
5488
5489        if (!dir_emit_dots(file, ctx))
5490                return 0;
5491
5492        path = btrfs_alloc_path();
5493        if (!path)
5494                return -ENOMEM;
5495
5496        path->reada = 1;
5497
5498        if (key_type == BTRFS_DIR_INDEX_KEY) {
5499                INIT_LIST_HEAD(&ins_list);
5500                INIT_LIST_HEAD(&del_list);
5501                btrfs_get_delayed_items(inode, &ins_list, &del_list);
5502        }
5503
5504        key.type = key_type;
5505        key.offset = ctx->pos;
5506        key.objectid = btrfs_ino(inode);
5507
5508        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5509        if (ret < 0)
5510                goto err;
5511
5512        while (1) {
5513                leaf = path->nodes[0];
5514                slot = path->slots[0];
5515                if (slot >= btrfs_header_nritems(leaf)) {
5516                        ret = btrfs_next_leaf(root, path);
5517                        if (ret < 0)
5518                                goto err;
5519                        else if (ret > 0)
5520                                break;
5521                        continue;
5522                }
5523
5524                item = btrfs_item_nr(slot);
5525                btrfs_item_key_to_cpu(leaf, &found_key, slot);
5526
5527                if (found_key.objectid != key.objectid)
5528                        break;
5529                if (found_key.type != key_type)
5530                        break;
5531                if (found_key.offset < ctx->pos)
5532                        goto next;
5533                if (key_type == BTRFS_DIR_INDEX_KEY &&
5534                    btrfs_should_delete_dir_index(&del_list,
5535                                                  found_key.offset))
5536                        goto next;
5537
5538                ctx->pos = found_key.offset;
5539                is_curr = 1;
5540
5541                di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5542                di_cur = 0;
5543                di_total = btrfs_item_size(leaf, item);
5544
5545                while (di_cur < di_total) {
5546                        struct btrfs_key location;
5547
5548                        if (verify_dir_item(root, leaf, di))
5549                                break;
5550
5551                        name_len = btrfs_dir_name_len(leaf, di);
5552                        if (name_len <= sizeof(tmp_name)) {
5553                                name_ptr = tmp_name;
5554                        } else {
5555                                name_ptr = kmalloc(name_len, GFP_NOFS);
5556                                if (!name_ptr) {
5557                                        ret = -ENOMEM;
5558                                        goto err;
5559                                }
5560                        }
5561                        read_extent_buffer(leaf, name_ptr,
5562                                           (unsigned long)(di + 1), name_len);
5563
5564                        d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5565                        btrfs_dir_item_key_to_cpu(leaf, di, &location);
5566
5567
5568                        /* is this a reference to our own snapshot? If so
5569                         * skip it.
5570                         *
5571                         * In contrast to old kernels, we insert the snapshot's
5572                         * dir item and dir index after it has been created, so
5573                         * we won't find a reference to our own snapshot. We
5574                         * still keep the following code for backward
5575                         * compatibility.
5576                         */
5577                        if (location.type == BTRFS_ROOT_ITEM_KEY &&
5578                            location.objectid == root->root_key.objectid) {
5579                                over = 0;
5580                                goto skip;
5581                        }
5582                        over = !dir_emit(ctx, name_ptr, name_len,
5583                                       location.objectid, d_type);
5584
5585skip:
5586                        if (name_ptr != tmp_name)
5587                                kfree(name_ptr);
5588
5589                        if (over)
5590                                goto nopos;
5591                        di_len = btrfs_dir_name_len(leaf, di) +
5592                                 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5593                        di_cur += di_len;
5594                        di = (struct btrfs_dir_item *)((char *)di + di_len);
5595                }
5596next:
5597                path->slots[0]++;
5598        }
5599
5600        if (key_type == BTRFS_DIR_INDEX_KEY) {
5601                if (is_curr)
5602                        ctx->pos++;
5603                ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5604                if (ret)
5605                        goto nopos;
5606        }
5607
5608        /* Reached end of directory/root. Bump pos past the last item. */
5609        ctx->pos++;
5610
5611        /*
5612         * Stop new entries from being returned after we return the last
5613         * entry.
5614         *
5615         * New directory entries are assigned a strictly increasing
5616         * offset.  This means that new entries created during readdir
5617         * are *guaranteed* to be seen in the future by that readdir.
5618         * This has broken buggy programs which operate on names as
5619         * they're returned by readdir.  Until we re-use freed offsets
5620         * we have this hack to stop new entries from being returned
5621         * under the assumption that they'll never reach this huge
5622         * offset.
5623         *
5624         * This is being careful not to overflow 32bit loff_t unless the
5625         * last entry requires it because doing so has broken 32bit apps
5626         * in the past.
5627         */
5628        if (key_type == BTRFS_DIR_INDEX_KEY) {
5629                if (ctx->pos >= INT_MAX)
5630                        ctx->pos = LLONG_MAX;
5631                else
5632                        ctx->pos = INT_MAX;
5633        }
5634nopos:
5635        ret = 0;
5636err:
5637        if (key_type == BTRFS_DIR_INDEX_KEY)
5638                btrfs_put_delayed_items(&ins_list, &del_list);
5639        btrfs_free_path(path);
5640        return ret;
5641}
5642
5643int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5644{
5645        struct btrfs_root *root = BTRFS_I(inode)->root;
5646        struct btrfs_trans_handle *trans;
5647        int ret = 0;
5648        bool nolock = false;
5649
5650        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5651                return 0;
5652
5653        if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5654                nolock = true;
5655
5656        if (wbc->sync_mode == WB_SYNC_ALL) {
5657                if (nolock)
5658                        trans = btrfs_join_transaction_nolock(root);
5659                else
5660                        trans = btrfs_join_transaction(root);
5661                if (IS_ERR(trans))
5662                        return PTR_ERR(trans);
5663                ret = btrfs_commit_transaction(trans, root);
5664        }
5665        return ret;
5666}
5667
5668/*
5669 * This is somewhat expensive, updating the tree every time the
5670 * inode changes.  But, it is most likely to find the inode in cache.
5671 * FIXME, needs more benchmarking...there are no reasons other than performance
5672 * to keep or drop this code.
5673 */
5674static int btrfs_dirty_inode(struct inode *inode)
5675{
5676        struct btrfs_root *root = BTRFS_I(inode)->root;
5677        struct btrfs_trans_handle *trans;
5678        int ret;
5679
5680        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5681                return 0;
5682
5683        trans = btrfs_join_transaction(root);
5684        if (IS_ERR(trans))
5685                return PTR_ERR(trans);
5686
5687        ret = btrfs_update_inode(trans, root, inode);
5688        if (ret && ret == -ENOSPC) {
5689                /* whoops, lets try again with the full transaction */
5690                btrfs_end_transaction(trans, root);
5691                trans = btrfs_start_transaction(root, 1);
5692                if (IS_ERR(trans))
5693                        return PTR_ERR(trans);
5694
5695                ret = btrfs_update_inode(trans, root, inode);
5696        }
5697        btrfs_end_transaction(trans, root);
5698        if (BTRFS_I(inode)->delayed_node)
5699                btrfs_balance_delayed_items(root);
5700
5701        return ret;
5702}
5703
5704/*
5705 * This is a copy of file_update_time.  We need this so we can return error on
5706 * ENOSPC for updating the inode in the case of file write and mmap writes.
5707 */
5708static int btrfs_update_time(struct inode *inode, struct timespec *now,
5709                             int flags)
5710{
5711        struct btrfs_root *root = BTRFS_I(inode)->root;
5712
5713        if (btrfs_root_readonly(root))
5714                return -EROFS;
5715
5716        if (flags & S_VERSION)
5717                inode_inc_iversion(inode);
5718        if (flags & S_CTIME)
5719                inode->i_ctime = *now;
5720        if (flags & S_MTIME)
5721                inode->i_mtime = *now;
5722        if (flags & S_ATIME)
5723                inode->i_atime = *now;
5724        return btrfs_dirty_inode(inode);
5725}
5726
5727/*
5728 * find the highest existing sequence number in a directory
5729 * and then set the in-memory index_cnt variable to reflect
5730 * free sequence numbers
5731 */
5732static int btrfs_set_inode_index_count(struct inode *inode)
5733{
5734        struct btrfs_root *root = BTRFS_I(inode)->root;
5735        struct btrfs_key key, found_key;
5736        struct btrfs_path *path;
5737        struct extent_buffer *leaf;
5738        int ret;
5739
5740        key.objectid = btrfs_ino(inode);
5741        key.type = BTRFS_DIR_INDEX_KEY;
5742        key.offset = (u64)-1;
5743
5744        path = btrfs_alloc_path();
5745        if (!path)
5746                return -ENOMEM;
5747
5748        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5749        if (ret < 0)
5750                goto out;
5751        /* FIXME: we should be able to handle this */
5752        if (ret == 0)
5753                goto out;
5754        ret = 0;
5755
5756        /*
5757         * MAGIC NUMBER EXPLANATION:
5758         * since we search a directory based on f_pos we have to start at 2
5759         * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5760         * else has to start at 2
5761         */
5762        if (path->slots[0] == 0) {
5763                BTRFS_I(inode)->index_cnt = 2;
5764                goto out;
5765        }
5766
5767        path->slots[0]--;
5768
5769        leaf = path->nodes[0];
5770        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5771
5772        if (found_key.objectid != btrfs_ino(inode) ||
5773            found_key.type != BTRFS_DIR_INDEX_KEY) {
5774                BTRFS_I(inode)->index_cnt = 2;
5775                goto out;
5776        }
5777
5778        BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5779out:
5780        btrfs_free_path(path);
5781        return ret;
5782}
5783
5784/*
5785 * helper to find a free sequence number in a given directory.  This current
5786 * code is very simple, later versions will do smarter things in the btree
5787 */
5788int btrfs_set_inode_index(struct inode *dir, u64 *index)
5789{
5790        int ret = 0;
5791
5792        if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5793                ret = btrfs_inode_delayed_dir_index_count(dir);
5794                if (ret) {
5795                        ret = btrfs_set_inode_index_count(dir);
5796                        if (ret)
5797                                return ret;
5798                }
5799        }
5800
5801        *index = BTRFS_I(dir)->index_cnt;
5802        BTRFS_I(dir)->index_cnt++;
5803
5804        return ret;
5805}
5806
5807static int btrfs_insert_inode_locked(struct inode *inode)
5808{
5809        struct btrfs_iget_args args;
5810        args.location = &BTRFS_I(inode)->location;
5811        args.root = BTRFS_I(inode)->root;
5812
5813        return insert_inode_locked4(inode,
5814                   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5815                   btrfs_find_actor, &args);
5816}
5817
5818static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5819                                     struct btrfs_root *root,
5820                                     struct inode *dir,
5821                                     const char *name, int name_len,
5822                                     u64 ref_objectid, u64 objectid,
5823                                     umode_t mode, u64 *index)
5824{
5825        struct inode *inode;
5826        struct btrfs_inode_item *inode_item;
5827        struct btrfs_key *location;
5828        struct btrfs_path *path;
5829        struct btrfs_inode_ref *ref;
5830        struct btrfs_key key[2];
5831        u32 sizes[2];
5832        int nitems = name ? 2 : 1;
5833        unsigned long ptr;
5834        int ret;
5835
5836        path = btrfs_alloc_path();
5837        if (!path)
5838                return ERR_PTR(-ENOMEM);
5839
5840        inode = new_inode(root->fs_info->sb);
5841        if (!inode) {
5842                btrfs_free_path(path);
5843                return ERR_PTR(-ENOMEM);
5844        }
5845
5846        /*
5847         * O_TMPFILE, set link count to 0, so that after this point,
5848         * we fill in an inode item with the correct link count.
5849         */
5850        if (!name)
5851                set_nlink(inode, 0);
5852
5853        /*
5854         * we have to initialize this early, so we can reclaim the inode
5855         * number if we fail afterwards in this function.
5856         */
5857        inode->i_ino = objectid;
5858
5859        if (dir && name) {
5860                trace_btrfs_inode_request(dir);
5861
5862                ret = btrfs_set_inode_index(dir, index);
5863                if (ret) {
5864                        btrfs_free_path(path);
5865                        iput(inode);
5866                        return ERR_PTR(ret);
5867                }
5868        } else if (dir) {
5869                *index = 0;
5870        }
5871        /*
5872         * index_cnt is ignored for everything but a dir,
5873         * btrfs_get_inode_index_count has an explanation for the magic
5874         * number
5875         */
5876        BTRFS_I(inode)->index_cnt = 2;
5877        BTRFS_I(inode)->dir_index = *index;
5878        BTRFS_I(inode)->root = root;
5879        BTRFS_I(inode)->generation = trans->transid;
5880        inode->i_generation = BTRFS_I(inode)->generation;
5881
5882        /*
5883         * We could have gotten an inode number from somebody who was fsynced
5884         * and then removed in this same transaction, so let's just set full
5885         * sync since it will be a full sync anyway and this will blow away the
5886         * old info in the log.
5887         */
5888        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5889
5890        key[0].objectid = objectid;
5891        key[0].type = BTRFS_INODE_ITEM_KEY;
5892        key[0].offset = 0;
5893
5894        sizes[0] = sizeof(struct btrfs_inode_item);
5895
5896        if (name) {
5897                /*
5898                 * Start new inodes with an inode_ref. This is slightly more
5899                 * efficient for small numbers of hard links since they will
5900                 * be packed into one item. Extended refs will kick in if we
5901                 * add more hard links than can fit in the ref item.
5902                 */
5903                key[1].objectid = objectid;
5904                key[1].type = BTRFS_INODE_REF_KEY;
5905                key[1].offset = ref_objectid;
5906
5907                sizes[1] = name_len + sizeof(*ref);
5908        }
5909
5910        location = &BTRFS_I(inode)->location;
5911        location->objectid = objectid;
5912        location->offset = 0;
5913        location->type = BTRFS_INODE_ITEM_KEY;
5914
5915        ret = btrfs_insert_inode_locked(inode);
5916        if (ret < 0)
5917                goto fail;
5918
5919        path->leave_spinning = 1;
5920        ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5921        if (ret != 0)
5922                goto fail_unlock;
5923
5924        inode_init_owner(inode, dir, mode);
5925        inode_set_bytes(inode, 0);
5926
5927        inode->i_mtime = CURRENT_TIME;
5928        inode->i_atime = inode->i_mtime;
5929        inode->i_ctime = inode->i_mtime;
5930        BTRFS_I(inode)->i_otime = inode->i_mtime;
5931
5932        inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5933                                  struct btrfs_inode_item);
5934        memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5935                             sizeof(*inode_item));
5936        fill_inode_item(trans, path->nodes[0], inode_item, inode);
5937
5938        if (name) {
5939                ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5940                                     struct btrfs_inode_ref);
5941                btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5942                btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5943                ptr = (unsigned long)(ref + 1);
5944                write_extent_buffer(path->nodes[0], name, ptr, name_len);
5945        }
5946
5947        btrfs_mark_buffer_dirty(path->nodes[0]);
5948        btrfs_free_path(path);
5949
5950        btrfs_inherit_iflags(inode, dir);
5951
5952        if (S_ISREG(mode)) {
5953                if (btrfs_test_opt(root, NODATASUM))
5954                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5955                if (btrfs_test_opt(root, NODATACOW))
5956                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5957                                BTRFS_INODE_NODATASUM;
5958        }
5959
5960        inode_tree_add(inode);
5961
5962        trace_btrfs_inode_new(inode);
5963        btrfs_set_inode_last_trans(trans, inode);
5964
5965        btrfs_update_root_times(trans, root);
5966
5967        ret = btrfs_inode_inherit_props(trans, inode, dir);
5968        if (ret)
5969                btrfs_err(root->fs_info,
5970                          "error inheriting props for ino %llu (root %llu): %d",
5971                          btrfs_ino(inode), root->root_key.objectid, ret);
5972
5973        return inode;
5974
5975fail_unlock:
5976        unlock_new_inode(inode);
5977fail:
5978        if (dir && name)
5979                BTRFS_I(dir)->index_cnt--;
5980        btrfs_free_path(path);
5981        iput(inode);
5982        return ERR_PTR(ret);
5983}
5984
5985static inline u8 btrfs_inode_type(struct inode *inode)
5986{
5987        return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5988}
5989
5990/*
5991 * utility function to add 'inode' into 'parent_inode' with
5992 * a give name and a given sequence number.
5993 * if 'add_backref' is true, also insert a backref from the
5994 * inode to the parent directory.
5995 */
5996int btrfs_add_link(struct btrfs_trans_handle *trans,
5997                   struct inode *parent_inode, struct inode *inode,
5998                   const char *name, int name_len, int add_backref, u64 index)
5999{
6000        int ret = 0;
6001        struct btrfs_key key;
6002        struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6003        u64 ino = btrfs_ino(inode);
6004        u64 parent_ino = btrfs_ino(parent_inode);
6005
6006        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6007                memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6008        } else {
6009                key.objectid = ino;
6010                key.type = BTRFS_INODE_ITEM_KEY;
6011                key.offset = 0;
6012        }
6013
6014        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6015                ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6016                                         key.objectid, root->root_key.objectid,
6017                                         parent_ino, index, name, name_len);
6018        } else if (add_backref) {
6019                ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6020                                             parent_ino, index);
6021        }
6022
6023        /* Nothing to clean up yet */
6024        if (ret)
6025                return ret;
6026
6027        ret = btrfs_insert_dir_item(trans, root, name, name_len,
6028                                    parent_inode, &key,
6029                                    btrfs_inode_type(inode), index);
6030        if (ret == -EEXIST || ret == -EOVERFLOW)
6031                goto fail_dir_item;
6032        else if (ret) {
6033                btrfs_abort_transaction(trans, root, ret);
6034                return ret;
6035        }
6036
6037        btrfs_i_size_write(parent_inode, parent_inode->i_size +
6038                           name_len * 2);
6039        inode_inc_iversion(parent_inode);
6040        parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6041        ret = btrfs_update_inode(trans, root, parent_inode);
6042        if (ret)
6043                btrfs_abort_transaction(trans, root, ret);
6044        return ret;
6045
6046fail_dir_item:
6047        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6048                u64 local_index;
6049                int err;
6050                err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6051                                 key.objectid, root->root_key.objectid,
6052                                 parent_ino, &local_index, name, name_len);
6053
6054        } else if (add_backref) {
6055                u64 local_index;
6056                int err;
6057
6058                err = btrfs_del_inode_ref(trans, root, name, name_len,
6059                                          ino, parent_ino, &local_index);
6060        }
6061        return ret;
6062}
6063
6064static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6065                            struct inode *dir, struct dentry *dentry,
6066                            struct inode *inode, int backref, u64 index)
6067{
6068        int err = btrfs_add_link(trans, dir, inode,
6069                                 dentry->d_name.name, dentry->d_name.len,
6070                                 backref, index);
6071        if (err > 0)
6072                err = -EEXIST;
6073        return err;
6074}
6075
6076static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6077                        umode_t mode, dev_t rdev)
6078{
6079        struct btrfs_trans_handle *trans;
6080        struct btrfs_root *root = BTRFS_I(dir)->root;
6081        struct inode *inode = NULL;
6082        int err;
6083        int drop_inode = 0;
6084        u64 objectid;
6085        u64 index = 0;
6086
6087        if (!new_valid_dev(rdev))
6088                return -EINVAL;
6089
6090        /*
6091         * 2 for inode item and ref
6092         * 2 for dir items
6093         * 1 for xattr if selinux is on
6094         */
6095        trans = btrfs_start_transaction(root, 5);
6096        if (IS_ERR(trans))
6097                return PTR_ERR(trans);
6098
6099        err = btrfs_find_free_ino(root, &objectid);
6100        if (err)
6101                goto out_unlock;
6102
6103        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6104                                dentry->d_name.len, btrfs_ino(dir), objectid,
6105                                mode, &index);
6106        if (IS_ERR(inode)) {
6107                err = PTR_ERR(inode);
6108                goto out_unlock;
6109        }
6110
6111        /*
6112        * If the active LSM wants to access the inode during
6113        * d_instantiate it needs these. Smack checks to see
6114        * if the filesystem supports xattrs by looking at the
6115        * ops vector.
6116        */
6117        inode->i_op = &btrfs_special_inode_operations;
6118        init_special_inode(inode, inode->i_mode, rdev);
6119
6120        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6121        if (err)
6122                goto out_unlock_inode;
6123
6124        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6125        if (err) {
6126                goto out_unlock_inode;
6127        } else {
6128                btrfs_update_inode(trans, root, inode);
6129                unlock_new_inode(inode);
6130                d_instantiate(dentry, inode);
6131        }
6132
6133out_unlock:
6134        btrfs_end_transaction(trans, root);
6135        btrfs_balance_delayed_items(root);
6136        btrfs_btree_balance_dirty(root);
6137        if (drop_inode) {
6138                inode_dec_link_count(inode);
6139                iput(inode);
6140        }
6141        return err;
6142
6143out_unlock_inode:
6144        drop_inode = 1;
6145        unlock_new_inode(inode);
6146        goto out_unlock;
6147
6148}
6149
6150static int btrfs_create(struct inode *dir, struct dentry *dentry,
6151                        umode_t mode, bool excl)
6152{
6153        struct btrfs_trans_handle *trans;
6154        struct btrfs_root *root = BTRFS_I(dir)->root;
6155        struct inode *inode = NULL;
6156        int drop_inode_on_err = 0;
6157        int err;
6158        u64 objectid;
6159        u64 index = 0;
6160
6161        /*
6162         * 2 for inode item and ref
6163         * 2 for dir items
6164         * 1 for xattr if selinux is on
6165         */
6166        trans = btrfs_start_transaction(root, 5);
6167        if (IS_ERR(trans))
6168                return PTR_ERR(trans);
6169
6170        err = btrfs_find_free_ino(root, &objectid);
6171        if (err)
6172                goto out_unlock;
6173
6174        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6175                                dentry->d_name.len, btrfs_ino(dir), objectid,
6176                                mode, &index);
6177        if (IS_ERR(inode)) {
6178                err = PTR_ERR(inode);
6179                goto out_unlock;
6180        }
6181        drop_inode_on_err = 1;
6182        /*
6183        * If the active LSM wants to access the inode during
6184        * d_instantiate it needs these. Smack checks to see
6185        * if the filesystem supports xattrs by looking at the
6186        * ops vector.
6187        */
6188        inode->i_fop = &btrfs_file_operations;
6189        inode->i_op = &btrfs_file_inode_operations;
6190        inode->i_mapping->a_ops = &btrfs_aops;
6191
6192        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6193        if (err)
6194                goto out_unlock_inode;
6195
6196        err = btrfs_update_inode(trans, root, inode);
6197        if (err)
6198                goto out_unlock_inode;
6199
6200        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6201        if (err)
6202                goto out_unlock_inode;
6203
6204        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6205        unlock_new_inode(inode);
6206        d_instantiate(dentry, inode);
6207
6208out_unlock:
6209        btrfs_end_transaction(trans, root);
6210        if (err && drop_inode_on_err) {
6211                inode_dec_link_count(inode);
6212                iput(inode);
6213        }
6214        btrfs_balance_delayed_items(root);
6215        btrfs_btree_balance_dirty(root);
6216        return err;
6217
6218out_unlock_inode:
6219        unlock_new_inode(inode);
6220        goto out_unlock;
6221
6222}
6223
6224static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6225                      struct dentry *dentry)
6226{
6227        struct btrfs_trans_handle *trans;
6228        struct btrfs_root *root = BTRFS_I(dir)->root;
6229        struct inode *inode = old_dentry->d_inode;
6230        u64 index;
6231        int err;
6232        int drop_inode = 0;
6233
6234        /* do not allow sys_link's with other subvols of the same device */
6235        if (root->objectid != BTRFS_I(inode)->root->objectid)
6236                return -EXDEV;
6237
6238        if (inode->i_nlink >= BTRFS_LINK_MAX)
6239                return -EMLINK;
6240
6241        err = btrfs_set_inode_index(dir, &index);
6242        if (err)
6243                goto fail;
6244
6245        /*
6246         * 2 items for inode and inode ref
6247         * 2 items for dir items
6248         * 1 item for parent inode
6249         */
6250        trans = btrfs_start_transaction(root, 5);
6251        if (IS_ERR(trans)) {
6252                err = PTR_ERR(trans);
6253                goto fail;
6254        }
6255
6256        /* There are several dir indexes for this inode, clear the cache. */
6257        BTRFS_I(inode)->dir_index = 0ULL;
6258        inc_nlink(inode);
6259        inode_inc_iversion(inode);
6260        inode->i_ctime = CURRENT_TIME;
6261        ihold(inode);
6262        set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6263
6264        err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6265
6266        if (err) {
6267                drop_inode = 1;
6268        } else {
6269                struct dentry *parent = dentry->d_parent;
6270                err = btrfs_update_inode(trans, root, inode);
6271                if (err)
6272                        goto fail;
6273                if (inode->i_nlink == 1) {
6274                        /*
6275                         * If new hard link count is 1, it's a file created
6276                         * with open(2) O_TMPFILE flag.
6277                         */
6278                        err = btrfs_orphan_del(trans, inode);
6279                        if (err)
6280                                goto fail;
6281                }
6282                d_instantiate(dentry, inode);
6283                btrfs_log_new_name(trans, inode, NULL, parent);
6284        }
6285
6286        btrfs_end_transaction(trans, root);
6287        btrfs_balance_delayed_items(root);
6288fail:
6289        if (drop_inode) {
6290                inode_dec_link_count(inode);
6291                iput(inode);
6292        }
6293        btrfs_btree_balance_dirty(root);
6294        return err;
6295}
6296
6297static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6298{
6299        struct inode *inode = NULL;
6300        struct btrfs_trans_handle *trans;
6301        struct btrfs_root *root = BTRFS_I(dir)->root;
6302        int err = 0;
6303        int drop_on_err = 0;
6304        u64 objectid = 0;
6305        u64 index = 0;
6306
6307        /*
6308         * 2 items for inode and ref
6309         * 2 items for dir items
6310         * 1 for xattr if selinux is on
6311         */
6312        trans = btrfs_start_transaction(root, 5);
6313        if (IS_ERR(trans))
6314                return PTR_ERR(trans);
6315
6316        err = btrfs_find_free_ino(root, &objectid);
6317        if (err)
6318                goto out_fail;
6319
6320        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6321                                dentry->d_name.len, btrfs_ino(dir), objectid,
6322                                S_IFDIR | mode, &index);
6323        if (IS_ERR(inode)) {
6324                err = PTR_ERR(inode);
6325                goto out_fail;
6326        }
6327
6328        drop_on_err = 1;
6329        /* these must be set before we unlock the inode */
6330        inode->i_op = &btrfs_dir_inode_operations;
6331        inode->i_fop = &btrfs_dir_file_operations;
6332
6333        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6334        if (err)
6335                goto out_fail_inode;
6336
6337        btrfs_i_size_write(inode, 0);
6338        err = btrfs_update_inode(trans, root, inode);
6339        if (err)
6340                goto out_fail_inode;
6341
6342        err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6343                             dentry->d_name.len, 0, index);
6344        if (err)
6345                goto out_fail_inode;
6346
6347        d_instantiate(dentry, inode);
6348        /*
6349         * mkdir is special.  We're unlocking after we call d_instantiate
6350         * to avoid a race with nfsd calling d_instantiate.
6351         */
6352        unlock_new_inode(inode);
6353        drop_on_err = 0;
6354
6355out_fail:
6356        btrfs_end_transaction(trans, root);
6357        if (drop_on_err) {
6358                inode_dec_link_count(inode);
6359                iput(inode);
6360        }
6361        btrfs_balance_delayed_items(root);
6362        btrfs_btree_balance_dirty(root);
6363        return err;
6364
6365out_fail_inode:
6366        unlock_new_inode(inode);
6367        goto out_fail;
6368}
6369
6370/* Find next extent map of a given extent map, caller needs to ensure locks */
6371static struct extent_map *next_extent_map(struct extent_map *em)
6372{
6373        struct rb_node *next;
6374
6375        next = rb_next(&em->rb_node);
6376        if (!next)
6377                return NULL;
6378        return container_of(next, struct extent_map, rb_node);
6379}
6380
6381static struct extent_map *prev_extent_map(struct extent_map *em)
6382{
6383        struct rb_node *prev;
6384
6385        prev = rb_prev(&em->rb_node);
6386        if (!prev)
6387                return NULL;
6388        return container_of(prev, struct extent_map, rb_node);
6389}
6390
6391/* helper for btfs_get_extent.  Given an existing extent in the tree,
6392 * the existing extent is the nearest extent to map_start,
6393 * and an extent that you want to insert, deal with overlap and insert
6394 * the best fitted new extent into the tree.
6395 */
6396static int merge_extent_mapping(struct extent_map_tree *em_tree,
6397                                struct extent_map *existing,
6398                                struct extent_map *em,
6399                                u64 map_start)
6400{
6401        struct extent_map *prev;
6402        struct extent_map *next;
6403        u64 start;
6404        u64 end;
6405        u64 start_diff;
6406
6407        BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6408
6409        if (existing->start > map_start) {
6410                next = existing;
6411                prev = prev_extent_map(next);
6412        } else {
6413                prev = existing;
6414                next = next_extent_map(prev);
6415        }
6416
6417        start = prev ? extent_map_end(prev) : em->start;
6418        start = max_t(u64, start, em->start);
6419        end = next ? next->start : extent_map_end(em);
6420        end = min_t(u64, end, extent_map_end(em));
6421        start_diff = start - em->start;
6422        em->start = start;
6423        em->len = end - start;
6424        if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6425            !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6426                em->block_start += start_diff;
6427                em->block_len -= start_diff;
6428        }
6429        return add_extent_mapping(em_tree, em, 0);
6430}
6431
6432static noinline int uncompress_inline(struct btrfs_path *path,
6433                                      struct inode *inode, struct page *page,
6434                                      size_t pg_offset, u64 extent_offset,
6435                                      struct btrfs_file_extent_item *item)
6436{
6437        int ret;
6438        struct extent_buffer *leaf = path->nodes[0];
6439        char *tmp;
6440        size_t max_size;
6441        unsigned long inline_size;
6442        unsigned long ptr;
6443        int compress_type;
6444
6445        WARN_ON(pg_offset != 0);
6446        compress_type = btrfs_file_extent_compression(leaf, item);
6447        max_size = btrfs_file_extent_ram_bytes(leaf, item);
6448        inline_size = btrfs_file_extent_inline_item_len(leaf,
6449                                        btrfs_item_nr(path->slots[0]));
6450        tmp = kmalloc(inline_size, GFP_NOFS);
6451        if (!tmp)
6452                return -ENOMEM;
6453        ptr = btrfs_file_extent_inline_start(item);
6454
6455        read_extent_buffer(leaf, tmp, ptr, inline_size);
6456
6457        max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6458        ret = btrfs_decompress(compress_type, tmp, page,
6459                               extent_offset, inline_size, max_size);
6460        kfree(tmp);
6461        return ret;
6462}
6463
6464/*
6465 * a bit scary, this does extent mapping from logical file offset to the disk.
6466 * the ugly parts come from merging extents from the disk with the in-ram
6467 * representation.  This gets more complex because of the data=ordered code,
6468 * where the in-ram extents might be locked pending data=ordered completion.
6469 *
6470 * This also copies inline extents directly into the page.
6471 */
6472
6473struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6474                                    size_t pg_offset, u64 start, u64 len,
6475                                    int create)
6476{
6477        int ret;
6478        int err = 0;
6479        u64 extent_start = 0;
6480        u64 extent_end = 0;
6481        u64 objectid = btrfs_ino(inode);
6482        u32 found_type;
6483        struct btrfs_path *path = NULL;
6484        struct btrfs_root *root = BTRFS_I(inode)->root;
6485        struct btrfs_file_extent_item *item;
6486        struct extent_buffer *leaf;
6487        struct btrfs_key found_key;
6488        struct extent_map *em = NULL;
6489        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6490        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6491        struct btrfs_trans_handle *trans = NULL;
6492        const bool new_inline = !page || create;
6493
6494again:
6495        read_lock(&em_tree->lock);
6496        em = lookup_extent_mapping(em_tree, start, len);
6497        if (em)
6498                em->bdev = root->fs_info->fs_devices->latest_bdev;
6499        read_unlock(&em_tree->lock);
6500
6501        if (em) {
6502                if (em->start > start || em->start + em->len <= start)
6503                        free_extent_map(em);
6504                else if (em->block_start == EXTENT_MAP_INLINE && page)
6505                        free_extent_map(em);
6506                else
6507                        goto out;
6508        }
6509        em = alloc_extent_map();
6510        if (!em) {
6511                err = -ENOMEM;
6512                goto out;
6513        }
6514        em->bdev = root->fs_info->fs_devices->latest_bdev;
6515        em->start = EXTENT_MAP_HOLE;
6516        em->orig_start = EXTENT_MAP_HOLE;
6517        em->len = (u64)-1;
6518        em->block_len = (u64)-1;
6519
6520        if (!path) {
6521                path = btrfs_alloc_path();
6522                if (!path) {
6523                        err = -ENOMEM;
6524                        goto out;
6525                }
6526                /*
6527                 * Chances are we'll be called again, so go ahead and do
6528                 * readahead
6529                 */
6530                path->reada = 1;
6531        }
6532
6533        ret = btrfs_lookup_file_extent(trans, root, path,
6534                                       objectid, start, trans != NULL);
6535        if (ret < 0) {
6536                err = ret;
6537                goto out;
6538        }
6539
6540        if (ret != 0) {
6541                if (path->slots[0] == 0)
6542                        goto not_found;
6543                path->slots[0]--;
6544        }
6545
6546        leaf = path->nodes[0];
6547        item = btrfs_item_ptr(leaf, path->slots[0],
6548                              struct btrfs_file_extent_item);
6549        /* are we inside the extent that was found? */
6550        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6551        found_type = found_key.type;
6552        if (found_key.objectid != objectid ||
6553            found_type != BTRFS_EXTENT_DATA_KEY) {
6554                /*
6555                 * If we backup past the first extent we want to move forward
6556                 * and see if there is an extent in front of us, otherwise we'll
6557                 * say there is a hole for our whole search range which can
6558                 * cause problems.
6559                 */
6560                extent_end = start;
6561                goto next;
6562        }
6563
6564        found_type = btrfs_file_extent_type(leaf, item);
6565        extent_start = found_key.offset;
6566        if (found_type == BTRFS_FILE_EXTENT_REG ||
6567            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6568                extent_end = extent_start +
6569                       btrfs_file_extent_num_bytes(leaf, item);
6570        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6571                size_t size;
6572                size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6573                extent_end = ALIGN(extent_start + size, root->sectorsize);
6574        }
6575next:
6576        if (start >= extent_end) {
6577                path->slots[0]++;
6578                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6579                        ret = btrfs_next_leaf(root, path);
6580                        if (ret < 0) {
6581                                err = ret;
6582                                goto out;
6583                        }
6584                        if (ret > 0)
6585                                goto not_found;
6586                        leaf = path->nodes[0];
6587                }
6588                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6589                if (found_key.objectid != objectid ||
6590                    found_key.type != BTRFS_EXTENT_DATA_KEY)
6591                        goto not_found;
6592                if (start + len <= found_key.offset)
6593                        goto not_found;
6594                if (start > found_key.offset)
6595                        goto next;
6596                em->start = start;
6597                em->orig_start = start;
6598                em->len = found_key.offset - start;
6599                goto not_found_em;
6600        }
6601
6602        btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6603
6604        if (found_type == BTRFS_FILE_EXTENT_REG ||
6605            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6606                goto insert;
6607        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6608                unsigned long ptr;
6609                char *map;
6610                size_t size;
6611                size_t extent_offset;
6612                size_t copy_size;
6613
6614                if (new_inline)
6615                        goto out;
6616
6617                size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6618                extent_offset = page_offset(page) + pg_offset - extent_start;
6619                copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6620                                size - extent_offset);
6621                em->start = extent_start + extent_offset;
6622                em->len = ALIGN(copy_size, root->sectorsize);
6623                em->orig_block_len = em->len;
6624                em->orig_start = em->start;
6625                ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6626                if (create == 0 && !PageUptodate(page)) {
6627                        if (btrfs_file_extent_compression(leaf, item) !=
6628                            BTRFS_COMPRESS_NONE) {
6629                                ret = uncompress_inline(path, inode, page,
6630                                                        pg_offset,
6631                                                        extent_offset, item);
6632                                if (ret) {
6633                                        err = ret;
6634                                        goto out;
6635                                }
6636                        } else {
6637                                map = kmap(page);
6638                                read_extent_buffer(leaf, map + pg_offset, ptr,
6639                                                   copy_size);
6640                                if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6641                                        memset(map + pg_offset + copy_size, 0,
6642                                               PAGE_CACHE_SIZE - pg_offset -
6643                                               copy_size);
6644                                }
6645                                kunmap(page);
6646                        }
6647                        flush_dcache_page(page);
6648                } else if (create && PageUptodate(page)) {
6649                        BUG();
6650                        if (!trans) {
6651                                kunmap(page);
6652                                free_extent_map(em);
6653                                em = NULL;
6654
6655                                btrfs_release_path(path);
6656                                trans = btrfs_join_transaction(root);
6657
6658                                if (IS_ERR(trans))
6659                                        return ERR_CAST(trans);
6660                                goto again;
6661                        }
6662                        map = kmap(page);
6663                        write_extent_buffer(leaf, map + pg_offset, ptr,
6664                                            copy_size);
6665                        kunmap(page);
6666                        btrfs_mark_buffer_dirty(leaf);
6667                }
6668                set_extent_uptodate(io_tree, em->start,
6669                                    extent_map_end(em) - 1, NULL, GFP_NOFS);
6670                goto insert;
6671        }
6672not_found:
6673        em->start = start;
6674        em->orig_start = start;
6675        em->len = len;
6676not_found_em:
6677        em->block_start = EXTENT_MAP_HOLE;
6678        set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6679insert:
6680        btrfs_release_path(path);
6681        if (em->start > start || extent_map_end(em) <= start) {
6682                btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6683                        em->start, em->len, start, len);
6684                err = -EIO;
6685                goto out;
6686        }
6687
6688        err = 0;
6689        write_lock(&em_tree->lock);
6690        ret = add_extent_mapping(em_tree, em, 0);
6691        /* it is possible that someone inserted the extent into the tree
6692         * while we had the lock dropped.  It is also possible that
6693         * an overlapping map exists in the tree
6694         */
6695        if (ret == -EEXIST) {
6696                struct extent_map *existing;
6697
6698                ret = 0;
6699
6700                existing = search_extent_mapping(em_tree, start, len);
6701                /*
6702                 * existing will always be non-NULL, since there must be
6703                 * extent causing the -EEXIST.
6704                 */
6705                if (start >= extent_map_end(existing) ||
6706                    start <= existing->start) {
6707                        /*
6708                         * The existing extent map is the one nearest to
6709                         * the [start, start + len) range which overlaps
6710                         */
6711                        err = merge_extent_mapping(em_tree, existing,
6712                                                   em, start);
6713                        free_extent_map(existing);
6714                        if (err) {
6715                                free_extent_map(em);
6716                                em = NULL;
6717                        }
6718                } else {
6719                        free_extent_map(em);
6720                        em = existing;
6721                        err = 0;
6722                }
6723        }
6724        write_unlock(&em_tree->lock);
6725out:
6726
6727        trace_btrfs_get_extent(root, em);
6728
6729        if (path)
6730                btrfs_free_path(path);
6731        if (trans) {
6732                ret = btrfs_end_transaction(trans, root);
6733                if (!err)
6734                        err = ret;
6735        }
6736        if (err) {
6737                free_extent_map(em);
6738                return ERR_PTR(err);
6739        }
6740        BUG_ON(!em); /* Error is always set */
6741        return em;
6742}
6743
6744struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6745                                           size_t pg_offset, u64 start, u64 len,
6746                                           int create)
6747{
6748        struct extent_map *em;
6749        struct extent_map *hole_em = NULL;
6750        u64 range_start = start;
6751        u64 end;
6752        u64 found;
6753        u64 found_end;
6754        int err = 0;
6755
6756        em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6757        if (IS_ERR(em))
6758                return em;
6759        if (em) {
6760                /*
6761                 * if our em maps to
6762                 * -  a hole or
6763                 * -  a pre-alloc extent,
6764                 * there might actually be delalloc bytes behind it.
6765                 */
6766                if (em->block_start != EXTENT_MAP_HOLE &&
6767                    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6768                        return em;
6769                else
6770                        hole_em = em;
6771        }
6772
6773        /* check to see if we've wrapped (len == -1 or similar) */
6774        end = start + len;
6775        if (end < start)
6776                end = (u64)-1;
6777        else
6778                end -= 1;
6779
6780        em = NULL;
6781
6782        /* ok, we didn't find anything, lets look for delalloc */
6783        found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6784                                 end, len, EXTENT_DELALLOC, 1);
6785        found_end = range_start + found;
6786        if (found_end < range_start)
6787                found_end = (u64)-1;
6788
6789        /*
6790         * we didn't find anything useful, return
6791         * the original results from get_extent()
6792         */
6793        if (range_start > end || found_end <= start) {
6794                em = hole_em;
6795                hole_em = NULL;
6796                goto out;
6797        }
6798
6799        /* adjust the range_start to make sure it doesn't
6800         * go backwards from the start they passed in
6801         */
6802        range_start = max(start, range_start);
6803        found = found_end - range_start;
6804
6805        if (found > 0) {
6806                u64 hole_start = start;
6807                u64 hole_len = len;
6808
6809                em = alloc_extent_map();
6810                if (!em) {
6811                        err = -ENOMEM;
6812                        goto out;
6813                }
6814                /*
6815                 * when btrfs_get_extent can't find anything it
6816                 * returns one huge hole
6817                 *
6818                 * make sure what it found really fits our range, and
6819                 * adjust to make sure it is based on the start from
6820                 * the caller
6821                 */
6822                if (hole_em) {
6823                        u64 calc_end = extent_map_end(hole_em);
6824
6825                        if (calc_end <= start || (hole_em->start > end)) {
6826                                free_extent_map(hole_em);
6827                                hole_em = NULL;
6828                        } else {
6829                                hole_start = max(hole_em->start, start);
6830                                hole_len = calc_end - hole_start;
6831                        }
6832                }
6833                em->bdev = NULL;
6834                if (hole_em && range_start > hole_start) {
6835                        /* our hole starts before our delalloc, so we
6836                         * have to return just the parts of the hole
6837                         * that go until  the delalloc starts
6838                         */
6839                        em->len = min(hole_len,
6840                                      range_start - hole_start);
6841                        em->start = hole_start;
6842                        em->orig_start = hole_start;
6843                        /*
6844                         * don't adjust block start at all,
6845                         * it is fixed at EXTENT_MAP_HOLE
6846                         */
6847                        em->block_start = hole_em->block_start;
6848                        em->block_len = hole_len;
6849                        if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6850                                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6851                } else {
6852                        em->start = range_start;
6853                        em->len = found;
6854                        em->orig_start = range_start;
6855                        em->block_start = EXTENT_MAP_DELALLOC;
6856                        em->block_len = found;
6857                }
6858        } else if (hole_em) {
6859                return hole_em;
6860        }
6861out:
6862
6863        free_extent_map(hole_em);
6864        if (err) {
6865                free_extent_map(em);
6866                return ERR_PTR(err);
6867        }
6868        return em;
6869}
6870
6871static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6872                                                  u64 start, u64 len)
6873{
6874        struct btrfs_root *root = BTRFS_I(inode)->root;
6875        struct extent_map *em;
6876        struct btrfs_key ins;
6877        u64 alloc_hint;
6878        int ret;
6879
6880        alloc_hint = get_extent_allocation_hint(inode, start, len);
6881        ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6882                                   alloc_hint, &ins, 1, 1);
6883        if (ret)
6884                return ERR_PTR(ret);
6885
6886        em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6887                              ins.offset, ins.offset, ins.offset, 0);
6888        if (IS_ERR(em)) {
6889                btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6890                return em;
6891        }
6892
6893        ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6894                                           ins.offset, ins.offset, 0);
6895        if (ret) {
6896                btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6897                free_extent_map(em);
6898                return ERR_PTR(ret);
6899        }
6900
6901        return em;
6902}
6903
6904/*
6905 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6906 * block must be cow'd
6907 */
6908noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6909                              u64 *orig_start, u64 *orig_block_len,
6910                              u64 *ram_bytes)
6911{
6912        struct btrfs_trans_handle *trans;
6913        struct btrfs_path *path;
6914        int ret;
6915        struct extent_buffer *leaf;
6916        struct btrfs_root *root = BTRFS_I(inode)->root;
6917        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6918        struct btrfs_file_extent_item *fi;
6919        struct btrfs_key key;
6920        u64 disk_bytenr;
6921        u64 backref_offset;
6922        u64 extent_end;
6923        u64 num_bytes;
6924        int slot;
6925        int found_type;
6926        bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6927
6928        path = btrfs_alloc_path();
6929        if (!path)
6930                return -ENOMEM;
6931
6932        ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6933                                       offset, 0);
6934        if (ret < 0)
6935                goto out;
6936
6937        slot = path->slots[0];
6938        if (ret == 1) {
6939                if (slot == 0) {
6940                        /* can't find the item, must cow */
6941                        ret = 0;
6942                        goto out;
6943                }
6944                slot--;
6945        }
6946        ret = 0;
6947        leaf = path->nodes[0];
6948        btrfs_item_key_to_cpu(leaf, &key, slot);
6949        if (key.objectid != btrfs_ino(inode) ||
6950            key.type != BTRFS_EXTENT_DATA_KEY) {
6951                /* not our file or wrong item type, must cow */
6952                goto out;
6953        }
6954
6955        if (key.offset > offset) {
6956                /* Wrong offset, must cow */
6957                goto out;
6958        }
6959
6960        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6961        found_type = btrfs_file_extent_type(leaf, fi);
6962        if (found_type != BTRFS_FILE_EXTENT_REG &&
6963            found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6964                /* not a regular extent, must cow */
6965                goto out;
6966        }
6967
6968        if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6969                goto out;
6970
6971        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6972        if (extent_end <= offset)
6973                goto out;
6974
6975        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6976        if (disk_bytenr == 0)
6977                goto out;
6978
6979        if (btrfs_file_extent_compression(leaf, fi) ||
6980            btrfs_file_extent_encryption(leaf, fi) ||
6981            btrfs_file_extent_other_encoding(leaf, fi))
6982                goto out;
6983
6984        backref_offset = btrfs_file_extent_offset(leaf, fi);
6985
6986        if (orig_start) {
6987                *orig_start = key.offset - backref_offset;
6988                *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6989                *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6990        }
6991
6992        if (btrfs_extent_readonly(root, disk_bytenr))
6993                goto out;
6994
6995        num_bytes = min(offset + *len, extent_end) - offset;
6996        if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6997                u64 range_end;
6998
6999                range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7000                ret = test_range_bit(io_tree, offset, range_end,
7001                                     EXTENT_DELALLOC, 0, NULL);
7002                if (ret) {
7003                        ret = -EAGAIN;
7004                        goto out;
7005                }
7006        }
7007
7008        btrfs_release_path(path);
7009
7010        /*
7011         * look for other files referencing this extent, if we
7012         * find any we must cow
7013         */
7014        trans = btrfs_join_transaction(root);
7015        if (IS_ERR(trans)) {
7016                ret = 0;
7017                goto out;
7018        }
7019
7020        ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7021                                    key.offset - backref_offset, disk_bytenr);
7022        btrfs_end_transaction(trans, root);
7023        if (ret) {
7024                ret = 0;
7025                goto out;
7026        }
7027
7028        /*
7029         * adjust disk_bytenr and num_bytes to cover just the bytes
7030         * in this extent we are about to write.  If there
7031         * are any csums in that range we have to cow in order
7032         * to keep the csums correct
7033         */
7034        disk_bytenr += backref_offset;
7035        disk_bytenr += offset - key.offset;
7036        if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7037                                goto out;
7038        /*
7039         * all of the above have passed, it is safe to overwrite this extent
7040         * without cow
7041         */
7042        *len = num_bytes;
7043        ret = 1;
7044out:
7045        btrfs_free_path(path);
7046        return ret;
7047}
7048
7049bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7050{
7051        struct radix_tree_root *root = &inode->i_mapping->page_tree;
7052        int found = false;
7053        void **pagep = NULL;
7054        struct page *page = NULL;
7055        int start_idx;
7056        int end_idx;
7057
7058        start_idx = start >> PAGE_CACHE_SHIFT;
7059
7060        /*
7061         * end is the last byte in the last page.  end == start is legal
7062         */
7063        end_idx = end >> PAGE_CACHE_SHIFT;
7064
7065        rcu_read_lock();
7066
7067        /* Most of the code in this while loop is lifted from
7068         * find_get_page.  It's been modified to begin searching from a
7069         * page and return just the first page found in that range.  If the
7070         * found idx is less than or equal to the end idx then we know that
7071         * a page exists.  If no pages are found or if those pages are
7072         * outside of the range then we're fine (yay!) */
7073        while (page == NULL &&
7074               radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7075                page = radix_tree_deref_slot(pagep);
7076                if (unlikely(!page))
7077                        break;
7078
7079                if (radix_tree_exception(page)) {
7080                        if (radix_tree_deref_retry(page)) {
7081                                page = NULL;
7082                                continue;
7083                        }
7084                        /*
7085                         * Otherwise, shmem/tmpfs must be storing a swap entry
7086                         * here as an exceptional entry: so return it without
7087                         * attempting to raise page count.
7088                         */
7089                        page = NULL;
7090                        break; /* TODO: Is this relevant for this use case? */
7091                }
7092
7093                if (!page_cache_get_speculative(page)) {
7094                        page = NULL;
7095                        continue;
7096                }
7097
7098                /*
7099                 * Has the page moved?
7100                 * This is part of the lockless pagecache protocol. See
7101                 * include/linux/pagemap.h for details.
7102                 */
7103                if (unlikely(page != *pagep)) {
7104                        page_cache_release(page);
7105                        page = NULL;
7106                }
7107        }
7108
7109        if (page) {
7110                if (page->index <= end_idx)
7111                        found = true;
7112                page_cache_release(page);
7113        }
7114
7115        rcu_read_unlock();
7116        return found;
7117}
7118
7119static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7120                              struct extent_state **cached_state, int writing)
7121{
7122        struct btrfs_ordered_extent *ordered;
7123        int ret = 0;
7124
7125        while (1) {
7126                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7127                                 0, cached_state);
7128                /*
7129                 * We're concerned with the entire range that we're going to be
7130                 * doing DIO to, so we need to make sure theres no ordered
7131                 * extents in this range.
7132                 */
7133                ordered = btrfs_lookup_ordered_range(inode, lockstart,
7134                                                     lockend - lockstart + 1);
7135
7136                /*
7137                 * We need to make sure there are no buffered pages in this
7138                 * range either, we could have raced between the invalidate in
7139                 * generic_file_direct_write and locking the extent.  The
7140                 * invalidate needs to happen so that reads after a write do not
7141                 * get stale data.
7142                 */
7143                if (!ordered &&
7144                    (!writing ||
7145                     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7146                        break;
7147
7148                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7149                                     cached_state, GFP_NOFS);
7150
7151                if (ordered) {
7152                        btrfs_start_ordered_extent(inode, ordered, 1);
7153                        btrfs_put_ordered_extent(ordered);
7154                } else {
7155                        /* Screw you mmap */
7156                        ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7157                        if (ret)
7158                                break;
7159                        ret = filemap_fdatawait_range(inode->i_mapping,
7160                                                      lockstart,
7161                                                      lockend);
7162                        if (ret)
7163                                break;
7164
7165                        /*
7166                         * If we found a page that couldn't be invalidated just
7167                         * fall back to buffered.
7168                         */
7169                        ret = invalidate_inode_pages2_range(inode->i_mapping,
7170                                        lockstart >> PAGE_CACHE_SHIFT,
7171                                        lockend >> PAGE_CACHE_SHIFT);
7172                        if (ret)
7173                                break;
7174                }
7175
7176                cond_resched();
7177        }
7178
7179        return ret;
7180}
7181
7182static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7183                                           u64 len, u64 orig_start,
7184                                           u64 block_start, u64 block_len,
7185                                           u64 orig_block_len, u64 ram_bytes,
7186                                           int type)
7187{
7188        struct extent_map_tree *em_tree;
7189        struct extent_map *em;
7190        struct btrfs_root *root = BTRFS_I(inode)->root;
7191        int ret;
7192
7193        em_tree = &BTRFS_I(inode)->extent_tree;
7194        em = alloc_extent_map();
7195        if (!em)
7196                return ERR_PTR(-ENOMEM);
7197
7198        em->start = start;
7199        em->orig_start = orig_start;
7200        em->mod_start = start;
7201        em->mod_len = len;
7202        em->len = len;
7203        em->block_len = block_len;
7204        em->block_start = block_start;
7205        em->bdev = root->fs_info->fs_devices->latest_bdev;
7206        em->orig_block_len = orig_block_len;
7207        em->ram_bytes = ram_bytes;
7208        em->generation = -1;
7209        set_bit(EXTENT_FLAG_PINNED, &em->flags);
7210        if (type == BTRFS_ORDERED_PREALLOC)
7211                set_bit(EXTENT_FLAG_FILLING, &em->flags);
7212
7213        do {
7214                btrfs_drop_extent_cache(inode, em->start,
7215                                em->start + em->len - 1, 0);
7216                write_lock(&em_tree->lock);
7217                ret = add_extent_mapping(em_tree, em, 1);
7218                write_unlock(&em_tree->lock);
7219        } while (ret == -EEXIST);
7220
7221        if (ret) {
7222                free_extent_map(em);
7223                return ERR_PTR(ret);
7224        }
7225
7226        return em;
7227}
7228
7229
7230static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7231                                   struct buffer_head *bh_result, int create)
7232{
7233        struct extent_map *em;
7234        struct btrfs_root *root = BTRFS_I(inode)->root;
7235        struct extent_state *cached_state = NULL;
7236        u64 start = iblock << inode->i_blkbits;
7237        u64 lockstart, lockend;
7238        u64 len = bh_result->b_size;
7239        u64 *outstanding_extents = NULL;
7240        int unlock_bits = EXTENT_LOCKED;
7241        int ret = 0;
7242
7243        if (create)
7244                unlock_bits |= EXTENT_DIRTY;
7245        else
7246                len = min_t(u64, len, root->sectorsize);
7247
7248        lockstart = start;
7249        lockend = start + len - 1;
7250
7251        if (current->journal_info) {
7252                /*
7253                 * Need to pull our outstanding extents and set journal_info to NULL so
7254                 * that anything that needs to check if there's a transction doesn't get
7255                 * confused.
7256                 */
7257                outstanding_extents = current->journal_info;
7258                current->journal_info = NULL;
7259        }
7260
7261        /*
7262         * If this errors out it's because we couldn't invalidate pagecache for
7263         * this range and we need to fallback to buffered.
7264         */
7265        if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7266                return -ENOTBLK;
7267
7268        em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7269        if (IS_ERR(em)) {
7270                ret = PTR_ERR(em);
7271                goto unlock_err;
7272        }
7273
7274        /*
7275         * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7276         * io.  INLINE is special, and we could probably kludge it in here, but
7277         * it's still buffered so for safety lets just fall back to the generic
7278         * buffered path.
7279         *
7280         * For COMPRESSED we _have_ to read the entire extent in so we can
7281         * decompress it, so there will be buffering required no matter what we
7282         * do, so go ahead and fallback to buffered.
7283         *
7284         * We return -ENOTBLK because thats what makes DIO go ahead and go back
7285         * to buffered IO.  Don't blame me, this is the price we pay for using
7286         * the generic code.
7287         */
7288        if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7289            em->block_start == EXTENT_MAP_INLINE) {
7290                free_extent_map(em);
7291                ret = -ENOTBLK;
7292                goto unlock_err;
7293        }
7294
7295        /* Just a good old fashioned hole, return */
7296        if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7297                        test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7298                free_extent_map(em);
7299                goto unlock_err;
7300        }
7301
7302        /*
7303         * We don't allocate a new extent in the following cases
7304         *
7305         * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7306         * existing extent.
7307         * 2) The extent is marked as PREALLOC.  We're good to go here and can
7308         * just use the extent.
7309         *
7310         */
7311        if (!create) {
7312                len = min(len, em->len - (start - em->start));
7313                lockstart = start + len;
7314                goto unlock;
7315        }
7316
7317        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7318            ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7319             em->block_start != EXTENT_MAP_HOLE)) {
7320                int type;
7321                u64 block_start, orig_start, orig_block_len, ram_bytes;
7322
7323                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7324                        type = BTRFS_ORDERED_PREALLOC;
7325                else
7326                        type = BTRFS_ORDERED_NOCOW;
7327                len = min(len, em->len - (start - em->start));
7328                block_start = em->block_start + (start - em->start);
7329
7330                if (can_nocow_extent(inode, start, &len, &orig_start,
7331                                     &orig_block_len, &ram_bytes) == 1) {
7332                        if (type == BTRFS_ORDERED_PREALLOC) {
7333                                free_extent_map(em);
7334                                em = create_pinned_em(inode, start, len,
7335                                                       orig_start,
7336                                                       block_start, len,
7337                                                       orig_block_len,
7338                                                       ram_bytes, type);
7339                                if (IS_ERR(em)) {
7340                                        ret = PTR_ERR(em);
7341                                        goto unlock_err;
7342                                }
7343                        }
7344
7345                        ret = btrfs_add_ordered_extent_dio(inode, start,
7346                                           block_start, len, len, type);
7347                        if (ret) {
7348                                free_extent_map(em);
7349                                goto unlock_err;
7350                        }
7351                        goto unlock;
7352                }
7353        }
7354
7355        /*
7356         * this will cow the extent, reset the len in case we changed
7357         * it above
7358         */
7359        len = bh_result->b_size;
7360        free_extent_map(em);
7361        em = btrfs_new_extent_direct(inode, start, len);
7362        if (IS_ERR(em)) {
7363                ret = PTR_ERR(em);
7364                goto unlock_err;
7365        }
7366        len = min(len, em->len - (start - em->start));
7367unlock:
7368        bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7369                inode->i_blkbits;
7370        bh_result->b_size = len;
7371        bh_result->b_bdev = em->bdev;
7372        set_buffer_mapped(bh_result);
7373        if (create) {
7374                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7375                        set_buffer_new(bh_result);
7376
7377                /*
7378                 * Need to update the i_size under the extent lock so buffered
7379                 * readers will get the updated i_size when we unlock.
7380                 */
7381                if (start + len > i_size_read(inode))
7382                        i_size_write(inode, start + len);
7383
7384                /*
7385                 * If we have an outstanding_extents count still set then we're
7386                 * within our reservation, otherwise we need to adjust our inode
7387                 * counter appropriately.
7388                 */
7389                if (*outstanding_extents) {
7390                        (*outstanding_extents)--;
7391                } else {
7392                        spin_lock(&BTRFS_I(inode)->lock);
7393                        BTRFS_I(inode)->outstanding_extents++;
7394                        spin_unlock(&BTRFS_I(inode)->lock);
7395                }
7396
7397                current->journal_info = outstanding_extents;
7398                btrfs_free_reserved_data_space(inode, len);
7399        }
7400
7401        /*
7402         * In the case of write we need to clear and unlock the entire range,
7403         * in the case of read we need to unlock only the end area that we
7404         * aren't using if there is any left over space.
7405         */
7406        if (lockstart < lockend) {
7407                clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7408                                 lockend, unlock_bits, 1, 0,
7409                                 &cached_state, GFP_NOFS);
7410        } else {
7411                free_extent_state(cached_state);
7412        }
7413
7414        free_extent_map(em);
7415
7416        return 0;
7417
7418unlock_err:
7419        clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7420                         unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7421        if (outstanding_extents)
7422                current->journal_info = outstanding_extents;
7423        return ret;
7424}
7425
7426static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7427                                        int rw, int mirror_num)
7428{
7429        struct btrfs_root *root = BTRFS_I(inode)->root;
7430        int ret;
7431
7432        BUG_ON(rw & REQ_WRITE);
7433
7434        bio_get(bio);
7435
7436        ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7437                                  BTRFS_WQ_ENDIO_DIO_REPAIR);
7438        if (ret)
7439                goto err;
7440
7441        ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7442err:
7443        bio_put(bio);
7444        return ret;
7445}
7446
7447static int btrfs_check_dio_repairable(struct inode *inode,
7448                                      struct bio *failed_bio,
7449                                      struct io_failure_record *failrec,
7450                                      int failed_mirror)
7451{
7452        int num_copies;
7453
7454        num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7455                                      failrec->logical, failrec->len);
7456        if (num_copies == 1) {
7457                /*
7458                 * we only have a single copy of the data, so don't bother with
7459                 * all the retry and error correction code that follows. no
7460                 * matter what the error is, it is very likely to persist.
7461                 */
7462                pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7463                         num_copies, failrec->this_mirror, failed_mirror);
7464                return 0;
7465        }
7466
7467        failrec->failed_mirror = failed_mirror;
7468        failrec->this_mirror++;
7469        if (failrec->this_mirror == failed_mirror)
7470                failrec->this_mirror++;
7471
7472        if (failrec->this_mirror > num_copies) {
7473                pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7474                         num_copies, failrec->this_mirror, failed_mirror);
7475                return 0;
7476        }
7477
7478        return 1;
7479}
7480
7481static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7482                          struct page *page, u64 start, u64 end,
7483                          int failed_mirror, bio_end_io_t *repair_endio,
7484                          void *repair_arg)
7485{
7486        struct io_failure_record *failrec;
7487        struct bio *bio;
7488        int isector;
7489        int read_mode;
7490        int ret;
7491
7492        BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7493
7494        ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7495        if (ret)
7496                return ret;
7497
7498        ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7499                                         failed_mirror);
7500        if (!ret) {
7501                free_io_failure(inode, failrec);
7502                return -EIO;
7503        }
7504
7505        if (failed_bio->bi_vcnt > 1)
7506                read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7507        else
7508                read_mode = READ_SYNC;
7509
7510        isector = start - btrfs_io_bio(failed_bio)->logical;
7511        isector >>= inode->i_sb->s_blocksize_bits;
7512        bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7513                                      0, isector, repair_endio, repair_arg);
7514        if (!bio) {
7515                free_io_failure(inode, failrec);
7516                return -EIO;
7517        }
7518
7519        btrfs_debug(BTRFS_I(inode)->root->fs_info,
7520                    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7521                    read_mode, failrec->this_mirror, failrec->in_validation);
7522
7523        ret = submit_dio_repair_bio(inode, bio, read_mode,
7524                                    failrec->this_mirror);
7525        if (ret) {
7526                free_io_failure(inode, failrec);
7527                bio_put(bio);
7528        }
7529
7530        return ret;
7531}
7532
7533struct btrfs_retry_complete {
7534        struct completion done;
7535        struct inode *inode;
7536        u64 start;
7537        int uptodate;
7538};
7539
7540static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7541{
7542        struct btrfs_retry_complete *done = bio->bi_private;
7543        struct bio_vec *bvec;
7544        int i;
7545
7546        if (err)
7547                goto end;
7548
7549        done->uptodate = 1;
7550        bio_for_each_segment_all(bvec, bio, i)
7551                clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7552end:
7553        complete(&done->done);
7554        bio_put(bio);
7555}
7556
7557static int __btrfs_correct_data_nocsum(struct inode *inode,
7558                                       struct btrfs_io_bio *io_bio)
7559{
7560        struct bio_vec *bvec;
7561        struct btrfs_retry_complete done;
7562        u64 start;
7563        int i;
7564        int ret;
7565
7566        start = io_bio->logical;
7567        done.inode = inode;
7568
7569        bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7570try_again:
7571                done.uptodate = 0;
7572                done.start = start;
7573                init_completion(&done.done);
7574
7575                ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7576                                     start + bvec->bv_len - 1,
7577                                     io_bio->mirror_num,
7578                                     btrfs_retry_endio_nocsum, &done);
7579                if (ret)
7580                        return ret;
7581
7582                wait_for_completion(&done.done);
7583
7584                if (!done.uptodate) {
7585                        /* We might have another mirror, so try again */
7586                        goto try_again;
7587                }
7588
7589                start += bvec->bv_len;
7590        }
7591
7592        return 0;
7593}
7594
7595static void btrfs_retry_endio(struct bio *bio, int err)
7596{
7597        struct btrfs_retry_complete *done = bio->bi_private;
7598        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7599        struct bio_vec *bvec;
7600        int uptodate;
7601        int ret;
7602        int i;
7603
7604        if (err)
7605                goto end;
7606
7607        uptodate = 1;
7608        bio_for_each_segment_all(bvec, bio, i) {
7609                ret = __readpage_endio_check(done->inode, io_bio, i,
7610                                             bvec->bv_page, 0,
7611                                             done->start, bvec->bv_len);
7612                if (!ret)
7613                        clean_io_failure(done->inode, done->start,
7614                                         bvec->bv_page, 0);
7615                else
7616                        uptodate = 0;
7617        }
7618
7619        done->uptodate = uptodate;
7620end:
7621        complete(&done->done);
7622        bio_put(bio);
7623}
7624
7625static int __btrfs_subio_endio_read(struct inode *inode,
7626                                    struct btrfs_io_bio *io_bio, int err)
7627{
7628        struct bio_vec *bvec;
7629        struct btrfs_retry_complete done;
7630        u64 start;
7631        u64 offset = 0;
7632        int i;
7633        int ret;
7634
7635        err = 0;
7636        start = io_bio->logical;
7637        done.inode = inode;
7638
7639        bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7640                ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7641                                             0, start, bvec->bv_len);
7642                if (likely(!ret))
7643                        goto next;
7644try_again:
7645                done.uptodate = 0;
7646                done.start = start;
7647                init_completion(&done.done);
7648
7649                ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7650                                     start + bvec->bv_len - 1,
7651                                     io_bio->mirror_num,
7652                                     btrfs_retry_endio, &done);
7653                if (ret) {
7654                        err = ret;
7655                        goto next;
7656                }
7657
7658                wait_for_completion(&done.done);
7659
7660                if (!done.uptodate) {
7661                        /* We might have another mirror, so try again */
7662                        goto try_again;
7663                }
7664next:
7665                offset += bvec->bv_len;
7666                start += bvec->bv_len;
7667        }
7668
7669        return err;
7670}
7671
7672static int btrfs_subio_endio_read(struct inode *inode,
7673                                  struct btrfs_io_bio *io_bio, int err)
7674{
7675        bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7676
7677        if (skip_csum) {
7678                if (unlikely(err))
7679                        return __btrfs_correct_data_nocsum(inode, io_bio);
7680                else
7681                        return 0;
7682        } else {
7683                return __btrfs_subio_endio_read(inode, io_bio, err);
7684        }
7685}
7686
7687static void btrfs_endio_direct_read(struct bio *bio, int err)
7688{
7689        struct btrfs_dio_private *dip = bio->bi_private;
7690        struct inode *inode = dip->inode;
7691        struct bio *dio_bio;
7692        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7693
7694        if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7695                err = btrfs_subio_endio_read(inode, io_bio, err);
7696
7697        unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7698                      dip->logical_offset + dip->bytes - 1);
7699        dio_bio = dip->dio_bio;
7700
7701        kfree(dip);
7702
7703        /* If we had a csum failure make sure to clear the uptodate flag */
7704        if (err)
7705                clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7706        dio_end_io(dio_bio, err);
7707
7708        if (io_bio->end_io)
7709                io_bio->end_io(io_bio, err);
7710        bio_put(bio);
7711}
7712
7713static void btrfs_endio_direct_write(struct bio *bio, int err)
7714{
7715        struct btrfs_dio_private *dip = bio->bi_private;
7716        struct inode *inode = dip->inode;
7717        struct btrfs_root *root = BTRFS_I(inode)->root;
7718        struct btrfs_ordered_extent *ordered = NULL;
7719        u64 ordered_offset = dip->logical_offset;
7720        u64 ordered_bytes = dip->bytes;
7721        struct bio *dio_bio;
7722        int ret;
7723
7724        if (err)
7725                goto out_done;
7726again:
7727        ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7728                                                   &ordered_offset,
7729                                                   ordered_bytes, !err);
7730        if (!ret)
7731                goto out_test;
7732
7733        btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7734                        finish_ordered_fn, NULL, NULL);
7735        btrfs_queue_work(root->fs_info->endio_write_workers,
7736                         &ordered->work);
7737out_test:
7738        /*
7739         * our bio might span multiple ordered extents.  If we haven't
7740         * completed the accounting for the whole dio, go back and try again
7741         */
7742        if (ordered_offset < dip->logical_offset + dip->bytes) {
7743                ordered_bytes = dip->logical_offset + dip->bytes -
7744                        ordered_offset;
7745                ordered = NULL;
7746                goto again;
7747        }
7748out_done:
7749        dio_bio = dip->dio_bio;
7750
7751        kfree(dip);
7752
7753        /* If we had an error make sure to clear the uptodate flag */
7754        if (err)
7755                clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7756        dio_end_io(dio_bio, err);
7757        bio_put(bio);
7758}
7759
7760static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7761                                    struct bio *bio, int mirror_num,
7762                                    unsigned long bio_flags, u64 offset)
7763{
7764        int ret;
7765        struct btrfs_root *root = BTRFS_I(inode)->root;
7766        ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7767        BUG_ON(ret); /* -ENOMEM */
7768        return 0;
7769}
7770
7771static void btrfs_end_dio_bio(struct bio *bio, int err)
7772{
7773        struct btrfs_dio_private *dip = bio->bi_private;
7774
7775        if (err)
7776                btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7777                           "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7778                           btrfs_ino(dip->inode), bio->bi_rw,
7779                           (unsigned long long)bio->bi_iter.bi_sector,
7780                           bio->bi_iter.bi_size, err);
7781
7782        if (dip->subio_endio)
7783                err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7784
7785        if (err) {
7786                dip->errors = 1;
7787
7788                /*
7789                 * before atomic variable goto zero, we must make sure
7790                 * dip->errors is perceived to be set.
7791                 */
7792                smp_mb__before_atomic();
7793        }
7794
7795        /* if there are more bios still pending for this dio, just exit */
7796        if (!atomic_dec_and_test(&dip->pending_bios))
7797                goto out;
7798
7799        if (dip->errors) {
7800                bio_io_error(dip->orig_bio);
7801        } else {
7802                set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7803                bio_endio(dip->orig_bio, 0);
7804        }
7805out:
7806        bio_put(bio);
7807}
7808
7809static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7810                                       u64 first_sector, gfp_t gfp_flags)
7811{
7812        int nr_vecs = bio_get_nr_vecs(bdev);
7813        return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7814}
7815
7816static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7817                                                 struct inode *inode,
7818                                                 struct btrfs_dio_private *dip,
7819                                                 struct bio *bio,
7820                                                 u64 file_offset)
7821{
7822        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7823        struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7824        int ret;
7825
7826        /*
7827         * We load all the csum data we need when we submit
7828         * the first bio to reduce the csum tree search and
7829         * contention.
7830         */
7831        if (dip->logical_offset == file_offset) {
7832                ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7833                                                file_offset);
7834                if (ret)
7835                        return ret;
7836        }
7837
7838        if (bio == dip->orig_bio)
7839                return 0;
7840
7841        file_offset -= dip->logical_offset;
7842        file_offset >>= inode->i_sb->s_blocksize_bits;
7843        io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7844
7845        return 0;
7846}
7847
7848static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7849                                         int rw, u64 file_offset, int skip_sum,
7850                                         int async_submit)
7851{
7852        struct btrfs_dio_private *dip = bio->bi_private;
7853        int write = rw & REQ_WRITE;
7854        struct btrfs_root *root = BTRFS_I(inode)->root;
7855        int ret;
7856
7857        if (async_submit)
7858                async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7859
7860        bio_get(bio);
7861
7862        if (!write) {
7863                ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7864                                BTRFS_WQ_ENDIO_DATA);
7865                if (ret)
7866                        goto err;
7867        }
7868
7869        if (skip_sum)
7870                goto map;
7871
7872        if (write && async_submit) {
7873                ret = btrfs_wq_submit_bio(root->fs_info,
7874                                   inode, rw, bio, 0, 0,
7875                                   file_offset,
7876                                   __btrfs_submit_bio_start_direct_io,
7877                                   __btrfs_submit_bio_done);
7878                goto err;
7879        } else if (write) {
7880                /*
7881                 * If we aren't doing async submit, calculate the csum of the
7882                 * bio now.
7883                 */
7884                ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7885                if (ret)
7886                        goto err;
7887        } else {
7888                ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
7889                                                     file_offset);
7890                if (ret)
7891                        goto err;
7892        }
7893map:
7894        ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7895err:
7896        bio_put(bio);
7897        return ret;
7898}
7899
7900static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7901                                    int skip_sum)
7902{
7903        struct inode *inode = dip->inode;
7904        struct btrfs_root *root = BTRFS_I(inode)->root;
7905        struct bio *bio;
7906        struct bio *orig_bio = dip->orig_bio;
7907        struct bio_vec *bvec = orig_bio->bi_io_vec;
7908        u64 start_sector = orig_bio->bi_iter.bi_sector;
7909        u64 file_offset = dip->logical_offset;
7910        u64 submit_len = 0;
7911        u64 map_length;
7912        int nr_pages = 0;
7913        int ret;
7914        int async_submit = 0;
7915
7916        map_length = orig_bio->bi_iter.bi_size;
7917        ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7918                              &map_length, NULL, 0);
7919        if (ret)
7920                return -EIO;
7921
7922        if (map_length >= orig_bio->bi_iter.bi_size) {
7923                bio = orig_bio;
7924                dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
7925                goto submit;
7926        }
7927
7928        /* async crcs make it difficult to collect full stripe writes. */
7929        if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
7930                async_submit = 0;
7931        else
7932                async_submit = 1;
7933
7934        bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7935        if (!bio)
7936                return -ENOMEM;
7937
7938        bio->bi_private = dip;
7939        bio->bi_end_io = btrfs_end_dio_bio;
7940        btrfs_io_bio(bio)->logical = file_offset;
7941        atomic_inc(&dip->pending_bios);
7942
7943        while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7944                if (map_length < submit_len + bvec->bv_len ||
7945                    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7946                                 bvec->bv_offset) < bvec->bv_len) {
7947                        /*
7948                         * inc the count before we submit the bio so
7949                         * we know the end IO handler won't happen before
7950                         * we inc the count. Otherwise, the dip might get freed
7951                         * before we're done setting it up
7952                         */
7953                        atomic_inc(&dip->pending_bios);
7954                        ret = __btrfs_submit_dio_bio(bio, inode, rw,
7955                                                     file_offset, skip_sum,
7956                                                     async_submit);
7957                        if (ret) {
7958                                bio_put(bio);
7959                                atomic_dec(&dip->pending_bios);
7960                                goto out_err;
7961                        }
7962
7963                        start_sector += submit_len >> 9;
7964                        file_offset += submit_len;
7965
7966                        submit_len = 0;
7967                        nr_pages = 0;
7968
7969                        bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7970                                                  start_sector, GFP_NOFS);
7971                        if (!bio)
7972                                goto out_err;
7973                        bio->bi_private = dip;
7974                        bio->bi_end_io = btrfs_end_dio_bio;
7975                        btrfs_io_bio(bio)->logical = file_offset;
7976
7977                        map_length = orig_bio->bi_iter.bi_size;
7978                        ret = btrfs_map_block(root->fs_info, rw,
7979                                              start_sector << 9,
7980                                              &map_length, NULL, 0);
7981                        if (ret) {
7982                                bio_put(bio);
7983                                goto out_err;
7984                        }
7985                } else {
7986                        submit_len += bvec->bv_len;
7987                        nr_pages++;
7988                        bvec++;
7989                }
7990        }
7991
7992submit:
7993        ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7994                                     async_submit);
7995        if (!ret)
7996                return 0;
7997
7998        bio_put(bio);
7999out_err:
8000        dip->errors = 1;
8001        /*
8002         * before atomic variable goto zero, we must
8003         * make sure dip->errors is perceived to be set.
8004         */
8005        smp_mb__before_atomic();
8006        if (atomic_dec_and_test(&dip->pending_bios))
8007                bio_io_error(dip->orig_bio);
8008
8009        /* bio_end_io() will handle error, so we needn't return it */
8010        return 0;
8011}
8012
8013static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8014                                struct inode *inode, loff_t file_offset)
8015{
8016        struct btrfs_root *root = BTRFS_I(inode)->root;
8017        struct btrfs_dio_private *dip;
8018        struct bio *io_bio;
8019        struct btrfs_io_bio *btrfs_bio;
8020        int skip_sum;
8021        int write = rw & REQ_WRITE;
8022        int ret = 0;
8023
8024        skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8025
8026        io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8027        if (!io_bio) {
8028                ret = -ENOMEM;
8029                goto free_ordered;
8030        }
8031
8032        dip = kzalloc(sizeof(*dip), GFP_NOFS);
8033        if (!dip) {
8034                ret = -ENOMEM;
8035                goto free_io_bio;
8036        }
8037
8038        dip->private = dio_bio->bi_private;
8039        dip->inode = inode;
8040        dip->logical_offset = file_offset;
8041        dip->bytes = dio_bio->bi_iter.bi_size;
8042        dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8043        io_bio->bi_private = dip;
8044        dip->orig_bio = io_bio;
8045        dip->dio_bio = dio_bio;
8046        atomic_set(&dip->pending_bios, 0);
8047        btrfs_bio = btrfs_io_bio(io_bio);
8048        btrfs_bio->logical = file_offset;
8049
8050        if (write) {
8051                io_bio->bi_end_io = btrfs_endio_direct_write;
8052        } else {
8053                io_bio->bi_end_io = btrfs_endio_direct_read;
8054                dip->subio_endio = btrfs_subio_endio_read;
8055        }
8056
8057        ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8058        if (!ret)
8059                return;
8060
8061        if (btrfs_bio->end_io)
8062                btrfs_bio->end_io(btrfs_bio, ret);
8063free_io_bio:
8064        bio_put(io_bio);
8065
8066free_ordered:
8067        /*
8068         * If this is a write, we need to clean up the reserved space and kill
8069         * the ordered extent.
8070         */
8071        if (write) {
8072                struct btrfs_ordered_extent *ordered;
8073                ordered = btrfs_lookup_ordered_extent(inode, file_offset);
8074                if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
8075                    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
8076                        btrfs_free_reserved_extent(root, ordered->start,
8077                                                   ordered->disk_len, 1);
8078                btrfs_put_ordered_extent(ordered);
8079                btrfs_put_ordered_extent(ordered);
8080        }
8081        bio_endio(dio_bio, ret);
8082}
8083
8084static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
8085                        const struct iov_iter *iter, loff_t offset)
8086{
8087        int seg;
8088        int i;
8089        unsigned blocksize_mask = root->sectorsize - 1;
8090        ssize_t retval = -EINVAL;
8091
8092        if (offset & blocksize_mask)
8093                goto out;
8094
8095        if (iov_iter_alignment(iter) & blocksize_mask)
8096                goto out;
8097
8098        /* If this is a write we don't need to check anymore */
8099        if (rw & WRITE)
8100                return 0;
8101        /*
8102         * Check to make sure we don't have duplicate iov_base's in this
8103         * iovec, if so return EINVAL, otherwise we'll get csum errors
8104         * when reading back.
8105         */
8106        for (seg = 0; seg < iter->nr_segs; seg++) {
8107                for (i = seg + 1; i < iter->nr_segs; i++) {
8108                        if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8109                                goto out;
8110                }
8111        }
8112        retval = 0;
8113out:
8114        return retval;
8115}
8116
8117static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
8118                        struct iov_iter *iter, loff_t offset)
8119{
8120        struct file *file = iocb->ki_filp;
8121        struct inode *inode = file->f_mapping->host;
8122        u64 outstanding_extents = 0;
8123        size_t count = 0;
8124        int flags = 0;
8125        bool wakeup = true;
8126        bool relock = false;
8127        ssize_t ret;
8128
8129        if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
8130                return 0;
8131
8132        atomic_inc(&inode->i_dio_count);
8133        smp_mb__after_atomic();
8134
8135        /*
8136         * The generic stuff only does filemap_write_and_wait_range, which
8137         * isn't enough if we've written compressed pages to this area, so
8138         * we need to flush the dirty pages again to make absolutely sure
8139         * that any outstanding dirty pages are on disk.
8140         */
8141        count = iov_iter_count(iter);
8142        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8143                     &BTRFS_I(inode)->runtime_flags))
8144                filemap_fdatawrite_range(inode->i_mapping, offset,
8145                                         offset + count - 1);
8146
8147        if (rw & WRITE) {
8148                /*
8149                 * If the write DIO is beyond the EOF, we need update
8150                 * the isize, but it is protected by i_mutex. So we can
8151                 * not unlock the i_mutex at this case.
8152                 */
8153                if (offset + count <= inode->i_size) {
8154                        mutex_unlock(&inode->i_mutex);
8155                        relock = true;
8156                }
8157                ret = btrfs_delalloc_reserve_space(inode, count);
8158                if (ret)
8159                        goto out;
8160                outstanding_extents = div64_u64(count +
8161                                                BTRFS_MAX_EXTENT_SIZE - 1,
8162                                                BTRFS_MAX_EXTENT_SIZE);
8163
8164                /*
8165                 * We need to know how many extents we reserved so that we can
8166                 * do the accounting properly if we go over the number we
8167                 * originally calculated.  Abuse current->journal_info for this.
8168                 */
8169                current->journal_info = &outstanding_extents;
8170        } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8171                                     &BTRFS_I(inode)->runtime_flags)) {
8172                inode_dio_done(inode);
8173                flags = DIO_LOCKING | DIO_SKIP_HOLES;
8174                wakeup = false;
8175        }
8176
8177        ret = __blockdev_direct_IO(rw, iocb, inode,
8178                        BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8179                        iter, offset, btrfs_get_blocks_direct, NULL,
8180                        btrfs_submit_direct, flags);
8181        if (rw & WRITE) {
8182                current->journal_info = NULL;
8183                if (ret < 0 && ret != -EIOCBQUEUED)
8184                        btrfs_delalloc_release_space(inode, count);
8185                else if (ret >= 0 && (size_t)ret < count)
8186                        btrfs_delalloc_release_space(inode,
8187                                                     count - (size_t)ret);
8188        }
8189out:
8190        if (wakeup)
8191                inode_dio_done(inode);
8192        if (relock)
8193                mutex_lock(&inode->i_mutex);
8194
8195        return ret;
8196}
8197
8198#define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
8199
8200static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8201                __u64 start, __u64 len)
8202{
8203        int     ret;
8204
8205        ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8206        if (ret)
8207                return ret;
8208
8209        return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8210}
8211
8212int btrfs_readpage(struct file *file, struct page *page)
8213{
8214        struct extent_io_tree *tree;
8215        tree = &BTRFS_I(page->mapping->host)->io_tree;
8216        return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8217}
8218
8219static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8220{
8221        struct extent_io_tree *tree;
8222
8223
8224        if (current->flags & PF_MEMALLOC) {
8225                redirty_page_for_writepage(wbc, page);
8226                unlock_page(page);
8227                return 0;
8228        }
8229        tree = &BTRFS_I(page->mapping->host)->io_tree;
8230        return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8231}
8232
8233static int btrfs_writepages(struct address_space *mapping,
8234                            struct writeback_control *wbc)
8235{
8236        struct extent_io_tree *tree;
8237
8238        tree = &BTRFS_I(mapping->host)->io_tree;
8239        return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8240}
8241
8242static int
8243btrfs_readpages(struct file *file, struct address_space *mapping,
8244                struct list_head *pages, unsigned nr_pages)
8245{
8246        struct extent_io_tree *tree;
8247        tree = &BTRFS_I(mapping->host)->io_tree;
8248        return extent_readpages(tree, mapping, pages, nr_pages,
8249                                btrfs_get_extent);
8250}
8251static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8252{
8253        struct extent_io_tree *tree;
8254        struct extent_map_tree *map;
8255        int ret;
8256
8257        tree = &BTRFS_I(page->mapping->host)->io_tree;
8258        map = &BTRFS_I(page->mapping->host)->extent_tree;
8259        ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8260        if (ret == 1) {
8261                ClearPagePrivate(page);
8262                set_page_private(page, 0);
8263                page_cache_release(page);
8264        }
8265        return ret;
8266}
8267
8268static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8269{
8270        if (PageWriteback(page) || PageDirty(page))
8271                return 0;
8272        return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8273}
8274
8275static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8276                                 unsigned int length)
8277{
8278        struct inode *inode = page->mapping->host;
8279        struct extent_io_tree *tree;
8280        struct btrfs_ordered_extent *ordered;
8281        struct extent_state *cached_state = NULL;
8282        u64 page_start = page_offset(page);
8283        u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8284        int inode_evicting = inode->i_state & I_FREEING;
8285
8286        /*
8287         * we have the page locked, so new writeback can't start,
8288         * and the dirty bit won't be cleared while we are here.
8289         *
8290         * Wait for IO on this page so that we can safely clear
8291         * the PagePrivate2 bit and do ordered accounting
8292         */
8293        wait_on_page_writeback(page);
8294
8295        tree = &BTRFS_I(inode)->io_tree;
8296        if (offset) {
8297                btrfs_releasepage(page, GFP_NOFS);
8298                return;
8299        }
8300
8301        if (!inode_evicting)
8302                lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8303        ordered = btrfs_lookup_ordered_extent(inode, page_start);
8304        if (ordered) {
8305                /*
8306                 * IO on this page will never be started, so we need
8307                 * to account for any ordered extents now
8308                 */
8309                if (!inode_evicting)
8310                        clear_extent_bit(tree, page_start, page_end,
8311                                         EXTENT_DIRTY | EXTENT_DELALLOC |
8312                                         EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8313                                         EXTENT_DEFRAG, 1, 0, &cached_state,
8314                                         GFP_NOFS);
8315                /*
8316                 * whoever cleared the private bit is responsible
8317                 * for the finish_ordered_io
8318                 */
8319                if (TestClearPagePrivate2(page)) {
8320                        struct btrfs_ordered_inode_tree *tree;
8321                        u64 new_len;
8322
8323                        tree = &BTRFS_I(inode)->ordered_tree;
8324
8325                        spin_lock_irq(&tree->lock);
8326                        set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8327                        new_len = page_start - ordered->file_offset;
8328                        if (new_len < ordered->truncated_len)
8329                                ordered->truncated_len = new_len;
8330                        spin_unlock_irq(&tree->lock);
8331
8332                        if (btrfs_dec_test_ordered_pending(inode, &ordered,
8333                                                           page_start,
8334                                                           PAGE_CACHE_SIZE, 1))
8335                                btrfs_finish_ordered_io(ordered);
8336                }
8337                btrfs_put_ordered_extent(ordered);
8338                if (!inode_evicting) {
8339                        cached_state = NULL;
8340                        lock_extent_bits(tree, page_start, page_end, 0,
8341                                         &cached_state);
8342                }
8343        }
8344
8345        if (!inode_evicting) {
8346                clear_extent_bit(tree, page_start, page_end,
8347                                 EXTENT_LOCKED | EXTENT_DIRTY |
8348                                 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8349                                 EXTENT_DEFRAG, 1, 1,
8350                                 &cached_state, GFP_NOFS);
8351
8352                __btrfs_releasepage(page, GFP_NOFS);
8353        }
8354
8355        ClearPageChecked(page);
8356        if (PagePrivate(page)) {
8357                ClearPagePrivate(page);
8358                set_page_private(page, 0);
8359                page_cache_release(page);
8360        }
8361}
8362
8363/*
8364 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8365 * called from a page fault handler when a page is first dirtied. Hence we must
8366 * be careful to check for EOF conditions here. We set the page up correctly
8367 * for a written page which means we get ENOSPC checking when writing into
8368 * holes and correct delalloc and unwritten extent mapping on filesystems that
8369 * support these features.
8370 *
8371 * We are not allowed to take the i_mutex here so we have to play games to
8372 * protect against truncate races as the page could now be beyond EOF.  Because
8373 * vmtruncate() writes the inode size before removing pages, once we have the
8374 * page lock we can determine safely if the page is beyond EOF. If it is not
8375 * beyond EOF, then the page is guaranteed safe against truncation until we
8376 * unlock the page.
8377 */
8378int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8379{
8380        struct page *page = vmf->page;
8381        struct inode *inode = file_inode(vma->vm_file);
8382        struct btrfs_root *root = BTRFS_I(inode)->root;
8383        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8384        struct btrfs_ordered_extent *ordered;
8385        struct extent_state *cached_state = NULL;
8386        char *kaddr;
8387        unsigned long zero_start;
8388        loff_t size;
8389        int ret;
8390        int reserved = 0;
8391        u64 page_start;
8392        u64 page_end;
8393
8394        sb_start_pagefault(inode->i_sb);
8395        ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8396        if (!ret) {
8397                ret = file_update_time(vma->vm_file);
8398                reserved = 1;
8399        }
8400        if (ret) {
8401                if (ret == -ENOMEM)
8402                        ret = VM_FAULT_OOM;
8403                else /* -ENOSPC, -EIO, etc */
8404                        ret = VM_FAULT_SIGBUS;
8405                if (reserved)
8406                        goto out;
8407                goto out_noreserve;
8408        }
8409
8410        ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8411again:
8412        lock_page(page);
8413        size = i_size_read(inode);
8414        page_start = page_offset(page);
8415        page_end = page_start + PAGE_CACHE_SIZE - 1;
8416
8417        if ((page->mapping != inode->i_mapping) ||
8418            (page_start >= size)) {
8419                /* page got truncated out from underneath us */
8420                goto out_unlock;
8421        }
8422        wait_on_page_writeback(page);
8423
8424        lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8425        set_page_extent_mapped(page);
8426
8427        /*
8428         * we can't set the delalloc bits if there are pending ordered
8429         * extents.  Drop our locks and wait for them to finish
8430         */
8431        ordered = btrfs_lookup_ordered_extent(inode, page_start);
8432        if (ordered) {
8433                unlock_extent_cached(io_tree, page_start, page_end,
8434                                     &cached_state, GFP_NOFS);
8435                unlock_page(page);
8436                btrfs_start_ordered_extent(inode, ordered, 1);
8437                btrfs_put_ordered_extent(ordered);
8438                goto again;
8439        }
8440
8441        /*
8442         * XXX - page_mkwrite gets called every time the page is dirtied, even
8443         * if it was already dirty, so for space accounting reasons we need to
8444         * clear any delalloc bits for the range we are fixing to save.  There
8445         * is probably a better way to do this, but for now keep consistent with
8446         * prepare_pages in the normal write path.
8447         */
8448        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8449                          EXTENT_DIRTY | EXTENT_DELALLOC |
8450                          EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8451                          0, 0, &cached_state, GFP_NOFS);
8452
8453        ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8454                                        &cached_state);
8455        if (ret) {
8456                unlock_extent_cached(io_tree, page_start, page_end,
8457                                     &cached_state, GFP_NOFS);
8458                ret = VM_FAULT_SIGBUS;
8459                goto out_unlock;
8460        }
8461        ret = 0;
8462
8463        /* page is wholly or partially inside EOF */
8464        if (page_start + PAGE_CACHE_SIZE > size)
8465                zero_start = size & ~PAGE_CACHE_MASK;
8466        else
8467                zero_start = PAGE_CACHE_SIZE;
8468
8469        if (zero_start != PAGE_CACHE_SIZE) {
8470                kaddr = kmap(page);
8471                memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8472                flush_dcache_page(page);
8473                kunmap(page);
8474        }
8475        ClearPageChecked(page);
8476        set_page_dirty(page);
8477        SetPageUptodate(page);
8478
8479        BTRFS_I(inode)->last_trans = root->fs_info->generation;
8480        BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8481        BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8482
8483        unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8484
8485out_unlock:
8486        if (!ret) {
8487                sb_end_pagefault(inode->i_sb);
8488                return VM_FAULT_LOCKED;
8489        }
8490        unlock_page(page);
8491out:
8492        btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8493out_noreserve:
8494        sb_end_pagefault(inode->i_sb);
8495        return ret;
8496}
8497
8498static int btrfs_truncate(struct inode *inode)
8499{
8500        struct btrfs_root *root = BTRFS_I(inode)->root;
8501        struct btrfs_block_rsv *rsv;
8502        int ret = 0;
8503        int err = 0;
8504        struct btrfs_trans_handle *trans;
8505        u64 mask = root->sectorsize - 1;
8506        u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8507
8508        ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8509                                       (u64)-1);
8510        if (ret)
8511                return ret;
8512
8513        /*
8514         * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
8515         * 3 things going on here
8516         *
8517         * 1) We need to reserve space for our orphan item and the space to
8518         * delete our orphan item.  Lord knows we don't want to have a dangling
8519         * orphan item because we didn't reserve space to remove it.
8520         *
8521         * 2) We need to reserve space to update our inode.
8522         *
8523         * 3) We need to have something to cache all the space that is going to
8524         * be free'd up by the truncate operation, but also have some slack
8525         * space reserved in case it uses space during the truncate (thank you
8526         * very much snapshotting).
8527         *
8528         * And we need these to all be seperate.  The fact is we can use alot of
8529         * space doing the truncate, and we have no earthly idea how much space
8530         * we will use, so we need the truncate reservation to be seperate so it
8531         * doesn't end up using space reserved for updating the inode or
8532         * removing the orphan item.  We also need to be able to stop the
8533         * transaction and start a new one, which means we need to be able to
8534         * update the inode several times, and we have no idea of knowing how
8535         * many times that will be, so we can't just reserve 1 item for the
8536         * entirety of the opration, so that has to be done seperately as well.
8537         * Then there is the orphan item, which does indeed need to be held on
8538         * to for the whole operation, and we need nobody to touch this reserved
8539         * space except the orphan code.
8540         *
8541         * So that leaves us with
8542         *
8543         * 1) root->orphan_block_rsv - for the orphan deletion.
8544         * 2) rsv - for the truncate reservation, which we will steal from the
8545         * transaction reservation.
8546         * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8547         * updating the inode.
8548         */
8549        rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8550        if (!rsv)
8551                return -ENOMEM;
8552        rsv->size = min_size;
8553        rsv->failfast = 1;
8554
8555        /*
8556         * 1 for the truncate slack space
8557         * 1 for updating the inode.
8558         */
8559        trans = btrfs_start_transaction(root, 2);
8560        if (IS_ERR(trans)) {
8561                err = PTR_ERR(trans);
8562                goto out;
8563        }
8564
8565        /* Migrate the slack space for the truncate to our reserve */
8566        ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8567                                      min_size);
8568        BUG_ON(ret);
8569
8570        /*
8571         * So if we truncate and then write and fsync we normally would just
8572         * write the extents that changed, which is a problem if we need to
8573         * first truncate that entire inode.  So set this flag so we write out
8574         * all of the extents in the inode to the sync log so we're completely
8575         * safe.
8576         */
8577        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8578        trans->block_rsv = rsv;
8579
8580        while (1) {
8581                ret = btrfs_truncate_inode_items(trans, root, inode,
8582                                                 inode->i_size,
8583                                                 BTRFS_EXTENT_DATA_KEY);
8584                if (ret != -ENOSPC) {
8585                        err = ret;
8586                        break;
8587                }
8588
8589                trans->block_rsv = &root->fs_info->trans_block_rsv;
8590                ret = btrfs_update_inode(trans, root, inode);
8591                if (ret) {
8592                        err = ret;
8593                        break;
8594                }
8595
8596                btrfs_end_transaction(trans, root);
8597                btrfs_btree_balance_dirty(root);
8598
8599                trans = btrfs_start_transaction(root, 2);
8600                if (IS_ERR(trans)) {
8601                        ret = err = PTR_ERR(trans);
8602                        trans = NULL;
8603                        break;
8604                }
8605
8606                ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8607                                              rsv, min_size);
8608                BUG_ON(ret);    /* shouldn't happen */
8609                trans->block_rsv = rsv;
8610        }
8611
8612        if (ret == 0 && inode->i_nlink > 0) {
8613                trans->block_rsv = root->orphan_block_rsv;
8614                ret = btrfs_orphan_del(trans, inode);
8615                if (ret)
8616                        err = ret;
8617        }
8618
8619        if (trans) {
8620                trans->block_rsv = &root->fs_info->trans_block_rsv;
8621                ret = btrfs_update_inode(trans, root, inode);
8622                if (ret && !err)
8623                        err = ret;
8624
8625                ret = btrfs_end_transaction(trans, root);
8626                btrfs_btree_balance_dirty(root);
8627        }
8628
8629out:
8630        btrfs_free_block_rsv(root, rsv);
8631
8632        if (ret && !err)
8633                err = ret;
8634
8635        return err;
8636}
8637
8638/*
8639 * create a new subvolume directory/inode (helper for the ioctl).
8640 */
8641int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8642                             struct btrfs_root *new_root,
8643                             struct btrfs_root *parent_root,
8644                             u64 new_dirid)
8645{
8646        struct inode *inode;
8647        int err;
8648        u64 index = 0;
8649
8650        inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8651                                new_dirid, new_dirid,
8652                                S_IFDIR | (~current_umask() & S_IRWXUGO),
8653                                &index);
8654        if (IS_ERR(inode))
8655                return PTR_ERR(inode);
8656        inode->i_op = &btrfs_dir_inode_operations;
8657        inode->i_fop = &btrfs_dir_file_operations;
8658
8659        set_nlink(inode, 1);
8660        btrfs_i_size_write(inode, 0);
8661        unlock_new_inode(inode);
8662
8663        err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8664        if (err)
8665                btrfs_err(new_root->fs_info,
8666                          "error inheriting subvolume %llu properties: %d",
8667                          new_root->root_key.objectid, err);
8668
8669        err = btrfs_update_inode(trans, new_root, inode);
8670
8671        iput(inode);
8672        return err;
8673}
8674
8675struct inode *btrfs_alloc_inode(struct super_block *sb)
8676{
8677        struct btrfs_inode *ei;
8678        struct inode *inode;
8679
8680        ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8681        if (!ei)
8682                return NULL;
8683
8684        ei->root = NULL;
8685        ei->generation = 0;
8686        ei->last_trans = 0;
8687        ei->last_sub_trans = 0;
8688        ei->logged_trans = 0;
8689        ei->delalloc_bytes = 0;
8690        ei->defrag_bytes = 0;
8691        ei->disk_i_size = 0;
8692        ei->flags = 0;
8693        ei->csum_bytes = 0;
8694        ei->index_cnt = (u64)-1;
8695        ei->dir_index = 0;
8696        ei->last_unlink_trans = 0;
8697        ei->last_log_commit = 0;
8698
8699        spin_lock_init(&ei->lock);
8700        ei->outstanding_extents = 0;
8701        ei->reserved_extents = 0;
8702
8703        ei->runtime_flags = 0;
8704        ei->force_compress = BTRFS_COMPRESS_NONE;
8705
8706        ei->delayed_node = NULL;
8707
8708        ei->i_otime.tv_sec = 0;
8709        ei->i_otime.tv_nsec = 0;
8710
8711        inode = &ei->vfs_inode;
8712        extent_map_tree_init(&ei->extent_tree);
8713        extent_io_tree_init(&ei->io_tree, &inode->i_data);
8714        extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8715        ei->io_tree.track_uptodate = 1;
8716        ei->io_failure_tree.track_uptodate = 1;
8717        atomic_set(&ei->sync_writers, 0);
8718        mutex_init(&ei->log_mutex);
8719        mutex_init(&ei->delalloc_mutex);
8720        btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8721        INIT_LIST_HEAD(&ei->delalloc_inodes);
8722        RB_CLEAR_NODE(&ei->rb_node);
8723
8724        return inode;
8725}
8726
8727#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8728void btrfs_test_destroy_inode(struct inode *inode)
8729{
8730        btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8731        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8732}
8733#endif
8734
8735static void btrfs_i_callback(struct rcu_head *head)
8736{
8737        struct inode *inode = container_of(head, struct inode, i_rcu);
8738        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8739}
8740
8741void btrfs_destroy_inode(struct inode *inode)
8742{
8743        struct btrfs_ordered_extent *ordered;
8744        struct btrfs_root *root = BTRFS_I(inode)->root;
8745
8746        WARN_ON(!hlist_empty(&inode->i_dentry));
8747        WARN_ON(inode->i_data.nrpages);
8748        WARN_ON(BTRFS_I(inode)->outstanding_extents);
8749        WARN_ON(BTRFS_I(inode)->reserved_extents);
8750        WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8751        WARN_ON(BTRFS_I(inode)->csum_bytes);
8752        WARN_ON(BTRFS_I(inode)->defrag_bytes);
8753
8754        /*
8755         * This can happen where we create an inode, but somebody else also
8756         * created the same inode and we need to destroy the one we already
8757         * created.
8758         */
8759        if (!root)
8760                goto free;
8761
8762        if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8763                     &BTRFS_I(inode)->runtime_flags)) {
8764                btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8765                        btrfs_ino(inode));
8766                atomic_dec(&root->orphan_inodes);
8767        }
8768
8769        while (1) {
8770                ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8771                if (!ordered)
8772                        break;
8773                else {
8774                        btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8775                                ordered->file_offset, ordered->len);
8776                        btrfs_remove_ordered_extent(inode, ordered);
8777                        btrfs_put_ordered_extent(ordered);
8778                        btrfs_put_ordered_extent(ordered);
8779                }
8780        }
8781        inode_tree_del(inode);
8782        btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8783free:
8784        call_rcu(&inode->i_rcu, btrfs_i_callback);
8785}
8786
8787int btrfs_drop_inode(struct inode *inode)
8788{
8789        struct btrfs_root *root = BTRFS_I(inode)->root;
8790
8791        if (root == NULL)
8792                return 1;
8793
8794        /* the snap/subvol tree is on deleting */
8795        if (btrfs_root_refs(&root->root_item) == 0)
8796                return 1;
8797        else
8798                return generic_drop_inode(inode);
8799}
8800
8801static void init_once(void *foo)
8802{
8803        struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8804
8805        inode_init_once(&ei->vfs_inode);
8806}
8807
8808void btrfs_destroy_cachep(void)
8809{
8810        /*
8811         * Make sure all delayed rcu free inodes are flushed before we
8812         * destroy cache.
8813         */
8814        rcu_barrier();
8815        if (btrfs_inode_cachep)
8816                kmem_cache_destroy(btrfs_inode_cachep);
8817        if (btrfs_trans_handle_cachep)
8818                kmem_cache_destroy(btrfs_trans_handle_cachep);
8819        if (btrfs_transaction_cachep)
8820                kmem_cache_destroy(btrfs_transaction_cachep);
8821        if (btrfs_path_cachep)
8822                kmem_cache_destroy(btrfs_path_cachep);
8823        if (btrfs_free_space_cachep)
8824                kmem_cache_destroy(btrfs_free_space_cachep);
8825        if (btrfs_delalloc_work_cachep)
8826                kmem_cache_destroy(btrfs_delalloc_work_cachep);
8827}
8828
8829int btrfs_init_cachep(void)
8830{
8831        btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8832                        sizeof(struct btrfs_inode), 0,
8833                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8834        if (!btrfs_inode_cachep)
8835                goto fail;
8836
8837        btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8838                        sizeof(struct btrfs_trans_handle), 0,
8839                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8840        if (!btrfs_trans_handle_cachep)
8841                goto fail;
8842
8843        btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8844                        sizeof(struct btrfs_transaction), 0,
8845                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8846        if (!btrfs_transaction_cachep)
8847                goto fail;
8848
8849        btrfs_path_cachep = kmem_cache_create("btrfs_path",
8850                        sizeof(struct btrfs_path), 0,
8851                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8852        if (!btrfs_path_cachep)
8853                goto fail;
8854
8855        btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8856                        sizeof(struct btrfs_free_space), 0,
8857                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8858        if (!btrfs_free_space_cachep)
8859                goto fail;
8860
8861        btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8862                        sizeof(struct btrfs_delalloc_work), 0,
8863                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8864                        NULL);
8865        if (!btrfs_delalloc_work_cachep)
8866                goto fail;
8867
8868        return 0;
8869fail:
8870        btrfs_destroy_cachep();
8871        return -ENOMEM;
8872}
8873
8874static int btrfs_getattr(struct vfsmount *mnt,
8875                         struct dentry *dentry, struct kstat *stat)
8876{
8877        u64 delalloc_bytes;
8878        struct inode *inode = dentry->d_inode;
8879        u32 blocksize = inode->i_sb->s_blocksize;
8880
8881        generic_fillattr(inode, stat);
8882        stat->dev = BTRFS_I(inode)->root->anon_dev;
8883        stat->blksize = PAGE_CACHE_SIZE;
8884
8885        spin_lock(&BTRFS_I(inode)->lock);
8886        delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8887        spin_unlock(&BTRFS_I(inode)->lock);
8888        stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8889                        ALIGN(delalloc_bytes, blocksize)) >> 9;
8890        return 0;
8891}
8892
8893static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8894                           struct inode *new_dir, struct dentry *new_dentry)
8895{
8896        struct btrfs_trans_handle *trans;
8897        struct btrfs_root *root = BTRFS_I(old_dir)->root;
8898        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8899        struct inode *new_inode = new_dentry->d_inode;
8900        struct inode *old_inode = old_dentry->d_inode;
8901        struct timespec ctime = CURRENT_TIME;
8902        u64 index = 0;
8903        u64 root_objectid;
8904        int ret;
8905        u64 old_ino = btrfs_ino(old_inode);
8906
8907        if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8908                return -EPERM;
8909
8910        /* we only allow rename subvolume link between subvolumes */
8911        if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8912                return -EXDEV;
8913
8914        if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8915            (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8916                return -ENOTEMPTY;
8917
8918        if (S_ISDIR(old_inode->i_mode) && new_inode &&
8919            new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8920                return -ENOTEMPTY;
8921
8922
8923        /* check for collisions, even if the  name isn't there */
8924        ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8925                             new_dentry->d_name.name,
8926                             new_dentry->d_name.len);
8927
8928        if (ret) {
8929                if (ret == -EEXIST) {
8930                        /* we shouldn't get
8931                         * eexist without a new_inode */
8932                        if (WARN_ON(!new_inode)) {
8933                                return ret;
8934                        }
8935                } else {
8936                        /* maybe -EOVERFLOW */
8937                        return ret;
8938                }
8939        }
8940        ret = 0;
8941
8942        /*
8943         * we're using rename to replace one file with another.  Start IO on it
8944         * now so  we don't add too much work to the end of the transaction
8945         */
8946        if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8947                filemap_flush(old_inode->i_mapping);
8948
8949        /* close the racy window with snapshot create/destroy ioctl */
8950        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8951                down_read(&root->fs_info->subvol_sem);
8952        /*
8953         * We want to reserve the absolute worst case amount of items.  So if
8954         * both inodes are subvols and we need to unlink them then that would
8955         * require 4 item modifications, but if they are both normal inodes it
8956         * would require 5 item modifications, so we'll assume their normal
8957         * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8958         * should cover the worst case number of items we'll modify.
8959         */
8960        trans = btrfs_start_transaction(root, 11);
8961        if (IS_ERR(trans)) {
8962                ret = PTR_ERR(trans);
8963                goto out_notrans;
8964        }
8965
8966        if (dest != root)
8967                btrfs_record_root_in_trans(trans, dest);
8968
8969        ret = btrfs_set_inode_index(new_dir, &index);
8970        if (ret)
8971                goto out_fail;
8972
8973        BTRFS_I(old_inode)->dir_index = 0ULL;
8974        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8975                /* force full log commit if subvolume involved. */
8976                btrfs_set_log_full_commit(root->fs_info, trans);
8977        } else {
8978                ret = btrfs_insert_inode_ref(trans, dest,
8979                                             new_dentry->d_name.name,
8980                                             new_dentry->d_name.len,
8981                                             old_ino,
8982                                             btrfs_ino(new_dir), index);
8983                if (ret)
8984                        goto out_fail;
8985                /*
8986                 * this is an ugly little race, but the rename is required
8987                 * to make sure that if we crash, the inode is either at the
8988                 * old name or the new one.  pinning the log transaction lets
8989                 * us make sure we don't allow a log commit to come in after
8990                 * we unlink the name but before we add the new name back in.
8991                 */
8992                btrfs_pin_log_trans(root);
8993        }
8994
8995        inode_inc_iversion(old_dir);
8996        inode_inc_iversion(new_dir);
8997        inode_inc_iversion(old_inode);
8998        old_dir->i_ctime = old_dir->i_mtime = ctime;
8999        new_dir->i_ctime = new_dir->i_mtime = ctime;
9000        old_inode->i_ctime = ctime;
9001
9002        if (old_dentry->d_parent != new_dentry->d_parent)
9003                btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9004
9005        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9006                root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9007                ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9008                                        old_dentry->d_name.name,
9009                                        old_dentry->d_name.len);
9010        } else {
9011                ret = __btrfs_unlink_inode(trans, root, old_dir,
9012                                        old_dentry->d_inode,
9013                                        old_dentry->d_name.name,
9014                                        old_dentry->d_name.len);
9015                if (!ret)
9016                        ret = btrfs_update_inode(trans, root, old_inode);
9017        }
9018        if (ret) {
9019                btrfs_abort_transaction(trans, root, ret);
9020                goto out_fail;
9021        }
9022
9023        if (new_inode) {
9024                inode_inc_iversion(new_inode);
9025                new_inode->i_ctime = CURRENT_TIME;
9026                if (unlikely(btrfs_ino(new_inode) ==
9027                             BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9028                        root_objectid = BTRFS_I(new_inode)->location.objectid;
9029                        ret = btrfs_unlink_subvol(trans, dest, new_dir,
9030                                                root_objectid,
9031                                                new_dentry->d_name.name,
9032                                                new_dentry->d_name.len);
9033                        BUG_ON(new_inode->i_nlink == 0);
9034                } else {
9035                        ret = btrfs_unlink_inode(trans, dest, new_dir,
9036                                                 new_dentry->d_inode,
9037                                                 new_dentry->d_name.name,
9038                                                 new_dentry->d_name.len);
9039                }
9040                if (!ret && new_inode->i_nlink == 0)
9041                        ret = btrfs_orphan_add(trans, new_dentry->d_inode);
9042                if (ret) {
9043                        btrfs_abort_transaction(trans, root, ret);
9044                        goto out_fail;
9045                }
9046        }
9047
9048        ret = btrfs_add_link(trans, new_dir, old_inode,
9049                             new_dentry->d_name.name,
9050                             new_dentry->d_name.len, 0, index);
9051        if (ret) {
9052                btrfs_abort_transaction(trans, root, ret);
9053                goto out_fail;
9054        }
9055
9056        if (old_inode->i_nlink == 1)
9057                BTRFS_I(old_inode)->dir_index = index;
9058
9059        if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9060                struct dentry *parent = new_dentry->d_parent;
9061                btrfs_log_new_name(trans, old_inode, old_dir, parent);
9062                btrfs_end_log_trans(root);
9063        }
9064out_fail:
9065        btrfs_end_transaction(trans, root);
9066out_notrans:
9067        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9068                up_read(&root->fs_info->subvol_sem);
9069
9070        return ret;
9071}
9072
9073static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9074                         struct inode *new_dir, struct dentry *new_dentry,
9075                         unsigned int flags)
9076{
9077        if (flags & ~RENAME_NOREPLACE)
9078                return -EINVAL;
9079
9080        return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9081}
9082
9083static void btrfs_run_delalloc_work(struct btrfs_work *work)
9084{
9085        struct btrfs_delalloc_work *delalloc_work;
9086        struct inode *inode;
9087
9088        delalloc_work = container_of(work, struct btrfs_delalloc_work,
9089                                     work);
9090        inode = delalloc_work->inode;
9091        if (delalloc_work->wait) {
9092                btrfs_wait_ordered_range(inode, 0, (u64)-1);
9093        } else {
9094                filemap_flush(inode->i_mapping);
9095                if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9096                             &BTRFS_I(inode)->runtime_flags))
9097                        filemap_flush(inode->i_mapping);
9098        }
9099
9100        if (delalloc_work->delay_iput)
9101                btrfs_add_delayed_iput(inode);
9102        else
9103                iput(inode);
9104        complete(&delalloc_work->completion);
9105}
9106
9107struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9108                                                    int wait, int delay_iput)
9109{
9110        struct btrfs_delalloc_work *work;
9111
9112        work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9113        if (!work)
9114                return NULL;
9115
9116        init_completion(&work->completion);
9117        INIT_LIST_HEAD(&work->list);
9118        work->inode = inode;
9119        work->wait = wait;
9120        work->delay_iput = delay_iput;
9121        WARN_ON_ONCE(!inode);
9122        btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9123                        btrfs_run_delalloc_work, NULL, NULL);
9124
9125        return work;
9126}
9127
9128void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9129{
9130        wait_for_completion(&work->completion);
9131        kmem_cache_free(btrfs_delalloc_work_cachep, work);
9132}
9133
9134/*
9135 * some fairly slow code that needs optimization. This walks the list
9136 * of all the inodes with pending delalloc and forces them to disk.
9137 */
9138static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9139                                   int nr)
9140{
9141        struct btrfs_inode *binode;
9142        struct inode *inode;
9143        struct btrfs_delalloc_work *work, *next;
9144        struct list_head works;
9145        struct list_head splice;
9146        int ret = 0;
9147
9148        INIT_LIST_HEAD(&works);
9149        INIT_LIST_HEAD(&splice);
9150
9151        mutex_lock(&root->delalloc_mutex);
9152        spin_lock(&root->delalloc_lock);
9153        list_splice_init(&root->delalloc_inodes, &splice);
9154        while (!list_empty(&splice)) {
9155                binode = list_entry(splice.next, struct btrfs_inode,
9156                                    delalloc_inodes);
9157
9158                list_move_tail(&binode->delalloc_inodes,
9159                               &root->delalloc_inodes);
9160                inode = igrab(&binode->vfs_inode);
9161                if (!inode) {
9162                        cond_resched_lock(&root->delalloc_lock);
9163                        continue;
9164                }
9165                spin_unlock(&root->delalloc_lock);
9166
9167                work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9168                if (!work) {
9169                        if (delay_iput)
9170                                btrfs_add_delayed_iput(inode);
9171                        else
9172                                iput(inode);
9173                        ret = -ENOMEM;
9174                        goto out;
9175                }
9176                list_add_tail(&work->list, &works);
9177                btrfs_queue_work(root->fs_info->flush_workers,
9178                                 &work->work);
9179                ret++;
9180                if (nr != -1 && ret >= nr)
9181                        goto out;
9182                cond_resched();
9183                spin_lock(&root->delalloc_lock);
9184        }
9185        spin_unlock(&root->delalloc_lock);
9186
9187out:
9188        list_for_each_entry_safe(work, next, &works, list) {
9189                list_del_init(&work->list);
9190                btrfs_wait_and_free_delalloc_work(work);
9191        }
9192
9193        if (!list_empty_careful(&splice)) {
9194                spin_lock(&root->delalloc_lock);
9195                list_splice_tail(&splice, &root->delalloc_inodes);
9196                spin_unlock(&root->delalloc_lock);
9197        }
9198        mutex_unlock(&root->delalloc_mutex);
9199        return ret;
9200}
9201
9202int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9203{
9204        int ret;
9205
9206        if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9207                return -EROFS;
9208
9209        ret = __start_delalloc_inodes(root, delay_iput, -1);
9210        if (ret > 0)
9211                ret = 0;
9212        /*
9213         * the filemap_flush will queue IO into the worker threads, but
9214         * we have to make sure the IO is actually started and that
9215         * ordered extents get created before we return
9216         */
9217        atomic_inc(&root->fs_info->async_submit_draining);
9218        while (atomic_read(&root->fs_info->nr_async_submits) ||
9219              atomic_read(&root->fs_info->async_delalloc_pages)) {
9220                wait_event(root->fs_info->async_submit_wait,
9221                   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9222                    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9223        }
9224        atomic_dec(&root->fs_info->async_submit_draining);
9225        return ret;
9226}
9227
9228int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9229                               int nr)
9230{
9231        struct btrfs_root *root;
9232        struct list_head splice;
9233        int ret;
9234
9235        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9236                return -EROFS;
9237
9238        INIT_LIST_HEAD(&splice);
9239
9240        mutex_lock(&fs_info->delalloc_root_mutex);
9241        spin_lock(&fs_info->delalloc_root_lock);
9242        list_splice_init(&fs_info->delalloc_roots, &splice);
9243        while (!list_empty(&splice) && nr) {
9244                root = list_first_entry(&splice, struct btrfs_root,
9245                                        delalloc_root);
9246                root = btrfs_grab_fs_root(root);
9247                BUG_ON(!root);
9248                list_move_tail(&root->delalloc_root,
9249                               &fs_info->delalloc_roots);
9250                spin_unlock(&fs_info->delalloc_root_lock);
9251
9252                ret = __start_delalloc_inodes(root, delay_iput, nr);
9253                btrfs_put_fs_root(root);
9254                if (ret < 0)
9255                        goto out;
9256
9257                if (nr != -1) {
9258                        nr -= ret;
9259                        WARN_ON(nr < 0);
9260                }
9261                spin_lock(&fs_info->delalloc_root_lock);
9262        }
9263        spin_unlock(&fs_info->delalloc_root_lock);
9264
9265        ret = 0;
9266        atomic_inc(&fs_info->async_submit_draining);
9267        while (atomic_read(&fs_info->nr_async_submits) ||
9268              atomic_read(&fs_info->async_delalloc_pages)) {
9269                wait_event(fs_info->async_submit_wait,
9270                   (atomic_read(&fs_info->nr_async_submits) == 0 &&
9271                    atomic_read(&fs_info->async_delalloc_pages) == 0));
9272        }
9273        atomic_dec(&fs_info->async_submit_draining);
9274out:
9275        if (!list_empty_careful(&splice)) {
9276                spin_lock(&fs_info->delalloc_root_lock);
9277                list_splice_tail(&splice, &fs_info->delalloc_roots);
9278                spin_unlock(&fs_info->delalloc_root_lock);
9279        }
9280        mutex_unlock(&fs_info->delalloc_root_mutex);
9281        return ret;
9282}
9283
9284static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9285                         const char *symname)
9286{
9287        struct btrfs_trans_handle *trans;
9288        struct btrfs_root *root = BTRFS_I(dir)->root;
9289        struct btrfs_path *path;
9290        struct btrfs_key key;
9291        struct inode *inode = NULL;
9292        int err;
9293        int drop_inode = 0;
9294        u64 objectid;
9295        u64 index = 0;
9296        int name_len;
9297        int datasize;
9298        unsigned long ptr;
9299        struct btrfs_file_extent_item *ei;
9300        struct extent_buffer *leaf;
9301
9302        name_len = strlen(symname);
9303        if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9304                return -ENAMETOOLONG;
9305
9306        /*
9307         * 2 items for inode item and ref
9308         * 2 items for dir items
9309         * 1 item for xattr if selinux is on
9310         */
9311        trans = btrfs_start_transaction(root, 5);
9312        if (IS_ERR(trans))
9313                return PTR_ERR(trans);
9314
9315        err = btrfs_find_free_ino(root, &objectid);
9316        if (err)
9317                goto out_unlock;
9318
9319        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9320                                dentry->d_name.len, btrfs_ino(dir), objectid,
9321                                S_IFLNK|S_IRWXUGO, &index);
9322        if (IS_ERR(inode)) {
9323                err = PTR_ERR(inode);
9324                goto out_unlock;
9325        }
9326
9327        /*
9328        * If the active LSM wants to access the inode during
9329        * d_instantiate it needs these. Smack checks to see
9330        * if the filesystem supports xattrs by looking at the
9331        * ops vector.
9332        */
9333        inode->i_fop = &btrfs_file_operations;
9334        inode->i_op = &btrfs_file_inode_operations;
9335        inode->i_mapping->a_ops = &btrfs_aops;
9336        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9337
9338        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9339        if (err)
9340                goto out_unlock_inode;
9341
9342        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9343        if (err)
9344                goto out_unlock_inode;
9345
9346        path = btrfs_alloc_path();
9347        if (!path) {
9348                err = -ENOMEM;
9349                goto out_unlock_inode;
9350        }
9351        key.objectid = btrfs_ino(inode);
9352        key.offset = 0;
9353        key.type = BTRFS_EXTENT_DATA_KEY;
9354        datasize = btrfs_file_extent_calc_inline_size(name_len);
9355        err = btrfs_insert_empty_item(trans, root, path, &key,
9356                                      datasize);
9357        if (err) {
9358                btrfs_free_path(path);
9359                goto out_unlock_inode;
9360        }
9361        leaf = path->nodes[0];
9362        ei = btrfs_item_ptr(leaf, path->slots[0],
9363                            struct btrfs_file_extent_item);
9364        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9365        btrfs_set_file_extent_type(leaf, ei,
9366                                   BTRFS_FILE_EXTENT_INLINE);
9367        btrfs_set_file_extent_encryption(leaf, ei, 0);
9368        btrfs_set_file_extent_compression(leaf, ei, 0);
9369        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9370        btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9371
9372        ptr = btrfs_file_extent_inline_start(ei);
9373        write_extent_buffer(leaf, symname, ptr, name_len);
9374        btrfs_mark_buffer_dirty(leaf);
9375        btrfs_free_path(path);
9376
9377        inode->i_op = &btrfs_symlink_inode_operations;
9378        inode->i_mapping->a_ops = &btrfs_symlink_aops;
9379        inode_set_bytes(inode, name_len);
9380        btrfs_i_size_write(inode, name_len);
9381        err = btrfs_update_inode(trans, root, inode);
9382        if (err) {
9383                drop_inode = 1;
9384                goto out_unlock_inode;
9385        }
9386
9387        unlock_new_inode(inode);
9388        d_instantiate(dentry, inode);
9389
9390out_unlock:
9391        btrfs_end_transaction(trans, root);
9392        if (drop_inode) {
9393                inode_dec_link_count(inode);
9394                iput(inode);
9395        }
9396        btrfs_btree_balance_dirty(root);
9397        return err;
9398
9399out_unlock_inode:
9400        drop_inode = 1;
9401        unlock_new_inode(inode);
9402        goto out_unlock;
9403}
9404
9405static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9406                                       u64 start, u64 num_bytes, u64 min_size,
9407                                       loff_t actual_len, u64 *alloc_hint,
9408                                       struct btrfs_trans_handle *trans)
9409{
9410        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9411        struct extent_map *em;
9412        struct btrfs_root *root = BTRFS_I(inode)->root;
9413        struct btrfs_key ins;
9414        u64 cur_offset = start;
9415        u64 i_size;
9416        u64 cur_bytes;
9417        int ret = 0;
9418        bool own_trans = true;
9419
9420        if (trans)
9421                own_trans = false;
9422        while (num_bytes > 0) {
9423                if (own_trans) {
9424                        trans = btrfs_start_transaction(root, 3);
9425                        if (IS_ERR(trans)) {
9426                                ret = PTR_ERR(trans);
9427                                break;
9428                        }
9429                }
9430
9431                cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9432                cur_bytes = max(cur_bytes, min_size);
9433                ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9434                                           *alloc_hint, &ins, 1, 0);
9435                if (ret) {
9436                        if (own_trans)
9437                                btrfs_end_transaction(trans, root);
9438                        break;
9439                }
9440
9441                ret = insert_reserved_file_extent(trans, inode,
9442                                                  cur_offset, ins.objectid,
9443                                                  ins.offset, ins.offset,
9444                                                  ins.offset, 0, 0, 0,
9445                                                  BTRFS_FILE_EXTENT_PREALLOC);
9446                if (ret) {
9447                        btrfs_free_reserved_extent(root, ins.objectid,
9448                                                   ins.offset, 0);
9449                        btrfs_abort_transaction(trans, root, ret);
9450                        if (own_trans)
9451                                btrfs_end_transaction(trans, root);
9452                        break;
9453                }
9454                btrfs_drop_extent_cache(inode, cur_offset,
9455                                        cur_offset + ins.offset -1, 0);
9456
9457                em = alloc_extent_map();
9458                if (!em) {
9459                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9460                                &BTRFS_I(inode)->runtime_flags);
9461                        goto next;
9462                }
9463
9464                em->start = cur_offset;
9465                em->orig_start = cur_offset;
9466                em->len = ins.offset;
9467                em->block_start = ins.objectid;
9468                em->block_len = ins.offset;
9469                em->orig_block_len = ins.offset;
9470                em->ram_bytes = ins.offset;
9471                em->bdev = root->fs_info->fs_devices->latest_bdev;
9472                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9473                em->generation = trans->transid;
9474
9475                while (1) {
9476                        write_lock(&em_tree->lock);
9477                        ret = add_extent_mapping(em_tree, em, 1);
9478                        write_unlock(&em_tree->lock);
9479                        if (ret != -EEXIST)
9480                                break;
9481                        btrfs_drop_extent_cache(inode, cur_offset,
9482                                                cur_offset + ins.offset - 1,
9483                                                0);
9484                }
9485                free_extent_map(em);
9486next:
9487                num_bytes -= ins.offset;
9488                cur_offset += ins.offset;
9489                *alloc_hint = ins.objectid + ins.offset;
9490
9491                inode_inc_iversion(inode);
9492                inode->i_ctime = CURRENT_TIME;
9493                BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9494                if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9495                    (actual_len > inode->i_size) &&
9496                    (cur_offset > inode->i_size)) {
9497                        if (cur_offset > actual_len)
9498                                i_size = actual_len;
9499                        else
9500                                i_size = cur_offset;
9501                        i_size_write(inode, i_size);
9502                        btrfs_ordered_update_i_size(inode, i_size, NULL);
9503                }
9504
9505                ret = btrfs_update_inode(trans, root, inode);
9506
9507                if (ret) {
9508                        btrfs_abort_transaction(trans, root, ret);
9509                        if (own_trans)
9510                                btrfs_end_transaction(trans, root);
9511                        break;
9512                }
9513
9514                if (own_trans)
9515                        btrfs_end_transaction(trans, root);
9516        }
9517        return ret;
9518}
9519
9520int btrfs_prealloc_file_range(struct inode *inode, int mode,
9521                              u64 start, u64 num_bytes, u64 min_size,
9522                              loff_t actual_len, u64 *alloc_hint)
9523{
9524        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9525                                           min_size, actual_len, alloc_hint,
9526                                           NULL);
9527}
9528
9529int btrfs_prealloc_file_range_trans(struct inode *inode,
9530                                    struct btrfs_trans_handle *trans, int mode,
9531                                    u64 start, u64 num_bytes, u64 min_size,
9532                                    loff_t actual_len, u64 *alloc_hint)
9533{
9534        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9535                                           min_size, actual_len, alloc_hint, trans);
9536}
9537
9538static int btrfs_set_page_dirty(struct page *page)
9539{
9540        return __set_page_dirty_nobuffers(page);
9541}
9542
9543static int btrfs_permission(struct inode *inode, int mask)
9544{
9545        struct btrfs_root *root = BTRFS_I(inode)->root;
9546        umode_t mode = inode->i_mode;
9547
9548        if (mask & MAY_WRITE &&
9549            (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9550                if (btrfs_root_readonly(root))
9551                        return -EROFS;
9552                if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9553                        return -EACCES;
9554        }
9555        return generic_permission(inode, mask);
9556}
9557
9558static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9559{
9560        struct btrfs_trans_handle *trans;
9561        struct btrfs_root *root = BTRFS_I(dir)->root;
9562        struct inode *inode = NULL;
9563        u64 objectid;
9564        u64 index;
9565        int ret = 0;
9566
9567        /*
9568         * 5 units required for adding orphan entry
9569         */
9570        trans = btrfs_start_transaction(root, 5);
9571        if (IS_ERR(trans))
9572                return PTR_ERR(trans);
9573
9574        ret = btrfs_find_free_ino(root, &objectid);
9575        if (ret)
9576                goto out;
9577
9578        inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9579                                btrfs_ino(dir), objectid, mode, &index);
9580        if (IS_ERR(inode)) {
9581                ret = PTR_ERR(inode);
9582                inode = NULL;
9583                goto out;
9584        }
9585
9586        inode->i_fop = &btrfs_file_operations;
9587        inode->i_op = &btrfs_file_inode_operations;
9588
9589        inode->i_mapping->a_ops = &btrfs_aops;
9590        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9591
9592        ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9593        if (ret)
9594                goto out_inode;
9595
9596        ret = btrfs_update_inode(trans, root, inode);
9597        if (ret)
9598                goto out_inode;
9599        ret = btrfs_orphan_add(trans, inode);
9600        if (ret)
9601                goto out_inode;
9602
9603        /*
9604         * We set number of links to 0 in btrfs_new_inode(), and here we set
9605         * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9606         * through:
9607         *
9608         *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9609         */
9610        set_nlink(inode, 1);
9611        unlock_new_inode(inode);
9612        d_tmpfile(dentry, inode);
9613        mark_inode_dirty(inode);
9614
9615out:
9616        btrfs_end_transaction(trans, root);
9617        if (ret)
9618                iput(inode);
9619        btrfs_balance_delayed_items(root);
9620        btrfs_btree_balance_dirty(root);
9621        return ret;
9622
9623out_inode:
9624        unlock_new_inode(inode);
9625        goto out;
9626
9627}
9628
9629/* Inspired by filemap_check_errors() */
9630int btrfs_inode_check_errors(struct inode *inode)
9631{
9632        int ret = 0;
9633
9634        if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9635            test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9636                ret = -ENOSPC;
9637        if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9638            test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9639                ret = -EIO;
9640
9641        return ret;
9642}
9643
9644static const struct inode_operations btrfs_dir_inode_operations = {
9645        .getattr        = btrfs_getattr,
9646        .lookup         = btrfs_lookup,
9647        .create         = btrfs_create,
9648        .unlink         = btrfs_unlink,
9649        .link           = btrfs_link,
9650        .mkdir          = btrfs_mkdir,
9651        .rmdir          = btrfs_rmdir,
9652        .rename2        = btrfs_rename2,
9653        .symlink        = btrfs_symlink,
9654        .setattr        = btrfs_setattr,
9655        .mknod          = btrfs_mknod,
9656        .setxattr       = btrfs_setxattr,
9657        .getxattr       = btrfs_getxattr,
9658        .listxattr      = btrfs_listxattr,
9659        .removexattr    = btrfs_removexattr,
9660        .permission     = btrfs_permission,
9661        .get_acl        = btrfs_get_acl,
9662        .set_acl        = btrfs_set_acl,
9663        .update_time    = btrfs_update_time,
9664        .tmpfile        = btrfs_tmpfile,
9665};
9666static const struct inode_operations btrfs_dir_ro_inode_operations = {
9667        .lookup         = btrfs_lookup,
9668        .permission     = btrfs_permission,
9669        .get_acl        = btrfs_get_acl,
9670        .set_acl        = btrfs_set_acl,
9671        .update_time    = btrfs_update_time,
9672};
9673
9674static const struct file_operations btrfs_dir_file_operations = {
9675        .llseek         = generic_file_llseek,
9676        .read           = generic_read_dir,
9677        .iterate        = btrfs_real_readdir,
9678        .unlocked_ioctl = btrfs_ioctl,
9679#ifdef CONFIG_COMPAT
9680        .compat_ioctl   = btrfs_ioctl,
9681#endif
9682        .release        = btrfs_release_file,
9683        .fsync          = btrfs_sync_file,
9684};
9685
9686static struct extent_io_ops btrfs_extent_io_ops = {
9687        .fill_delalloc = run_delalloc_range,
9688        .submit_bio_hook = btrfs_submit_bio_hook,
9689        .merge_bio_hook = btrfs_merge_bio_hook,
9690        .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9691        .writepage_end_io_hook = btrfs_writepage_end_io_hook,
9692        .writepage_start_hook = btrfs_writepage_start_hook,
9693        .set_bit_hook = btrfs_set_bit_hook,
9694        .clear_bit_hook = btrfs_clear_bit_hook,
9695        .merge_extent_hook = btrfs_merge_extent_hook,
9696        .split_extent_hook = btrfs_split_extent_hook,
9697};
9698
9699/*
9700 * btrfs doesn't support the bmap operation because swapfiles
9701 * use bmap to make a mapping of extents in the file.  They assume
9702 * these extents won't change over the life of the file and they
9703 * use the bmap result to do IO directly to the drive.
9704 *
9705 * the btrfs bmap call would return logical addresses that aren't
9706 * suitable for IO and they also will change frequently as COW
9707 * operations happen.  So, swapfile + btrfs == corruption.
9708 *
9709 * For now we're avoiding this by dropping bmap.
9710 */
9711static const struct address_space_operations btrfs_aops = {
9712        .readpage       = btrfs_readpage,
9713        .writepage      = btrfs_writepage,
9714        .writepages     = btrfs_writepages,
9715        .readpages      = btrfs_readpages,
9716        .direct_IO      = btrfs_direct_IO,
9717        .invalidatepage = btrfs_invalidatepage,
9718        .releasepage    = btrfs_releasepage,
9719        .set_page_dirty = btrfs_set_page_dirty,
9720        .error_remove_page = generic_error_remove_page,
9721};
9722
9723static const struct address_space_operations btrfs_symlink_aops = {
9724        .readpage       = btrfs_readpage,
9725        .writepage      = btrfs_writepage,
9726        .invalidatepage = btrfs_invalidatepage,
9727        .releasepage    = btrfs_releasepage,
9728};
9729
9730static const struct inode_operations btrfs_file_inode_operations = {
9731        .getattr        = btrfs_getattr,
9732        .setattr        = btrfs_setattr,
9733        .setxattr       = btrfs_setxattr,
9734        .getxattr       = btrfs_getxattr,
9735        .listxattr      = btrfs_listxattr,
9736        .removexattr    = btrfs_removexattr,
9737        .permission     = btrfs_permission,
9738        .fiemap         = btrfs_fiemap,
9739        .get_acl        = btrfs_get_acl,
9740        .set_acl        = btrfs_set_acl,
9741        .update_time    = btrfs_update_time,
9742};
9743static const struct inode_operations btrfs_special_inode_operations = {
9744        .getattr        = btrfs_getattr,
9745        .setattr        = btrfs_setattr,
9746        .permission     = btrfs_permission,
9747        .setxattr       = btrfs_setxattr,
9748        .getxattr       = btrfs_getxattr,
9749        .listxattr      = btrfs_listxattr,
9750        .removexattr    = btrfs_removexattr,
9751        .get_acl        = btrfs_get_acl,
9752        .set_acl        = btrfs_set_acl,
9753        .update_time    = btrfs_update_time,
9754};
9755static const struct inode_operations btrfs_symlink_inode_operations = {
9756        .readlink       = generic_readlink,
9757        .follow_link    = page_follow_link_light,
9758        .put_link       = page_put_link,
9759        .getattr        = btrfs_getattr,
9760        .setattr        = btrfs_setattr,
9761        .permission     = btrfs_permission,
9762        .setxattr       = btrfs_setxattr,
9763        .getxattr       = btrfs_getxattr,
9764        .listxattr      = btrfs_listxattr,
9765        .removexattr    = btrfs_removexattr,
9766        .update_time    = btrfs_update_time,
9767};
9768
9769const struct dentry_operations btrfs_dentry_operations = {
9770        .d_delete       = btrfs_dentry_delete,
9771        .d_release      = btrfs_dentry_release,
9772};
9773