linux/fs/direct-io.c
<<
>>
Prefs
   1/*
   2 * fs/direct-io.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * O_DIRECT
   7 *
   8 * 04Jul2002    Andrew Morton
   9 *              Initial version
  10 * 11Sep2002    janetinc@us.ibm.com
  11 *              added readv/writev support.
  12 * 29Oct2002    Andrew Morton
  13 *              rewrote bio_add_page() support.
  14 * 30Oct2002    pbadari@us.ibm.com
  15 *              added support for non-aligned IO.
  16 * 06Nov2002    pbadari@us.ibm.com
  17 *              added asynchronous IO support.
  18 * 21Jul2003    nathans@sgi.com
  19 *              added IO completion notifier.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/types.h>
  25#include <linux/fs.h>
  26#include <linux/mm.h>
  27#include <linux/slab.h>
  28#include <linux/highmem.h>
  29#include <linux/pagemap.h>
  30#include <linux/task_io_accounting_ops.h>
  31#include <linux/bio.h>
  32#include <linux/wait.h>
  33#include <linux/err.h>
  34#include <linux/blkdev.h>
  35#include <linux/buffer_head.h>
  36#include <linux/rwsem.h>
  37#include <linux/uio.h>
  38#include <linux/atomic.h>
  39#include <linux/prefetch.h>
  40#include <linux/aio.h>
  41
  42/*
  43 * How many user pages to map in one call to get_user_pages().  This determines
  44 * the size of a structure in the slab cache
  45 */
  46#define DIO_PAGES       64
  47
  48/*
  49 * This code generally works in units of "dio_blocks".  A dio_block is
  50 * somewhere between the hard sector size and the filesystem block size.  it
  51 * is determined on a per-invocation basis.   When talking to the filesystem
  52 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
  53 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
  54 * to bio_block quantities by shifting left by blkfactor.
  55 *
  56 * If blkfactor is zero then the user's request was aligned to the filesystem's
  57 * blocksize.
  58 */
  59
  60/* dio_state only used in the submission path */
  61
  62struct dio_submit {
  63        struct bio *bio;                /* bio under assembly */
  64        unsigned blkbits;               /* doesn't change */
  65        unsigned blkfactor;             /* When we're using an alignment which
  66                                           is finer than the filesystem's soft
  67                                           blocksize, this specifies how much
  68                                           finer.  blkfactor=2 means 1/4-block
  69                                           alignment.  Does not change */
  70        unsigned start_zero_done;       /* flag: sub-blocksize zeroing has
  71                                           been performed at the start of a
  72                                           write */
  73        int pages_in_io;                /* approximate total IO pages */
  74        sector_t block_in_file;         /* Current offset into the underlying
  75                                           file in dio_block units. */
  76        unsigned blocks_available;      /* At block_in_file.  changes */
  77        int reap_counter;               /* rate limit reaping */
  78        sector_t final_block_in_request;/* doesn't change */
  79        int boundary;                   /* prev block is at a boundary */
  80        get_block_t *get_block;         /* block mapping function */
  81        dio_submit_t *submit_io;        /* IO submition function */
  82
  83        loff_t logical_offset_in_bio;   /* current first logical block in bio */
  84        sector_t final_block_in_bio;    /* current final block in bio + 1 */
  85        sector_t next_block_for_io;     /* next block to be put under IO,
  86                                           in dio_blocks units */
  87
  88        /*
  89         * Deferred addition of a page to the dio.  These variables are
  90         * private to dio_send_cur_page(), submit_page_section() and
  91         * dio_bio_add_page().
  92         */
  93        struct page *cur_page;          /* The page */
  94        unsigned cur_page_offset;       /* Offset into it, in bytes */
  95        unsigned cur_page_len;          /* Nr of bytes at cur_page_offset */
  96        sector_t cur_page_block;        /* Where it starts */
  97        loff_t cur_page_fs_offset;      /* Offset in file */
  98
  99        struct iov_iter *iter;
 100        /*
 101         * Page queue.  These variables belong to dio_refill_pages() and
 102         * dio_get_page().
 103         */
 104        unsigned head;                  /* next page to process */
 105        unsigned tail;                  /* last valid page + 1 */
 106        size_t from, to;
 107};
 108
 109/* dio_state communicated between submission path and end_io */
 110struct dio {
 111        int flags;                      /* doesn't change */
 112        int rw;
 113        struct inode *inode;
 114        loff_t i_size;                  /* i_size when submitted */
 115        dio_iodone_t *end_io;           /* IO completion function */
 116
 117        void *private;                  /* copy from map_bh.b_private */
 118
 119        /* BIO completion state */
 120        spinlock_t bio_lock;            /* protects BIO fields below */
 121        int page_errors;                /* errno from get_user_pages() */
 122        int is_async;                   /* is IO async ? */
 123        bool defer_completion;          /* defer AIO completion to workqueue? */
 124        int io_error;                   /* IO error in completion path */
 125        unsigned long refcount;         /* direct_io_worker() and bios */
 126        struct bio *bio_list;           /* singly linked via bi_private */
 127        struct task_struct *waiter;     /* waiting task (NULL if none) */
 128
 129        /* AIO related stuff */
 130        struct kiocb *iocb;             /* kiocb */
 131        ssize_t result;                 /* IO result */
 132
 133        /*
 134         * pages[] (and any fields placed after it) are not zeroed out at
 135         * allocation time.  Don't add new fields after pages[] unless you
 136         * wish that they not be zeroed.
 137         */
 138        union {
 139                struct page *pages[DIO_PAGES];  /* page buffer */
 140                struct work_struct complete_work;/* deferred AIO completion */
 141        };
 142} ____cacheline_aligned_in_smp;
 143
 144static struct kmem_cache *dio_cache __read_mostly;
 145
 146/*
 147 * How many pages are in the queue?
 148 */
 149static inline unsigned dio_pages_present(struct dio_submit *sdio)
 150{
 151        return sdio->tail - sdio->head;
 152}
 153
 154/*
 155 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
 156 */
 157static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
 158{
 159        ssize_t ret;
 160
 161        ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
 162                                &sdio->from);
 163
 164        if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
 165                struct page *page = ZERO_PAGE(0);
 166                /*
 167                 * A memory fault, but the filesystem has some outstanding
 168                 * mapped blocks.  We need to use those blocks up to avoid
 169                 * leaking stale data in the file.
 170                 */
 171                if (dio->page_errors == 0)
 172                        dio->page_errors = ret;
 173                page_cache_get(page);
 174                dio->pages[0] = page;
 175                sdio->head = 0;
 176                sdio->tail = 1;
 177                sdio->from = 0;
 178                sdio->to = PAGE_SIZE;
 179                return 0;
 180        }
 181
 182        if (ret >= 0) {
 183                iov_iter_advance(sdio->iter, ret);
 184                ret += sdio->from;
 185                sdio->head = 0;
 186                sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
 187                sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
 188                return 0;
 189        }
 190        return ret;     
 191}
 192
 193/*
 194 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
 195 * buffered inside the dio so that we can call get_user_pages() against a
 196 * decent number of pages, less frequently.  To provide nicer use of the
 197 * L1 cache.
 198 */
 199static inline struct page *dio_get_page(struct dio *dio,
 200                                        struct dio_submit *sdio)
 201{
 202        if (dio_pages_present(sdio) == 0) {
 203                int ret;
 204
 205                ret = dio_refill_pages(dio, sdio);
 206                if (ret)
 207                        return ERR_PTR(ret);
 208                BUG_ON(dio_pages_present(sdio) == 0);
 209        }
 210        return dio->pages[sdio->head];
 211}
 212
 213/**
 214 * dio_complete() - called when all DIO BIO I/O has been completed
 215 * @offset: the byte offset in the file of the completed operation
 216 *
 217 * This drops i_dio_count, lets interested parties know that a DIO operation
 218 * has completed, and calculates the resulting return code for the operation.
 219 *
 220 * It lets the filesystem know if it registered an interest earlier via
 221 * get_block.  Pass the private field of the map buffer_head so that
 222 * filesystems can use it to hold additional state between get_block calls and
 223 * dio_complete.
 224 */
 225static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
 226                bool is_async)
 227{
 228        ssize_t transferred = 0;
 229
 230        /*
 231         * AIO submission can race with bio completion to get here while
 232         * expecting to have the last io completed by bio completion.
 233         * In that case -EIOCBQUEUED is in fact not an error we want
 234         * to preserve through this call.
 235         */
 236        if (ret == -EIOCBQUEUED)
 237                ret = 0;
 238
 239        if (dio->result) {
 240                transferred = dio->result;
 241
 242                /* Check for short read case */
 243                if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
 244                        transferred = dio->i_size - offset;
 245        }
 246
 247        if (ret == 0)
 248                ret = dio->page_errors;
 249        if (ret == 0)
 250                ret = dio->io_error;
 251        if (ret == 0)
 252                ret = transferred;
 253
 254        if (dio->end_io && dio->result)
 255                dio->end_io(dio->iocb, offset, transferred, dio->private);
 256
 257        inode_dio_done(dio->inode);
 258        if (is_async) {
 259                if (dio->rw & WRITE) {
 260                        int err;
 261
 262                        err = generic_write_sync(dio->iocb->ki_filp, offset,
 263                                                 transferred);
 264                        if (err < 0 && ret > 0)
 265                                ret = err;
 266                }
 267
 268                aio_complete(dio->iocb, ret, 0);
 269        }
 270
 271        kmem_cache_free(dio_cache, dio);
 272        return ret;
 273}
 274
 275static void dio_aio_complete_work(struct work_struct *work)
 276{
 277        struct dio *dio = container_of(work, struct dio, complete_work);
 278
 279        dio_complete(dio, dio->iocb->ki_pos, 0, true);
 280}
 281
 282static int dio_bio_complete(struct dio *dio, struct bio *bio);
 283
 284/*
 285 * Asynchronous IO callback. 
 286 */
 287static void dio_bio_end_aio(struct bio *bio, int error)
 288{
 289        struct dio *dio = bio->bi_private;
 290        unsigned long remaining;
 291        unsigned long flags;
 292
 293        /* cleanup the bio */
 294        dio_bio_complete(dio, bio);
 295
 296        spin_lock_irqsave(&dio->bio_lock, flags);
 297        remaining = --dio->refcount;
 298        if (remaining == 1 && dio->waiter)
 299                wake_up_process(dio->waiter);
 300        spin_unlock_irqrestore(&dio->bio_lock, flags);
 301
 302        if (remaining == 0) {
 303                if (dio->result && dio->defer_completion) {
 304                        INIT_WORK(&dio->complete_work, dio_aio_complete_work);
 305                        queue_work(dio->inode->i_sb->s_dio_done_wq,
 306                                   &dio->complete_work);
 307                } else {
 308                        dio_complete(dio, dio->iocb->ki_pos, 0, true);
 309                }
 310        }
 311}
 312
 313/*
 314 * The BIO completion handler simply queues the BIO up for the process-context
 315 * handler.
 316 *
 317 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
 318 * implement a singly-linked list of completed BIOs, at dio->bio_list.
 319 */
 320static void dio_bio_end_io(struct bio *bio, int error)
 321{
 322        struct dio *dio = bio->bi_private;
 323        unsigned long flags;
 324
 325        spin_lock_irqsave(&dio->bio_lock, flags);
 326        bio->bi_private = dio->bio_list;
 327        dio->bio_list = bio;
 328        if (--dio->refcount == 1 && dio->waiter)
 329                wake_up_process(dio->waiter);
 330        spin_unlock_irqrestore(&dio->bio_lock, flags);
 331}
 332
 333/**
 334 * dio_end_io - handle the end io action for the given bio
 335 * @bio: The direct io bio thats being completed
 336 * @error: Error if there was one
 337 *
 338 * This is meant to be called by any filesystem that uses their own dio_submit_t
 339 * so that the DIO specific endio actions are dealt with after the filesystem
 340 * has done it's completion work.
 341 */
 342void dio_end_io(struct bio *bio, int error)
 343{
 344        struct dio *dio = bio->bi_private;
 345
 346        if (dio->is_async)
 347                dio_bio_end_aio(bio, error);
 348        else
 349                dio_bio_end_io(bio, error);
 350}
 351EXPORT_SYMBOL_GPL(dio_end_io);
 352
 353static inline void
 354dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
 355              struct block_device *bdev,
 356              sector_t first_sector, int nr_vecs)
 357{
 358        struct bio *bio;
 359
 360        /*
 361         * bio_alloc() is guaranteed to return a bio when called with
 362         * __GFP_WAIT and we request a valid number of vectors.
 363         */
 364        bio = bio_alloc(GFP_KERNEL, nr_vecs);
 365
 366        bio->bi_bdev = bdev;
 367        bio->bi_iter.bi_sector = first_sector;
 368        if (dio->is_async)
 369                bio->bi_end_io = dio_bio_end_aio;
 370        else
 371                bio->bi_end_io = dio_bio_end_io;
 372
 373        sdio->bio = bio;
 374        sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
 375}
 376
 377/*
 378 * In the AIO read case we speculatively dirty the pages before starting IO.
 379 * During IO completion, any of these pages which happen to have been written
 380 * back will be redirtied by bio_check_pages_dirty().
 381 *
 382 * bios hold a dio reference between submit_bio and ->end_io.
 383 */
 384static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
 385{
 386        struct bio *bio = sdio->bio;
 387        unsigned long flags;
 388
 389        bio->bi_private = dio;
 390
 391        spin_lock_irqsave(&dio->bio_lock, flags);
 392        dio->refcount++;
 393        spin_unlock_irqrestore(&dio->bio_lock, flags);
 394
 395        if (dio->is_async && dio->rw == READ)
 396                bio_set_pages_dirty(bio);
 397
 398        if (sdio->submit_io)
 399                sdio->submit_io(dio->rw, bio, dio->inode,
 400                               sdio->logical_offset_in_bio);
 401        else
 402                submit_bio(dio->rw, bio);
 403
 404        sdio->bio = NULL;
 405        sdio->boundary = 0;
 406        sdio->logical_offset_in_bio = 0;
 407}
 408
 409/*
 410 * Release any resources in case of a failure
 411 */
 412static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
 413{
 414        while (sdio->head < sdio->tail)
 415                page_cache_release(dio->pages[sdio->head++]);
 416}
 417
 418/*
 419 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
 420 * returned once all BIOs have been completed.  This must only be called once
 421 * all bios have been issued so that dio->refcount can only decrease.  This
 422 * requires that that the caller hold a reference on the dio.
 423 */
 424static struct bio *dio_await_one(struct dio *dio)
 425{
 426        unsigned long flags;
 427        struct bio *bio = NULL;
 428
 429        spin_lock_irqsave(&dio->bio_lock, flags);
 430
 431        /*
 432         * Wait as long as the list is empty and there are bios in flight.  bio
 433         * completion drops the count, maybe adds to the list, and wakes while
 434         * holding the bio_lock so we don't need set_current_state()'s barrier
 435         * and can call it after testing our condition.
 436         */
 437        while (dio->refcount > 1 && dio->bio_list == NULL) {
 438                __set_current_state(TASK_UNINTERRUPTIBLE);
 439                dio->waiter = current;
 440                spin_unlock_irqrestore(&dio->bio_lock, flags);
 441                io_schedule();
 442                /* wake up sets us TASK_RUNNING */
 443                spin_lock_irqsave(&dio->bio_lock, flags);
 444                dio->waiter = NULL;
 445        }
 446        if (dio->bio_list) {
 447                bio = dio->bio_list;
 448                dio->bio_list = bio->bi_private;
 449        }
 450        spin_unlock_irqrestore(&dio->bio_lock, flags);
 451        return bio;
 452}
 453
 454/*
 455 * Process one completed BIO.  No locks are held.
 456 */
 457static int dio_bio_complete(struct dio *dio, struct bio *bio)
 458{
 459        const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 460        struct bio_vec *bvec;
 461        unsigned i;
 462
 463        if (!uptodate)
 464                dio->io_error = -EIO;
 465
 466        if (dio->is_async && dio->rw == READ) {
 467                bio_check_pages_dirty(bio);     /* transfers ownership */
 468        } else {
 469                bio_for_each_segment_all(bvec, bio, i) {
 470                        struct page *page = bvec->bv_page;
 471
 472                        if (dio->rw == READ && !PageCompound(page))
 473                                set_page_dirty_lock(page);
 474                        page_cache_release(page);
 475                }
 476                bio_put(bio);
 477        }
 478        return uptodate ? 0 : -EIO;
 479}
 480
 481/*
 482 * Wait on and process all in-flight BIOs.  This must only be called once
 483 * all bios have been issued so that the refcount can only decrease.
 484 * This just waits for all bios to make it through dio_bio_complete.  IO
 485 * errors are propagated through dio->io_error and should be propagated via
 486 * dio_complete().
 487 */
 488static void dio_await_completion(struct dio *dio)
 489{
 490        struct bio *bio;
 491        do {
 492                bio = dio_await_one(dio);
 493                if (bio)
 494                        dio_bio_complete(dio, bio);
 495        } while (bio);
 496}
 497
 498/*
 499 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
 500 * to keep the memory consumption sane we periodically reap any completed BIOs
 501 * during the BIO generation phase.
 502 *
 503 * This also helps to limit the peak amount of pinned userspace memory.
 504 */
 505static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
 506{
 507        int ret = 0;
 508
 509        if (sdio->reap_counter++ >= 64) {
 510                while (dio->bio_list) {
 511                        unsigned long flags;
 512                        struct bio *bio;
 513                        int ret2;
 514
 515                        spin_lock_irqsave(&dio->bio_lock, flags);
 516                        bio = dio->bio_list;
 517                        dio->bio_list = bio->bi_private;
 518                        spin_unlock_irqrestore(&dio->bio_lock, flags);
 519                        ret2 = dio_bio_complete(dio, bio);
 520                        if (ret == 0)
 521                                ret = ret2;
 522                }
 523                sdio->reap_counter = 0;
 524        }
 525        return ret;
 526}
 527
 528/*
 529 * Create workqueue for deferred direct IO completions. We allocate the
 530 * workqueue when it's first needed. This avoids creating workqueue for
 531 * filesystems that don't need it and also allows us to create the workqueue
 532 * late enough so the we can include s_id in the name of the workqueue.
 533 */
 534static int sb_init_dio_done_wq(struct super_block *sb)
 535{
 536        struct workqueue_struct *old;
 537        struct workqueue_struct *wq = alloc_workqueue("dio/%s",
 538                                                      WQ_MEM_RECLAIM, 0,
 539                                                      sb->s_id);
 540        if (!wq)
 541                return -ENOMEM;
 542        /*
 543         * This has to be atomic as more DIOs can race to create the workqueue
 544         */
 545        old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
 546        /* Someone created workqueue before us? Free ours... */
 547        if (old)
 548                destroy_workqueue(wq);
 549        return 0;
 550}
 551
 552static int dio_set_defer_completion(struct dio *dio)
 553{
 554        struct super_block *sb = dio->inode->i_sb;
 555
 556        if (dio->defer_completion)
 557                return 0;
 558        dio->defer_completion = true;
 559        if (!sb->s_dio_done_wq)
 560                return sb_init_dio_done_wq(sb);
 561        return 0;
 562}
 563
 564/*
 565 * Call into the fs to map some more disk blocks.  We record the current number
 566 * of available blocks at sdio->blocks_available.  These are in units of the
 567 * fs blocksize, (1 << inode->i_blkbits).
 568 *
 569 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
 570 * it uses the passed inode-relative block number as the file offset, as usual.
 571 *
 572 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
 573 * has remaining to do.  The fs should not map more than this number of blocks.
 574 *
 575 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
 576 * indicate how much contiguous disk space has been made available at
 577 * bh->b_blocknr.
 578 *
 579 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
 580 * This isn't very efficient...
 581 *
 582 * In the case of filesystem holes: the fs may return an arbitrarily-large
 583 * hole by returning an appropriate value in b_size and by clearing
 584 * buffer_mapped().  However the direct-io code will only process holes one
 585 * block at a time - it will repeatedly call get_block() as it walks the hole.
 586 */
 587static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
 588                           struct buffer_head *map_bh)
 589{
 590        int ret;
 591        sector_t fs_startblk;   /* Into file, in filesystem-sized blocks */
 592        sector_t fs_endblk;     /* Into file, in filesystem-sized blocks */
 593        unsigned long fs_count; /* Number of filesystem-sized blocks */
 594        int create;
 595        unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
 596
 597        /*
 598         * If there was a memory error and we've overwritten all the
 599         * mapped blocks then we can now return that memory error
 600         */
 601        ret = dio->page_errors;
 602        if (ret == 0) {
 603                BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
 604                fs_startblk = sdio->block_in_file >> sdio->blkfactor;
 605                fs_endblk = (sdio->final_block_in_request - 1) >>
 606                                        sdio->blkfactor;
 607                fs_count = fs_endblk - fs_startblk + 1;
 608
 609                map_bh->b_state = 0;
 610                map_bh->b_size = fs_count << i_blkbits;
 611
 612                /*
 613                 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
 614                 * forbid block creations: only overwrites are permitted.
 615                 * We will return early to the caller once we see an
 616                 * unmapped buffer head returned, and the caller will fall
 617                 * back to buffered I/O.
 618                 *
 619                 * Otherwise the decision is left to the get_blocks method,
 620                 * which may decide to handle it or also return an unmapped
 621                 * buffer head.
 622                 */
 623                create = dio->rw & WRITE;
 624                if (dio->flags & DIO_SKIP_HOLES) {
 625                        if (sdio->block_in_file < (i_size_read(dio->inode) >>
 626                                                        sdio->blkbits))
 627                                create = 0;
 628                }
 629
 630                ret = (*sdio->get_block)(dio->inode, fs_startblk,
 631                                                map_bh, create);
 632
 633                /* Store for completion */
 634                dio->private = map_bh->b_private;
 635
 636                if (ret == 0 && buffer_defer_completion(map_bh))
 637                        ret = dio_set_defer_completion(dio);
 638        }
 639        return ret;
 640}
 641
 642/*
 643 * There is no bio.  Make one now.
 644 */
 645static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
 646                sector_t start_sector, struct buffer_head *map_bh)
 647{
 648        sector_t sector;
 649        int ret, nr_pages;
 650
 651        ret = dio_bio_reap(dio, sdio);
 652        if (ret)
 653                goto out;
 654        sector = start_sector << (sdio->blkbits - 9);
 655        nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
 656        BUG_ON(nr_pages <= 0);
 657        dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
 658        sdio->boundary = 0;
 659out:
 660        return ret;
 661}
 662
 663/*
 664 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
 665 * that was successful then update final_block_in_bio and take a ref against
 666 * the just-added page.
 667 *
 668 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
 669 */
 670static inline int dio_bio_add_page(struct dio_submit *sdio)
 671{
 672        int ret;
 673
 674        ret = bio_add_page(sdio->bio, sdio->cur_page,
 675                        sdio->cur_page_len, sdio->cur_page_offset);
 676        if (ret == sdio->cur_page_len) {
 677                /*
 678                 * Decrement count only, if we are done with this page
 679                 */
 680                if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
 681                        sdio->pages_in_io--;
 682                page_cache_get(sdio->cur_page);
 683                sdio->final_block_in_bio = sdio->cur_page_block +
 684                        (sdio->cur_page_len >> sdio->blkbits);
 685                ret = 0;
 686        } else {
 687                ret = 1;
 688        }
 689        return ret;
 690}
 691                
 692/*
 693 * Put cur_page under IO.  The section of cur_page which is described by
 694 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
 695 * starts on-disk at cur_page_block.
 696 *
 697 * We take a ref against the page here (on behalf of its presence in the bio).
 698 *
 699 * The caller of this function is responsible for removing cur_page from the
 700 * dio, and for dropping the refcount which came from that presence.
 701 */
 702static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
 703                struct buffer_head *map_bh)
 704{
 705        int ret = 0;
 706
 707        if (sdio->bio) {
 708                loff_t cur_offset = sdio->cur_page_fs_offset;
 709                loff_t bio_next_offset = sdio->logical_offset_in_bio +
 710                        sdio->bio->bi_iter.bi_size;
 711
 712                /*
 713                 * See whether this new request is contiguous with the old.
 714                 *
 715                 * Btrfs cannot handle having logically non-contiguous requests
 716                 * submitted.  For example if you have
 717                 *
 718                 * Logical:  [0-4095][HOLE][8192-12287]
 719                 * Physical: [0-4095]      [4096-8191]
 720                 *
 721                 * We cannot submit those pages together as one BIO.  So if our
 722                 * current logical offset in the file does not equal what would
 723                 * be the next logical offset in the bio, submit the bio we
 724                 * have.
 725                 */
 726                if (sdio->final_block_in_bio != sdio->cur_page_block ||
 727                    cur_offset != bio_next_offset)
 728                        dio_bio_submit(dio, sdio);
 729        }
 730
 731        if (sdio->bio == NULL) {
 732                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 733                if (ret)
 734                        goto out;
 735        }
 736
 737        if (dio_bio_add_page(sdio) != 0) {
 738                dio_bio_submit(dio, sdio);
 739                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 740                if (ret == 0) {
 741                        ret = dio_bio_add_page(sdio);
 742                        BUG_ON(ret != 0);
 743                }
 744        }
 745out:
 746        return ret;
 747}
 748
 749/*
 750 * An autonomous function to put a chunk of a page under deferred IO.
 751 *
 752 * The caller doesn't actually know (or care) whether this piece of page is in
 753 * a BIO, or is under IO or whatever.  We just take care of all possible 
 754 * situations here.  The separation between the logic of do_direct_IO() and
 755 * that of submit_page_section() is important for clarity.  Please don't break.
 756 *
 757 * The chunk of page starts on-disk at blocknr.
 758 *
 759 * We perform deferred IO, by recording the last-submitted page inside our
 760 * private part of the dio structure.  If possible, we just expand the IO
 761 * across that page here.
 762 *
 763 * If that doesn't work out then we put the old page into the bio and add this
 764 * page to the dio instead.
 765 */
 766static inline int
 767submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
 768                    unsigned offset, unsigned len, sector_t blocknr,
 769                    struct buffer_head *map_bh)
 770{
 771        int ret = 0;
 772
 773        if (dio->rw & WRITE) {
 774                /*
 775                 * Read accounting is performed in submit_bio()
 776                 */
 777                task_io_account_write(len);
 778        }
 779
 780        /*
 781         * Can we just grow the current page's presence in the dio?
 782         */
 783        if (sdio->cur_page == page &&
 784            sdio->cur_page_offset + sdio->cur_page_len == offset &&
 785            sdio->cur_page_block +
 786            (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
 787                sdio->cur_page_len += len;
 788                goto out;
 789        }
 790
 791        /*
 792         * If there's a deferred page already there then send it.
 793         */
 794        if (sdio->cur_page) {
 795                ret = dio_send_cur_page(dio, sdio, map_bh);
 796                page_cache_release(sdio->cur_page);
 797                sdio->cur_page = NULL;
 798                if (ret)
 799                        return ret;
 800        }
 801
 802        page_cache_get(page);           /* It is in dio */
 803        sdio->cur_page = page;
 804        sdio->cur_page_offset = offset;
 805        sdio->cur_page_len = len;
 806        sdio->cur_page_block = blocknr;
 807        sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
 808out:
 809        /*
 810         * If sdio->boundary then we want to schedule the IO now to
 811         * avoid metadata seeks.
 812         */
 813        if (sdio->boundary) {
 814                ret = dio_send_cur_page(dio, sdio, map_bh);
 815                dio_bio_submit(dio, sdio);
 816                page_cache_release(sdio->cur_page);
 817                sdio->cur_page = NULL;
 818        }
 819        return ret;
 820}
 821
 822/*
 823 * Clean any dirty buffers in the blockdev mapping which alias newly-created
 824 * file blocks.  Only called for S_ISREG files - blockdevs do not set
 825 * buffer_new
 826 */
 827static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
 828{
 829        unsigned i;
 830        unsigned nblocks;
 831
 832        nblocks = map_bh->b_size >> dio->inode->i_blkbits;
 833
 834        for (i = 0; i < nblocks; i++) {
 835                unmap_underlying_metadata(map_bh->b_bdev,
 836                                          map_bh->b_blocknr + i);
 837        }
 838}
 839
 840/*
 841 * If we are not writing the entire block and get_block() allocated
 842 * the block for us, we need to fill-in the unused portion of the
 843 * block with zeros. This happens only if user-buffer, fileoffset or
 844 * io length is not filesystem block-size multiple.
 845 *
 846 * `end' is zero if we're doing the start of the IO, 1 at the end of the
 847 * IO.
 848 */
 849static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
 850                int end, struct buffer_head *map_bh)
 851{
 852        unsigned dio_blocks_per_fs_block;
 853        unsigned this_chunk_blocks;     /* In dio_blocks */
 854        unsigned this_chunk_bytes;
 855        struct page *page;
 856
 857        sdio->start_zero_done = 1;
 858        if (!sdio->blkfactor || !buffer_new(map_bh))
 859                return;
 860
 861        dio_blocks_per_fs_block = 1 << sdio->blkfactor;
 862        this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
 863
 864        if (!this_chunk_blocks)
 865                return;
 866
 867        /*
 868         * We need to zero out part of an fs block.  It is either at the
 869         * beginning or the end of the fs block.
 870         */
 871        if (end) 
 872                this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
 873
 874        this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
 875
 876        page = ZERO_PAGE(0);
 877        if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
 878                                sdio->next_block_for_io, map_bh))
 879                return;
 880
 881        sdio->next_block_for_io += this_chunk_blocks;
 882}
 883
 884/*
 885 * Walk the user pages, and the file, mapping blocks to disk and generating
 886 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
 887 * into submit_page_section(), which takes care of the next stage of submission
 888 *
 889 * Direct IO against a blockdev is different from a file.  Because we can
 890 * happily perform page-sized but 512-byte aligned IOs.  It is important that
 891 * blockdev IO be able to have fine alignment and large sizes.
 892 *
 893 * So what we do is to permit the ->get_block function to populate bh.b_size
 894 * with the size of IO which is permitted at this offset and this i_blkbits.
 895 *
 896 * For best results, the blockdev should be set up with 512-byte i_blkbits and
 897 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
 898 * fine alignment but still allows this function to work in PAGE_SIZE units.
 899 */
 900static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
 901                        struct buffer_head *map_bh)
 902{
 903        const unsigned blkbits = sdio->blkbits;
 904        int ret = 0;
 905
 906        while (sdio->block_in_file < sdio->final_block_in_request) {
 907                struct page *page;
 908                size_t from, to;
 909
 910                page = dio_get_page(dio, sdio);
 911                if (IS_ERR(page)) {
 912                        ret = PTR_ERR(page);
 913                        goto out;
 914                }
 915                from = sdio->head ? 0 : sdio->from;
 916                to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
 917                sdio->head++;
 918
 919                while (from < to) {
 920                        unsigned this_chunk_bytes;      /* # of bytes mapped */
 921                        unsigned this_chunk_blocks;     /* # of blocks */
 922                        unsigned u;
 923
 924                        if (sdio->blocks_available == 0) {
 925                                /*
 926                                 * Need to go and map some more disk
 927                                 */
 928                                unsigned long blkmask;
 929                                unsigned long dio_remainder;
 930
 931                                ret = get_more_blocks(dio, sdio, map_bh);
 932                                if (ret) {
 933                                        page_cache_release(page);
 934                                        goto out;
 935                                }
 936                                if (!buffer_mapped(map_bh))
 937                                        goto do_holes;
 938
 939                                sdio->blocks_available =
 940                                                map_bh->b_size >> sdio->blkbits;
 941                                sdio->next_block_for_io =
 942                                        map_bh->b_blocknr << sdio->blkfactor;
 943                                if (buffer_new(map_bh))
 944                                        clean_blockdev_aliases(dio, map_bh);
 945
 946                                if (!sdio->blkfactor)
 947                                        goto do_holes;
 948
 949                                blkmask = (1 << sdio->blkfactor) - 1;
 950                                dio_remainder = (sdio->block_in_file & blkmask);
 951
 952                                /*
 953                                 * If we are at the start of IO and that IO
 954                                 * starts partway into a fs-block,
 955                                 * dio_remainder will be non-zero.  If the IO
 956                                 * is a read then we can simply advance the IO
 957                                 * cursor to the first block which is to be
 958                                 * read.  But if the IO is a write and the
 959                                 * block was newly allocated we cannot do that;
 960                                 * the start of the fs block must be zeroed out
 961                                 * on-disk
 962                                 */
 963                                if (!buffer_new(map_bh))
 964                                        sdio->next_block_for_io += dio_remainder;
 965                                sdio->blocks_available -= dio_remainder;
 966                        }
 967do_holes:
 968                        /* Handle holes */
 969                        if (!buffer_mapped(map_bh)) {
 970                                loff_t i_size_aligned;
 971
 972                                /* AKPM: eargh, -ENOTBLK is a hack */
 973                                if (dio->rw & WRITE) {
 974                                        page_cache_release(page);
 975                                        return -ENOTBLK;
 976                                }
 977
 978                                /*
 979                                 * Be sure to account for a partial block as the
 980                                 * last block in the file
 981                                 */
 982                                i_size_aligned = ALIGN(i_size_read(dio->inode),
 983                                                        1 << blkbits);
 984                                if (sdio->block_in_file >=
 985                                                i_size_aligned >> blkbits) {
 986                                        /* We hit eof */
 987                                        page_cache_release(page);
 988                                        goto out;
 989                                }
 990                                zero_user(page, from, 1 << blkbits);
 991                                sdio->block_in_file++;
 992                                from += 1 << blkbits;
 993                                dio->result += 1 << blkbits;
 994                                goto next_block;
 995                        }
 996
 997                        /*
 998                         * If we're performing IO which has an alignment which
 999                         * is finer than the underlying fs, go check to see if
1000                         * we must zero out the start of this block.
1001                         */
1002                        if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1003                                dio_zero_block(dio, sdio, 0, map_bh);
1004
1005                        /*
1006                         * Work out, in this_chunk_blocks, how much disk we
1007                         * can add to this page
1008                         */
1009                        this_chunk_blocks = sdio->blocks_available;
1010                        u = (to - from) >> blkbits;
1011                        if (this_chunk_blocks > u)
1012                                this_chunk_blocks = u;
1013                        u = sdio->final_block_in_request - sdio->block_in_file;
1014                        if (this_chunk_blocks > u)
1015                                this_chunk_blocks = u;
1016                        this_chunk_bytes = this_chunk_blocks << blkbits;
1017                        BUG_ON(this_chunk_bytes == 0);
1018
1019                        if (this_chunk_blocks == sdio->blocks_available)
1020                                sdio->boundary = buffer_boundary(map_bh);
1021                        ret = submit_page_section(dio, sdio, page,
1022                                                  from,
1023                                                  this_chunk_bytes,
1024                                                  sdio->next_block_for_io,
1025                                                  map_bh);
1026                        if (ret) {
1027                                page_cache_release(page);
1028                                goto out;
1029                        }
1030                        sdio->next_block_for_io += this_chunk_blocks;
1031
1032                        sdio->block_in_file += this_chunk_blocks;
1033                        from += this_chunk_bytes;
1034                        dio->result += this_chunk_bytes;
1035                        sdio->blocks_available -= this_chunk_blocks;
1036next_block:
1037                        BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1038                        if (sdio->block_in_file == sdio->final_block_in_request)
1039                                break;
1040                }
1041
1042                /* Drop the ref which was taken in get_user_pages() */
1043                page_cache_release(page);
1044        }
1045out:
1046        return ret;
1047}
1048
1049static inline int drop_refcount(struct dio *dio)
1050{
1051        int ret2;
1052        unsigned long flags;
1053
1054        /*
1055         * Sync will always be dropping the final ref and completing the
1056         * operation.  AIO can if it was a broken operation described above or
1057         * in fact if all the bios race to complete before we get here.  In
1058         * that case dio_complete() translates the EIOCBQUEUED into the proper
1059         * return code that the caller will hand to aio_complete().
1060         *
1061         * This is managed by the bio_lock instead of being an atomic_t so that
1062         * completion paths can drop their ref and use the remaining count to
1063         * decide to wake the submission path atomically.
1064         */
1065        spin_lock_irqsave(&dio->bio_lock, flags);
1066        ret2 = --dio->refcount;
1067        spin_unlock_irqrestore(&dio->bio_lock, flags);
1068        return ret2;
1069}
1070
1071/*
1072 * This is a library function for use by filesystem drivers.
1073 *
1074 * The locking rules are governed by the flags parameter:
1075 *  - if the flags value contains DIO_LOCKING we use a fancy locking
1076 *    scheme for dumb filesystems.
1077 *    For writes this function is called under i_mutex and returns with
1078 *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1079 *    taken and dropped again before returning.
1080 *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1081 *    internal locking but rather rely on the filesystem to synchronize
1082 *    direct I/O reads/writes versus each other and truncate.
1083 *
1084 * To help with locking against truncate we incremented the i_dio_count
1085 * counter before starting direct I/O, and decrement it once we are done.
1086 * Truncate can wait for it to reach zero to provide exclusion.  It is
1087 * expected that filesystem provide exclusion between new direct I/O
1088 * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1089 * but other filesystems need to take care of this on their own.
1090 *
1091 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1092 * is always inlined. Otherwise gcc is unable to split the structure into
1093 * individual fields and will generate much worse code. This is important
1094 * for the whole file.
1095 */
1096static inline ssize_t
1097do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1098        struct block_device *bdev, struct iov_iter *iter, loff_t offset, 
1099        get_block_t get_block, dio_iodone_t end_io,
1100        dio_submit_t submit_io, int flags)
1101{
1102        unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1103        unsigned blkbits = i_blkbits;
1104        unsigned blocksize_mask = (1 << blkbits) - 1;
1105        ssize_t retval = -EINVAL;
1106        size_t count = iov_iter_count(iter);
1107        loff_t end = offset + count;
1108        struct dio *dio;
1109        struct dio_submit sdio = { 0, };
1110        struct buffer_head map_bh = { 0, };
1111        struct blk_plug plug;
1112        unsigned long align = offset | iov_iter_alignment(iter);
1113
1114        if (rw & WRITE)
1115                rw = WRITE_ODIRECT;
1116
1117        /*
1118         * Avoid references to bdev if not absolutely needed to give
1119         * the early prefetch in the caller enough time.
1120         */
1121
1122        if (align & blocksize_mask) {
1123                if (bdev)
1124                        blkbits = blksize_bits(bdev_logical_block_size(bdev));
1125                blocksize_mask = (1 << blkbits) - 1;
1126                if (align & blocksize_mask)
1127                        goto out;
1128        }
1129
1130        /* watch out for a 0 len io from a tricksy fs */
1131        if (rw == READ && !iov_iter_count(iter))
1132                return 0;
1133
1134        dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1135        retval = -ENOMEM;
1136        if (!dio)
1137                goto out;
1138        /*
1139         * Believe it or not, zeroing out the page array caused a .5%
1140         * performance regression in a database benchmark.  So, we take
1141         * care to only zero out what's needed.
1142         */
1143        memset(dio, 0, offsetof(struct dio, pages));
1144
1145        dio->flags = flags;
1146        if (dio->flags & DIO_LOCKING) {
1147                if (rw == READ) {
1148                        struct address_space *mapping =
1149                                        iocb->ki_filp->f_mapping;
1150
1151                        /* will be released by direct_io_worker */
1152                        mutex_lock(&inode->i_mutex);
1153
1154                        retval = filemap_write_and_wait_range(mapping, offset,
1155                                                              end - 1);
1156                        if (retval) {
1157                                mutex_unlock(&inode->i_mutex);
1158                                kmem_cache_free(dio_cache, dio);
1159                                goto out;
1160                        }
1161                }
1162        }
1163
1164        /*
1165         * For file extending writes updating i_size before data writeouts
1166         * complete can expose uninitialized blocks in dumb filesystems.
1167         * In that case we need to wait for I/O completion even if asked
1168         * for an asynchronous write.
1169         */
1170        if (is_sync_kiocb(iocb))
1171                dio->is_async = false;
1172        else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1173            (rw & WRITE) && end > i_size_read(inode))
1174                dio->is_async = false;
1175        else
1176                dio->is_async = true;
1177
1178        dio->inode = inode;
1179        dio->rw = rw;
1180
1181        /*
1182         * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1183         * so that we can call ->fsync.
1184         */
1185        if (dio->is_async && (rw & WRITE) &&
1186            ((iocb->ki_filp->f_flags & O_DSYNC) ||
1187             IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1188                retval = dio_set_defer_completion(dio);
1189                if (retval) {
1190                        /*
1191                         * We grab i_mutex only for reads so we don't have
1192                         * to release it here
1193                         */
1194                        kmem_cache_free(dio_cache, dio);
1195                        goto out;
1196                }
1197        }
1198
1199        /*
1200         * Will be decremented at I/O completion time.
1201         */
1202        atomic_inc(&inode->i_dio_count);
1203
1204        retval = 0;
1205        sdio.blkbits = blkbits;
1206        sdio.blkfactor = i_blkbits - blkbits;
1207        sdio.block_in_file = offset >> blkbits;
1208
1209        sdio.get_block = get_block;
1210        dio->end_io = end_io;
1211        sdio.submit_io = submit_io;
1212        sdio.final_block_in_bio = -1;
1213        sdio.next_block_for_io = -1;
1214
1215        dio->iocb = iocb;
1216        dio->i_size = i_size_read(inode);
1217
1218        spin_lock_init(&dio->bio_lock);
1219        dio->refcount = 1;
1220
1221        sdio.iter = iter;
1222        sdio.final_block_in_request =
1223                (offset + iov_iter_count(iter)) >> blkbits;
1224
1225        /*
1226         * In case of non-aligned buffers, we may need 2 more
1227         * pages since we need to zero out first and last block.
1228         */
1229        if (unlikely(sdio.blkfactor))
1230                sdio.pages_in_io = 2;
1231
1232        sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1233
1234        blk_start_plug(&plug);
1235
1236        retval = do_direct_IO(dio, &sdio, &map_bh);
1237        if (retval)
1238                dio_cleanup(dio, &sdio);
1239
1240        if (retval == -ENOTBLK) {
1241                /*
1242                 * The remaining part of the request will be
1243                 * be handled by buffered I/O when we return
1244                 */
1245                retval = 0;
1246        }
1247        /*
1248         * There may be some unwritten disk at the end of a part-written
1249         * fs-block-sized block.  Go zero that now.
1250         */
1251        dio_zero_block(dio, &sdio, 1, &map_bh);
1252
1253        if (sdio.cur_page) {
1254                ssize_t ret2;
1255
1256                ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1257                if (retval == 0)
1258                        retval = ret2;
1259                page_cache_release(sdio.cur_page);
1260                sdio.cur_page = NULL;
1261        }
1262        if (sdio.bio)
1263                dio_bio_submit(dio, &sdio);
1264
1265        blk_finish_plug(&plug);
1266
1267        /*
1268         * It is possible that, we return short IO due to end of file.
1269         * In that case, we need to release all the pages we got hold on.
1270         */
1271        dio_cleanup(dio, &sdio);
1272
1273        /*
1274         * All block lookups have been performed. For READ requests
1275         * we can let i_mutex go now that its achieved its purpose
1276         * of protecting us from looking up uninitialized blocks.
1277         */
1278        if (rw == READ && (dio->flags & DIO_LOCKING))
1279                mutex_unlock(&dio->inode->i_mutex);
1280
1281        /*
1282         * The only time we want to leave bios in flight is when a successful
1283         * partial aio read or full aio write have been setup.  In that case
1284         * bio completion will call aio_complete.  The only time it's safe to
1285         * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1286         * This had *better* be the only place that raises -EIOCBQUEUED.
1287         */
1288        BUG_ON(retval == -EIOCBQUEUED);
1289        if (dio->is_async && retval == 0 && dio->result &&
1290            (rw == READ || dio->result == count))
1291                retval = -EIOCBQUEUED;
1292        else
1293                dio_await_completion(dio);
1294
1295        if (drop_refcount(dio) == 0) {
1296                retval = dio_complete(dio, offset, retval, false);
1297        } else
1298                BUG_ON(retval != -EIOCBQUEUED);
1299
1300out:
1301        return retval;
1302}
1303
1304ssize_t
1305__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1306        struct block_device *bdev, struct iov_iter *iter, loff_t offset,
1307        get_block_t get_block, dio_iodone_t end_io,
1308        dio_submit_t submit_io, int flags)
1309{
1310        /*
1311         * The block device state is needed in the end to finally
1312         * submit everything.  Since it's likely to be cache cold
1313         * prefetch it here as first thing to hide some of the
1314         * latency.
1315         *
1316         * Attempt to prefetch the pieces we likely need later.
1317         */
1318        prefetch(&bdev->bd_disk->part_tbl);
1319        prefetch(bdev->bd_queue);
1320        prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1321
1322        return do_blockdev_direct_IO(rw, iocb, inode, bdev, iter, offset,
1323                                     get_block, end_io, submit_io, flags);
1324}
1325
1326EXPORT_SYMBOL(__blockdev_direct_IO);
1327
1328static __init int dio_init(void)
1329{
1330        dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1331        return 0;
1332}
1333module_init(dio_init)
1334