linux/fs/xfs/xfs_mount.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_sb.h"
  26#include "xfs_mount.h"
  27#include "xfs_da_format.h"
  28#include "xfs_da_btree.h"
  29#include "xfs_inode.h"
  30#include "xfs_dir2.h"
  31#include "xfs_ialloc.h"
  32#include "xfs_alloc.h"
  33#include "xfs_rtalloc.h"
  34#include "xfs_bmap.h"
  35#include "xfs_trans.h"
  36#include "xfs_trans_priv.h"
  37#include "xfs_log.h"
  38#include "xfs_error.h"
  39#include "xfs_quota.h"
  40#include "xfs_fsops.h"
  41#include "xfs_trace.h"
  42#include "xfs_icache.h"
  43#include "xfs_sysfs.h"
  44
  45
  46#ifdef HAVE_PERCPU_SB
  47STATIC void     xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
  48                                                int);
  49STATIC void     xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
  50                                                int);
  51STATIC void     xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
  52#else
  53
  54#define xfs_icsb_balance_counter(mp, a, b)              do { } while (0)
  55#define xfs_icsb_balance_counter_locked(mp, a, b)       do { } while (0)
  56#endif
  57
  58static DEFINE_MUTEX(xfs_uuid_table_mutex);
  59static int xfs_uuid_table_size;
  60static uuid_t *xfs_uuid_table;
  61
  62/*
  63 * See if the UUID is unique among mounted XFS filesystems.
  64 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
  65 */
  66STATIC int
  67xfs_uuid_mount(
  68        struct xfs_mount        *mp)
  69{
  70        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
  71        int                     hole, i;
  72
  73        if (mp->m_flags & XFS_MOUNT_NOUUID)
  74                return 0;
  75
  76        if (uuid_is_nil(uuid)) {
  77                xfs_warn(mp, "Filesystem has nil UUID - can't mount");
  78                return -EINVAL;
  79        }
  80
  81        mutex_lock(&xfs_uuid_table_mutex);
  82        for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
  83                if (uuid_is_nil(&xfs_uuid_table[i])) {
  84                        hole = i;
  85                        continue;
  86                }
  87                if (uuid_equal(uuid, &xfs_uuid_table[i]))
  88                        goto out_duplicate;
  89        }
  90
  91        if (hole < 0) {
  92                xfs_uuid_table = kmem_realloc(xfs_uuid_table,
  93                        (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
  94                        xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
  95                        KM_SLEEP);
  96                hole = xfs_uuid_table_size++;
  97        }
  98        xfs_uuid_table[hole] = *uuid;
  99        mutex_unlock(&xfs_uuid_table_mutex);
 100
 101        return 0;
 102
 103 out_duplicate:
 104        mutex_unlock(&xfs_uuid_table_mutex);
 105        xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
 106        return -EINVAL;
 107}
 108
 109STATIC void
 110xfs_uuid_unmount(
 111        struct xfs_mount        *mp)
 112{
 113        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
 114        int                     i;
 115
 116        if (mp->m_flags & XFS_MOUNT_NOUUID)
 117                return;
 118
 119        mutex_lock(&xfs_uuid_table_mutex);
 120        for (i = 0; i < xfs_uuid_table_size; i++) {
 121                if (uuid_is_nil(&xfs_uuid_table[i]))
 122                        continue;
 123                if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 124                        continue;
 125                memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 126                break;
 127        }
 128        ASSERT(i < xfs_uuid_table_size);
 129        mutex_unlock(&xfs_uuid_table_mutex);
 130}
 131
 132
 133STATIC void
 134__xfs_free_perag(
 135        struct rcu_head *head)
 136{
 137        struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 138
 139        ASSERT(atomic_read(&pag->pag_ref) == 0);
 140        kmem_free(pag);
 141}
 142
 143/*
 144 * Free up the per-ag resources associated with the mount structure.
 145 */
 146STATIC void
 147xfs_free_perag(
 148        xfs_mount_t     *mp)
 149{
 150        xfs_agnumber_t  agno;
 151        struct xfs_perag *pag;
 152
 153        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 154                spin_lock(&mp->m_perag_lock);
 155                pag = radix_tree_delete(&mp->m_perag_tree, agno);
 156                spin_unlock(&mp->m_perag_lock);
 157                ASSERT(pag);
 158                ASSERT(atomic_read(&pag->pag_ref) == 0);
 159                call_rcu(&pag->rcu_head, __xfs_free_perag);
 160        }
 161}
 162
 163/*
 164 * Check size of device based on the (data/realtime) block count.
 165 * Note: this check is used by the growfs code as well as mount.
 166 */
 167int
 168xfs_sb_validate_fsb_count(
 169        xfs_sb_t        *sbp,
 170        __uint64_t      nblocks)
 171{
 172        ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 173        ASSERT(sbp->sb_blocklog >= BBSHIFT);
 174
 175        /* Limited by ULONG_MAX of page cache index */
 176        if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 177                return -EFBIG;
 178        return 0;
 179}
 180
 181int
 182xfs_initialize_perag(
 183        xfs_mount_t     *mp,
 184        xfs_agnumber_t  agcount,
 185        xfs_agnumber_t  *maxagi)
 186{
 187        xfs_agnumber_t  index;
 188        xfs_agnumber_t  first_initialised = 0;
 189        xfs_perag_t     *pag;
 190        xfs_agino_t     agino;
 191        xfs_ino_t       ino;
 192        xfs_sb_t        *sbp = &mp->m_sb;
 193        int             error = -ENOMEM;
 194
 195        /*
 196         * Walk the current per-ag tree so we don't try to initialise AGs
 197         * that already exist (growfs case). Allocate and insert all the
 198         * AGs we don't find ready for initialisation.
 199         */
 200        for (index = 0; index < agcount; index++) {
 201                pag = xfs_perag_get(mp, index);
 202                if (pag) {
 203                        xfs_perag_put(pag);
 204                        continue;
 205                }
 206                if (!first_initialised)
 207                        first_initialised = index;
 208
 209                pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 210                if (!pag)
 211                        goto out_unwind;
 212                pag->pag_agno = index;
 213                pag->pag_mount = mp;
 214                spin_lock_init(&pag->pag_ici_lock);
 215                mutex_init(&pag->pag_ici_reclaim_lock);
 216                INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 217                spin_lock_init(&pag->pag_buf_lock);
 218                pag->pag_buf_tree = RB_ROOT;
 219
 220                if (radix_tree_preload(GFP_NOFS))
 221                        goto out_unwind;
 222
 223                spin_lock(&mp->m_perag_lock);
 224                if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 225                        BUG();
 226                        spin_unlock(&mp->m_perag_lock);
 227                        radix_tree_preload_end();
 228                        error = -EEXIST;
 229                        goto out_unwind;
 230                }
 231                spin_unlock(&mp->m_perag_lock);
 232                radix_tree_preload_end();
 233        }
 234
 235        /*
 236         * If we mount with the inode64 option, or no inode overflows
 237         * the legacy 32-bit address space clear the inode32 option.
 238         */
 239        agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
 240        ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
 241
 242        if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
 243                mp->m_flags |= XFS_MOUNT_32BITINODES;
 244        else
 245                mp->m_flags &= ~XFS_MOUNT_32BITINODES;
 246
 247        if (mp->m_flags & XFS_MOUNT_32BITINODES)
 248                index = xfs_set_inode32(mp, agcount);
 249        else
 250                index = xfs_set_inode64(mp, agcount);
 251
 252        if (maxagi)
 253                *maxagi = index;
 254        return 0;
 255
 256out_unwind:
 257        kmem_free(pag);
 258        for (; index > first_initialised; index--) {
 259                pag = radix_tree_delete(&mp->m_perag_tree, index);
 260                kmem_free(pag);
 261        }
 262        return error;
 263}
 264
 265/*
 266 * xfs_readsb
 267 *
 268 * Does the initial read of the superblock.
 269 */
 270int
 271xfs_readsb(
 272        struct xfs_mount *mp,
 273        int             flags)
 274{
 275        unsigned int    sector_size;
 276        struct xfs_buf  *bp;
 277        struct xfs_sb   *sbp = &mp->m_sb;
 278        int             error;
 279        int             loud = !(flags & XFS_MFSI_QUIET);
 280        const struct xfs_buf_ops *buf_ops;
 281
 282        ASSERT(mp->m_sb_bp == NULL);
 283        ASSERT(mp->m_ddev_targp != NULL);
 284
 285        /*
 286         * For the initial read, we must guess at the sector
 287         * size based on the block device.  It's enough to
 288         * get the sb_sectsize out of the superblock and
 289         * then reread with the proper length.
 290         * We don't verify it yet, because it may not be complete.
 291         */
 292        sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 293        buf_ops = NULL;
 294
 295        /*
 296         * Allocate a (locked) buffer to hold the superblock.
 297         * This will be kept around at all times to optimize
 298         * access to the superblock.
 299         */
 300reread:
 301        error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 302                                   BTOBB(sector_size), 0, &bp, buf_ops);
 303        if (error) {
 304                if (loud)
 305                        xfs_warn(mp, "SB validate failed with error %d.", error);
 306                /* bad CRC means corrupted metadata */
 307                if (error == -EFSBADCRC)
 308                        error = -EFSCORRUPTED;
 309                return error;
 310        }
 311
 312        /*
 313         * Initialize the mount structure from the superblock.
 314         */
 315        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
 316
 317        /*
 318         * If we haven't validated the superblock, do so now before we try
 319         * to check the sector size and reread the superblock appropriately.
 320         */
 321        if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 322                if (loud)
 323                        xfs_warn(mp, "Invalid superblock magic number");
 324                error = -EINVAL;
 325                goto release_buf;
 326        }
 327
 328        /*
 329         * We must be able to do sector-sized and sector-aligned IO.
 330         */
 331        if (sector_size > sbp->sb_sectsize) {
 332                if (loud)
 333                        xfs_warn(mp, "device supports %u byte sectors (not %u)",
 334                                sector_size, sbp->sb_sectsize);
 335                error = -ENOSYS;
 336                goto release_buf;
 337        }
 338
 339        if (buf_ops == NULL) {
 340                /*
 341                 * Re-read the superblock so the buffer is correctly sized,
 342                 * and properly verified.
 343                 */
 344                xfs_buf_relse(bp);
 345                sector_size = sbp->sb_sectsize;
 346                buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
 347                goto reread;
 348        }
 349
 350        /* Initialize per-cpu counters */
 351        xfs_icsb_reinit_counters(mp);
 352
 353        /* no need to be quiet anymore, so reset the buf ops */
 354        bp->b_ops = &xfs_sb_buf_ops;
 355
 356        mp->m_sb_bp = bp;
 357        xfs_buf_unlock(bp);
 358        return 0;
 359
 360release_buf:
 361        xfs_buf_relse(bp);
 362        return error;
 363}
 364
 365/*
 366 * Update alignment values based on mount options and sb values
 367 */
 368STATIC int
 369xfs_update_alignment(xfs_mount_t *mp)
 370{
 371        xfs_sb_t        *sbp = &(mp->m_sb);
 372
 373        if (mp->m_dalign) {
 374                /*
 375                 * If stripe unit and stripe width are not multiples
 376                 * of the fs blocksize turn off alignment.
 377                 */
 378                if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 379                    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 380                        xfs_warn(mp,
 381                "alignment check failed: sunit/swidth vs. blocksize(%d)",
 382                                sbp->sb_blocksize);
 383                        return -EINVAL;
 384                } else {
 385                        /*
 386                         * Convert the stripe unit and width to FSBs.
 387                         */
 388                        mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 389                        if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
 390                                xfs_warn(mp,
 391                        "alignment check failed: sunit/swidth vs. agsize(%d)",
 392                                         sbp->sb_agblocks);
 393                                return -EINVAL;
 394                        } else if (mp->m_dalign) {
 395                                mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 396                        } else {
 397                                xfs_warn(mp,
 398                        "alignment check failed: sunit(%d) less than bsize(%d)",
 399                                         mp->m_dalign, sbp->sb_blocksize);
 400                                return -EINVAL;
 401                        }
 402                }
 403
 404                /*
 405                 * Update superblock with new values
 406                 * and log changes
 407                 */
 408                if (xfs_sb_version_hasdalign(sbp)) {
 409                        if (sbp->sb_unit != mp->m_dalign) {
 410                                sbp->sb_unit = mp->m_dalign;
 411                                mp->m_update_sb = true;
 412                        }
 413                        if (sbp->sb_width != mp->m_swidth) {
 414                                sbp->sb_width = mp->m_swidth;
 415                                mp->m_update_sb = true;
 416                        }
 417                } else {
 418                        xfs_warn(mp,
 419        "cannot change alignment: superblock does not support data alignment");
 420                        return -EINVAL;
 421                }
 422        } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 423                    xfs_sb_version_hasdalign(&mp->m_sb)) {
 424                        mp->m_dalign = sbp->sb_unit;
 425                        mp->m_swidth = sbp->sb_width;
 426        }
 427
 428        return 0;
 429}
 430
 431/*
 432 * Set the maximum inode count for this filesystem
 433 */
 434STATIC void
 435xfs_set_maxicount(xfs_mount_t *mp)
 436{
 437        xfs_sb_t        *sbp = &(mp->m_sb);
 438        __uint64_t      icount;
 439
 440        if (sbp->sb_imax_pct) {
 441                /*
 442                 * Make sure the maximum inode count is a multiple
 443                 * of the units we allocate inodes in.
 444                 */
 445                icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 446                do_div(icount, 100);
 447                do_div(icount, mp->m_ialloc_blks);
 448                mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
 449                                   sbp->sb_inopblog;
 450        } else {
 451                mp->m_maxicount = 0;
 452        }
 453}
 454
 455/*
 456 * Set the default minimum read and write sizes unless
 457 * already specified in a mount option.
 458 * We use smaller I/O sizes when the file system
 459 * is being used for NFS service (wsync mount option).
 460 */
 461STATIC void
 462xfs_set_rw_sizes(xfs_mount_t *mp)
 463{
 464        xfs_sb_t        *sbp = &(mp->m_sb);
 465        int             readio_log, writeio_log;
 466
 467        if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
 468                if (mp->m_flags & XFS_MOUNT_WSYNC) {
 469                        readio_log = XFS_WSYNC_READIO_LOG;
 470                        writeio_log = XFS_WSYNC_WRITEIO_LOG;
 471                } else {
 472                        readio_log = XFS_READIO_LOG_LARGE;
 473                        writeio_log = XFS_WRITEIO_LOG_LARGE;
 474                }
 475        } else {
 476                readio_log = mp->m_readio_log;
 477                writeio_log = mp->m_writeio_log;
 478        }
 479
 480        if (sbp->sb_blocklog > readio_log) {
 481                mp->m_readio_log = sbp->sb_blocklog;
 482        } else {
 483                mp->m_readio_log = readio_log;
 484        }
 485        mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
 486        if (sbp->sb_blocklog > writeio_log) {
 487                mp->m_writeio_log = sbp->sb_blocklog;
 488        } else {
 489                mp->m_writeio_log = writeio_log;
 490        }
 491        mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
 492}
 493
 494/*
 495 * precalculate the low space thresholds for dynamic speculative preallocation.
 496 */
 497void
 498xfs_set_low_space_thresholds(
 499        struct xfs_mount        *mp)
 500{
 501        int i;
 502
 503        for (i = 0; i < XFS_LOWSP_MAX; i++) {
 504                __uint64_t space = mp->m_sb.sb_dblocks;
 505
 506                do_div(space, 100);
 507                mp->m_low_space[i] = space * (i + 1);
 508        }
 509}
 510
 511
 512/*
 513 * Set whether we're using inode alignment.
 514 */
 515STATIC void
 516xfs_set_inoalignment(xfs_mount_t *mp)
 517{
 518        if (xfs_sb_version_hasalign(&mp->m_sb) &&
 519            mp->m_sb.sb_inoalignmt >=
 520            XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
 521                mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
 522        else
 523                mp->m_inoalign_mask = 0;
 524        /*
 525         * If we are using stripe alignment, check whether
 526         * the stripe unit is a multiple of the inode alignment
 527         */
 528        if (mp->m_dalign && mp->m_inoalign_mask &&
 529            !(mp->m_dalign & mp->m_inoalign_mask))
 530                mp->m_sinoalign = mp->m_dalign;
 531        else
 532                mp->m_sinoalign = 0;
 533}
 534
 535/*
 536 * Check that the data (and log if separate) is an ok size.
 537 */
 538STATIC int
 539xfs_check_sizes(
 540        struct xfs_mount *mp)
 541{
 542        struct xfs_buf  *bp;
 543        xfs_daddr_t     d;
 544        int             error;
 545
 546        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 547        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 548                xfs_warn(mp, "filesystem size mismatch detected");
 549                return -EFBIG;
 550        }
 551        error = xfs_buf_read_uncached(mp->m_ddev_targp,
 552                                        d - XFS_FSS_TO_BB(mp, 1),
 553                                        XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
 554        if (error) {
 555                xfs_warn(mp, "last sector read failed");
 556                return error;
 557        }
 558        xfs_buf_relse(bp);
 559
 560        if (mp->m_logdev_targp == mp->m_ddev_targp)
 561                return 0;
 562
 563        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 564        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 565                xfs_warn(mp, "log size mismatch detected");
 566                return -EFBIG;
 567        }
 568        error = xfs_buf_read_uncached(mp->m_logdev_targp,
 569                                        d - XFS_FSB_TO_BB(mp, 1),
 570                                        XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
 571        if (error) {
 572                xfs_warn(mp, "log device read failed");
 573                return error;
 574        }
 575        xfs_buf_relse(bp);
 576        return 0;
 577}
 578
 579/*
 580 * Clear the quotaflags in memory and in the superblock.
 581 */
 582int
 583xfs_mount_reset_sbqflags(
 584        struct xfs_mount        *mp)
 585{
 586        mp->m_qflags = 0;
 587
 588        /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
 589        if (mp->m_sb.sb_qflags == 0)
 590                return 0;
 591        spin_lock(&mp->m_sb_lock);
 592        mp->m_sb.sb_qflags = 0;
 593        spin_unlock(&mp->m_sb_lock);
 594
 595        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
 596                return 0;
 597
 598        return xfs_sync_sb(mp, false);
 599}
 600
 601__uint64_t
 602xfs_default_resblks(xfs_mount_t *mp)
 603{
 604        __uint64_t resblks;
 605
 606        /*
 607         * We default to 5% or 8192 fsbs of space reserved, whichever is
 608         * smaller.  This is intended to cover concurrent allocation
 609         * transactions when we initially hit enospc. These each require a 4
 610         * block reservation. Hence by default we cover roughly 2000 concurrent
 611         * allocation reservations.
 612         */
 613        resblks = mp->m_sb.sb_dblocks;
 614        do_div(resblks, 20);
 615        resblks = min_t(__uint64_t, resblks, 8192);
 616        return resblks;
 617}
 618
 619/*
 620 * This function does the following on an initial mount of a file system:
 621 *      - reads the superblock from disk and init the mount struct
 622 *      - if we're a 32-bit kernel, do a size check on the superblock
 623 *              so we don't mount terabyte filesystems
 624 *      - init mount struct realtime fields
 625 *      - allocate inode hash table for fs
 626 *      - init directory manager
 627 *      - perform recovery and init the log manager
 628 */
 629int
 630xfs_mountfs(
 631        xfs_mount_t     *mp)
 632{
 633        xfs_sb_t        *sbp = &(mp->m_sb);
 634        xfs_inode_t     *rip;
 635        __uint64_t      resblks;
 636        uint            quotamount = 0;
 637        uint            quotaflags = 0;
 638        int             error = 0;
 639
 640        xfs_sb_mount_common(mp, sbp);
 641
 642        /*
 643         * Check for a mismatched features2 values.  Older kernels read & wrote
 644         * into the wrong sb offset for sb_features2 on some platforms due to
 645         * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
 646         * which made older superblock reading/writing routines swap it as a
 647         * 64-bit value.
 648         *
 649         * For backwards compatibility, we make both slots equal.
 650         *
 651         * If we detect a mismatched field, we OR the set bits into the existing
 652         * features2 field in case it has already been modified; we don't want
 653         * to lose any features.  We then update the bad location with the ORed
 654         * value so that older kernels will see any features2 flags. The
 655         * superblock writeback code ensures the new sb_features2 is copied to
 656         * sb_bad_features2 before it is logged or written to disk.
 657         */
 658        if (xfs_sb_has_mismatched_features2(sbp)) {
 659                xfs_warn(mp, "correcting sb_features alignment problem");
 660                sbp->sb_features2 |= sbp->sb_bad_features2;
 661                mp->m_update_sb = true;
 662
 663                /*
 664                 * Re-check for ATTR2 in case it was found in bad_features2
 665                 * slot.
 666                 */
 667                if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 668                   !(mp->m_flags & XFS_MOUNT_NOATTR2))
 669                        mp->m_flags |= XFS_MOUNT_ATTR2;
 670        }
 671
 672        if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 673           (mp->m_flags & XFS_MOUNT_NOATTR2)) {
 674                xfs_sb_version_removeattr2(&mp->m_sb);
 675                mp->m_update_sb = true;
 676
 677                /* update sb_versionnum for the clearing of the morebits */
 678                if (!sbp->sb_features2)
 679                        mp->m_update_sb = true;
 680        }
 681
 682        /* always use v2 inodes by default now */
 683        if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
 684                mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
 685                mp->m_update_sb = true;
 686        }
 687
 688        /*
 689         * Check if sb_agblocks is aligned at stripe boundary
 690         * If sb_agblocks is NOT aligned turn off m_dalign since
 691         * allocator alignment is within an ag, therefore ag has
 692         * to be aligned at stripe boundary.
 693         */
 694        error = xfs_update_alignment(mp);
 695        if (error)
 696                goto out;
 697
 698        xfs_alloc_compute_maxlevels(mp);
 699        xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 700        xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 701        xfs_ialloc_compute_maxlevels(mp);
 702
 703        xfs_set_maxicount(mp);
 704
 705        error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
 706        if (error)
 707                goto out;
 708
 709        error = xfs_uuid_mount(mp);
 710        if (error)
 711                goto out_remove_sysfs;
 712
 713        /*
 714         * Set the minimum read and write sizes
 715         */
 716        xfs_set_rw_sizes(mp);
 717
 718        /* set the low space thresholds for dynamic preallocation */
 719        xfs_set_low_space_thresholds(mp);
 720
 721        /*
 722         * Set the inode cluster size.
 723         * This may still be overridden by the file system
 724         * block size if it is larger than the chosen cluster size.
 725         *
 726         * For v5 filesystems, scale the cluster size with the inode size to
 727         * keep a constant ratio of inode per cluster buffer, but only if mkfs
 728         * has set the inode alignment value appropriately for larger cluster
 729         * sizes.
 730         */
 731        mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
 732        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 733                int     new_size = mp->m_inode_cluster_size;
 734
 735                new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
 736                if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
 737                        mp->m_inode_cluster_size = new_size;
 738        }
 739
 740        /*
 741         * Set inode alignment fields
 742         */
 743        xfs_set_inoalignment(mp);
 744
 745        /*
 746         * Check that the data (and log if separate) is an ok size.
 747         */
 748        error = xfs_check_sizes(mp);
 749        if (error)
 750                goto out_remove_uuid;
 751
 752        /*
 753         * Initialize realtime fields in the mount structure
 754         */
 755        error = xfs_rtmount_init(mp);
 756        if (error) {
 757                xfs_warn(mp, "RT mount failed");
 758                goto out_remove_uuid;
 759        }
 760
 761        /*
 762         *  Copies the low order bits of the timestamp and the randomly
 763         *  set "sequence" number out of a UUID.
 764         */
 765        uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
 766
 767        mp->m_dmevmask = 0;     /* not persistent; set after each mount */
 768
 769        error = xfs_da_mount(mp);
 770        if (error) {
 771                xfs_warn(mp, "Failed dir/attr init: %d", error);
 772                goto out_remove_uuid;
 773        }
 774
 775        /*
 776         * Initialize the precomputed transaction reservations values.
 777         */
 778        xfs_trans_init(mp);
 779
 780        /*
 781         * Allocate and initialize the per-ag data.
 782         */
 783        spin_lock_init(&mp->m_perag_lock);
 784        INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
 785        error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
 786        if (error) {
 787                xfs_warn(mp, "Failed per-ag init: %d", error);
 788                goto out_free_dir;
 789        }
 790
 791        if (!sbp->sb_logblocks) {
 792                xfs_warn(mp, "no log defined");
 793                XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
 794                error = -EFSCORRUPTED;
 795                goto out_free_perag;
 796        }
 797
 798        /*
 799         * log's mount-time initialization. Perform 1st part recovery if needed
 800         */
 801        error = xfs_log_mount(mp, mp->m_logdev_targp,
 802                              XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 803                              XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 804        if (error) {
 805                xfs_warn(mp, "log mount failed");
 806                goto out_fail_wait;
 807        }
 808
 809        /*
 810         * Now the log is mounted, we know if it was an unclean shutdown or
 811         * not. If it was, with the first phase of recovery has completed, we
 812         * have consistent AG blocks on disk. We have not recovered EFIs yet,
 813         * but they are recovered transactionally in the second recovery phase
 814         * later.
 815         *
 816         * Hence we can safely re-initialise incore superblock counters from
 817         * the per-ag data. These may not be correct if the filesystem was not
 818         * cleanly unmounted, so we need to wait for recovery to finish before
 819         * doing this.
 820         *
 821         * If the filesystem was cleanly unmounted, then we can trust the
 822         * values in the superblock to be correct and we don't need to do
 823         * anything here.
 824         *
 825         * If we are currently making the filesystem, the initialisation will
 826         * fail as the perag data is in an undefined state.
 827         */
 828        if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
 829            !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
 830             !mp->m_sb.sb_inprogress) {
 831                error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
 832                if (error)
 833                        goto out_log_dealloc;
 834        }
 835
 836        /*
 837         * Get and sanity-check the root inode.
 838         * Save the pointer to it in the mount structure.
 839         */
 840        error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
 841        if (error) {
 842                xfs_warn(mp, "failed to read root inode");
 843                goto out_log_dealloc;
 844        }
 845
 846        ASSERT(rip != NULL);
 847
 848        if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
 849                xfs_warn(mp, "corrupted root inode %llu: not a directory",
 850                        (unsigned long long)rip->i_ino);
 851                xfs_iunlock(rip, XFS_ILOCK_EXCL);
 852                XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
 853                                 mp);
 854                error = -EFSCORRUPTED;
 855                goto out_rele_rip;
 856        }
 857        mp->m_rootip = rip;     /* save it */
 858
 859        xfs_iunlock(rip, XFS_ILOCK_EXCL);
 860
 861        /*
 862         * Initialize realtime inode pointers in the mount structure
 863         */
 864        error = xfs_rtmount_inodes(mp);
 865        if (error) {
 866                /*
 867                 * Free up the root inode.
 868                 */
 869                xfs_warn(mp, "failed to read RT inodes");
 870                goto out_rele_rip;
 871        }
 872
 873        /*
 874         * If this is a read-only mount defer the superblock updates until
 875         * the next remount into writeable mode.  Otherwise we would never
 876         * perform the update e.g. for the root filesystem.
 877         */
 878        if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 879                error = xfs_sync_sb(mp, false);
 880                if (error) {
 881                        xfs_warn(mp, "failed to write sb changes");
 882                        goto out_rtunmount;
 883                }
 884        }
 885
 886        /*
 887         * Initialise the XFS quota management subsystem for this mount
 888         */
 889        if (XFS_IS_QUOTA_RUNNING(mp)) {
 890                error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
 891                if (error)
 892                        goto out_rtunmount;
 893        } else {
 894                ASSERT(!XFS_IS_QUOTA_ON(mp));
 895
 896                /*
 897                 * If a file system had quotas running earlier, but decided to
 898                 * mount without -o uquota/pquota/gquota options, revoke the
 899                 * quotachecked license.
 900                 */
 901                if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 902                        xfs_notice(mp, "resetting quota flags");
 903                        error = xfs_mount_reset_sbqflags(mp);
 904                        if (error)
 905                                goto out_rtunmount;
 906                }
 907        }
 908
 909        /*
 910         * Finish recovering the file system.  This part needed to be
 911         * delayed until after the root and real-time bitmap inodes
 912         * were consistently read in.
 913         */
 914        error = xfs_log_mount_finish(mp);
 915        if (error) {
 916                xfs_warn(mp, "log mount finish failed");
 917                goto out_rtunmount;
 918        }
 919
 920        /*
 921         * Complete the quota initialisation, post-log-replay component.
 922         */
 923        if (quotamount) {
 924                ASSERT(mp->m_qflags == 0);
 925                mp->m_qflags = quotaflags;
 926
 927                xfs_qm_mount_quotas(mp);
 928        }
 929
 930        /*
 931         * Now we are mounted, reserve a small amount of unused space for
 932         * privileged transactions. This is needed so that transaction
 933         * space required for critical operations can dip into this pool
 934         * when at ENOSPC. This is needed for operations like create with
 935         * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 936         * are not allowed to use this reserved space.
 937         *
 938         * This may drive us straight to ENOSPC on mount, but that implies
 939         * we were already there on the last unmount. Warn if this occurs.
 940         */
 941        if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 942                resblks = xfs_default_resblks(mp);
 943                error = xfs_reserve_blocks(mp, &resblks, NULL);
 944                if (error)
 945                        xfs_warn(mp,
 946        "Unable to allocate reserve blocks. Continuing without reserve pool.");
 947        }
 948
 949        return 0;
 950
 951 out_rtunmount:
 952        xfs_rtunmount_inodes(mp);
 953 out_rele_rip:
 954        IRELE(rip);
 955 out_log_dealloc:
 956        xfs_log_unmount(mp);
 957 out_fail_wait:
 958        if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
 959                xfs_wait_buftarg(mp->m_logdev_targp);
 960        xfs_wait_buftarg(mp->m_ddev_targp);
 961 out_free_perag:
 962        xfs_free_perag(mp);
 963 out_free_dir:
 964        xfs_da_unmount(mp);
 965 out_remove_uuid:
 966        xfs_uuid_unmount(mp);
 967 out_remove_sysfs:
 968        xfs_sysfs_del(&mp->m_kobj);
 969 out:
 970        return error;
 971}
 972
 973/*
 974 * This flushes out the inodes,dquots and the superblock, unmounts the
 975 * log and makes sure that incore structures are freed.
 976 */
 977void
 978xfs_unmountfs(
 979        struct xfs_mount        *mp)
 980{
 981        __uint64_t              resblks;
 982        int                     error;
 983
 984        cancel_delayed_work_sync(&mp->m_eofblocks_work);
 985
 986        xfs_qm_unmount_quotas(mp);
 987        xfs_rtunmount_inodes(mp);
 988        IRELE(mp->m_rootip);
 989
 990        /*
 991         * We can potentially deadlock here if we have an inode cluster
 992         * that has been freed has its buffer still pinned in memory because
 993         * the transaction is still sitting in a iclog. The stale inodes
 994         * on that buffer will have their flush locks held until the
 995         * transaction hits the disk and the callbacks run. the inode
 996         * flush takes the flush lock unconditionally and with nothing to
 997         * push out the iclog we will never get that unlocked. hence we
 998         * need to force the log first.
 999         */
1000        xfs_log_force(mp, XFS_LOG_SYNC);
1001
1002        /*
1003         * Flush all pending changes from the AIL.
1004         */
1005        xfs_ail_push_all_sync(mp->m_ail);
1006
1007        /*
1008         * And reclaim all inodes.  At this point there should be no dirty
1009         * inodes and none should be pinned or locked, but use synchronous
1010         * reclaim just to be sure. We can stop background inode reclaim
1011         * here as well if it is still running.
1012         */
1013        cancel_delayed_work_sync(&mp->m_reclaim_work);
1014        xfs_reclaim_inodes(mp, SYNC_WAIT);
1015
1016        xfs_qm_unmount(mp);
1017
1018        /*
1019         * Unreserve any blocks we have so that when we unmount we don't account
1020         * the reserved free space as used. This is really only necessary for
1021         * lazy superblock counting because it trusts the incore superblock
1022         * counters to be absolutely correct on clean unmount.
1023         *
1024         * We don't bother correcting this elsewhere for lazy superblock
1025         * counting because on mount of an unclean filesystem we reconstruct the
1026         * correct counter value and this is irrelevant.
1027         *
1028         * For non-lazy counter filesystems, this doesn't matter at all because
1029         * we only every apply deltas to the superblock and hence the incore
1030         * value does not matter....
1031         */
1032        resblks = 0;
1033        error = xfs_reserve_blocks(mp, &resblks, NULL);
1034        if (error)
1035                xfs_warn(mp, "Unable to free reserved block pool. "
1036                                "Freespace may not be correct on next mount.");
1037
1038        error = xfs_log_sbcount(mp);
1039        if (error)
1040                xfs_warn(mp, "Unable to update superblock counters. "
1041                                "Freespace may not be correct on next mount.");
1042
1043        xfs_log_unmount(mp);
1044        xfs_da_unmount(mp);
1045        xfs_uuid_unmount(mp);
1046
1047#if defined(DEBUG)
1048        xfs_errortag_clearall(mp, 0);
1049#endif
1050        xfs_free_perag(mp);
1051
1052        xfs_sysfs_del(&mp->m_kobj);
1053}
1054
1055/*
1056 * Determine whether modifications can proceed. The caller specifies the minimum
1057 * freeze level for which modifications should not be allowed. This allows
1058 * certain operations to proceed while the freeze sequence is in progress, if
1059 * necessary.
1060 */
1061bool
1062xfs_fs_writable(
1063        struct xfs_mount        *mp,
1064        int                     level)
1065{
1066        ASSERT(level > SB_UNFROZEN);
1067        if ((mp->m_super->s_writers.frozen >= level) ||
1068            XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1069                return false;
1070
1071        return true;
1072}
1073
1074/*
1075 * xfs_log_sbcount
1076 *
1077 * Sync the superblock counters to disk.
1078 *
1079 * Note this code can be called during the process of freezing, so we use the
1080 * transaction allocator that does not block when the transaction subsystem is
1081 * in its frozen state.
1082 */
1083int
1084xfs_log_sbcount(xfs_mount_t *mp)
1085{
1086        /* allow this to proceed during the freeze sequence... */
1087        if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1088                return 0;
1089
1090        xfs_icsb_sync_counters(mp, 0);
1091
1092        /*
1093         * we don't need to do this if we are updating the superblock
1094         * counters on every modification.
1095         */
1096        if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1097                return 0;
1098
1099        return xfs_sync_sb(mp, true);
1100}
1101
1102/*
1103 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1104 * a delta to a specified field in the in-core superblock.  Simply
1105 * switch on the field indicated and apply the delta to that field.
1106 * Fields are not allowed to dip below zero, so if the delta would
1107 * do this do not apply it and return EINVAL.
1108 *
1109 * The m_sb_lock must be held when this routine is called.
1110 */
1111STATIC int
1112xfs_mod_incore_sb_unlocked(
1113        xfs_mount_t     *mp,
1114        xfs_sb_field_t  field,
1115        int64_t         delta,
1116        int             rsvd)
1117{
1118        int             scounter;       /* short counter for 32 bit fields */
1119        long long       lcounter;       /* long counter for 64 bit fields */
1120        long long       res_used, rem;
1121
1122        /*
1123         * With the in-core superblock spin lock held, switch
1124         * on the indicated field.  Apply the delta to the
1125         * proper field.  If the fields value would dip below
1126         * 0, then do not apply the delta and return EINVAL.
1127         */
1128        switch (field) {
1129        case XFS_SBS_ICOUNT:
1130                lcounter = (long long)mp->m_sb.sb_icount;
1131                lcounter += delta;
1132                if (lcounter < 0) {
1133                        ASSERT(0);
1134                        return -EINVAL;
1135                }
1136                mp->m_sb.sb_icount = lcounter;
1137                return 0;
1138        case XFS_SBS_IFREE:
1139                lcounter = (long long)mp->m_sb.sb_ifree;
1140                lcounter += delta;
1141                if (lcounter < 0) {
1142                        ASSERT(0);
1143                        return -EINVAL;
1144                }
1145                mp->m_sb.sb_ifree = lcounter;
1146                return 0;
1147        case XFS_SBS_FDBLOCKS:
1148                lcounter = (long long)
1149                        mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1150                res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1151
1152                if (delta > 0) {                /* Putting blocks back */
1153                        if (res_used > delta) {
1154                                mp->m_resblks_avail += delta;
1155                        } else {
1156                                rem = delta - res_used;
1157                                mp->m_resblks_avail = mp->m_resblks;
1158                                lcounter += rem;
1159                        }
1160                } else {                                /* Taking blocks away */
1161                        lcounter += delta;
1162                        if (lcounter >= 0) {
1163                                mp->m_sb.sb_fdblocks = lcounter +
1164                                                        XFS_ALLOC_SET_ASIDE(mp);
1165                                return 0;
1166                        }
1167
1168                        /*
1169                         * We are out of blocks, use any available reserved
1170                         * blocks if were allowed to.
1171                         */
1172                        if (!rsvd)
1173                                return -ENOSPC;
1174
1175                        lcounter = (long long)mp->m_resblks_avail + delta;
1176                        if (lcounter >= 0) {
1177                                mp->m_resblks_avail = lcounter;
1178                                return 0;
1179                        }
1180                        printk_once(KERN_WARNING
1181                                "Filesystem \"%s\": reserve blocks depleted! "
1182                                "Consider increasing reserve pool size.",
1183                                mp->m_fsname);
1184                        return -ENOSPC;
1185                }
1186
1187                mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1188                return 0;
1189        case XFS_SBS_FREXTENTS:
1190                lcounter = (long long)mp->m_sb.sb_frextents;
1191                lcounter += delta;
1192                if (lcounter < 0) {
1193                        return -ENOSPC;
1194                }
1195                mp->m_sb.sb_frextents = lcounter;
1196                return 0;
1197        case XFS_SBS_DBLOCKS:
1198                lcounter = (long long)mp->m_sb.sb_dblocks;
1199                lcounter += delta;
1200                if (lcounter < 0) {
1201                        ASSERT(0);
1202                        return -EINVAL;
1203                }
1204                mp->m_sb.sb_dblocks = lcounter;
1205                return 0;
1206        case XFS_SBS_AGCOUNT:
1207                scounter = mp->m_sb.sb_agcount;
1208                scounter += delta;
1209                if (scounter < 0) {
1210                        ASSERT(0);
1211                        return -EINVAL;
1212                }
1213                mp->m_sb.sb_agcount = scounter;
1214                return 0;
1215        case XFS_SBS_IMAX_PCT:
1216                scounter = mp->m_sb.sb_imax_pct;
1217                scounter += delta;
1218                if (scounter < 0) {
1219                        ASSERT(0);
1220                        return -EINVAL;
1221                }
1222                mp->m_sb.sb_imax_pct = scounter;
1223                return 0;
1224        case XFS_SBS_REXTSIZE:
1225                scounter = mp->m_sb.sb_rextsize;
1226                scounter += delta;
1227                if (scounter < 0) {
1228                        ASSERT(0);
1229                        return -EINVAL;
1230                }
1231                mp->m_sb.sb_rextsize = scounter;
1232                return 0;
1233        case XFS_SBS_RBMBLOCKS:
1234                scounter = mp->m_sb.sb_rbmblocks;
1235                scounter += delta;
1236                if (scounter < 0) {
1237                        ASSERT(0);
1238                        return -EINVAL;
1239                }
1240                mp->m_sb.sb_rbmblocks = scounter;
1241                return 0;
1242        case XFS_SBS_RBLOCKS:
1243                lcounter = (long long)mp->m_sb.sb_rblocks;
1244                lcounter += delta;
1245                if (lcounter < 0) {
1246                        ASSERT(0);
1247                        return -EINVAL;
1248                }
1249                mp->m_sb.sb_rblocks = lcounter;
1250                return 0;
1251        case XFS_SBS_REXTENTS:
1252                lcounter = (long long)mp->m_sb.sb_rextents;
1253                lcounter += delta;
1254                if (lcounter < 0) {
1255                        ASSERT(0);
1256                        return -EINVAL;
1257                }
1258                mp->m_sb.sb_rextents = lcounter;
1259                return 0;
1260        case XFS_SBS_REXTSLOG:
1261                scounter = mp->m_sb.sb_rextslog;
1262                scounter += delta;
1263                if (scounter < 0) {
1264                        ASSERT(0);
1265                        return -EINVAL;
1266                }
1267                mp->m_sb.sb_rextslog = scounter;
1268                return 0;
1269        default:
1270                ASSERT(0);
1271                return -EINVAL;
1272        }
1273}
1274
1275/*
1276 * xfs_mod_incore_sb() is used to change a field in the in-core
1277 * superblock structure by the specified delta.  This modification
1278 * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1279 * routine to do the work.
1280 */
1281int
1282xfs_mod_incore_sb(
1283        struct xfs_mount        *mp,
1284        xfs_sb_field_t          field,
1285        int64_t                 delta,
1286        int                     rsvd)
1287{
1288        int                     status;
1289
1290#ifdef HAVE_PERCPU_SB
1291        ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1292#endif
1293        spin_lock(&mp->m_sb_lock);
1294        status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1295        spin_unlock(&mp->m_sb_lock);
1296
1297        return status;
1298}
1299
1300/*
1301 * Change more than one field in the in-core superblock structure at a time.
1302 *
1303 * The fields and changes to those fields are specified in the array of
1304 * xfs_mod_sb structures passed in.  Either all of the specified deltas
1305 * will be applied or none of them will.  If any modified field dips below 0,
1306 * then all modifications will be backed out and EINVAL will be returned.
1307 *
1308 * Note that this function may not be used for the superblock values that
1309 * are tracked with the in-memory per-cpu counters - a direct call to
1310 * xfs_icsb_modify_counters is required for these.
1311 */
1312int
1313xfs_mod_incore_sb_batch(
1314        struct xfs_mount        *mp,
1315        xfs_mod_sb_t            *msb,
1316        uint                    nmsb,
1317        int                     rsvd)
1318{
1319        xfs_mod_sb_t            *msbp;
1320        int                     error = 0;
1321
1322        /*
1323         * Loop through the array of mod structures and apply each individually.
1324         * If any fail, then back out all those which have already been applied.
1325         * Do all of this within the scope of the m_sb_lock so that all of the
1326         * changes will be atomic.
1327         */
1328        spin_lock(&mp->m_sb_lock);
1329        for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1330                ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1331                       msbp->msb_field > XFS_SBS_FDBLOCKS);
1332
1333                error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1334                                                   msbp->msb_delta, rsvd);
1335                if (error)
1336                        goto unwind;
1337        }
1338        spin_unlock(&mp->m_sb_lock);
1339        return 0;
1340
1341unwind:
1342        while (--msbp >= msb) {
1343                error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1344                                                   -msbp->msb_delta, rsvd);
1345                ASSERT(error == 0);
1346        }
1347        spin_unlock(&mp->m_sb_lock);
1348        return error;
1349}
1350
1351/*
1352 * xfs_getsb() is called to obtain the buffer for the superblock.
1353 * The buffer is returned locked and read in from disk.
1354 * The buffer should be released with a call to xfs_brelse().
1355 *
1356 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1357 * the superblock buffer if it can be locked without sleeping.
1358 * If it can't then we'll return NULL.
1359 */
1360struct xfs_buf *
1361xfs_getsb(
1362        struct xfs_mount        *mp,
1363        int                     flags)
1364{
1365        struct xfs_buf          *bp = mp->m_sb_bp;
1366
1367        if (!xfs_buf_trylock(bp)) {
1368                if (flags & XBF_TRYLOCK)
1369                        return NULL;
1370                xfs_buf_lock(bp);
1371        }
1372
1373        xfs_buf_hold(bp);
1374        ASSERT(XFS_BUF_ISDONE(bp));
1375        return bp;
1376}
1377
1378/*
1379 * Used to free the superblock along various error paths.
1380 */
1381void
1382xfs_freesb(
1383        struct xfs_mount        *mp)
1384{
1385        struct xfs_buf          *bp = mp->m_sb_bp;
1386
1387        xfs_buf_lock(bp);
1388        mp->m_sb_bp = NULL;
1389        xfs_buf_relse(bp);
1390}
1391
1392/*
1393 * If the underlying (data/log/rt) device is readonly, there are some
1394 * operations that cannot proceed.
1395 */
1396int
1397xfs_dev_is_read_only(
1398        struct xfs_mount        *mp,
1399        char                    *message)
1400{
1401        if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1402            xfs_readonly_buftarg(mp->m_logdev_targp) ||
1403            (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1404                xfs_notice(mp, "%s required on read-only device.", message);
1405                xfs_notice(mp, "write access unavailable, cannot proceed.");
1406                return -EROFS;
1407        }
1408        return 0;
1409}
1410
1411#ifdef HAVE_PERCPU_SB
1412/*
1413 * Per-cpu incore superblock counters
1414 *
1415 * Simple concept, difficult implementation
1416 *
1417 * Basically, replace the incore superblock counters with a distributed per cpu
1418 * counter for contended fields (e.g.  free block count).
1419 *
1420 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1421 * hence needs to be accurately read when we are running low on space. Hence
1422 * there is a method to enable and disable the per-cpu counters based on how
1423 * much "stuff" is available in them.
1424 *
1425 * Basically, a counter is enabled if there is enough free resource to justify
1426 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1427 * ENOSPC), then we disable the counters to synchronise all callers and
1428 * re-distribute the available resources.
1429 *
1430 * If, once we redistributed the available resources, we still get a failure,
1431 * we disable the per-cpu counter and go through the slow path.
1432 *
1433 * The slow path is the current xfs_mod_incore_sb() function.  This means that
1434 * when we disable a per-cpu counter, we need to drain its resources back to
1435 * the global superblock. We do this after disabling the counter to prevent
1436 * more threads from queueing up on the counter.
1437 *
1438 * Essentially, this means that we still need a lock in the fast path to enable
1439 * synchronisation between the global counters and the per-cpu counters. This
1440 * is not a problem because the lock will be local to a CPU almost all the time
1441 * and have little contention except when we get to ENOSPC conditions.
1442 *
1443 * Basically, this lock becomes a barrier that enables us to lock out the fast
1444 * path while we do things like enabling and disabling counters and
1445 * synchronising the counters.
1446 *
1447 * Locking rules:
1448 *
1449 *      1. m_sb_lock before picking up per-cpu locks
1450 *      2. per-cpu locks always picked up via for_each_online_cpu() order
1451 *      3. accurate counter sync requires m_sb_lock + per cpu locks
1452 *      4. modifying per-cpu counters requires holding per-cpu lock
1453 *      5. modifying global counters requires holding m_sb_lock
1454 *      6. enabling or disabling a counter requires holding the m_sb_lock 
1455 *         and _none_ of the per-cpu locks.
1456 *
1457 * Disabled counters are only ever re-enabled by a balance operation
1458 * that results in more free resources per CPU than a given threshold.
1459 * To ensure counters don't remain disabled, they are rebalanced when
1460 * the global resource goes above a higher threshold (i.e. some hysteresis
1461 * is present to prevent thrashing).
1462 */
1463
1464#ifdef CONFIG_HOTPLUG_CPU
1465/*
1466 * hot-plug CPU notifier support.
1467 *
1468 * We need a notifier per filesystem as we need to be able to identify
1469 * the filesystem to balance the counters out. This is achieved by
1470 * having a notifier block embedded in the xfs_mount_t and doing pointer
1471 * magic to get the mount pointer from the notifier block address.
1472 */
1473STATIC int
1474xfs_icsb_cpu_notify(
1475        struct notifier_block *nfb,
1476        unsigned long action,
1477        void *hcpu)
1478{
1479        xfs_icsb_cnts_t *cntp;
1480        xfs_mount_t     *mp;
1481
1482        mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1483        cntp = (xfs_icsb_cnts_t *)
1484                        per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1485        switch (action) {
1486        case CPU_UP_PREPARE:
1487        case CPU_UP_PREPARE_FROZEN:
1488                /* Easy Case - initialize the area and locks, and
1489                 * then rebalance when online does everything else for us. */
1490                memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1491                break;
1492        case CPU_ONLINE:
1493        case CPU_ONLINE_FROZEN:
1494                xfs_icsb_lock(mp);
1495                xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1496                xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1497                xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1498                xfs_icsb_unlock(mp);
1499                break;
1500        case CPU_DEAD:
1501        case CPU_DEAD_FROZEN:
1502                /* Disable all the counters, then fold the dead cpu's
1503                 * count into the total on the global superblock and
1504                 * re-enable the counters. */
1505                xfs_icsb_lock(mp);
1506                spin_lock(&mp->m_sb_lock);
1507                xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1508                xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1509                xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1510
1511                mp->m_sb.sb_icount += cntp->icsb_icount;
1512                mp->m_sb.sb_ifree += cntp->icsb_ifree;
1513                mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1514
1515                memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1516
1517                xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1518                xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1519                xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1520                spin_unlock(&mp->m_sb_lock);
1521                xfs_icsb_unlock(mp);
1522                break;
1523        }
1524
1525        return NOTIFY_OK;
1526}
1527#endif /* CONFIG_HOTPLUG_CPU */
1528
1529int
1530xfs_icsb_init_counters(
1531        xfs_mount_t     *mp)
1532{
1533        xfs_icsb_cnts_t *cntp;
1534        int             i;
1535
1536        mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1537        if (mp->m_sb_cnts == NULL)
1538                return -ENOMEM;
1539
1540        for_each_online_cpu(i) {
1541                cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1542                memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1543        }
1544
1545        mutex_init(&mp->m_icsb_mutex);
1546
1547        /*
1548         * start with all counters disabled so that the
1549         * initial balance kicks us off correctly
1550         */
1551        mp->m_icsb_counters = -1;
1552
1553#ifdef CONFIG_HOTPLUG_CPU
1554        mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1555        mp->m_icsb_notifier.priority = 0;
1556        register_hotcpu_notifier(&mp->m_icsb_notifier);
1557#endif /* CONFIG_HOTPLUG_CPU */
1558
1559        return 0;
1560}
1561
1562void
1563xfs_icsb_reinit_counters(
1564        xfs_mount_t     *mp)
1565{
1566        xfs_icsb_lock(mp);
1567        /*
1568         * start with all counters disabled so that the
1569         * initial balance kicks us off correctly
1570         */
1571        mp->m_icsb_counters = -1;
1572        xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1573        xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1574        xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1575        xfs_icsb_unlock(mp);
1576}
1577
1578void
1579xfs_icsb_destroy_counters(
1580        xfs_mount_t     *mp)
1581{
1582        if (mp->m_sb_cnts) {
1583                unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1584                free_percpu(mp->m_sb_cnts);
1585        }
1586        mutex_destroy(&mp->m_icsb_mutex);
1587}
1588
1589STATIC void
1590xfs_icsb_lock_cntr(
1591        xfs_icsb_cnts_t *icsbp)
1592{
1593        while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1594                ndelay(1000);
1595        }
1596}
1597
1598STATIC void
1599xfs_icsb_unlock_cntr(
1600        xfs_icsb_cnts_t *icsbp)
1601{
1602        clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1603}
1604
1605
1606STATIC void
1607xfs_icsb_lock_all_counters(
1608        xfs_mount_t     *mp)
1609{
1610        xfs_icsb_cnts_t *cntp;
1611        int             i;
1612
1613        for_each_online_cpu(i) {
1614                cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1615                xfs_icsb_lock_cntr(cntp);
1616        }
1617}
1618
1619STATIC void
1620xfs_icsb_unlock_all_counters(
1621        xfs_mount_t     *mp)
1622{
1623        xfs_icsb_cnts_t *cntp;
1624        int             i;
1625
1626        for_each_online_cpu(i) {
1627                cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1628                xfs_icsb_unlock_cntr(cntp);
1629        }
1630}
1631
1632STATIC void
1633xfs_icsb_count(
1634        xfs_mount_t     *mp,
1635        xfs_icsb_cnts_t *cnt,
1636        int             flags)
1637{
1638        xfs_icsb_cnts_t *cntp;
1639        int             i;
1640
1641        memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1642
1643        if (!(flags & XFS_ICSB_LAZY_COUNT))
1644                xfs_icsb_lock_all_counters(mp);
1645
1646        for_each_online_cpu(i) {
1647                cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1648                cnt->icsb_icount += cntp->icsb_icount;
1649                cnt->icsb_ifree += cntp->icsb_ifree;
1650                cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1651        }
1652
1653        if (!(flags & XFS_ICSB_LAZY_COUNT))
1654                xfs_icsb_unlock_all_counters(mp);
1655}
1656
1657STATIC int
1658xfs_icsb_counter_disabled(
1659        xfs_mount_t     *mp,
1660        xfs_sb_field_t  field)
1661{
1662        ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1663        return test_bit(field, &mp->m_icsb_counters);
1664}
1665
1666STATIC void
1667xfs_icsb_disable_counter(
1668        xfs_mount_t     *mp,
1669        xfs_sb_field_t  field)
1670{
1671        xfs_icsb_cnts_t cnt;
1672
1673        ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1674
1675        /*
1676         * If we are already disabled, then there is nothing to do
1677         * here. We check before locking all the counters to avoid
1678         * the expensive lock operation when being called in the
1679         * slow path and the counter is already disabled. This is
1680         * safe because the only time we set or clear this state is under
1681         * the m_icsb_mutex.
1682         */
1683        if (xfs_icsb_counter_disabled(mp, field))
1684                return;
1685
1686        xfs_icsb_lock_all_counters(mp);
1687        if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1688                /* drain back to superblock */
1689
1690                xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1691                switch(field) {
1692                case XFS_SBS_ICOUNT:
1693                        mp->m_sb.sb_icount = cnt.icsb_icount;
1694                        break;
1695                case XFS_SBS_IFREE:
1696                        mp->m_sb.sb_ifree = cnt.icsb_ifree;
1697                        break;
1698                case XFS_SBS_FDBLOCKS:
1699                        mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1700                        break;
1701                default:
1702                        BUG();
1703                }
1704        }
1705
1706        xfs_icsb_unlock_all_counters(mp);
1707}
1708
1709STATIC void
1710xfs_icsb_enable_counter(
1711        xfs_mount_t     *mp,
1712        xfs_sb_field_t  field,
1713        uint64_t        count,
1714        uint64_t        resid)
1715{
1716        xfs_icsb_cnts_t *cntp;
1717        int             i;
1718
1719        ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1720
1721        xfs_icsb_lock_all_counters(mp);
1722        for_each_online_cpu(i) {
1723                cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1724                switch (field) {
1725                case XFS_SBS_ICOUNT:
1726                        cntp->icsb_icount = count + resid;
1727                        break;
1728                case XFS_SBS_IFREE:
1729                        cntp->icsb_ifree = count + resid;
1730                        break;
1731                case XFS_SBS_FDBLOCKS:
1732                        cntp->icsb_fdblocks = count + resid;
1733                        break;
1734                default:
1735                        BUG();
1736                        break;
1737                }
1738                resid = 0;
1739        }
1740        clear_bit(field, &mp->m_icsb_counters);
1741        xfs_icsb_unlock_all_counters(mp);
1742}
1743
1744void
1745xfs_icsb_sync_counters_locked(
1746        xfs_mount_t     *mp,
1747        int             flags)
1748{
1749        xfs_icsb_cnts_t cnt;
1750
1751        xfs_icsb_count(mp, &cnt, flags);
1752
1753        if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1754                mp->m_sb.sb_icount = cnt.icsb_icount;
1755        if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1756                mp->m_sb.sb_ifree = cnt.icsb_ifree;
1757        if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1758                mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1759}
1760
1761/*
1762 * Accurate update of per-cpu counters to incore superblock
1763 */
1764void
1765xfs_icsb_sync_counters(
1766        xfs_mount_t     *mp,
1767        int             flags)
1768{
1769        spin_lock(&mp->m_sb_lock);
1770        xfs_icsb_sync_counters_locked(mp, flags);
1771        spin_unlock(&mp->m_sb_lock);
1772}
1773
1774/*
1775 * Balance and enable/disable counters as necessary.
1776 *
1777 * Thresholds for re-enabling counters are somewhat magic.  inode counts are
1778 * chosen to be the same number as single on disk allocation chunk per CPU, and
1779 * free blocks is something far enough zero that we aren't going thrash when we
1780 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1781 * prevent looping endlessly when xfs_alloc_space asks for more than will
1782 * be distributed to a single CPU but each CPU has enough blocks to be
1783 * reenabled.
1784 *
1785 * Note that we can be called when counters are already disabled.
1786 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1787 * prevent locking every per-cpu counter needlessly.
1788 */
1789
1790#define XFS_ICSB_INO_CNTR_REENABLE      (uint64_t)64
1791#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1792                (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1793STATIC void
1794xfs_icsb_balance_counter_locked(
1795        xfs_mount_t     *mp,
1796        xfs_sb_field_t  field,
1797        int             min_per_cpu)
1798{
1799        uint64_t        count, resid;
1800        int             weight = num_online_cpus();
1801        uint64_t        min = (uint64_t)min_per_cpu;
1802
1803        /* disable counter and sync counter */
1804        xfs_icsb_disable_counter(mp, field);
1805
1806        /* update counters  - first CPU gets residual*/
1807        switch (field) {
1808        case XFS_SBS_ICOUNT:
1809                count = mp->m_sb.sb_icount;
1810                resid = do_div(count, weight);
1811                if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1812                        return;
1813                break;
1814        case XFS_SBS_IFREE:
1815                count = mp->m_sb.sb_ifree;
1816                resid = do_div(count, weight);
1817                if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1818                        return;
1819                break;
1820        case XFS_SBS_FDBLOCKS:
1821                count = mp->m_sb.sb_fdblocks;
1822                resid = do_div(count, weight);
1823                if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1824                        return;
1825                break;
1826        default:
1827                BUG();
1828                count = resid = 0;      /* quiet, gcc */
1829                break;
1830        }
1831
1832        xfs_icsb_enable_counter(mp, field, count, resid);
1833}
1834
1835STATIC void
1836xfs_icsb_balance_counter(
1837        xfs_mount_t     *mp,
1838        xfs_sb_field_t  fields,
1839        int             min_per_cpu)
1840{
1841        spin_lock(&mp->m_sb_lock);
1842        xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1843        spin_unlock(&mp->m_sb_lock);
1844}
1845
1846int
1847xfs_icsb_modify_counters(
1848        xfs_mount_t     *mp,
1849        xfs_sb_field_t  field,
1850        int64_t         delta,
1851        int             rsvd)
1852{
1853        xfs_icsb_cnts_t *icsbp;
1854        long long       lcounter;       /* long counter for 64 bit fields */
1855        int             ret = 0;
1856
1857        might_sleep();
1858again:
1859        preempt_disable();
1860        icsbp = this_cpu_ptr(mp->m_sb_cnts);
1861
1862        /*
1863         * if the counter is disabled, go to slow path
1864         */
1865        if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1866                goto slow_path;
1867        xfs_icsb_lock_cntr(icsbp);
1868        if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1869                xfs_icsb_unlock_cntr(icsbp);
1870                goto slow_path;
1871        }
1872
1873        switch (field) {
1874        case XFS_SBS_ICOUNT:
1875                lcounter = icsbp->icsb_icount;
1876                lcounter += delta;
1877                if (unlikely(lcounter < 0))
1878                        goto balance_counter;
1879                icsbp->icsb_icount = lcounter;
1880                break;
1881
1882        case XFS_SBS_IFREE:
1883                lcounter = icsbp->icsb_ifree;
1884                lcounter += delta;
1885                if (unlikely(lcounter < 0))
1886                        goto balance_counter;
1887                icsbp->icsb_ifree = lcounter;
1888                break;
1889
1890        case XFS_SBS_FDBLOCKS:
1891                BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1892
1893                lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1894                lcounter += delta;
1895                if (unlikely(lcounter < 0))
1896                        goto balance_counter;
1897                icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1898                break;
1899        default:
1900                BUG();
1901                break;
1902        }
1903        xfs_icsb_unlock_cntr(icsbp);
1904        preempt_enable();
1905        return 0;
1906
1907slow_path:
1908        preempt_enable();
1909
1910        /*
1911         * serialise with a mutex so we don't burn lots of cpu on
1912         * the superblock lock. We still need to hold the superblock
1913         * lock, however, when we modify the global structures.
1914         */
1915        xfs_icsb_lock(mp);
1916
1917        /*
1918         * Now running atomically.
1919         *
1920         * If the counter is enabled, someone has beaten us to rebalancing.
1921         * Drop the lock and try again in the fast path....
1922         */
1923        if (!(xfs_icsb_counter_disabled(mp, field))) {
1924                xfs_icsb_unlock(mp);
1925                goto again;
1926        }
1927
1928        /*
1929         * The counter is currently disabled. Because we are
1930         * running atomically here, we know a rebalance cannot
1931         * be in progress. Hence we can go straight to operating
1932         * on the global superblock. We do not call xfs_mod_incore_sb()
1933         * here even though we need to get the m_sb_lock. Doing so
1934         * will cause us to re-enter this function and deadlock.
1935         * Hence we get the m_sb_lock ourselves and then call
1936         * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1937         * directly on the global counters.
1938         */
1939        spin_lock(&mp->m_sb_lock);
1940        ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1941        spin_unlock(&mp->m_sb_lock);
1942
1943        /*
1944         * Now that we've modified the global superblock, we
1945         * may be able to re-enable the distributed counters
1946         * (e.g. lots of space just got freed). After that
1947         * we are done.
1948         */
1949        if (ret != -ENOSPC)
1950                xfs_icsb_balance_counter(mp, field, 0);
1951        xfs_icsb_unlock(mp);
1952        return ret;
1953
1954balance_counter:
1955        xfs_icsb_unlock_cntr(icsbp);
1956        preempt_enable();
1957
1958        /*
1959         * We may have multiple threads here if multiple per-cpu
1960         * counters run dry at the same time. This will mean we can
1961         * do more balances than strictly necessary but it is not
1962         * the common slowpath case.
1963         */
1964        xfs_icsb_lock(mp);
1965
1966        /*
1967         * running atomically.
1968         *
1969         * This will leave the counter in the correct state for future
1970         * accesses. After the rebalance, we simply try again and our retry
1971         * will either succeed through the fast path or slow path without
1972         * another balance operation being required.
1973         */
1974        xfs_icsb_balance_counter(mp, field, delta);
1975        xfs_icsb_unlock(mp);
1976        goto again;
1977}
1978
1979#endif
1980