linux/fs/libfs.c
<<
>>
Prefs
   1/*
   2 *      fs/libfs.c
   3 *      Library for filesystems writers.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/export.h>
   8#include <linux/pagemap.h>
   9#include <linux/slab.h>
  10#include <linux/mount.h>
  11#include <linux/vfs.h>
  12#include <linux/quotaops.h>
  13#include <linux/mutex.h>
  14#include <linux/namei.h>
  15#include <linux/exportfs.h>
  16#include <linux/writeback.h>
  17#include <linux/buffer_head.h> /* sync_mapping_buffers */
  18
  19#include <asm/uaccess.h>
  20
  21#include "internal.h"
  22
  23static inline int simple_positive(struct dentry *dentry)
  24{
  25        return dentry->d_inode && !d_unhashed(dentry);
  26}
  27
  28int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  29                   struct kstat *stat)
  30{
  31        struct inode *inode = dentry->d_inode;
  32        generic_fillattr(inode, stat);
  33        stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
  34        return 0;
  35}
  36EXPORT_SYMBOL(simple_getattr);
  37
  38int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  39{
  40        buf->f_type = dentry->d_sb->s_magic;
  41        buf->f_bsize = PAGE_CACHE_SIZE;
  42        buf->f_namelen = NAME_MAX;
  43        return 0;
  44}
  45EXPORT_SYMBOL(simple_statfs);
  46
  47/*
  48 * Retaining negative dentries for an in-memory filesystem just wastes
  49 * memory and lookup time: arrange for them to be deleted immediately.
  50 */
  51int always_delete_dentry(const struct dentry *dentry)
  52{
  53        return 1;
  54}
  55EXPORT_SYMBOL(always_delete_dentry);
  56
  57const struct dentry_operations simple_dentry_operations = {
  58        .d_delete = always_delete_dentry,
  59};
  60EXPORT_SYMBOL(simple_dentry_operations);
  61
  62/*
  63 * Lookup the data. This is trivial - if the dentry didn't already
  64 * exist, we know it is negative.  Set d_op to delete negative dentries.
  65 */
  66struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  67{
  68        if (dentry->d_name.len > NAME_MAX)
  69                return ERR_PTR(-ENAMETOOLONG);
  70        if (!dentry->d_sb->s_d_op)
  71                d_set_d_op(dentry, &simple_dentry_operations);
  72        d_add(dentry, NULL);
  73        return NULL;
  74}
  75EXPORT_SYMBOL(simple_lookup);
  76
  77int dcache_dir_open(struct inode *inode, struct file *file)
  78{
  79        static struct qstr cursor_name = QSTR_INIT(".", 1);
  80
  81        file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
  82
  83        return file->private_data ? 0 : -ENOMEM;
  84}
  85EXPORT_SYMBOL(dcache_dir_open);
  86
  87int dcache_dir_close(struct inode *inode, struct file *file)
  88{
  89        dput(file->private_data);
  90        return 0;
  91}
  92EXPORT_SYMBOL(dcache_dir_close);
  93
  94loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
  95{
  96        struct dentry *dentry = file->f_path.dentry;
  97        mutex_lock(&dentry->d_inode->i_mutex);
  98        switch (whence) {
  99                case 1:
 100                        offset += file->f_pos;
 101                case 0:
 102                        if (offset >= 0)
 103                                break;
 104                default:
 105                        mutex_unlock(&dentry->d_inode->i_mutex);
 106                        return -EINVAL;
 107        }
 108        if (offset != file->f_pos) {
 109                file->f_pos = offset;
 110                if (file->f_pos >= 2) {
 111                        struct list_head *p;
 112                        struct dentry *cursor = file->private_data;
 113                        loff_t n = file->f_pos - 2;
 114
 115                        spin_lock(&dentry->d_lock);
 116                        /* d_lock not required for cursor */
 117                        list_del(&cursor->d_child);
 118                        p = dentry->d_subdirs.next;
 119                        while (n && p != &dentry->d_subdirs) {
 120                                struct dentry *next;
 121                                next = list_entry(p, struct dentry, d_child);
 122                                spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 123                                if (simple_positive(next))
 124                                        n--;
 125                                spin_unlock(&next->d_lock);
 126                                p = p->next;
 127                        }
 128                        list_add_tail(&cursor->d_child, p);
 129                        spin_unlock(&dentry->d_lock);
 130                }
 131        }
 132        mutex_unlock(&dentry->d_inode->i_mutex);
 133        return offset;
 134}
 135EXPORT_SYMBOL(dcache_dir_lseek);
 136
 137/* Relationship between i_mode and the DT_xxx types */
 138static inline unsigned char dt_type(struct inode *inode)
 139{
 140        return (inode->i_mode >> 12) & 15;
 141}
 142
 143/*
 144 * Directory is locked and all positive dentries in it are safe, since
 145 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 146 * both impossible due to the lock on directory.
 147 */
 148
 149int dcache_readdir(struct file *file, struct dir_context *ctx)
 150{
 151        struct dentry *dentry = file->f_path.dentry;
 152        struct dentry *cursor = file->private_data;
 153        struct list_head *p, *q = &cursor->d_child;
 154
 155        if (!dir_emit_dots(file, ctx))
 156                return 0;
 157        spin_lock(&dentry->d_lock);
 158        if (ctx->pos == 2)
 159                list_move(q, &dentry->d_subdirs);
 160
 161        for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
 162                struct dentry *next = list_entry(p, struct dentry, d_child);
 163                spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 164                if (!simple_positive(next)) {
 165                        spin_unlock(&next->d_lock);
 166                        continue;
 167                }
 168
 169                spin_unlock(&next->d_lock);
 170                spin_unlock(&dentry->d_lock);
 171                if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 172                              next->d_inode->i_ino, dt_type(next->d_inode)))
 173                        return 0;
 174                spin_lock(&dentry->d_lock);
 175                spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 176                /* next is still alive */
 177                list_move(q, p);
 178                spin_unlock(&next->d_lock);
 179                p = q;
 180                ctx->pos++;
 181        }
 182        spin_unlock(&dentry->d_lock);
 183        return 0;
 184}
 185EXPORT_SYMBOL(dcache_readdir);
 186
 187ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 188{
 189        return -EISDIR;
 190}
 191EXPORT_SYMBOL(generic_read_dir);
 192
 193const struct file_operations simple_dir_operations = {
 194        .open           = dcache_dir_open,
 195        .release        = dcache_dir_close,
 196        .llseek         = dcache_dir_lseek,
 197        .read           = generic_read_dir,
 198        .iterate        = dcache_readdir,
 199        .fsync          = noop_fsync,
 200};
 201EXPORT_SYMBOL(simple_dir_operations);
 202
 203const struct inode_operations simple_dir_inode_operations = {
 204        .lookup         = simple_lookup,
 205};
 206EXPORT_SYMBOL(simple_dir_inode_operations);
 207
 208static const struct super_operations simple_super_operations = {
 209        .statfs         = simple_statfs,
 210};
 211
 212/*
 213 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 214 * will never be mountable)
 215 */
 216struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
 217        const struct super_operations *ops,
 218        const struct dentry_operations *dops, unsigned long magic)
 219{
 220        struct super_block *s;
 221        struct dentry *dentry;
 222        struct inode *root;
 223        struct qstr d_name = QSTR_INIT(name, strlen(name));
 224
 225        s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
 226        if (IS_ERR(s))
 227                return ERR_CAST(s);
 228
 229        s->s_maxbytes = MAX_LFS_FILESIZE;
 230        s->s_blocksize = PAGE_SIZE;
 231        s->s_blocksize_bits = PAGE_SHIFT;
 232        s->s_magic = magic;
 233        s->s_op = ops ? ops : &simple_super_operations;
 234        s->s_time_gran = 1;
 235        root = new_inode(s);
 236        if (!root)
 237                goto Enomem;
 238        /*
 239         * since this is the first inode, make it number 1. New inodes created
 240         * after this must take care not to collide with it (by passing
 241         * max_reserved of 1 to iunique).
 242         */
 243        root->i_ino = 1;
 244        root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 245        root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
 246        dentry = __d_alloc(s, &d_name);
 247        if (!dentry) {
 248                iput(root);
 249                goto Enomem;
 250        }
 251        d_instantiate(dentry, root);
 252        s->s_root = dentry;
 253        s->s_d_op = dops;
 254        s->s_flags |= MS_ACTIVE;
 255        return dget(s->s_root);
 256
 257Enomem:
 258        deactivate_locked_super(s);
 259        return ERR_PTR(-ENOMEM);
 260}
 261EXPORT_SYMBOL(mount_pseudo);
 262
 263int simple_open(struct inode *inode, struct file *file)
 264{
 265        if (inode->i_private)
 266                file->private_data = inode->i_private;
 267        return 0;
 268}
 269EXPORT_SYMBOL(simple_open);
 270
 271int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 272{
 273        struct inode *inode = old_dentry->d_inode;
 274
 275        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 276        inc_nlink(inode);
 277        ihold(inode);
 278        dget(dentry);
 279        d_instantiate(dentry, inode);
 280        return 0;
 281}
 282EXPORT_SYMBOL(simple_link);
 283
 284int simple_empty(struct dentry *dentry)
 285{
 286        struct dentry *child;
 287        int ret = 0;
 288
 289        spin_lock(&dentry->d_lock);
 290        list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 291                spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 292                if (simple_positive(child)) {
 293                        spin_unlock(&child->d_lock);
 294                        goto out;
 295                }
 296                spin_unlock(&child->d_lock);
 297        }
 298        ret = 1;
 299out:
 300        spin_unlock(&dentry->d_lock);
 301        return ret;
 302}
 303EXPORT_SYMBOL(simple_empty);
 304
 305int simple_unlink(struct inode *dir, struct dentry *dentry)
 306{
 307        struct inode *inode = dentry->d_inode;
 308
 309        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 310        drop_nlink(inode);
 311        dput(dentry);
 312        return 0;
 313}
 314EXPORT_SYMBOL(simple_unlink);
 315
 316int simple_rmdir(struct inode *dir, struct dentry *dentry)
 317{
 318        if (!simple_empty(dentry))
 319                return -ENOTEMPTY;
 320
 321        drop_nlink(dentry->d_inode);
 322        simple_unlink(dir, dentry);
 323        drop_nlink(dir);
 324        return 0;
 325}
 326EXPORT_SYMBOL(simple_rmdir);
 327
 328int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 329                struct inode *new_dir, struct dentry *new_dentry)
 330{
 331        struct inode *inode = old_dentry->d_inode;
 332        int they_are_dirs = d_is_dir(old_dentry);
 333
 334        if (!simple_empty(new_dentry))
 335                return -ENOTEMPTY;
 336
 337        if (new_dentry->d_inode) {
 338                simple_unlink(new_dir, new_dentry);
 339                if (they_are_dirs) {
 340                        drop_nlink(new_dentry->d_inode);
 341                        drop_nlink(old_dir);
 342                }
 343        } else if (they_are_dirs) {
 344                drop_nlink(old_dir);
 345                inc_nlink(new_dir);
 346        }
 347
 348        old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 349                new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
 350
 351        return 0;
 352}
 353EXPORT_SYMBOL(simple_rename);
 354
 355/**
 356 * simple_setattr - setattr for simple filesystem
 357 * @dentry: dentry
 358 * @iattr: iattr structure
 359 *
 360 * Returns 0 on success, -error on failure.
 361 *
 362 * simple_setattr is a simple ->setattr implementation without a proper
 363 * implementation of size changes.
 364 *
 365 * It can either be used for in-memory filesystems or special files
 366 * on simple regular filesystems.  Anything that needs to change on-disk
 367 * or wire state on size changes needs its own setattr method.
 368 */
 369int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 370{
 371        struct inode *inode = dentry->d_inode;
 372        int error;
 373
 374        error = inode_change_ok(inode, iattr);
 375        if (error)
 376                return error;
 377
 378        if (iattr->ia_valid & ATTR_SIZE)
 379                truncate_setsize(inode, iattr->ia_size);
 380        setattr_copy(inode, iattr);
 381        mark_inode_dirty(inode);
 382        return 0;
 383}
 384EXPORT_SYMBOL(simple_setattr);
 385
 386int simple_readpage(struct file *file, struct page *page)
 387{
 388        clear_highpage(page);
 389        flush_dcache_page(page);
 390        SetPageUptodate(page);
 391        unlock_page(page);
 392        return 0;
 393}
 394EXPORT_SYMBOL(simple_readpage);
 395
 396int simple_write_begin(struct file *file, struct address_space *mapping,
 397                        loff_t pos, unsigned len, unsigned flags,
 398                        struct page **pagep, void **fsdata)
 399{
 400        struct page *page;
 401        pgoff_t index;
 402
 403        index = pos >> PAGE_CACHE_SHIFT;
 404
 405        page = grab_cache_page_write_begin(mapping, index, flags);
 406        if (!page)
 407                return -ENOMEM;
 408
 409        *pagep = page;
 410
 411        if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
 412                unsigned from = pos & (PAGE_CACHE_SIZE - 1);
 413
 414                zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
 415        }
 416        return 0;
 417}
 418EXPORT_SYMBOL(simple_write_begin);
 419
 420/**
 421 * simple_write_end - .write_end helper for non-block-device FSes
 422 * @available: See .write_end of address_space_operations
 423 * @file:               "
 424 * @mapping:            "
 425 * @pos:                "
 426 * @len:                "
 427 * @copied:             "
 428 * @page:               "
 429 * @fsdata:             "
 430 *
 431 * simple_write_end does the minimum needed for updating a page after writing is
 432 * done. It has the same API signature as the .write_end of
 433 * address_space_operations vector. So it can just be set onto .write_end for
 434 * FSes that don't need any other processing. i_mutex is assumed to be held.
 435 * Block based filesystems should use generic_write_end().
 436 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 437 * is not called, so a filesystem that actually does store data in .write_inode
 438 * should extend on what's done here with a call to mark_inode_dirty() in the
 439 * case that i_size has changed.
 440 */
 441int simple_write_end(struct file *file, struct address_space *mapping,
 442                        loff_t pos, unsigned len, unsigned copied,
 443                        struct page *page, void *fsdata)
 444{
 445        struct inode *inode = page->mapping->host;
 446        loff_t last_pos = pos + copied;
 447
 448        /* zero the stale part of the page if we did a short copy */
 449        if (copied < len) {
 450                unsigned from = pos & (PAGE_CACHE_SIZE - 1);
 451
 452                zero_user(page, from + copied, len - copied);
 453        }
 454
 455        if (!PageUptodate(page))
 456                SetPageUptodate(page);
 457        /*
 458         * No need to use i_size_read() here, the i_size
 459         * cannot change under us because we hold the i_mutex.
 460         */
 461        if (last_pos > inode->i_size)
 462                i_size_write(inode, last_pos);
 463
 464        set_page_dirty(page);
 465        unlock_page(page);
 466        page_cache_release(page);
 467
 468        return copied;
 469}
 470EXPORT_SYMBOL(simple_write_end);
 471
 472/*
 473 * the inodes created here are not hashed. If you use iunique to generate
 474 * unique inode values later for this filesystem, then you must take care
 475 * to pass it an appropriate max_reserved value to avoid collisions.
 476 */
 477int simple_fill_super(struct super_block *s, unsigned long magic,
 478                      struct tree_descr *files)
 479{
 480        struct inode *inode;
 481        struct dentry *root;
 482        struct dentry *dentry;
 483        int i;
 484
 485        s->s_blocksize = PAGE_CACHE_SIZE;
 486        s->s_blocksize_bits = PAGE_CACHE_SHIFT;
 487        s->s_magic = magic;
 488        s->s_op = &simple_super_operations;
 489        s->s_time_gran = 1;
 490
 491        inode = new_inode(s);
 492        if (!inode)
 493                return -ENOMEM;
 494        /*
 495         * because the root inode is 1, the files array must not contain an
 496         * entry at index 1
 497         */
 498        inode->i_ino = 1;
 499        inode->i_mode = S_IFDIR | 0755;
 500        inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 501        inode->i_op = &simple_dir_inode_operations;
 502        inode->i_fop = &simple_dir_operations;
 503        set_nlink(inode, 2);
 504        root = d_make_root(inode);
 505        if (!root)
 506                return -ENOMEM;
 507        for (i = 0; !files->name || files->name[0]; i++, files++) {
 508                if (!files->name)
 509                        continue;
 510
 511                /* warn if it tries to conflict with the root inode */
 512                if (unlikely(i == 1))
 513                        printk(KERN_WARNING "%s: %s passed in a files array"
 514                                "with an index of 1!\n", __func__,
 515                                s->s_type->name);
 516
 517                dentry = d_alloc_name(root, files->name);
 518                if (!dentry)
 519                        goto out;
 520                inode = new_inode(s);
 521                if (!inode) {
 522                        dput(dentry);
 523                        goto out;
 524                }
 525                inode->i_mode = S_IFREG | files->mode;
 526                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 527                inode->i_fop = files->ops;
 528                inode->i_ino = i;
 529                d_add(dentry, inode);
 530        }
 531        s->s_root = root;
 532        return 0;
 533out:
 534        d_genocide(root);
 535        shrink_dcache_parent(root);
 536        dput(root);
 537        return -ENOMEM;
 538}
 539EXPORT_SYMBOL(simple_fill_super);
 540
 541static DEFINE_SPINLOCK(pin_fs_lock);
 542
 543int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 544{
 545        struct vfsmount *mnt = NULL;
 546        spin_lock(&pin_fs_lock);
 547        if (unlikely(!*mount)) {
 548                spin_unlock(&pin_fs_lock);
 549                mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
 550                if (IS_ERR(mnt))
 551                        return PTR_ERR(mnt);
 552                spin_lock(&pin_fs_lock);
 553                if (!*mount)
 554                        *mount = mnt;
 555        }
 556        mntget(*mount);
 557        ++*count;
 558        spin_unlock(&pin_fs_lock);
 559        mntput(mnt);
 560        return 0;
 561}
 562EXPORT_SYMBOL(simple_pin_fs);
 563
 564void simple_release_fs(struct vfsmount **mount, int *count)
 565{
 566        struct vfsmount *mnt;
 567        spin_lock(&pin_fs_lock);
 568        mnt = *mount;
 569        if (!--*count)
 570                *mount = NULL;
 571        spin_unlock(&pin_fs_lock);
 572        mntput(mnt);
 573}
 574EXPORT_SYMBOL(simple_release_fs);
 575
 576/**
 577 * simple_read_from_buffer - copy data from the buffer to user space
 578 * @to: the user space buffer to read to
 579 * @count: the maximum number of bytes to read
 580 * @ppos: the current position in the buffer
 581 * @from: the buffer to read from
 582 * @available: the size of the buffer
 583 *
 584 * The simple_read_from_buffer() function reads up to @count bytes from the
 585 * buffer @from at offset @ppos into the user space address starting at @to.
 586 *
 587 * On success, the number of bytes read is returned and the offset @ppos is
 588 * advanced by this number, or negative value is returned on error.
 589 **/
 590ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 591                                const void *from, size_t available)
 592{
 593        loff_t pos = *ppos;
 594        size_t ret;
 595
 596        if (pos < 0)
 597                return -EINVAL;
 598        if (pos >= available || !count)
 599                return 0;
 600        if (count > available - pos)
 601                count = available - pos;
 602        ret = copy_to_user(to, from + pos, count);
 603        if (ret == count)
 604                return -EFAULT;
 605        count -= ret;
 606        *ppos = pos + count;
 607        return count;
 608}
 609EXPORT_SYMBOL(simple_read_from_buffer);
 610
 611/**
 612 * simple_write_to_buffer - copy data from user space to the buffer
 613 * @to: the buffer to write to
 614 * @available: the size of the buffer
 615 * @ppos: the current position in the buffer
 616 * @from: the user space buffer to read from
 617 * @count: the maximum number of bytes to read
 618 *
 619 * The simple_write_to_buffer() function reads up to @count bytes from the user
 620 * space address starting at @from into the buffer @to at offset @ppos.
 621 *
 622 * On success, the number of bytes written is returned and the offset @ppos is
 623 * advanced by this number, or negative value is returned on error.
 624 **/
 625ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 626                const void __user *from, size_t count)
 627{
 628        loff_t pos = *ppos;
 629        size_t res;
 630
 631        if (pos < 0)
 632                return -EINVAL;
 633        if (pos >= available || !count)
 634                return 0;
 635        if (count > available - pos)
 636                count = available - pos;
 637        res = copy_from_user(to + pos, from, count);
 638        if (res == count)
 639                return -EFAULT;
 640        count -= res;
 641        *ppos = pos + count;
 642        return count;
 643}
 644EXPORT_SYMBOL(simple_write_to_buffer);
 645
 646/**
 647 * memory_read_from_buffer - copy data from the buffer
 648 * @to: the kernel space buffer to read to
 649 * @count: the maximum number of bytes to read
 650 * @ppos: the current position in the buffer
 651 * @from: the buffer to read from
 652 * @available: the size of the buffer
 653 *
 654 * The memory_read_from_buffer() function reads up to @count bytes from the
 655 * buffer @from at offset @ppos into the kernel space address starting at @to.
 656 *
 657 * On success, the number of bytes read is returned and the offset @ppos is
 658 * advanced by this number, or negative value is returned on error.
 659 **/
 660ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 661                                const void *from, size_t available)
 662{
 663        loff_t pos = *ppos;
 664
 665        if (pos < 0)
 666                return -EINVAL;
 667        if (pos >= available)
 668                return 0;
 669        if (count > available - pos)
 670                count = available - pos;
 671        memcpy(to, from + pos, count);
 672        *ppos = pos + count;
 673
 674        return count;
 675}
 676EXPORT_SYMBOL(memory_read_from_buffer);
 677
 678/*
 679 * Transaction based IO.
 680 * The file expects a single write which triggers the transaction, and then
 681 * possibly a read which collects the result - which is stored in a
 682 * file-local buffer.
 683 */
 684
 685void simple_transaction_set(struct file *file, size_t n)
 686{
 687        struct simple_transaction_argresp *ar = file->private_data;
 688
 689        BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 690
 691        /*
 692         * The barrier ensures that ar->size will really remain zero until
 693         * ar->data is ready for reading.
 694         */
 695        smp_mb();
 696        ar->size = n;
 697}
 698EXPORT_SYMBOL(simple_transaction_set);
 699
 700char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 701{
 702        struct simple_transaction_argresp *ar;
 703        static DEFINE_SPINLOCK(simple_transaction_lock);
 704
 705        if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 706                return ERR_PTR(-EFBIG);
 707
 708        ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 709        if (!ar)
 710                return ERR_PTR(-ENOMEM);
 711
 712        spin_lock(&simple_transaction_lock);
 713
 714        /* only one write allowed per open */
 715        if (file->private_data) {
 716                spin_unlock(&simple_transaction_lock);
 717                free_page((unsigned long)ar);
 718                return ERR_PTR(-EBUSY);
 719        }
 720
 721        file->private_data = ar;
 722
 723        spin_unlock(&simple_transaction_lock);
 724
 725        if (copy_from_user(ar->data, buf, size))
 726                return ERR_PTR(-EFAULT);
 727
 728        return ar->data;
 729}
 730EXPORT_SYMBOL(simple_transaction_get);
 731
 732ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 733{
 734        struct simple_transaction_argresp *ar = file->private_data;
 735
 736        if (!ar)
 737                return 0;
 738        return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 739}
 740EXPORT_SYMBOL(simple_transaction_read);
 741
 742int simple_transaction_release(struct inode *inode, struct file *file)
 743{
 744        free_page((unsigned long)file->private_data);
 745        return 0;
 746}
 747EXPORT_SYMBOL(simple_transaction_release);
 748
 749/* Simple attribute files */
 750
 751struct simple_attr {
 752        int (*get)(void *, u64 *);
 753        int (*set)(void *, u64);
 754        char get_buf[24];       /* enough to store a u64 and "\n\0" */
 755        char set_buf[24];
 756        void *data;
 757        const char *fmt;        /* format for read operation */
 758        struct mutex mutex;     /* protects access to these buffers */
 759};
 760
 761/* simple_attr_open is called by an actual attribute open file operation
 762 * to set the attribute specific access operations. */
 763int simple_attr_open(struct inode *inode, struct file *file,
 764                     int (*get)(void *, u64 *), int (*set)(void *, u64),
 765                     const char *fmt)
 766{
 767        struct simple_attr *attr;
 768
 769        attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 770        if (!attr)
 771                return -ENOMEM;
 772
 773        attr->get = get;
 774        attr->set = set;
 775        attr->data = inode->i_private;
 776        attr->fmt = fmt;
 777        mutex_init(&attr->mutex);
 778
 779        file->private_data = attr;
 780
 781        return nonseekable_open(inode, file);
 782}
 783EXPORT_SYMBOL_GPL(simple_attr_open);
 784
 785int simple_attr_release(struct inode *inode, struct file *file)
 786{
 787        kfree(file->private_data);
 788        return 0;
 789}
 790EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only?  This?  Really? */
 791
 792/* read from the buffer that is filled with the get function */
 793ssize_t simple_attr_read(struct file *file, char __user *buf,
 794                         size_t len, loff_t *ppos)
 795{
 796        struct simple_attr *attr;
 797        size_t size;
 798        ssize_t ret;
 799
 800        attr = file->private_data;
 801
 802        if (!attr->get)
 803                return -EACCES;
 804
 805        ret = mutex_lock_interruptible(&attr->mutex);
 806        if (ret)
 807                return ret;
 808
 809        if (*ppos) {            /* continued read */
 810                size = strlen(attr->get_buf);
 811        } else {                /* first read */
 812                u64 val;
 813                ret = attr->get(attr->data, &val);
 814                if (ret)
 815                        goto out;
 816
 817                size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 818                                 attr->fmt, (unsigned long long)val);
 819        }
 820
 821        ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 822out:
 823        mutex_unlock(&attr->mutex);
 824        return ret;
 825}
 826EXPORT_SYMBOL_GPL(simple_attr_read);
 827
 828/* interpret the buffer as a number to call the set function with */
 829ssize_t simple_attr_write(struct file *file, const char __user *buf,
 830                          size_t len, loff_t *ppos)
 831{
 832        struct simple_attr *attr;
 833        u64 val;
 834        size_t size;
 835        ssize_t ret;
 836
 837        attr = file->private_data;
 838        if (!attr->set)
 839                return -EACCES;
 840
 841        ret = mutex_lock_interruptible(&attr->mutex);
 842        if (ret)
 843                return ret;
 844
 845        ret = -EFAULT;
 846        size = min(sizeof(attr->set_buf) - 1, len);
 847        if (copy_from_user(attr->set_buf, buf, size))
 848                goto out;
 849
 850        attr->set_buf[size] = '\0';
 851        val = simple_strtoll(attr->set_buf, NULL, 0);
 852        ret = attr->set(attr->data, val);
 853        if (ret == 0)
 854                ret = len; /* on success, claim we got the whole input */
 855out:
 856        mutex_unlock(&attr->mutex);
 857        return ret;
 858}
 859EXPORT_SYMBOL_GPL(simple_attr_write);
 860
 861/**
 862 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 863 * @sb:         filesystem to do the file handle conversion on
 864 * @fid:        file handle to convert
 865 * @fh_len:     length of the file handle in bytes
 866 * @fh_type:    type of file handle
 867 * @get_inode:  filesystem callback to retrieve inode
 868 *
 869 * This function decodes @fid as long as it has one of the well-known
 870 * Linux filehandle types and calls @get_inode on it to retrieve the
 871 * inode for the object specified in the file handle.
 872 */
 873struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 874                int fh_len, int fh_type, struct inode *(*get_inode)
 875                        (struct super_block *sb, u64 ino, u32 gen))
 876{
 877        struct inode *inode = NULL;
 878
 879        if (fh_len < 2)
 880                return NULL;
 881
 882        switch (fh_type) {
 883        case FILEID_INO32_GEN:
 884        case FILEID_INO32_GEN_PARENT:
 885                inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 886                break;
 887        }
 888
 889        return d_obtain_alias(inode);
 890}
 891EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 892
 893/**
 894 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 895 * @sb:         filesystem to do the file handle conversion on
 896 * @fid:        file handle to convert
 897 * @fh_len:     length of the file handle in bytes
 898 * @fh_type:    type of file handle
 899 * @get_inode:  filesystem callback to retrieve inode
 900 *
 901 * This function decodes @fid as long as it has one of the well-known
 902 * Linux filehandle types and calls @get_inode on it to retrieve the
 903 * inode for the _parent_ object specified in the file handle if it
 904 * is specified in the file handle, or NULL otherwise.
 905 */
 906struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 907                int fh_len, int fh_type, struct inode *(*get_inode)
 908                        (struct super_block *sb, u64 ino, u32 gen))
 909{
 910        struct inode *inode = NULL;
 911
 912        if (fh_len <= 2)
 913                return NULL;
 914
 915        switch (fh_type) {
 916        case FILEID_INO32_GEN_PARENT:
 917                inode = get_inode(sb, fid->i32.parent_ino,
 918                                  (fh_len > 3 ? fid->i32.parent_gen : 0));
 919                break;
 920        }
 921
 922        return d_obtain_alias(inode);
 923}
 924EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 925
 926/**
 927 * __generic_file_fsync - generic fsync implementation for simple filesystems
 928 *
 929 * @file:       file to synchronize
 930 * @start:      start offset in bytes
 931 * @end:        end offset in bytes (inclusive)
 932 * @datasync:   only synchronize essential metadata if true
 933 *
 934 * This is a generic implementation of the fsync method for simple
 935 * filesystems which track all non-inode metadata in the buffers list
 936 * hanging off the address_space structure.
 937 */
 938int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
 939                                 int datasync)
 940{
 941        struct inode *inode = file->f_mapping->host;
 942        int err;
 943        int ret;
 944
 945        err = filemap_write_and_wait_range(inode->i_mapping, start, end);
 946        if (err)
 947                return err;
 948
 949        mutex_lock(&inode->i_mutex);
 950        ret = sync_mapping_buffers(inode->i_mapping);
 951        if (!(inode->i_state & I_DIRTY_ALL))
 952                goto out;
 953        if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 954                goto out;
 955
 956        err = sync_inode_metadata(inode, 1);
 957        if (ret == 0)
 958                ret = err;
 959
 960out:
 961        mutex_unlock(&inode->i_mutex);
 962        return ret;
 963}
 964EXPORT_SYMBOL(__generic_file_fsync);
 965
 966/**
 967 * generic_file_fsync - generic fsync implementation for simple filesystems
 968 *                      with flush
 969 * @file:       file to synchronize
 970 * @start:      start offset in bytes
 971 * @end:        end offset in bytes (inclusive)
 972 * @datasync:   only synchronize essential metadata if true
 973 *
 974 */
 975
 976int generic_file_fsync(struct file *file, loff_t start, loff_t end,
 977                       int datasync)
 978{
 979        struct inode *inode = file->f_mapping->host;
 980        int err;
 981
 982        err = __generic_file_fsync(file, start, end, datasync);
 983        if (err)
 984                return err;
 985        return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
 986}
 987EXPORT_SYMBOL(generic_file_fsync);
 988
 989/**
 990 * generic_check_addressable - Check addressability of file system
 991 * @blocksize_bits:     log of file system block size
 992 * @num_blocks:         number of blocks in file system
 993 *
 994 * Determine whether a file system with @num_blocks blocks (and a
 995 * block size of 2**@blocksize_bits) is addressable by the sector_t
 996 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
 997 */
 998int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
 999{
1000        u64 last_fs_block = num_blocks - 1;
1001        u64 last_fs_page =
1002                last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
1003
1004        if (unlikely(num_blocks == 0))
1005                return 0;
1006
1007        if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
1008                return -EINVAL;
1009
1010        if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1011            (last_fs_page > (pgoff_t)(~0ULL))) {
1012                return -EFBIG;
1013        }
1014        return 0;
1015}
1016EXPORT_SYMBOL(generic_check_addressable);
1017
1018/*
1019 * No-op implementation of ->fsync for in-memory filesystems.
1020 */
1021int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1022{
1023        return 0;
1024}
1025EXPORT_SYMBOL(noop_fsync);
1026
1027void kfree_put_link(struct dentry *dentry, struct nameidata *nd,
1028                                void *cookie)
1029{
1030        char *s = nd_get_link(nd);
1031        if (!IS_ERR(s))
1032                kfree(s);
1033}
1034EXPORT_SYMBOL(kfree_put_link);
1035
1036/*
1037 * nop .set_page_dirty method so that people can use .page_mkwrite on
1038 * anon inodes.
1039 */
1040static int anon_set_page_dirty(struct page *page)
1041{
1042        return 0;
1043};
1044
1045/*
1046 * A single inode exists for all anon_inode files. Contrary to pipes,
1047 * anon_inode inodes have no associated per-instance data, so we need
1048 * only allocate one of them.
1049 */
1050struct inode *alloc_anon_inode(struct super_block *s)
1051{
1052        static const struct address_space_operations anon_aops = {
1053                .set_page_dirty = anon_set_page_dirty,
1054        };
1055        struct inode *inode = new_inode_pseudo(s);
1056
1057        if (!inode)
1058                return ERR_PTR(-ENOMEM);
1059
1060        inode->i_ino = get_next_ino();
1061        inode->i_mapping->a_ops = &anon_aops;
1062
1063        /*
1064         * Mark the inode dirty from the very beginning,
1065         * that way it will never be moved to the dirty
1066         * list because mark_inode_dirty() will think
1067         * that it already _is_ on the dirty list.
1068         */
1069        inode->i_state = I_DIRTY;
1070        inode->i_mode = S_IRUSR | S_IWUSR;
1071        inode->i_uid = current_fsuid();
1072        inode->i_gid = current_fsgid();
1073        inode->i_flags |= S_PRIVATE;
1074        inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1075        return inode;
1076}
1077EXPORT_SYMBOL(alloc_anon_inode);
1078
1079/**
1080 * simple_nosetlease - generic helper for prohibiting leases
1081 * @filp: file pointer
1082 * @arg: type of lease to obtain
1083 * @flp: new lease supplied for insertion
1084 * @priv: private data for lm_setup operation
1085 *
1086 * Generic helper for filesystems that do not wish to allow leases to be set.
1087 * All arguments are ignored and it just returns -EINVAL.
1088 */
1089int
1090simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1091                  void **priv)
1092{
1093        return -EINVAL;
1094}
1095EXPORT_SYMBOL(simple_nosetlease);
1096