linux/fs/btrfs/reada.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
  25#include <linux/workqueue.h>
  26#include "ctree.h"
  27#include "volumes.h"
  28#include "disk-io.h"
  29#include "transaction.h"
  30#include "dev-replace.h"
  31
  32#undef DEBUG
  33
  34/*
  35 * This is the implementation for the generic read ahead framework.
  36 *
  37 * To trigger a readahead, btrfs_reada_add must be called. It will start
  38 * a read ahead for the given range [start, end) on tree root. The returned
  39 * handle can either be used to wait on the readahead to finish
  40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
  41 *
  42 * The read ahead works as follows:
  43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
  44 * reada_start_machine will then search for extents to prefetch and trigger
  45 * some reads. When a read finishes for a node, all contained node/leaf
  46 * pointers that lie in the given range will also be enqueued. The reads will
  47 * be triggered in sequential order, thus giving a big win over a naive
  48 * enumeration. It will also make use of multi-device layouts. Each disk
  49 * will have its on read pointer and all disks will by utilized in parallel.
  50 * Also will no two disks read both sides of a mirror simultaneously, as this
  51 * would waste seeking capacity. Instead both disks will read different parts
  52 * of the filesystem.
  53 * Any number of readaheads can be started in parallel. The read order will be
  54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
  55 * than the 2 started one after another.
  56 */
  57
  58#define MAX_IN_FLIGHT 6
  59
  60struct reada_extctl {
  61        struct list_head        list;
  62        struct reada_control    *rc;
  63        u64                     generation;
  64};
  65
  66struct reada_extent {
  67        u64                     logical;
  68        struct btrfs_key        top;
  69        int                     err;
  70        struct list_head        extctl;
  71        int                     refcnt;
  72        spinlock_t              lock;
  73        struct reada_zone       *zones[BTRFS_MAX_MIRRORS];
  74        int                     nzones;
  75        struct btrfs_device     *scheduled_for;
  76};
  77
  78struct reada_zone {
  79        u64                     start;
  80        u64                     end;
  81        u64                     elems;
  82        struct list_head        list;
  83        spinlock_t              lock;
  84        int                     locked;
  85        struct btrfs_device     *device;
  86        struct btrfs_device     *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
  87                                                           * self */
  88        int                     ndevs;
  89        struct kref             refcnt;
  90};
  91
  92struct reada_machine_work {
  93        struct btrfs_work       work;
  94        struct btrfs_fs_info    *fs_info;
  95};
  96
  97static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
  98static void reada_control_release(struct kref *kref);
  99static void reada_zone_release(struct kref *kref);
 100static void reada_start_machine(struct btrfs_fs_info *fs_info);
 101static void __reada_start_machine(struct btrfs_fs_info *fs_info);
 102
 103static int reada_add_block(struct reada_control *rc, u64 logical,
 104                           struct btrfs_key *top, int level, u64 generation);
 105
 106/* recurses */
 107/* in case of err, eb might be NULL */
 108static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
 109                            u64 start, int err)
 110{
 111        int level = 0;
 112        int nritems;
 113        int i;
 114        u64 bytenr;
 115        u64 generation;
 116        struct reada_extent *re;
 117        struct btrfs_fs_info *fs_info = root->fs_info;
 118        struct list_head list;
 119        unsigned long index = start >> PAGE_CACHE_SHIFT;
 120        struct btrfs_device *for_dev;
 121
 122        if (eb)
 123                level = btrfs_header_level(eb);
 124
 125        /* find extent */
 126        spin_lock(&fs_info->reada_lock);
 127        re = radix_tree_lookup(&fs_info->reada_tree, index);
 128        if (re)
 129                re->refcnt++;
 130        spin_unlock(&fs_info->reada_lock);
 131
 132        if (!re)
 133                return -1;
 134
 135        spin_lock(&re->lock);
 136        /*
 137         * just take the full list from the extent. afterwards we
 138         * don't need the lock anymore
 139         */
 140        list_replace_init(&re->extctl, &list);
 141        for_dev = re->scheduled_for;
 142        re->scheduled_for = NULL;
 143        spin_unlock(&re->lock);
 144
 145        if (err == 0) {
 146                nritems = level ? btrfs_header_nritems(eb) : 0;
 147                generation = btrfs_header_generation(eb);
 148                /*
 149                 * FIXME: currently we just set nritems to 0 if this is a leaf,
 150                 * effectively ignoring the content. In a next step we could
 151                 * trigger more readahead depending from the content, e.g.
 152                 * fetch the checksums for the extents in the leaf.
 153                 */
 154        } else {
 155                /*
 156                 * this is the error case, the extent buffer has not been
 157                 * read correctly. We won't access anything from it and
 158                 * just cleanup our data structures. Effectively this will
 159                 * cut the branch below this node from read ahead.
 160                 */
 161                nritems = 0;
 162                generation = 0;
 163        }
 164
 165        for (i = 0; i < nritems; i++) {
 166                struct reada_extctl *rec;
 167                u64 n_gen;
 168                struct btrfs_key key;
 169                struct btrfs_key next_key;
 170
 171                btrfs_node_key_to_cpu(eb, &key, i);
 172                if (i + 1 < nritems)
 173                        btrfs_node_key_to_cpu(eb, &next_key, i + 1);
 174                else
 175                        next_key = re->top;
 176                bytenr = btrfs_node_blockptr(eb, i);
 177                n_gen = btrfs_node_ptr_generation(eb, i);
 178
 179                list_for_each_entry(rec, &list, list) {
 180                        struct reada_control *rc = rec->rc;
 181
 182                        /*
 183                         * if the generation doesn't match, just ignore this
 184                         * extctl. This will probably cut off a branch from
 185                         * prefetch. Alternatively one could start a new (sub-)
 186                         * prefetch for this branch, starting again from root.
 187                         * FIXME: move the generation check out of this loop
 188                         */
 189#ifdef DEBUG
 190                        if (rec->generation != generation) {
 191                                btrfs_debug(root->fs_info,
 192                                           "generation mismatch for (%llu,%d,%llu) %llu != %llu",
 193                                       key.objectid, key.type, key.offset,
 194                                       rec->generation, generation);
 195                        }
 196#endif
 197                        if (rec->generation == generation &&
 198                            btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
 199                            btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
 200                                reada_add_block(rc, bytenr, &next_key,
 201                                                level - 1, n_gen);
 202                }
 203        }
 204        /*
 205         * free extctl records
 206         */
 207        while (!list_empty(&list)) {
 208                struct reada_control *rc;
 209                struct reada_extctl *rec;
 210
 211                rec = list_first_entry(&list, struct reada_extctl, list);
 212                list_del(&rec->list);
 213                rc = rec->rc;
 214                kfree(rec);
 215
 216                kref_get(&rc->refcnt);
 217                if (atomic_dec_and_test(&rc->elems)) {
 218                        kref_put(&rc->refcnt, reada_control_release);
 219                        wake_up(&rc->wait);
 220                }
 221                kref_put(&rc->refcnt, reada_control_release);
 222
 223                reada_extent_put(fs_info, re);  /* one ref for each entry */
 224        }
 225        reada_extent_put(fs_info, re);  /* our ref */
 226        if (for_dev)
 227                atomic_dec(&for_dev->reada_in_flight);
 228
 229        return 0;
 230}
 231
 232/*
 233 * start is passed separately in case eb in NULL, which may be the case with
 234 * failed I/O
 235 */
 236int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
 237                         u64 start, int err)
 238{
 239        int ret;
 240
 241        ret = __readahead_hook(root, eb, start, err);
 242
 243        reada_start_machine(root->fs_info);
 244
 245        return ret;
 246}
 247
 248static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
 249                                          struct btrfs_device *dev, u64 logical,
 250                                          struct btrfs_bio *bbio)
 251{
 252        int ret;
 253        struct reada_zone *zone;
 254        struct btrfs_block_group_cache *cache = NULL;
 255        u64 start;
 256        u64 end;
 257        int i;
 258
 259        zone = NULL;
 260        spin_lock(&fs_info->reada_lock);
 261        ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 262                                     logical >> PAGE_CACHE_SHIFT, 1);
 263        if (ret == 1)
 264                kref_get(&zone->refcnt);
 265        spin_unlock(&fs_info->reada_lock);
 266
 267        if (ret == 1) {
 268                if (logical >= zone->start && logical < zone->end)
 269                        return zone;
 270                spin_lock(&fs_info->reada_lock);
 271                kref_put(&zone->refcnt, reada_zone_release);
 272                spin_unlock(&fs_info->reada_lock);
 273        }
 274
 275        cache = btrfs_lookup_block_group(fs_info, logical);
 276        if (!cache)
 277                return NULL;
 278
 279        start = cache->key.objectid;
 280        end = start + cache->key.offset - 1;
 281        btrfs_put_block_group(cache);
 282
 283        zone = kzalloc(sizeof(*zone), GFP_NOFS);
 284        if (!zone)
 285                return NULL;
 286
 287        zone->start = start;
 288        zone->end = end;
 289        INIT_LIST_HEAD(&zone->list);
 290        spin_lock_init(&zone->lock);
 291        zone->locked = 0;
 292        kref_init(&zone->refcnt);
 293        zone->elems = 0;
 294        zone->device = dev; /* our device always sits at index 0 */
 295        for (i = 0; i < bbio->num_stripes; ++i) {
 296                /* bounds have already been checked */
 297                zone->devs[i] = bbio->stripes[i].dev;
 298        }
 299        zone->ndevs = bbio->num_stripes;
 300
 301        spin_lock(&fs_info->reada_lock);
 302        ret = radix_tree_insert(&dev->reada_zones,
 303                                (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
 304                                zone);
 305
 306        if (ret == -EEXIST) {
 307                kfree(zone);
 308                ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 309                                             logical >> PAGE_CACHE_SHIFT, 1);
 310                if (ret == 1)
 311                        kref_get(&zone->refcnt);
 312        }
 313        spin_unlock(&fs_info->reada_lock);
 314
 315        return zone;
 316}
 317
 318static struct reada_extent *reada_find_extent(struct btrfs_root *root,
 319                                              u64 logical,
 320                                              struct btrfs_key *top, int level)
 321{
 322        int ret;
 323        struct reada_extent *re = NULL;
 324        struct reada_extent *re_exist = NULL;
 325        struct btrfs_fs_info *fs_info = root->fs_info;
 326        struct btrfs_bio *bbio = NULL;
 327        struct btrfs_device *dev;
 328        struct btrfs_device *prev_dev;
 329        u32 blocksize;
 330        u64 length;
 331        int nzones = 0;
 332        int i;
 333        unsigned long index = logical >> PAGE_CACHE_SHIFT;
 334        int dev_replace_is_ongoing;
 335
 336        spin_lock(&fs_info->reada_lock);
 337        re = radix_tree_lookup(&fs_info->reada_tree, index);
 338        if (re)
 339                re->refcnt++;
 340        spin_unlock(&fs_info->reada_lock);
 341
 342        if (re)
 343                return re;
 344
 345        re = kzalloc(sizeof(*re), GFP_NOFS);
 346        if (!re)
 347                return NULL;
 348
 349        blocksize = root->nodesize;
 350        re->logical = logical;
 351        re->top = *top;
 352        INIT_LIST_HEAD(&re->extctl);
 353        spin_lock_init(&re->lock);
 354        re->refcnt = 1;
 355
 356        /*
 357         * map block
 358         */
 359        length = blocksize;
 360        ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
 361                              &bbio, 0);
 362        if (ret || !bbio || length < blocksize)
 363                goto error;
 364
 365        if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
 366                btrfs_err(root->fs_info,
 367                           "readahead: more than %d copies not supported",
 368                           BTRFS_MAX_MIRRORS);
 369                goto error;
 370        }
 371
 372        for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
 373                struct reada_zone *zone;
 374
 375                dev = bbio->stripes[nzones].dev;
 376                zone = reada_find_zone(fs_info, dev, logical, bbio);
 377                if (!zone)
 378                        break;
 379
 380                re->zones[nzones] = zone;
 381                spin_lock(&zone->lock);
 382                if (!zone->elems)
 383                        kref_get(&zone->refcnt);
 384                ++zone->elems;
 385                spin_unlock(&zone->lock);
 386                spin_lock(&fs_info->reada_lock);
 387                kref_put(&zone->refcnt, reada_zone_release);
 388                spin_unlock(&fs_info->reada_lock);
 389        }
 390        re->nzones = nzones;
 391        if (nzones == 0) {
 392                /* not a single zone found, error and out */
 393                goto error;
 394        }
 395
 396        /* insert extent in reada_tree + all per-device trees, all or nothing */
 397        btrfs_dev_replace_lock(&fs_info->dev_replace);
 398        spin_lock(&fs_info->reada_lock);
 399        ret = radix_tree_insert(&fs_info->reada_tree, index, re);
 400        if (ret == -EEXIST) {
 401                re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
 402                BUG_ON(!re_exist);
 403                re_exist->refcnt++;
 404                spin_unlock(&fs_info->reada_lock);
 405                btrfs_dev_replace_unlock(&fs_info->dev_replace);
 406                goto error;
 407        }
 408        if (ret) {
 409                spin_unlock(&fs_info->reada_lock);
 410                btrfs_dev_replace_unlock(&fs_info->dev_replace);
 411                goto error;
 412        }
 413        prev_dev = NULL;
 414        dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
 415                        &fs_info->dev_replace);
 416        for (i = 0; i < nzones; ++i) {
 417                dev = bbio->stripes[i].dev;
 418                if (dev == prev_dev) {
 419                        /*
 420                         * in case of DUP, just add the first zone. As both
 421                         * are on the same device, there's nothing to gain
 422                         * from adding both.
 423                         * Also, it wouldn't work, as the tree is per device
 424                         * and adding would fail with EEXIST
 425                         */
 426                        continue;
 427                }
 428                if (!dev->bdev) {
 429                        /*
 430                         * cannot read ahead on missing device, but for RAID5/6,
 431                         * REQ_GET_READ_MIRRORS return 1. So don't skip missing
 432                         * device for such case.
 433                         */
 434                        if (nzones > 1)
 435                                continue;
 436                }
 437                if (dev_replace_is_ongoing &&
 438                    dev == fs_info->dev_replace.tgtdev) {
 439                        /*
 440                         * as this device is selected for reading only as
 441                         * a last resort, skip it for read ahead.
 442                         */
 443                        continue;
 444                }
 445                prev_dev = dev;
 446                ret = radix_tree_insert(&dev->reada_extents, index, re);
 447                if (ret) {
 448                        while (--i >= 0) {
 449                                dev = bbio->stripes[i].dev;
 450                                BUG_ON(dev == NULL);
 451                                /* ignore whether the entry was inserted */
 452                                radix_tree_delete(&dev->reada_extents, index);
 453                        }
 454                        BUG_ON(fs_info == NULL);
 455                        radix_tree_delete(&fs_info->reada_tree, index);
 456                        spin_unlock(&fs_info->reada_lock);
 457                        btrfs_dev_replace_unlock(&fs_info->dev_replace);
 458                        goto error;
 459                }
 460        }
 461        spin_unlock(&fs_info->reada_lock);
 462        btrfs_dev_replace_unlock(&fs_info->dev_replace);
 463
 464        btrfs_put_bbio(bbio);
 465        return re;
 466
 467error:
 468        while (nzones) {
 469                struct reada_zone *zone;
 470
 471                --nzones;
 472                zone = re->zones[nzones];
 473                kref_get(&zone->refcnt);
 474                spin_lock(&zone->lock);
 475                --zone->elems;
 476                if (zone->elems == 0) {
 477                        /*
 478                         * no fs_info->reada_lock needed, as this can't be
 479                         * the last ref
 480                         */
 481                        kref_put(&zone->refcnt, reada_zone_release);
 482                }
 483                spin_unlock(&zone->lock);
 484
 485                spin_lock(&fs_info->reada_lock);
 486                kref_put(&zone->refcnt, reada_zone_release);
 487                spin_unlock(&fs_info->reada_lock);
 488        }
 489        btrfs_put_bbio(bbio);
 490        kfree(re);
 491        return re_exist;
 492}
 493
 494static void reada_extent_put(struct btrfs_fs_info *fs_info,
 495                             struct reada_extent *re)
 496{
 497        int i;
 498        unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
 499
 500        spin_lock(&fs_info->reada_lock);
 501        if (--re->refcnt) {
 502                spin_unlock(&fs_info->reada_lock);
 503                return;
 504        }
 505
 506        radix_tree_delete(&fs_info->reada_tree, index);
 507        for (i = 0; i < re->nzones; ++i) {
 508                struct reada_zone *zone = re->zones[i];
 509
 510                radix_tree_delete(&zone->device->reada_extents, index);
 511        }
 512
 513        spin_unlock(&fs_info->reada_lock);
 514
 515        for (i = 0; i < re->nzones; ++i) {
 516                struct reada_zone *zone = re->zones[i];
 517
 518                kref_get(&zone->refcnt);
 519                spin_lock(&zone->lock);
 520                --zone->elems;
 521                if (zone->elems == 0) {
 522                        /* no fs_info->reada_lock needed, as this can't be
 523                         * the last ref */
 524                        kref_put(&zone->refcnt, reada_zone_release);
 525                }
 526                spin_unlock(&zone->lock);
 527
 528                spin_lock(&fs_info->reada_lock);
 529                kref_put(&zone->refcnt, reada_zone_release);
 530                spin_unlock(&fs_info->reada_lock);
 531        }
 532        if (re->scheduled_for)
 533                atomic_dec(&re->scheduled_for->reada_in_flight);
 534
 535        kfree(re);
 536}
 537
 538static void reada_zone_release(struct kref *kref)
 539{
 540        struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
 541
 542        radix_tree_delete(&zone->device->reada_zones,
 543                          zone->end >> PAGE_CACHE_SHIFT);
 544
 545        kfree(zone);
 546}
 547
 548static void reada_control_release(struct kref *kref)
 549{
 550        struct reada_control *rc = container_of(kref, struct reada_control,
 551                                                refcnt);
 552
 553        kfree(rc);
 554}
 555
 556static int reada_add_block(struct reada_control *rc, u64 logical,
 557                           struct btrfs_key *top, int level, u64 generation)
 558{
 559        struct btrfs_root *root = rc->root;
 560        struct reada_extent *re;
 561        struct reada_extctl *rec;
 562
 563        re = reada_find_extent(root, logical, top, level); /* takes one ref */
 564        if (!re)
 565                return -1;
 566
 567        rec = kzalloc(sizeof(*rec), GFP_NOFS);
 568        if (!rec) {
 569                reada_extent_put(root->fs_info, re);
 570                return -1;
 571        }
 572
 573        rec->rc = rc;
 574        rec->generation = generation;
 575        atomic_inc(&rc->elems);
 576
 577        spin_lock(&re->lock);
 578        list_add_tail(&rec->list, &re->extctl);
 579        spin_unlock(&re->lock);
 580
 581        /* leave the ref on the extent */
 582
 583        return 0;
 584}
 585
 586/*
 587 * called with fs_info->reada_lock held
 588 */
 589static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
 590{
 591        int i;
 592        unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
 593
 594        for (i = 0; i < zone->ndevs; ++i) {
 595                struct reada_zone *peer;
 596                peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
 597                if (peer && peer->device != zone->device)
 598                        peer->locked = lock;
 599        }
 600}
 601
 602/*
 603 * called with fs_info->reada_lock held
 604 */
 605static int reada_pick_zone(struct btrfs_device *dev)
 606{
 607        struct reada_zone *top_zone = NULL;
 608        struct reada_zone *top_locked_zone = NULL;
 609        u64 top_elems = 0;
 610        u64 top_locked_elems = 0;
 611        unsigned long index = 0;
 612        int ret;
 613
 614        if (dev->reada_curr_zone) {
 615                reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
 616                kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
 617                dev->reada_curr_zone = NULL;
 618        }
 619        /* pick the zone with the most elements */
 620        while (1) {
 621                struct reada_zone *zone;
 622
 623                ret = radix_tree_gang_lookup(&dev->reada_zones,
 624                                             (void **)&zone, index, 1);
 625                if (ret == 0)
 626                        break;
 627                index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
 628                if (zone->locked) {
 629                        if (zone->elems > top_locked_elems) {
 630                                top_locked_elems = zone->elems;
 631                                top_locked_zone = zone;
 632                        }
 633                } else {
 634                        if (zone->elems > top_elems) {
 635                                top_elems = zone->elems;
 636                                top_zone = zone;
 637                        }
 638                }
 639        }
 640        if (top_zone)
 641                dev->reada_curr_zone = top_zone;
 642        else if (top_locked_zone)
 643                dev->reada_curr_zone = top_locked_zone;
 644        else
 645                return 0;
 646
 647        dev->reada_next = dev->reada_curr_zone->start;
 648        kref_get(&dev->reada_curr_zone->refcnt);
 649        reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
 650
 651        return 1;
 652}
 653
 654static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
 655                                   struct btrfs_device *dev)
 656{
 657        struct reada_extent *re = NULL;
 658        int mirror_num = 0;
 659        struct extent_buffer *eb = NULL;
 660        u64 logical;
 661        int ret;
 662        int i;
 663        int need_kick = 0;
 664
 665        spin_lock(&fs_info->reada_lock);
 666        if (dev->reada_curr_zone == NULL) {
 667                ret = reada_pick_zone(dev);
 668                if (!ret) {
 669                        spin_unlock(&fs_info->reada_lock);
 670                        return 0;
 671                }
 672        }
 673        /*
 674         * FIXME currently we issue the reads one extent at a time. If we have
 675         * a contiguous block of extents, we could also coagulate them or use
 676         * plugging to speed things up
 677         */
 678        ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 679                                     dev->reada_next >> PAGE_CACHE_SHIFT, 1);
 680        if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
 681                ret = reada_pick_zone(dev);
 682                if (!ret) {
 683                        spin_unlock(&fs_info->reada_lock);
 684                        return 0;
 685                }
 686                re = NULL;
 687                ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 688                                        dev->reada_next >> PAGE_CACHE_SHIFT, 1);
 689        }
 690        if (ret == 0) {
 691                spin_unlock(&fs_info->reada_lock);
 692                return 0;
 693        }
 694        dev->reada_next = re->logical + fs_info->tree_root->nodesize;
 695        re->refcnt++;
 696
 697        spin_unlock(&fs_info->reada_lock);
 698
 699        /*
 700         * find mirror num
 701         */
 702        for (i = 0; i < re->nzones; ++i) {
 703                if (re->zones[i]->device == dev) {
 704                        mirror_num = i + 1;
 705                        break;
 706                }
 707        }
 708        logical = re->logical;
 709
 710        spin_lock(&re->lock);
 711        if (re->scheduled_for == NULL) {
 712                re->scheduled_for = dev;
 713                need_kick = 1;
 714        }
 715        spin_unlock(&re->lock);
 716
 717        reada_extent_put(fs_info, re);
 718
 719        if (!need_kick)
 720                return 0;
 721
 722        atomic_inc(&dev->reada_in_flight);
 723        ret = reada_tree_block_flagged(fs_info->extent_root, logical,
 724                        mirror_num, &eb);
 725        if (ret)
 726                __readahead_hook(fs_info->extent_root, NULL, logical, ret);
 727        else if (eb)
 728                __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
 729
 730        if (eb)
 731                free_extent_buffer(eb);
 732
 733        return 1;
 734
 735}
 736
 737static void reada_start_machine_worker(struct btrfs_work *work)
 738{
 739        struct reada_machine_work *rmw;
 740        struct btrfs_fs_info *fs_info;
 741        int old_ioprio;
 742
 743        rmw = container_of(work, struct reada_machine_work, work);
 744        fs_info = rmw->fs_info;
 745
 746        kfree(rmw);
 747
 748        old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
 749                                       task_nice_ioprio(current));
 750        set_task_ioprio(current, BTRFS_IOPRIO_READA);
 751        __reada_start_machine(fs_info);
 752        set_task_ioprio(current, old_ioprio);
 753}
 754
 755static void __reada_start_machine(struct btrfs_fs_info *fs_info)
 756{
 757        struct btrfs_device *device;
 758        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 759        u64 enqueued;
 760        u64 total = 0;
 761        int i;
 762
 763        do {
 764                enqueued = 0;
 765                list_for_each_entry(device, &fs_devices->devices, dev_list) {
 766                        if (atomic_read(&device->reada_in_flight) <
 767                            MAX_IN_FLIGHT)
 768                                enqueued += reada_start_machine_dev(fs_info,
 769                                                                    device);
 770                }
 771                total += enqueued;
 772        } while (enqueued && total < 10000);
 773
 774        if (enqueued == 0)
 775                return;
 776
 777        /*
 778         * If everything is already in the cache, this is effectively single
 779         * threaded. To a) not hold the caller for too long and b) to utilize
 780         * more cores, we broke the loop above after 10000 iterations and now
 781         * enqueue to workers to finish it. This will distribute the load to
 782         * the cores.
 783         */
 784        for (i = 0; i < 2; ++i)
 785                reada_start_machine(fs_info);
 786}
 787
 788static void reada_start_machine(struct btrfs_fs_info *fs_info)
 789{
 790        struct reada_machine_work *rmw;
 791
 792        rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
 793        if (!rmw) {
 794                /* FIXME we cannot handle this properly right now */
 795                BUG();
 796        }
 797        btrfs_init_work(&rmw->work, btrfs_readahead_helper,
 798                        reada_start_machine_worker, NULL, NULL);
 799        rmw->fs_info = fs_info;
 800
 801        btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
 802}
 803
 804#ifdef DEBUG
 805static void dump_devs(struct btrfs_fs_info *fs_info, int all)
 806{
 807        struct btrfs_device *device;
 808        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 809        unsigned long index;
 810        int ret;
 811        int i;
 812        int j;
 813        int cnt;
 814
 815        spin_lock(&fs_info->reada_lock);
 816        list_for_each_entry(device, &fs_devices->devices, dev_list) {
 817                printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
 818                        atomic_read(&device->reada_in_flight));
 819                index = 0;
 820                while (1) {
 821                        struct reada_zone *zone;
 822                        ret = radix_tree_gang_lookup(&device->reada_zones,
 823                                                     (void **)&zone, index, 1);
 824                        if (ret == 0)
 825                                break;
 826                        printk(KERN_DEBUG "  zone %llu-%llu elems %llu locked "
 827                                "%d devs", zone->start, zone->end, zone->elems,
 828                                zone->locked);
 829                        for (j = 0; j < zone->ndevs; ++j) {
 830                                printk(KERN_CONT " %lld",
 831                                        zone->devs[j]->devid);
 832                        }
 833                        if (device->reada_curr_zone == zone)
 834                                printk(KERN_CONT " curr off %llu",
 835                                        device->reada_next - zone->start);
 836                        printk(KERN_CONT "\n");
 837                        index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
 838                }
 839                cnt = 0;
 840                index = 0;
 841                while (all) {
 842                        struct reada_extent *re = NULL;
 843
 844                        ret = radix_tree_gang_lookup(&device->reada_extents,
 845                                                     (void **)&re, index, 1);
 846                        if (ret == 0)
 847                                break;
 848                        printk(KERN_DEBUG
 849                                "  re: logical %llu size %u empty %d for %lld",
 850                                re->logical, fs_info->tree_root->nodesize,
 851                                list_empty(&re->extctl), re->scheduled_for ?
 852                                re->scheduled_for->devid : -1);
 853
 854                        for (i = 0; i < re->nzones; ++i) {
 855                                printk(KERN_CONT " zone %llu-%llu devs",
 856                                        re->zones[i]->start,
 857                                        re->zones[i]->end);
 858                                for (j = 0; j < re->zones[i]->ndevs; ++j) {
 859                                        printk(KERN_CONT " %lld",
 860                                                re->zones[i]->devs[j]->devid);
 861                                }
 862                        }
 863                        printk(KERN_CONT "\n");
 864                        index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
 865                        if (++cnt > 15)
 866                                break;
 867                }
 868        }
 869
 870        index = 0;
 871        cnt = 0;
 872        while (all) {
 873                struct reada_extent *re = NULL;
 874
 875                ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
 876                                             index, 1);
 877                if (ret == 0)
 878                        break;
 879                if (!re->scheduled_for) {
 880                        index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
 881                        continue;
 882                }
 883                printk(KERN_DEBUG
 884                        "re: logical %llu size %u list empty %d for %lld",
 885                        re->logical, fs_info->tree_root->nodesize,
 886                        list_empty(&re->extctl),
 887                        re->scheduled_for ? re->scheduled_for->devid : -1);
 888                for (i = 0; i < re->nzones; ++i) {
 889                        printk(KERN_CONT " zone %llu-%llu devs",
 890                                re->zones[i]->start,
 891                                re->zones[i]->end);
 892                        for (i = 0; i < re->nzones; ++i) {
 893                                printk(KERN_CONT " zone %llu-%llu devs",
 894                                        re->zones[i]->start,
 895                                        re->zones[i]->end);
 896                                for (j = 0; j < re->zones[i]->ndevs; ++j) {
 897                                        printk(KERN_CONT " %lld",
 898                                                re->zones[i]->devs[j]->devid);
 899                                }
 900                        }
 901                }
 902                printk(KERN_CONT "\n");
 903                index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
 904        }
 905        spin_unlock(&fs_info->reada_lock);
 906}
 907#endif
 908
 909/*
 910 * interface
 911 */
 912struct reada_control *btrfs_reada_add(struct btrfs_root *root,
 913                        struct btrfs_key *key_start, struct btrfs_key *key_end)
 914{
 915        struct reada_control *rc;
 916        u64 start;
 917        u64 generation;
 918        int level;
 919        struct extent_buffer *node;
 920        static struct btrfs_key max_key = {
 921                .objectid = (u64)-1,
 922                .type = (u8)-1,
 923                .offset = (u64)-1
 924        };
 925
 926        rc = kzalloc(sizeof(*rc), GFP_NOFS);
 927        if (!rc)
 928                return ERR_PTR(-ENOMEM);
 929
 930        rc->root = root;
 931        rc->key_start = *key_start;
 932        rc->key_end = *key_end;
 933        atomic_set(&rc->elems, 0);
 934        init_waitqueue_head(&rc->wait);
 935        kref_init(&rc->refcnt);
 936        kref_get(&rc->refcnt); /* one ref for having elements */
 937
 938        node = btrfs_root_node(root);
 939        start = node->start;
 940        level = btrfs_header_level(node);
 941        generation = btrfs_header_generation(node);
 942        free_extent_buffer(node);
 943
 944        if (reada_add_block(rc, start, &max_key, level, generation)) {
 945                kfree(rc);
 946                return ERR_PTR(-ENOMEM);
 947        }
 948
 949        reada_start_machine(root->fs_info);
 950
 951        return rc;
 952}
 953
 954#ifdef DEBUG
 955int btrfs_reada_wait(void *handle)
 956{
 957        struct reada_control *rc = handle;
 958
 959        while (atomic_read(&rc->elems)) {
 960                wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
 961                                   5 * HZ);
 962                dump_devs(rc->root->fs_info,
 963                          atomic_read(&rc->elems) < 10 ? 1 : 0);
 964        }
 965
 966        dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
 967
 968        kref_put(&rc->refcnt, reada_control_release);
 969
 970        return 0;
 971}
 972#else
 973int btrfs_reada_wait(void *handle)
 974{
 975        struct reada_control *rc = handle;
 976
 977        while (atomic_read(&rc->elems)) {
 978                wait_event(rc->wait, atomic_read(&rc->elems) == 0);
 979        }
 980
 981        kref_put(&rc->refcnt, reada_control_release);
 982
 983        return 0;
 984}
 985#endif
 986
 987void btrfs_reada_detach(void *handle)
 988{
 989        struct reada_control *rc = handle;
 990
 991        kref_put(&rc->refcnt, reada_control_release);
 992}
 993