linux/fs/inode.c
<<
>>
Prefs
   1/*
   2 * (C) 1997 Linus Torvalds
   3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   4 */
   5#include <linux/export.h>
   6#include <linux/fs.h>
   7#include <linux/mm.h>
   8#include <linux/backing-dev.h>
   9#include <linux/hash.h>
  10#include <linux/swap.h>
  11#include <linux/security.h>
  12#include <linux/cdev.h>
  13#include <linux/bootmem.h>
  14#include <linux/fsnotify.h>
  15#include <linux/mount.h>
  16#include <linux/posix_acl.h>
  17#include <linux/prefetch.h>
  18#include <linux/buffer_head.h> /* for inode_has_buffers */
  19#include <linux/ratelimit.h>
  20#include <linux/list_lru.h>
  21#include <trace/events/writeback.h>
  22#include "internal.h"
  23
  24/*
  25 * Inode locking rules:
  26 *
  27 * inode->i_lock protects:
  28 *   inode->i_state, inode->i_hash, __iget()
  29 * Inode LRU list locks protect:
  30 *   inode->i_sb->s_inode_lru, inode->i_lru
  31 * inode_sb_list_lock protects:
  32 *   sb->s_inodes, inode->i_sb_list
  33 * bdi->wb.list_lock protects:
  34 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_wb_list
  35 * inode_hash_lock protects:
  36 *   inode_hashtable, inode->i_hash
  37 *
  38 * Lock ordering:
  39 *
  40 * inode_sb_list_lock
  41 *   inode->i_lock
  42 *     Inode LRU list locks
  43 *
  44 * bdi->wb.list_lock
  45 *   inode->i_lock
  46 *
  47 * inode_hash_lock
  48 *   inode_sb_list_lock
  49 *   inode->i_lock
  50 *
  51 * iunique_lock
  52 *   inode_hash_lock
  53 */
  54
  55static unsigned int i_hash_mask __read_mostly;
  56static unsigned int i_hash_shift __read_mostly;
  57static struct hlist_head *inode_hashtable __read_mostly;
  58static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  59
  60__cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
  61
  62/*
  63 * Empty aops. Can be used for the cases where the user does not
  64 * define any of the address_space operations.
  65 */
  66const struct address_space_operations empty_aops = {
  67};
  68EXPORT_SYMBOL(empty_aops);
  69
  70/*
  71 * Statistics gathering..
  72 */
  73struct inodes_stat_t inodes_stat;
  74
  75static DEFINE_PER_CPU(unsigned long, nr_inodes);
  76static DEFINE_PER_CPU(unsigned long, nr_unused);
  77
  78static struct kmem_cache *inode_cachep __read_mostly;
  79
  80static long get_nr_inodes(void)
  81{
  82        int i;
  83        long sum = 0;
  84        for_each_possible_cpu(i)
  85                sum += per_cpu(nr_inodes, i);
  86        return sum < 0 ? 0 : sum;
  87}
  88
  89static inline long get_nr_inodes_unused(void)
  90{
  91        int i;
  92        long sum = 0;
  93        for_each_possible_cpu(i)
  94                sum += per_cpu(nr_unused, i);
  95        return sum < 0 ? 0 : sum;
  96}
  97
  98long get_nr_dirty_inodes(void)
  99{
 100        /* not actually dirty inodes, but a wild approximation */
 101        long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 102        return nr_dirty > 0 ? nr_dirty : 0;
 103}
 104
 105/*
 106 * Handle nr_inode sysctl
 107 */
 108#ifdef CONFIG_SYSCTL
 109int proc_nr_inodes(struct ctl_table *table, int write,
 110                   void __user *buffer, size_t *lenp, loff_t *ppos)
 111{
 112        inodes_stat.nr_inodes = get_nr_inodes();
 113        inodes_stat.nr_unused = get_nr_inodes_unused();
 114        return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 115}
 116#endif
 117
 118static int no_open(struct inode *inode, struct file *file)
 119{
 120        return -ENXIO;
 121}
 122
 123/**
 124 * inode_init_always - perform inode structure intialisation
 125 * @sb: superblock inode belongs to
 126 * @inode: inode to initialise
 127 *
 128 * These are initializations that need to be done on every inode
 129 * allocation as the fields are not initialised by slab allocation.
 130 */
 131int inode_init_always(struct super_block *sb, struct inode *inode)
 132{
 133        static const struct inode_operations empty_iops;
 134        static const struct file_operations no_open_fops = {.open = no_open};
 135        struct address_space *const mapping = &inode->i_data;
 136
 137        inode->i_sb = sb;
 138        inode->i_blkbits = sb->s_blocksize_bits;
 139        inode->i_flags = 0;
 140        atomic_set(&inode->i_count, 1);
 141        inode->i_op = &empty_iops;
 142        inode->i_fop = &no_open_fops;
 143        inode->__i_nlink = 1;
 144        inode->i_opflags = 0;
 145        i_uid_write(inode, 0);
 146        i_gid_write(inode, 0);
 147        atomic_set(&inode->i_writecount, 0);
 148        inode->i_size = 0;
 149        inode->i_blocks = 0;
 150        inode->i_bytes = 0;
 151        inode->i_generation = 0;
 152        inode->i_pipe = NULL;
 153        inode->i_bdev = NULL;
 154        inode->i_cdev = NULL;
 155        inode->i_rdev = 0;
 156        inode->dirtied_when = 0;
 157
 158        if (security_inode_alloc(inode))
 159                goto out;
 160        spin_lock_init(&inode->i_lock);
 161        lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 162
 163        mutex_init(&inode->i_mutex);
 164        lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
 165
 166        atomic_set(&inode->i_dio_count, 0);
 167
 168        mapping->a_ops = &empty_aops;
 169        mapping->host = inode;
 170        mapping->flags = 0;
 171        atomic_set(&mapping->i_mmap_writable, 0);
 172        mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 173        mapping->private_data = NULL;
 174        mapping->writeback_index = 0;
 175        inode->i_private = NULL;
 176        inode->i_mapping = mapping;
 177        INIT_HLIST_HEAD(&inode->i_dentry);      /* buggered by rcu freeing */
 178#ifdef CONFIG_FS_POSIX_ACL
 179        inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 180#endif
 181
 182#ifdef CONFIG_FSNOTIFY
 183        inode->i_fsnotify_mask = 0;
 184#endif
 185        inode->i_flctx = NULL;
 186        this_cpu_inc(nr_inodes);
 187
 188        return 0;
 189out:
 190        return -ENOMEM;
 191}
 192EXPORT_SYMBOL(inode_init_always);
 193
 194static struct inode *alloc_inode(struct super_block *sb)
 195{
 196        struct inode *inode;
 197
 198        if (sb->s_op->alloc_inode)
 199                inode = sb->s_op->alloc_inode(sb);
 200        else
 201                inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 202
 203        if (!inode)
 204                return NULL;
 205
 206        if (unlikely(inode_init_always(sb, inode))) {
 207                if (inode->i_sb->s_op->destroy_inode)
 208                        inode->i_sb->s_op->destroy_inode(inode);
 209                else
 210                        kmem_cache_free(inode_cachep, inode);
 211                return NULL;
 212        }
 213
 214        return inode;
 215}
 216
 217void free_inode_nonrcu(struct inode *inode)
 218{
 219        kmem_cache_free(inode_cachep, inode);
 220}
 221EXPORT_SYMBOL(free_inode_nonrcu);
 222
 223void __destroy_inode(struct inode *inode)
 224{
 225        BUG_ON(inode_has_buffers(inode));
 226        security_inode_free(inode);
 227        fsnotify_inode_delete(inode);
 228        locks_free_lock_context(inode->i_flctx);
 229        if (!inode->i_nlink) {
 230                WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 231                atomic_long_dec(&inode->i_sb->s_remove_count);
 232        }
 233
 234#ifdef CONFIG_FS_POSIX_ACL
 235        if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
 236                posix_acl_release(inode->i_acl);
 237        if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
 238                posix_acl_release(inode->i_default_acl);
 239#endif
 240        this_cpu_dec(nr_inodes);
 241}
 242EXPORT_SYMBOL(__destroy_inode);
 243
 244static void i_callback(struct rcu_head *head)
 245{
 246        struct inode *inode = container_of(head, struct inode, i_rcu);
 247        kmem_cache_free(inode_cachep, inode);
 248}
 249
 250static void destroy_inode(struct inode *inode)
 251{
 252        BUG_ON(!list_empty(&inode->i_lru));
 253        __destroy_inode(inode);
 254        if (inode->i_sb->s_op->destroy_inode)
 255                inode->i_sb->s_op->destroy_inode(inode);
 256        else
 257                call_rcu(&inode->i_rcu, i_callback);
 258}
 259
 260/**
 261 * drop_nlink - directly drop an inode's link count
 262 * @inode: inode
 263 *
 264 * This is a low-level filesystem helper to replace any
 265 * direct filesystem manipulation of i_nlink.  In cases
 266 * where we are attempting to track writes to the
 267 * filesystem, a decrement to zero means an imminent
 268 * write when the file is truncated and actually unlinked
 269 * on the filesystem.
 270 */
 271void drop_nlink(struct inode *inode)
 272{
 273        WARN_ON(inode->i_nlink == 0);
 274        inode->__i_nlink--;
 275        if (!inode->i_nlink)
 276                atomic_long_inc(&inode->i_sb->s_remove_count);
 277}
 278EXPORT_SYMBOL(drop_nlink);
 279
 280/**
 281 * clear_nlink - directly zero an inode's link count
 282 * @inode: inode
 283 *
 284 * This is a low-level filesystem helper to replace any
 285 * direct filesystem manipulation of i_nlink.  See
 286 * drop_nlink() for why we care about i_nlink hitting zero.
 287 */
 288void clear_nlink(struct inode *inode)
 289{
 290        if (inode->i_nlink) {
 291                inode->__i_nlink = 0;
 292                atomic_long_inc(&inode->i_sb->s_remove_count);
 293        }
 294}
 295EXPORT_SYMBOL(clear_nlink);
 296
 297/**
 298 * set_nlink - directly set an inode's link count
 299 * @inode: inode
 300 * @nlink: new nlink (should be non-zero)
 301 *
 302 * This is a low-level filesystem helper to replace any
 303 * direct filesystem manipulation of i_nlink.
 304 */
 305void set_nlink(struct inode *inode, unsigned int nlink)
 306{
 307        if (!nlink) {
 308                clear_nlink(inode);
 309        } else {
 310                /* Yes, some filesystems do change nlink from zero to one */
 311                if (inode->i_nlink == 0)
 312                        atomic_long_dec(&inode->i_sb->s_remove_count);
 313
 314                inode->__i_nlink = nlink;
 315        }
 316}
 317EXPORT_SYMBOL(set_nlink);
 318
 319/**
 320 * inc_nlink - directly increment an inode's link count
 321 * @inode: inode
 322 *
 323 * This is a low-level filesystem helper to replace any
 324 * direct filesystem manipulation of i_nlink.  Currently,
 325 * it is only here for parity with dec_nlink().
 326 */
 327void inc_nlink(struct inode *inode)
 328{
 329        if (unlikely(inode->i_nlink == 0)) {
 330                WARN_ON(!(inode->i_state & I_LINKABLE));
 331                atomic_long_dec(&inode->i_sb->s_remove_count);
 332        }
 333
 334        inode->__i_nlink++;
 335}
 336EXPORT_SYMBOL(inc_nlink);
 337
 338void address_space_init_once(struct address_space *mapping)
 339{
 340        memset(mapping, 0, sizeof(*mapping));
 341        INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
 342        spin_lock_init(&mapping->tree_lock);
 343        init_rwsem(&mapping->i_mmap_rwsem);
 344        INIT_LIST_HEAD(&mapping->private_list);
 345        spin_lock_init(&mapping->private_lock);
 346        mapping->i_mmap = RB_ROOT;
 347}
 348EXPORT_SYMBOL(address_space_init_once);
 349
 350/*
 351 * These are initializations that only need to be done
 352 * once, because the fields are idempotent across use
 353 * of the inode, so let the slab aware of that.
 354 */
 355void inode_init_once(struct inode *inode)
 356{
 357        memset(inode, 0, sizeof(*inode));
 358        INIT_HLIST_NODE(&inode->i_hash);
 359        INIT_LIST_HEAD(&inode->i_devices);
 360        INIT_LIST_HEAD(&inode->i_wb_list);
 361        INIT_LIST_HEAD(&inode->i_lru);
 362        address_space_init_once(&inode->i_data);
 363        i_size_ordered_init(inode);
 364#ifdef CONFIG_FSNOTIFY
 365        INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
 366#endif
 367}
 368EXPORT_SYMBOL(inode_init_once);
 369
 370static void init_once(void *foo)
 371{
 372        struct inode *inode = (struct inode *) foo;
 373
 374        inode_init_once(inode);
 375}
 376
 377/*
 378 * inode->i_lock must be held
 379 */
 380void __iget(struct inode *inode)
 381{
 382        atomic_inc(&inode->i_count);
 383}
 384
 385/*
 386 * get additional reference to inode; caller must already hold one.
 387 */
 388void ihold(struct inode *inode)
 389{
 390        WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 391}
 392EXPORT_SYMBOL(ihold);
 393
 394static void inode_lru_list_add(struct inode *inode)
 395{
 396        if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 397                this_cpu_inc(nr_unused);
 398}
 399
 400/*
 401 * Add inode to LRU if needed (inode is unused and clean).
 402 *
 403 * Needs inode->i_lock held.
 404 */
 405void inode_add_lru(struct inode *inode)
 406{
 407        if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
 408                                I_FREEING | I_WILL_FREE)) &&
 409            !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
 410                inode_lru_list_add(inode);
 411}
 412
 413
 414static void inode_lru_list_del(struct inode *inode)
 415{
 416
 417        if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 418                this_cpu_dec(nr_unused);
 419}
 420
 421/**
 422 * inode_sb_list_add - add inode to the superblock list of inodes
 423 * @inode: inode to add
 424 */
 425void inode_sb_list_add(struct inode *inode)
 426{
 427        spin_lock(&inode_sb_list_lock);
 428        list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 429        spin_unlock(&inode_sb_list_lock);
 430}
 431EXPORT_SYMBOL_GPL(inode_sb_list_add);
 432
 433static inline void inode_sb_list_del(struct inode *inode)
 434{
 435        if (!list_empty(&inode->i_sb_list)) {
 436                spin_lock(&inode_sb_list_lock);
 437                list_del_init(&inode->i_sb_list);
 438                spin_unlock(&inode_sb_list_lock);
 439        }
 440}
 441
 442static unsigned long hash(struct super_block *sb, unsigned long hashval)
 443{
 444        unsigned long tmp;
 445
 446        tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 447                        L1_CACHE_BYTES;
 448        tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 449        return tmp & i_hash_mask;
 450}
 451
 452/**
 453 *      __insert_inode_hash - hash an inode
 454 *      @inode: unhashed inode
 455 *      @hashval: unsigned long value used to locate this object in the
 456 *              inode_hashtable.
 457 *
 458 *      Add an inode to the inode hash for this superblock.
 459 */
 460void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 461{
 462        struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 463
 464        spin_lock(&inode_hash_lock);
 465        spin_lock(&inode->i_lock);
 466        hlist_add_head(&inode->i_hash, b);
 467        spin_unlock(&inode->i_lock);
 468        spin_unlock(&inode_hash_lock);
 469}
 470EXPORT_SYMBOL(__insert_inode_hash);
 471
 472/**
 473 *      __remove_inode_hash - remove an inode from the hash
 474 *      @inode: inode to unhash
 475 *
 476 *      Remove an inode from the superblock.
 477 */
 478void __remove_inode_hash(struct inode *inode)
 479{
 480        spin_lock(&inode_hash_lock);
 481        spin_lock(&inode->i_lock);
 482        hlist_del_init(&inode->i_hash);
 483        spin_unlock(&inode->i_lock);
 484        spin_unlock(&inode_hash_lock);
 485}
 486EXPORT_SYMBOL(__remove_inode_hash);
 487
 488void clear_inode(struct inode *inode)
 489{
 490        might_sleep();
 491        /*
 492         * We have to cycle tree_lock here because reclaim can be still in the
 493         * process of removing the last page (in __delete_from_page_cache())
 494         * and we must not free mapping under it.
 495         */
 496        spin_lock_irq(&inode->i_data.tree_lock);
 497        BUG_ON(inode->i_data.nrpages);
 498        BUG_ON(inode->i_data.nrshadows);
 499        spin_unlock_irq(&inode->i_data.tree_lock);
 500        BUG_ON(!list_empty(&inode->i_data.private_list));
 501        BUG_ON(!(inode->i_state & I_FREEING));
 502        BUG_ON(inode->i_state & I_CLEAR);
 503        /* don't need i_lock here, no concurrent mods to i_state */
 504        inode->i_state = I_FREEING | I_CLEAR;
 505}
 506EXPORT_SYMBOL(clear_inode);
 507
 508/*
 509 * Free the inode passed in, removing it from the lists it is still connected
 510 * to. We remove any pages still attached to the inode and wait for any IO that
 511 * is still in progress before finally destroying the inode.
 512 *
 513 * An inode must already be marked I_FREEING so that we avoid the inode being
 514 * moved back onto lists if we race with other code that manipulates the lists
 515 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 516 *
 517 * An inode must already be removed from the LRU list before being evicted from
 518 * the cache. This should occur atomically with setting the I_FREEING state
 519 * flag, so no inodes here should ever be on the LRU when being evicted.
 520 */
 521static void evict(struct inode *inode)
 522{
 523        const struct super_operations *op = inode->i_sb->s_op;
 524
 525        BUG_ON(!(inode->i_state & I_FREEING));
 526        BUG_ON(!list_empty(&inode->i_lru));
 527
 528        if (!list_empty(&inode->i_wb_list))
 529                inode_wb_list_del(inode);
 530
 531        inode_sb_list_del(inode);
 532
 533        /*
 534         * Wait for flusher thread to be done with the inode so that filesystem
 535         * does not start destroying it while writeback is still running. Since
 536         * the inode has I_FREEING set, flusher thread won't start new work on
 537         * the inode.  We just have to wait for running writeback to finish.
 538         */
 539        inode_wait_for_writeback(inode);
 540
 541        if (op->evict_inode) {
 542                op->evict_inode(inode);
 543        } else {
 544                truncate_inode_pages_final(&inode->i_data);
 545                clear_inode(inode);
 546        }
 547        if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 548                bd_forget(inode);
 549        if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 550                cd_forget(inode);
 551
 552        remove_inode_hash(inode);
 553
 554        spin_lock(&inode->i_lock);
 555        wake_up_bit(&inode->i_state, __I_NEW);
 556        BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 557        spin_unlock(&inode->i_lock);
 558
 559        destroy_inode(inode);
 560}
 561
 562/*
 563 * dispose_list - dispose of the contents of a local list
 564 * @head: the head of the list to free
 565 *
 566 * Dispose-list gets a local list with local inodes in it, so it doesn't
 567 * need to worry about list corruption and SMP locks.
 568 */
 569static void dispose_list(struct list_head *head)
 570{
 571        while (!list_empty(head)) {
 572                struct inode *inode;
 573
 574                inode = list_first_entry(head, struct inode, i_lru);
 575                list_del_init(&inode->i_lru);
 576
 577                evict(inode);
 578        }
 579}
 580
 581/**
 582 * evict_inodes - evict all evictable inodes for a superblock
 583 * @sb:         superblock to operate on
 584 *
 585 * Make sure that no inodes with zero refcount are retained.  This is
 586 * called by superblock shutdown after having MS_ACTIVE flag removed,
 587 * so any inode reaching zero refcount during or after that call will
 588 * be immediately evicted.
 589 */
 590void evict_inodes(struct super_block *sb)
 591{
 592        struct inode *inode, *next;
 593        LIST_HEAD(dispose);
 594
 595        spin_lock(&inode_sb_list_lock);
 596        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 597                if (atomic_read(&inode->i_count))
 598                        continue;
 599
 600                spin_lock(&inode->i_lock);
 601                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 602                        spin_unlock(&inode->i_lock);
 603                        continue;
 604                }
 605
 606                inode->i_state |= I_FREEING;
 607                inode_lru_list_del(inode);
 608                spin_unlock(&inode->i_lock);
 609                list_add(&inode->i_lru, &dispose);
 610        }
 611        spin_unlock(&inode_sb_list_lock);
 612
 613        dispose_list(&dispose);
 614}
 615
 616/**
 617 * invalidate_inodes    - attempt to free all inodes on a superblock
 618 * @sb:         superblock to operate on
 619 * @kill_dirty: flag to guide handling of dirty inodes
 620 *
 621 * Attempts to free all inodes for a given superblock.  If there were any
 622 * busy inodes return a non-zero value, else zero.
 623 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 624 * them as busy.
 625 */
 626int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 627{
 628        int busy = 0;
 629        struct inode *inode, *next;
 630        LIST_HEAD(dispose);
 631
 632        spin_lock(&inode_sb_list_lock);
 633        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 634                spin_lock(&inode->i_lock);
 635                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 636                        spin_unlock(&inode->i_lock);
 637                        continue;
 638                }
 639                if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 640                        spin_unlock(&inode->i_lock);
 641                        busy = 1;
 642                        continue;
 643                }
 644                if (atomic_read(&inode->i_count)) {
 645                        spin_unlock(&inode->i_lock);
 646                        busy = 1;
 647                        continue;
 648                }
 649
 650                inode->i_state |= I_FREEING;
 651                inode_lru_list_del(inode);
 652                spin_unlock(&inode->i_lock);
 653                list_add(&inode->i_lru, &dispose);
 654        }
 655        spin_unlock(&inode_sb_list_lock);
 656
 657        dispose_list(&dispose);
 658
 659        return busy;
 660}
 661
 662/*
 663 * Isolate the inode from the LRU in preparation for freeing it.
 664 *
 665 * Any inodes which are pinned purely because of attached pagecache have their
 666 * pagecache removed.  If the inode has metadata buffers attached to
 667 * mapping->private_list then try to remove them.
 668 *
 669 * If the inode has the I_REFERENCED flag set, then it means that it has been
 670 * used recently - the flag is set in iput_final(). When we encounter such an
 671 * inode, clear the flag and move it to the back of the LRU so it gets another
 672 * pass through the LRU before it gets reclaimed. This is necessary because of
 673 * the fact we are doing lazy LRU updates to minimise lock contention so the
 674 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 675 * with this flag set because they are the inodes that are out of order.
 676 */
 677static enum lru_status inode_lru_isolate(struct list_head *item,
 678                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 679{
 680        struct list_head *freeable = arg;
 681        struct inode    *inode = container_of(item, struct inode, i_lru);
 682
 683        /*
 684         * we are inverting the lru lock/inode->i_lock here, so use a trylock.
 685         * If we fail to get the lock, just skip it.
 686         */
 687        if (!spin_trylock(&inode->i_lock))
 688                return LRU_SKIP;
 689
 690        /*
 691         * Referenced or dirty inodes are still in use. Give them another pass
 692         * through the LRU as we canot reclaim them now.
 693         */
 694        if (atomic_read(&inode->i_count) ||
 695            (inode->i_state & ~I_REFERENCED)) {
 696                list_lru_isolate(lru, &inode->i_lru);
 697                spin_unlock(&inode->i_lock);
 698                this_cpu_dec(nr_unused);
 699                return LRU_REMOVED;
 700        }
 701
 702        /* recently referenced inodes get one more pass */
 703        if (inode->i_state & I_REFERENCED) {
 704                inode->i_state &= ~I_REFERENCED;
 705                spin_unlock(&inode->i_lock);
 706                return LRU_ROTATE;
 707        }
 708
 709        if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 710                __iget(inode);
 711                spin_unlock(&inode->i_lock);
 712                spin_unlock(lru_lock);
 713                if (remove_inode_buffers(inode)) {
 714                        unsigned long reap;
 715                        reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 716                        if (current_is_kswapd())
 717                                __count_vm_events(KSWAPD_INODESTEAL, reap);
 718                        else
 719                                __count_vm_events(PGINODESTEAL, reap);
 720                        if (current->reclaim_state)
 721                                current->reclaim_state->reclaimed_slab += reap;
 722                }
 723                iput(inode);
 724                spin_lock(lru_lock);
 725                return LRU_RETRY;
 726        }
 727
 728        WARN_ON(inode->i_state & I_NEW);
 729        inode->i_state |= I_FREEING;
 730        list_lru_isolate_move(lru, &inode->i_lru, freeable);
 731        spin_unlock(&inode->i_lock);
 732
 733        this_cpu_dec(nr_unused);
 734        return LRU_REMOVED;
 735}
 736
 737/*
 738 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 739 * This is called from the superblock shrinker function with a number of inodes
 740 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 741 * then are freed outside inode_lock by dispose_list().
 742 */
 743long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 744{
 745        LIST_HEAD(freeable);
 746        long freed;
 747
 748        freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 749                                     inode_lru_isolate, &freeable);
 750        dispose_list(&freeable);
 751        return freed;
 752}
 753
 754static void __wait_on_freeing_inode(struct inode *inode);
 755/*
 756 * Called with the inode lock held.
 757 */
 758static struct inode *find_inode(struct super_block *sb,
 759                                struct hlist_head *head,
 760                                int (*test)(struct inode *, void *),
 761                                void *data)
 762{
 763        struct inode *inode = NULL;
 764
 765repeat:
 766        hlist_for_each_entry(inode, head, i_hash) {
 767                if (inode->i_sb != sb)
 768                        continue;
 769                if (!test(inode, data))
 770                        continue;
 771                spin_lock(&inode->i_lock);
 772                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 773                        __wait_on_freeing_inode(inode);
 774                        goto repeat;
 775                }
 776                __iget(inode);
 777                spin_unlock(&inode->i_lock);
 778                return inode;
 779        }
 780        return NULL;
 781}
 782
 783/*
 784 * find_inode_fast is the fast path version of find_inode, see the comment at
 785 * iget_locked for details.
 786 */
 787static struct inode *find_inode_fast(struct super_block *sb,
 788                                struct hlist_head *head, unsigned long ino)
 789{
 790        struct inode *inode = NULL;
 791
 792repeat:
 793        hlist_for_each_entry(inode, head, i_hash) {
 794                if (inode->i_ino != ino)
 795                        continue;
 796                if (inode->i_sb != sb)
 797                        continue;
 798                spin_lock(&inode->i_lock);
 799                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 800                        __wait_on_freeing_inode(inode);
 801                        goto repeat;
 802                }
 803                __iget(inode);
 804                spin_unlock(&inode->i_lock);
 805                return inode;
 806        }
 807        return NULL;
 808}
 809
 810/*
 811 * Each cpu owns a range of LAST_INO_BATCH numbers.
 812 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 813 * to renew the exhausted range.
 814 *
 815 * This does not significantly increase overflow rate because every CPU can
 816 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 817 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 818 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 819 * overflow rate by 2x, which does not seem too significant.
 820 *
 821 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 822 * error if st_ino won't fit in target struct field. Use 32bit counter
 823 * here to attempt to avoid that.
 824 */
 825#define LAST_INO_BATCH 1024
 826static DEFINE_PER_CPU(unsigned int, last_ino);
 827
 828unsigned int get_next_ino(void)
 829{
 830        unsigned int *p = &get_cpu_var(last_ino);
 831        unsigned int res = *p;
 832
 833#ifdef CONFIG_SMP
 834        if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 835                static atomic_t shared_last_ino;
 836                int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 837
 838                res = next - LAST_INO_BATCH;
 839        }
 840#endif
 841
 842        *p = ++res;
 843        put_cpu_var(last_ino);
 844        return res;
 845}
 846EXPORT_SYMBOL(get_next_ino);
 847
 848/**
 849 *      new_inode_pseudo        - obtain an inode
 850 *      @sb: superblock
 851 *
 852 *      Allocates a new inode for given superblock.
 853 *      Inode wont be chained in superblock s_inodes list
 854 *      This means :
 855 *      - fs can't be unmount
 856 *      - quotas, fsnotify, writeback can't work
 857 */
 858struct inode *new_inode_pseudo(struct super_block *sb)
 859{
 860        struct inode *inode = alloc_inode(sb);
 861
 862        if (inode) {
 863                spin_lock(&inode->i_lock);
 864                inode->i_state = 0;
 865                spin_unlock(&inode->i_lock);
 866                INIT_LIST_HEAD(&inode->i_sb_list);
 867        }
 868        return inode;
 869}
 870
 871/**
 872 *      new_inode       - obtain an inode
 873 *      @sb: superblock
 874 *
 875 *      Allocates a new inode for given superblock. The default gfp_mask
 876 *      for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 877 *      If HIGHMEM pages are unsuitable or it is known that pages allocated
 878 *      for the page cache are not reclaimable or migratable,
 879 *      mapping_set_gfp_mask() must be called with suitable flags on the
 880 *      newly created inode's mapping
 881 *
 882 */
 883struct inode *new_inode(struct super_block *sb)
 884{
 885        struct inode *inode;
 886
 887        spin_lock_prefetch(&inode_sb_list_lock);
 888
 889        inode = new_inode_pseudo(sb);
 890        if (inode)
 891                inode_sb_list_add(inode);
 892        return inode;
 893}
 894EXPORT_SYMBOL(new_inode);
 895
 896#ifdef CONFIG_DEBUG_LOCK_ALLOC
 897void lockdep_annotate_inode_mutex_key(struct inode *inode)
 898{
 899        if (S_ISDIR(inode->i_mode)) {
 900                struct file_system_type *type = inode->i_sb->s_type;
 901
 902                /* Set new key only if filesystem hasn't already changed it */
 903                if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
 904                        /*
 905                         * ensure nobody is actually holding i_mutex
 906                         */
 907                        mutex_destroy(&inode->i_mutex);
 908                        mutex_init(&inode->i_mutex);
 909                        lockdep_set_class(&inode->i_mutex,
 910                                          &type->i_mutex_dir_key);
 911                }
 912        }
 913}
 914EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 915#endif
 916
 917/**
 918 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 919 * @inode:      new inode to unlock
 920 *
 921 * Called when the inode is fully initialised to clear the new state of the
 922 * inode and wake up anyone waiting for the inode to finish initialisation.
 923 */
 924void unlock_new_inode(struct inode *inode)
 925{
 926        lockdep_annotate_inode_mutex_key(inode);
 927        spin_lock(&inode->i_lock);
 928        WARN_ON(!(inode->i_state & I_NEW));
 929        inode->i_state &= ~I_NEW;
 930        smp_mb();
 931        wake_up_bit(&inode->i_state, __I_NEW);
 932        spin_unlock(&inode->i_lock);
 933}
 934EXPORT_SYMBOL(unlock_new_inode);
 935
 936/**
 937 * lock_two_nondirectories - take two i_mutexes on non-directory objects
 938 *
 939 * Lock any non-NULL argument that is not a directory.
 940 * Zero, one or two objects may be locked by this function.
 941 *
 942 * @inode1: first inode to lock
 943 * @inode2: second inode to lock
 944 */
 945void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 946{
 947        if (inode1 > inode2)
 948                swap(inode1, inode2);
 949
 950        if (inode1 && !S_ISDIR(inode1->i_mode))
 951                mutex_lock(&inode1->i_mutex);
 952        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 953                mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
 954}
 955EXPORT_SYMBOL(lock_two_nondirectories);
 956
 957/**
 958 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
 959 * @inode1: first inode to unlock
 960 * @inode2: second inode to unlock
 961 */
 962void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 963{
 964        if (inode1 && !S_ISDIR(inode1->i_mode))
 965                mutex_unlock(&inode1->i_mutex);
 966        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 967                mutex_unlock(&inode2->i_mutex);
 968}
 969EXPORT_SYMBOL(unlock_two_nondirectories);
 970
 971/**
 972 * iget5_locked - obtain an inode from a mounted file system
 973 * @sb:         super block of file system
 974 * @hashval:    hash value (usually inode number) to get
 975 * @test:       callback used for comparisons between inodes
 976 * @set:        callback used to initialize a new struct inode
 977 * @data:       opaque data pointer to pass to @test and @set
 978 *
 979 * Search for the inode specified by @hashval and @data in the inode cache,
 980 * and if present it is return it with an increased reference count. This is
 981 * a generalized version of iget_locked() for file systems where the inode
 982 * number is not sufficient for unique identification of an inode.
 983 *
 984 * If the inode is not in cache, allocate a new inode and return it locked,
 985 * hashed, and with the I_NEW flag set. The file system gets to fill it in
 986 * before unlocking it via unlock_new_inode().
 987 *
 988 * Note both @test and @set are called with the inode_hash_lock held, so can't
 989 * sleep.
 990 */
 991struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
 992                int (*test)(struct inode *, void *),
 993                int (*set)(struct inode *, void *), void *data)
 994{
 995        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
 996        struct inode *inode;
 997
 998        spin_lock(&inode_hash_lock);
 999        inode = find_inode(sb, head, test, data);
1000        spin_unlock(&inode_hash_lock);
1001
1002        if (inode) {
1003                wait_on_inode(inode);
1004                return inode;
1005        }
1006
1007        inode = alloc_inode(sb);
1008        if (inode) {
1009                struct inode *old;
1010
1011                spin_lock(&inode_hash_lock);
1012                /* We released the lock, so.. */
1013                old = find_inode(sb, head, test, data);
1014                if (!old) {
1015                        if (set(inode, data))
1016                                goto set_failed;
1017
1018                        spin_lock(&inode->i_lock);
1019                        inode->i_state = I_NEW;
1020                        hlist_add_head(&inode->i_hash, head);
1021                        spin_unlock(&inode->i_lock);
1022                        inode_sb_list_add(inode);
1023                        spin_unlock(&inode_hash_lock);
1024
1025                        /* Return the locked inode with I_NEW set, the
1026                         * caller is responsible for filling in the contents
1027                         */
1028                        return inode;
1029                }
1030
1031                /*
1032                 * Uhhuh, somebody else created the same inode under
1033                 * us. Use the old inode instead of the one we just
1034                 * allocated.
1035                 */
1036                spin_unlock(&inode_hash_lock);
1037                destroy_inode(inode);
1038                inode = old;
1039                wait_on_inode(inode);
1040        }
1041        return inode;
1042
1043set_failed:
1044        spin_unlock(&inode_hash_lock);
1045        destroy_inode(inode);
1046        return NULL;
1047}
1048EXPORT_SYMBOL(iget5_locked);
1049
1050/**
1051 * iget_locked - obtain an inode from a mounted file system
1052 * @sb:         super block of file system
1053 * @ino:        inode number to get
1054 *
1055 * Search for the inode specified by @ino in the inode cache and if present
1056 * return it with an increased reference count. This is for file systems
1057 * where the inode number is sufficient for unique identification of an inode.
1058 *
1059 * If the inode is not in cache, allocate a new inode and return it locked,
1060 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1061 * before unlocking it via unlock_new_inode().
1062 */
1063struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1064{
1065        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1066        struct inode *inode;
1067
1068        spin_lock(&inode_hash_lock);
1069        inode = find_inode_fast(sb, head, ino);
1070        spin_unlock(&inode_hash_lock);
1071        if (inode) {
1072                wait_on_inode(inode);
1073                return inode;
1074        }
1075
1076        inode = alloc_inode(sb);
1077        if (inode) {
1078                struct inode *old;
1079
1080                spin_lock(&inode_hash_lock);
1081                /* We released the lock, so.. */
1082                old = find_inode_fast(sb, head, ino);
1083                if (!old) {
1084                        inode->i_ino = ino;
1085                        spin_lock(&inode->i_lock);
1086                        inode->i_state = I_NEW;
1087                        hlist_add_head(&inode->i_hash, head);
1088                        spin_unlock(&inode->i_lock);
1089                        inode_sb_list_add(inode);
1090                        spin_unlock(&inode_hash_lock);
1091
1092                        /* Return the locked inode with I_NEW set, the
1093                         * caller is responsible for filling in the contents
1094                         */
1095                        return inode;
1096                }
1097
1098                /*
1099                 * Uhhuh, somebody else created the same inode under
1100                 * us. Use the old inode instead of the one we just
1101                 * allocated.
1102                 */
1103                spin_unlock(&inode_hash_lock);
1104                destroy_inode(inode);
1105                inode = old;
1106                wait_on_inode(inode);
1107        }
1108        return inode;
1109}
1110EXPORT_SYMBOL(iget_locked);
1111
1112/*
1113 * search the inode cache for a matching inode number.
1114 * If we find one, then the inode number we are trying to
1115 * allocate is not unique and so we should not use it.
1116 *
1117 * Returns 1 if the inode number is unique, 0 if it is not.
1118 */
1119static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1120{
1121        struct hlist_head *b = inode_hashtable + hash(sb, ino);
1122        struct inode *inode;
1123
1124        spin_lock(&inode_hash_lock);
1125        hlist_for_each_entry(inode, b, i_hash) {
1126                if (inode->i_ino == ino && inode->i_sb == sb) {
1127                        spin_unlock(&inode_hash_lock);
1128                        return 0;
1129                }
1130        }
1131        spin_unlock(&inode_hash_lock);
1132
1133        return 1;
1134}
1135
1136/**
1137 *      iunique - get a unique inode number
1138 *      @sb: superblock
1139 *      @max_reserved: highest reserved inode number
1140 *
1141 *      Obtain an inode number that is unique on the system for a given
1142 *      superblock. This is used by file systems that have no natural
1143 *      permanent inode numbering system. An inode number is returned that
1144 *      is higher than the reserved limit but unique.
1145 *
1146 *      BUGS:
1147 *      With a large number of inodes live on the file system this function
1148 *      currently becomes quite slow.
1149 */
1150ino_t iunique(struct super_block *sb, ino_t max_reserved)
1151{
1152        /*
1153         * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1154         * error if st_ino won't fit in target struct field. Use 32bit counter
1155         * here to attempt to avoid that.
1156         */
1157        static DEFINE_SPINLOCK(iunique_lock);
1158        static unsigned int counter;
1159        ino_t res;
1160
1161        spin_lock(&iunique_lock);
1162        do {
1163                if (counter <= max_reserved)
1164                        counter = max_reserved + 1;
1165                res = counter++;
1166        } while (!test_inode_iunique(sb, res));
1167        spin_unlock(&iunique_lock);
1168
1169        return res;
1170}
1171EXPORT_SYMBOL(iunique);
1172
1173struct inode *igrab(struct inode *inode)
1174{
1175        spin_lock(&inode->i_lock);
1176        if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1177                __iget(inode);
1178                spin_unlock(&inode->i_lock);
1179        } else {
1180                spin_unlock(&inode->i_lock);
1181                /*
1182                 * Handle the case where s_op->clear_inode is not been
1183                 * called yet, and somebody is calling igrab
1184                 * while the inode is getting freed.
1185                 */
1186                inode = NULL;
1187        }
1188        return inode;
1189}
1190EXPORT_SYMBOL(igrab);
1191
1192/**
1193 * ilookup5_nowait - search for an inode in the inode cache
1194 * @sb:         super block of file system to search
1195 * @hashval:    hash value (usually inode number) to search for
1196 * @test:       callback used for comparisons between inodes
1197 * @data:       opaque data pointer to pass to @test
1198 *
1199 * Search for the inode specified by @hashval and @data in the inode cache.
1200 * If the inode is in the cache, the inode is returned with an incremented
1201 * reference count.
1202 *
1203 * Note: I_NEW is not waited upon so you have to be very careful what you do
1204 * with the returned inode.  You probably should be using ilookup5() instead.
1205 *
1206 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1207 */
1208struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1209                int (*test)(struct inode *, void *), void *data)
1210{
1211        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1212        struct inode *inode;
1213
1214        spin_lock(&inode_hash_lock);
1215        inode = find_inode(sb, head, test, data);
1216        spin_unlock(&inode_hash_lock);
1217
1218        return inode;
1219}
1220EXPORT_SYMBOL(ilookup5_nowait);
1221
1222/**
1223 * ilookup5 - search for an inode in the inode cache
1224 * @sb:         super block of file system to search
1225 * @hashval:    hash value (usually inode number) to search for
1226 * @test:       callback used for comparisons between inodes
1227 * @data:       opaque data pointer to pass to @test
1228 *
1229 * Search for the inode specified by @hashval and @data in the inode cache,
1230 * and if the inode is in the cache, return the inode with an incremented
1231 * reference count.  Waits on I_NEW before returning the inode.
1232 * returned with an incremented reference count.
1233 *
1234 * This is a generalized version of ilookup() for file systems where the
1235 * inode number is not sufficient for unique identification of an inode.
1236 *
1237 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1238 */
1239struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1240                int (*test)(struct inode *, void *), void *data)
1241{
1242        struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1243
1244        if (inode)
1245                wait_on_inode(inode);
1246        return inode;
1247}
1248EXPORT_SYMBOL(ilookup5);
1249
1250/**
1251 * ilookup - search for an inode in the inode cache
1252 * @sb:         super block of file system to search
1253 * @ino:        inode number to search for
1254 *
1255 * Search for the inode @ino in the inode cache, and if the inode is in the
1256 * cache, the inode is returned with an incremented reference count.
1257 */
1258struct inode *ilookup(struct super_block *sb, unsigned long ino)
1259{
1260        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1261        struct inode *inode;
1262
1263        spin_lock(&inode_hash_lock);
1264        inode = find_inode_fast(sb, head, ino);
1265        spin_unlock(&inode_hash_lock);
1266
1267        if (inode)
1268                wait_on_inode(inode);
1269        return inode;
1270}
1271EXPORT_SYMBOL(ilookup);
1272
1273/**
1274 * find_inode_nowait - find an inode in the inode cache
1275 * @sb:         super block of file system to search
1276 * @hashval:    hash value (usually inode number) to search for
1277 * @match:      callback used for comparisons between inodes
1278 * @data:       opaque data pointer to pass to @match
1279 *
1280 * Search for the inode specified by @hashval and @data in the inode
1281 * cache, where the helper function @match will return 0 if the inode
1282 * does not match, 1 if the inode does match, and -1 if the search
1283 * should be stopped.  The @match function must be responsible for
1284 * taking the i_lock spin_lock and checking i_state for an inode being
1285 * freed or being initialized, and incrementing the reference count
1286 * before returning 1.  It also must not sleep, since it is called with
1287 * the inode_hash_lock spinlock held.
1288 *
1289 * This is a even more generalized version of ilookup5() when the
1290 * function must never block --- find_inode() can block in
1291 * __wait_on_freeing_inode() --- or when the caller can not increment
1292 * the reference count because the resulting iput() might cause an
1293 * inode eviction.  The tradeoff is that the @match funtion must be
1294 * very carefully implemented.
1295 */
1296struct inode *find_inode_nowait(struct super_block *sb,
1297                                unsigned long hashval,
1298                                int (*match)(struct inode *, unsigned long,
1299                                             void *),
1300                                void *data)
1301{
1302        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1303        struct inode *inode, *ret_inode = NULL;
1304        int mval;
1305
1306        spin_lock(&inode_hash_lock);
1307        hlist_for_each_entry(inode, head, i_hash) {
1308                if (inode->i_sb != sb)
1309                        continue;
1310                mval = match(inode, hashval, data);
1311                if (mval == 0)
1312                        continue;
1313                if (mval == 1)
1314                        ret_inode = inode;
1315                goto out;
1316        }
1317out:
1318        spin_unlock(&inode_hash_lock);
1319        return ret_inode;
1320}
1321EXPORT_SYMBOL(find_inode_nowait);
1322
1323int insert_inode_locked(struct inode *inode)
1324{
1325        struct super_block *sb = inode->i_sb;
1326        ino_t ino = inode->i_ino;
1327        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1328
1329        while (1) {
1330                struct inode *old = NULL;
1331                spin_lock(&inode_hash_lock);
1332                hlist_for_each_entry(old, head, i_hash) {
1333                        if (old->i_ino != ino)
1334                                continue;
1335                        if (old->i_sb != sb)
1336                                continue;
1337                        spin_lock(&old->i_lock);
1338                        if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1339                                spin_unlock(&old->i_lock);
1340                                continue;
1341                        }
1342                        break;
1343                }
1344                if (likely(!old)) {
1345                        spin_lock(&inode->i_lock);
1346                        inode->i_state |= I_NEW;
1347                        hlist_add_head(&inode->i_hash, head);
1348                        spin_unlock(&inode->i_lock);
1349                        spin_unlock(&inode_hash_lock);
1350                        return 0;
1351                }
1352                __iget(old);
1353                spin_unlock(&old->i_lock);
1354                spin_unlock(&inode_hash_lock);
1355                wait_on_inode(old);
1356                if (unlikely(!inode_unhashed(old))) {
1357                        iput(old);
1358                        return -EBUSY;
1359                }
1360                iput(old);
1361        }
1362}
1363EXPORT_SYMBOL(insert_inode_locked);
1364
1365int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1366                int (*test)(struct inode *, void *), void *data)
1367{
1368        struct super_block *sb = inode->i_sb;
1369        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1370
1371        while (1) {
1372                struct inode *old = NULL;
1373
1374                spin_lock(&inode_hash_lock);
1375                hlist_for_each_entry(old, head, i_hash) {
1376                        if (old->i_sb != sb)
1377                                continue;
1378                        if (!test(old, data))
1379                                continue;
1380                        spin_lock(&old->i_lock);
1381                        if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1382                                spin_unlock(&old->i_lock);
1383                                continue;
1384                        }
1385                        break;
1386                }
1387                if (likely(!old)) {
1388                        spin_lock(&inode->i_lock);
1389                        inode->i_state |= I_NEW;
1390                        hlist_add_head(&inode->i_hash, head);
1391                        spin_unlock(&inode->i_lock);
1392                        spin_unlock(&inode_hash_lock);
1393                        return 0;
1394                }
1395                __iget(old);
1396                spin_unlock(&old->i_lock);
1397                spin_unlock(&inode_hash_lock);
1398                wait_on_inode(old);
1399                if (unlikely(!inode_unhashed(old))) {
1400                        iput(old);
1401                        return -EBUSY;
1402                }
1403                iput(old);
1404        }
1405}
1406EXPORT_SYMBOL(insert_inode_locked4);
1407
1408
1409int generic_delete_inode(struct inode *inode)
1410{
1411        return 1;
1412}
1413EXPORT_SYMBOL(generic_delete_inode);
1414
1415/*
1416 * Called when we're dropping the last reference
1417 * to an inode.
1418 *
1419 * Call the FS "drop_inode()" function, defaulting to
1420 * the legacy UNIX filesystem behaviour.  If it tells
1421 * us to evict inode, do so.  Otherwise, retain inode
1422 * in cache if fs is alive, sync and evict if fs is
1423 * shutting down.
1424 */
1425static void iput_final(struct inode *inode)
1426{
1427        struct super_block *sb = inode->i_sb;
1428        const struct super_operations *op = inode->i_sb->s_op;
1429        int drop;
1430
1431        WARN_ON(inode->i_state & I_NEW);
1432
1433        if (op->drop_inode)
1434                drop = op->drop_inode(inode);
1435        else
1436                drop = generic_drop_inode(inode);
1437
1438        if (!drop && (sb->s_flags & MS_ACTIVE)) {
1439                inode->i_state |= I_REFERENCED;
1440                inode_add_lru(inode);
1441                spin_unlock(&inode->i_lock);
1442                return;
1443        }
1444
1445        if (!drop) {
1446                inode->i_state |= I_WILL_FREE;
1447                spin_unlock(&inode->i_lock);
1448                write_inode_now(inode, 1);
1449                spin_lock(&inode->i_lock);
1450                WARN_ON(inode->i_state & I_NEW);
1451                inode->i_state &= ~I_WILL_FREE;
1452        }
1453
1454        inode->i_state |= I_FREEING;
1455        if (!list_empty(&inode->i_lru))
1456                inode_lru_list_del(inode);
1457        spin_unlock(&inode->i_lock);
1458
1459        evict(inode);
1460}
1461
1462/**
1463 *      iput    - put an inode
1464 *      @inode: inode to put
1465 *
1466 *      Puts an inode, dropping its usage count. If the inode use count hits
1467 *      zero, the inode is then freed and may also be destroyed.
1468 *
1469 *      Consequently, iput() can sleep.
1470 */
1471void iput(struct inode *inode)
1472{
1473        if (!inode)
1474                return;
1475        BUG_ON(inode->i_state & I_CLEAR);
1476retry:
1477        if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1478                if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1479                        atomic_inc(&inode->i_count);
1480                        inode->i_state &= ~I_DIRTY_TIME;
1481                        spin_unlock(&inode->i_lock);
1482                        trace_writeback_lazytime_iput(inode);
1483                        mark_inode_dirty_sync(inode);
1484                        goto retry;
1485                }
1486                iput_final(inode);
1487        }
1488}
1489EXPORT_SYMBOL(iput);
1490
1491/**
1492 *      bmap    - find a block number in a file
1493 *      @inode: inode of file
1494 *      @block: block to find
1495 *
1496 *      Returns the block number on the device holding the inode that
1497 *      is the disk block number for the block of the file requested.
1498 *      That is, asked for block 4 of inode 1 the function will return the
1499 *      disk block relative to the disk start that holds that block of the
1500 *      file.
1501 */
1502sector_t bmap(struct inode *inode, sector_t block)
1503{
1504        sector_t res = 0;
1505        if (inode->i_mapping->a_ops->bmap)
1506                res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1507        return res;
1508}
1509EXPORT_SYMBOL(bmap);
1510
1511/*
1512 * With relative atime, only update atime if the previous atime is
1513 * earlier than either the ctime or mtime or if at least a day has
1514 * passed since the last atime update.
1515 */
1516static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1517                             struct timespec now)
1518{
1519
1520        if (!(mnt->mnt_flags & MNT_RELATIME))
1521                return 1;
1522        /*
1523         * Is mtime younger than atime? If yes, update atime:
1524         */
1525        if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1526                return 1;
1527        /*
1528         * Is ctime younger than atime? If yes, update atime:
1529         */
1530        if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1531                return 1;
1532
1533        /*
1534         * Is the previous atime value older than a day? If yes,
1535         * update atime:
1536         */
1537        if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1538                return 1;
1539        /*
1540         * Good, we can skip the atime update:
1541         */
1542        return 0;
1543}
1544
1545int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1546{
1547        int iflags = I_DIRTY_TIME;
1548
1549        if (flags & S_ATIME)
1550                inode->i_atime = *time;
1551        if (flags & S_VERSION)
1552                inode_inc_iversion(inode);
1553        if (flags & S_CTIME)
1554                inode->i_ctime = *time;
1555        if (flags & S_MTIME)
1556                inode->i_mtime = *time;
1557
1558        if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1559                iflags |= I_DIRTY_SYNC;
1560        __mark_inode_dirty(inode, iflags);
1561        return 0;
1562}
1563EXPORT_SYMBOL(generic_update_time);
1564
1565/*
1566 * This does the actual work of updating an inodes time or version.  Must have
1567 * had called mnt_want_write() before calling this.
1568 */
1569static int update_time(struct inode *inode, struct timespec *time, int flags)
1570{
1571        int (*update_time)(struct inode *, struct timespec *, int);
1572
1573        update_time = inode->i_op->update_time ? inode->i_op->update_time :
1574                generic_update_time;
1575
1576        return update_time(inode, time, flags);
1577}
1578
1579/**
1580 *      touch_atime     -       update the access time
1581 *      @path: the &struct path to update
1582 *
1583 *      Update the accessed time on an inode and mark it for writeback.
1584 *      This function automatically handles read only file systems and media,
1585 *      as well as the "noatime" flag and inode specific "noatime" markers.
1586 */
1587void touch_atime(const struct path *path)
1588{
1589        struct vfsmount *mnt = path->mnt;
1590        struct inode *inode = path->dentry->d_inode;
1591        struct timespec now;
1592
1593        if (inode->i_flags & S_NOATIME)
1594                return;
1595        if (IS_NOATIME(inode))
1596                return;
1597        if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1598                return;
1599
1600        if (mnt->mnt_flags & MNT_NOATIME)
1601                return;
1602        if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1603                return;
1604
1605        now = current_fs_time(inode->i_sb);
1606
1607        if (!relatime_need_update(mnt, inode, now))
1608                return;
1609
1610        if (timespec_equal(&inode->i_atime, &now))
1611                return;
1612
1613        if (!sb_start_write_trylock(inode->i_sb))
1614                return;
1615
1616        if (__mnt_want_write(mnt))
1617                goto skip_update;
1618        /*
1619         * File systems can error out when updating inodes if they need to
1620         * allocate new space to modify an inode (such is the case for
1621         * Btrfs), but since we touch atime while walking down the path we
1622         * really don't care if we failed to update the atime of the file,
1623         * so just ignore the return value.
1624         * We may also fail on filesystems that have the ability to make parts
1625         * of the fs read only, e.g. subvolumes in Btrfs.
1626         */
1627        update_time(inode, &now, S_ATIME);
1628        __mnt_drop_write(mnt);
1629skip_update:
1630        sb_end_write(inode->i_sb);
1631}
1632EXPORT_SYMBOL(touch_atime);
1633
1634/*
1635 * The logic we want is
1636 *
1637 *      if suid or (sgid and xgrp)
1638 *              remove privs
1639 */
1640int should_remove_suid(struct dentry *dentry)
1641{
1642        umode_t mode = dentry->d_inode->i_mode;
1643        int kill = 0;
1644
1645        /* suid always must be killed */
1646        if (unlikely(mode & S_ISUID))
1647                kill = ATTR_KILL_SUID;
1648
1649        /*
1650         * sgid without any exec bits is just a mandatory locking mark; leave
1651         * it alone.  If some exec bits are set, it's a real sgid; kill it.
1652         */
1653        if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1654                kill |= ATTR_KILL_SGID;
1655
1656        if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1657                return kill;
1658
1659        return 0;
1660}
1661EXPORT_SYMBOL(should_remove_suid);
1662
1663static int __remove_suid(struct dentry *dentry, int kill)
1664{
1665        struct iattr newattrs;
1666
1667        newattrs.ia_valid = ATTR_FORCE | kill;
1668        /*
1669         * Note we call this on write, so notify_change will not
1670         * encounter any conflicting delegations:
1671         */
1672        return notify_change(dentry, &newattrs, NULL);
1673}
1674
1675int file_remove_suid(struct file *file)
1676{
1677        struct dentry *dentry = file->f_path.dentry;
1678        struct inode *inode = dentry->d_inode;
1679        int killsuid;
1680        int killpriv;
1681        int error = 0;
1682
1683        /* Fast path for nothing security related */
1684        if (IS_NOSEC(inode))
1685                return 0;
1686
1687        killsuid = should_remove_suid(dentry);
1688        killpriv = security_inode_need_killpriv(dentry);
1689
1690        if (killpriv < 0)
1691                return killpriv;
1692        if (killpriv)
1693                error = security_inode_killpriv(dentry);
1694        if (!error && killsuid)
1695                error = __remove_suid(dentry, killsuid);
1696        if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1697                inode->i_flags |= S_NOSEC;
1698
1699        return error;
1700}
1701EXPORT_SYMBOL(file_remove_suid);
1702
1703/**
1704 *      file_update_time        -       update mtime and ctime time
1705 *      @file: file accessed
1706 *
1707 *      Update the mtime and ctime members of an inode and mark the inode
1708 *      for writeback.  Note that this function is meant exclusively for
1709 *      usage in the file write path of filesystems, and filesystems may
1710 *      choose to explicitly ignore update via this function with the
1711 *      S_NOCMTIME inode flag, e.g. for network filesystem where these
1712 *      timestamps are handled by the server.  This can return an error for
1713 *      file systems who need to allocate space in order to update an inode.
1714 */
1715
1716int file_update_time(struct file *file)
1717{
1718        struct inode *inode = file_inode(file);
1719        struct timespec now;
1720        int sync_it = 0;
1721        int ret;
1722
1723        /* First try to exhaust all avenues to not sync */
1724        if (IS_NOCMTIME(inode))
1725                return 0;
1726
1727        now = current_fs_time(inode->i_sb);
1728        if (!timespec_equal(&inode->i_mtime, &now))
1729                sync_it = S_MTIME;
1730
1731        if (!timespec_equal(&inode->i_ctime, &now))
1732                sync_it |= S_CTIME;
1733
1734        if (IS_I_VERSION(inode))
1735                sync_it |= S_VERSION;
1736
1737        if (!sync_it)
1738                return 0;
1739
1740        /* Finally allowed to write? Takes lock. */
1741        if (__mnt_want_write_file(file))
1742                return 0;
1743
1744        ret = update_time(inode, &now, sync_it);
1745        __mnt_drop_write_file(file);
1746
1747        return ret;
1748}
1749EXPORT_SYMBOL(file_update_time);
1750
1751int inode_needs_sync(struct inode *inode)
1752{
1753        if (IS_SYNC(inode))
1754                return 1;
1755        if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1756                return 1;
1757        return 0;
1758}
1759EXPORT_SYMBOL(inode_needs_sync);
1760
1761/*
1762 * If we try to find an inode in the inode hash while it is being
1763 * deleted, we have to wait until the filesystem completes its
1764 * deletion before reporting that it isn't found.  This function waits
1765 * until the deletion _might_ have completed.  Callers are responsible
1766 * to recheck inode state.
1767 *
1768 * It doesn't matter if I_NEW is not set initially, a call to
1769 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1770 * will DTRT.
1771 */
1772static void __wait_on_freeing_inode(struct inode *inode)
1773{
1774        wait_queue_head_t *wq;
1775        DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1776        wq = bit_waitqueue(&inode->i_state, __I_NEW);
1777        prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1778        spin_unlock(&inode->i_lock);
1779        spin_unlock(&inode_hash_lock);
1780        schedule();
1781        finish_wait(wq, &wait.wait);
1782        spin_lock(&inode_hash_lock);
1783}
1784
1785static __initdata unsigned long ihash_entries;
1786static int __init set_ihash_entries(char *str)
1787{
1788        if (!str)
1789                return 0;
1790        ihash_entries = simple_strtoul(str, &str, 0);
1791        return 1;
1792}
1793__setup("ihash_entries=", set_ihash_entries);
1794
1795/*
1796 * Initialize the waitqueues and inode hash table.
1797 */
1798void __init inode_init_early(void)
1799{
1800        unsigned int loop;
1801
1802        /* If hashes are distributed across NUMA nodes, defer
1803         * hash allocation until vmalloc space is available.
1804         */
1805        if (hashdist)
1806                return;
1807
1808        inode_hashtable =
1809                alloc_large_system_hash("Inode-cache",
1810                                        sizeof(struct hlist_head),
1811                                        ihash_entries,
1812                                        14,
1813                                        HASH_EARLY,
1814                                        &i_hash_shift,
1815                                        &i_hash_mask,
1816                                        0,
1817                                        0);
1818
1819        for (loop = 0; loop < (1U << i_hash_shift); loop++)
1820                INIT_HLIST_HEAD(&inode_hashtable[loop]);
1821}
1822
1823void __init inode_init(void)
1824{
1825        unsigned int loop;
1826
1827        /* inode slab cache */
1828        inode_cachep = kmem_cache_create("inode_cache",
1829                                         sizeof(struct inode),
1830                                         0,
1831                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1832                                         SLAB_MEM_SPREAD),
1833                                         init_once);
1834
1835        /* Hash may have been set up in inode_init_early */
1836        if (!hashdist)
1837                return;
1838
1839        inode_hashtable =
1840                alloc_large_system_hash("Inode-cache",
1841                                        sizeof(struct hlist_head),
1842                                        ihash_entries,
1843                                        14,
1844                                        0,
1845                                        &i_hash_shift,
1846                                        &i_hash_mask,
1847                                        0,
1848                                        0);
1849
1850        for (loop = 0; loop < (1U << i_hash_shift); loop++)
1851                INIT_HLIST_HEAD(&inode_hashtable[loop]);
1852}
1853
1854void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1855{
1856        inode->i_mode = mode;
1857        if (S_ISCHR(mode)) {
1858                inode->i_fop = &def_chr_fops;
1859                inode->i_rdev = rdev;
1860        } else if (S_ISBLK(mode)) {
1861                inode->i_fop = &def_blk_fops;
1862                inode->i_rdev = rdev;
1863        } else if (S_ISFIFO(mode))
1864                inode->i_fop = &pipefifo_fops;
1865        else if (S_ISSOCK(mode))
1866                ;       /* leave it no_open_fops */
1867        else
1868                printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1869                                  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1870                                  inode->i_ino);
1871}
1872EXPORT_SYMBOL(init_special_inode);
1873
1874/**
1875 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1876 * @inode: New inode
1877 * @dir: Directory inode
1878 * @mode: mode of the new inode
1879 */
1880void inode_init_owner(struct inode *inode, const struct inode *dir,
1881                        umode_t mode)
1882{
1883        inode->i_uid = current_fsuid();
1884        if (dir && dir->i_mode & S_ISGID) {
1885                inode->i_gid = dir->i_gid;
1886                if (S_ISDIR(mode))
1887                        mode |= S_ISGID;
1888        } else
1889                inode->i_gid = current_fsgid();
1890        inode->i_mode = mode;
1891}
1892EXPORT_SYMBOL(inode_init_owner);
1893
1894/**
1895 * inode_owner_or_capable - check current task permissions to inode
1896 * @inode: inode being checked
1897 *
1898 * Return true if current either has CAP_FOWNER in a namespace with the
1899 * inode owner uid mapped, or owns the file.
1900 */
1901bool inode_owner_or_capable(const struct inode *inode)
1902{
1903        struct user_namespace *ns;
1904
1905        if (uid_eq(current_fsuid(), inode->i_uid))
1906                return true;
1907
1908        ns = current_user_ns();
1909        if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1910                return true;
1911        return false;
1912}
1913EXPORT_SYMBOL(inode_owner_or_capable);
1914
1915/*
1916 * Direct i/o helper functions
1917 */
1918static void __inode_dio_wait(struct inode *inode)
1919{
1920        wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1921        DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1922
1923        do {
1924                prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1925                if (atomic_read(&inode->i_dio_count))
1926                        schedule();
1927        } while (atomic_read(&inode->i_dio_count));
1928        finish_wait(wq, &q.wait);
1929}
1930
1931/**
1932 * inode_dio_wait - wait for outstanding DIO requests to finish
1933 * @inode: inode to wait for
1934 *
1935 * Waits for all pending direct I/O requests to finish so that we can
1936 * proceed with a truncate or equivalent operation.
1937 *
1938 * Must be called under a lock that serializes taking new references
1939 * to i_dio_count, usually by inode->i_mutex.
1940 */
1941void inode_dio_wait(struct inode *inode)
1942{
1943        if (atomic_read(&inode->i_dio_count))
1944                __inode_dio_wait(inode);
1945}
1946EXPORT_SYMBOL(inode_dio_wait);
1947
1948/*
1949 * inode_dio_done - signal finish of a direct I/O requests
1950 * @inode: inode the direct I/O happens on
1951 *
1952 * This is called once we've finished processing a direct I/O request,
1953 * and is used to wake up callers waiting for direct I/O to be quiesced.
1954 */
1955void inode_dio_done(struct inode *inode)
1956{
1957        if (atomic_dec_and_test(&inode->i_dio_count))
1958                wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1959}
1960EXPORT_SYMBOL(inode_dio_done);
1961
1962/*
1963 * inode_set_flags - atomically set some inode flags
1964 *
1965 * Note: the caller should be holding i_mutex, or else be sure that
1966 * they have exclusive access to the inode structure (i.e., while the
1967 * inode is being instantiated).  The reason for the cmpxchg() loop
1968 * --- which wouldn't be necessary if all code paths which modify
1969 * i_flags actually followed this rule, is that there is at least one
1970 * code path which doesn't today --- for example,
1971 * __generic_file_aio_write() calls file_remove_suid() without holding
1972 * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1973 *
1974 * In the long run, i_mutex is overkill, and we should probably look
1975 * at using the i_lock spinlock to protect i_flags, and then make sure
1976 * it is so documented in include/linux/fs.h and that all code follows
1977 * the locking convention!!
1978 */
1979void inode_set_flags(struct inode *inode, unsigned int flags,
1980                     unsigned int mask)
1981{
1982        unsigned int old_flags, new_flags;
1983
1984        WARN_ON_ONCE(flags & ~mask);
1985        do {
1986                old_flags = ACCESS_ONCE(inode->i_flags);
1987                new_flags = (old_flags & ~mask) | flags;
1988        } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1989                                  new_flags) != old_flags));
1990}
1991EXPORT_SYMBOL(inode_set_flags);
1992