linux/include/linux/netdevice.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the Interfaces handler.
   7 *
   8 * Version:     @(#)dev.h       1.0.10  08/12/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
  14 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  15 *              Bjorn Ekwall. <bj0rn@blox.se>
  16 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
  17 *
  18 *              This program is free software; you can redistribute it and/or
  19 *              modify it under the terms of the GNU General Public License
  20 *              as published by the Free Software Foundation; either version
  21 *              2 of the License, or (at your option) any later version.
  22 *
  23 *              Moved to /usr/include/linux for NET3
  24 */
  25#ifndef _LINUX_NETDEVICE_H
  26#define _LINUX_NETDEVICE_H
  27
  28#include <linux/pm_qos.h>
  29#include <linux/timer.h>
  30#include <linux/bug.h>
  31#include <linux/delay.h>
  32#include <linux/atomic.h>
  33#include <linux/prefetch.h>
  34#include <asm/cache.h>
  35#include <asm/byteorder.h>
  36
  37#include <linux/percpu.h>
  38#include <linux/rculist.h>
  39#include <linux/dmaengine.h>
  40#include <linux/workqueue.h>
  41#include <linux/dynamic_queue_limits.h>
  42
  43#include <linux/ethtool.h>
  44#include <net/net_namespace.h>
  45#include <net/dsa.h>
  46#ifdef CONFIG_DCB
  47#include <net/dcbnl.h>
  48#endif
  49#include <net/netprio_cgroup.h>
  50
  51#include <linux/netdev_features.h>
  52#include <linux/neighbour.h>
  53#include <uapi/linux/netdevice.h>
  54#include <uapi/linux/if_bonding.h>
  55
  56struct netpoll_info;
  57struct device;
  58struct phy_device;
  59/* 802.11 specific */
  60struct wireless_dev;
  61/* 802.15.4 specific */
  62struct wpan_dev;
  63
  64void netdev_set_default_ethtool_ops(struct net_device *dev,
  65                                    const struct ethtool_ops *ops);
  66
  67/* Backlog congestion levels */
  68#define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
  69#define NET_RX_DROP             1       /* packet dropped */
  70
  71/*
  72 * Transmit return codes: transmit return codes originate from three different
  73 * namespaces:
  74 *
  75 * - qdisc return codes
  76 * - driver transmit return codes
  77 * - errno values
  78 *
  79 * Drivers are allowed to return any one of those in their hard_start_xmit()
  80 * function. Real network devices commonly used with qdiscs should only return
  81 * the driver transmit return codes though - when qdiscs are used, the actual
  82 * transmission happens asynchronously, so the value is not propagated to
  83 * higher layers. Virtual network devices transmit synchronously, in this case
  84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
  85 * others are propagated to higher layers.
  86 */
  87
  88/* qdisc ->enqueue() return codes. */
  89#define NET_XMIT_SUCCESS        0x00
  90#define NET_XMIT_DROP           0x01    /* skb dropped                  */
  91#define NET_XMIT_CN             0x02    /* congestion notification      */
  92#define NET_XMIT_POLICED        0x03    /* skb is shot by police        */
  93#define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
  94
  95/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
  96 * indicates that the device will soon be dropping packets, or already drops
  97 * some packets of the same priority; prompting us to send less aggressively. */
  98#define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
  99#define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 100
 101/* Driver transmit return codes */
 102#define NETDEV_TX_MASK          0xf0
 103
 104enum netdev_tx {
 105        __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
 106        NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
 107        NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
 108        NETDEV_TX_LOCKED = 0x20,        /* driver tx lock was already taken */
 109};
 110typedef enum netdev_tx netdev_tx_t;
 111
 112/*
 113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
 114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
 115 */
 116static inline bool dev_xmit_complete(int rc)
 117{
 118        /*
 119         * Positive cases with an skb consumed by a driver:
 120         * - successful transmission (rc == NETDEV_TX_OK)
 121         * - error while transmitting (rc < 0)
 122         * - error while queueing to a different device (rc & NET_XMIT_MASK)
 123         */
 124        if (likely(rc < NET_XMIT_MASK))
 125                return true;
 126
 127        return false;
 128}
 129
 130/*
 131 *      Compute the worst case header length according to the protocols
 132 *      used.
 133 */
 134
 135#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
 136# if defined(CONFIG_MAC80211_MESH)
 137#  define LL_MAX_HEADER 128
 138# else
 139#  define LL_MAX_HEADER 96
 140# endif
 141#else
 142# define LL_MAX_HEADER 32
 143#endif
 144
 145#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
 146    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
 147#define MAX_HEADER LL_MAX_HEADER
 148#else
 149#define MAX_HEADER (LL_MAX_HEADER + 48)
 150#endif
 151
 152/*
 153 *      Old network device statistics. Fields are native words
 154 *      (unsigned long) so they can be read and written atomically.
 155 */
 156
 157struct net_device_stats {
 158        unsigned long   rx_packets;
 159        unsigned long   tx_packets;
 160        unsigned long   rx_bytes;
 161        unsigned long   tx_bytes;
 162        unsigned long   rx_errors;
 163        unsigned long   tx_errors;
 164        unsigned long   rx_dropped;
 165        unsigned long   tx_dropped;
 166        unsigned long   multicast;
 167        unsigned long   collisions;
 168        unsigned long   rx_length_errors;
 169        unsigned long   rx_over_errors;
 170        unsigned long   rx_crc_errors;
 171        unsigned long   rx_frame_errors;
 172        unsigned long   rx_fifo_errors;
 173        unsigned long   rx_missed_errors;
 174        unsigned long   tx_aborted_errors;
 175        unsigned long   tx_carrier_errors;
 176        unsigned long   tx_fifo_errors;
 177        unsigned long   tx_heartbeat_errors;
 178        unsigned long   tx_window_errors;
 179        unsigned long   rx_compressed;
 180        unsigned long   tx_compressed;
 181};
 182
 183
 184#include <linux/cache.h>
 185#include <linux/skbuff.h>
 186
 187#ifdef CONFIG_RPS
 188#include <linux/static_key.h>
 189extern struct static_key rps_needed;
 190#endif
 191
 192struct neighbour;
 193struct neigh_parms;
 194struct sk_buff;
 195
 196struct netdev_hw_addr {
 197        struct list_head        list;
 198        unsigned char           addr[MAX_ADDR_LEN];
 199        unsigned char           type;
 200#define NETDEV_HW_ADDR_T_LAN            1
 201#define NETDEV_HW_ADDR_T_SAN            2
 202#define NETDEV_HW_ADDR_T_SLAVE          3
 203#define NETDEV_HW_ADDR_T_UNICAST        4
 204#define NETDEV_HW_ADDR_T_MULTICAST      5
 205        bool                    global_use;
 206        int                     sync_cnt;
 207        int                     refcount;
 208        int                     synced;
 209        struct rcu_head         rcu_head;
 210};
 211
 212struct netdev_hw_addr_list {
 213        struct list_head        list;
 214        int                     count;
 215};
 216
 217#define netdev_hw_addr_list_count(l) ((l)->count)
 218#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
 219#define netdev_hw_addr_list_for_each(ha, l) \
 220        list_for_each_entry(ha, &(l)->list, list)
 221
 222#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
 223#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
 224#define netdev_for_each_uc_addr(ha, dev) \
 225        netdev_hw_addr_list_for_each(ha, &(dev)->uc)
 226
 227#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
 228#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
 229#define netdev_for_each_mc_addr(ha, dev) \
 230        netdev_hw_addr_list_for_each(ha, &(dev)->mc)
 231
 232struct hh_cache {
 233        u16             hh_len;
 234        u16             __pad;
 235        seqlock_t       hh_lock;
 236
 237        /* cached hardware header; allow for machine alignment needs.        */
 238#define HH_DATA_MOD     16
 239#define HH_DATA_OFF(__len) \
 240        (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
 241#define HH_DATA_ALIGN(__len) \
 242        (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
 243        unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
 244};
 245
 246/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
 247 * Alternative is:
 248 *   dev->hard_header_len ? (dev->hard_header_len +
 249 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
 250 *
 251 * We could use other alignment values, but we must maintain the
 252 * relationship HH alignment <= LL alignment.
 253 */
 254#define LL_RESERVED_SPACE(dev) \
 255        ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 256#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
 257        ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 258
 259struct header_ops {
 260        int     (*create) (struct sk_buff *skb, struct net_device *dev,
 261                           unsigned short type, const void *daddr,
 262                           const void *saddr, unsigned int len);
 263        int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
 264        int     (*rebuild)(struct sk_buff *skb);
 265        int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
 266        void    (*cache_update)(struct hh_cache *hh,
 267                                const struct net_device *dev,
 268                                const unsigned char *haddr);
 269};
 270
 271/* These flag bits are private to the generic network queueing
 272 * layer, they may not be explicitly referenced by any other
 273 * code.
 274 */
 275
 276enum netdev_state_t {
 277        __LINK_STATE_START,
 278        __LINK_STATE_PRESENT,
 279        __LINK_STATE_NOCARRIER,
 280        __LINK_STATE_LINKWATCH_PENDING,
 281        __LINK_STATE_DORMANT,
 282};
 283
 284
 285/*
 286 * This structure holds at boot time configured netdevice settings. They
 287 * are then used in the device probing.
 288 */
 289struct netdev_boot_setup {
 290        char name[IFNAMSIZ];
 291        struct ifmap map;
 292};
 293#define NETDEV_BOOT_SETUP_MAX 8
 294
 295int __init netdev_boot_setup(char *str);
 296
 297/*
 298 * Structure for NAPI scheduling similar to tasklet but with weighting
 299 */
 300struct napi_struct {
 301        /* The poll_list must only be managed by the entity which
 302         * changes the state of the NAPI_STATE_SCHED bit.  This means
 303         * whoever atomically sets that bit can add this napi_struct
 304         * to the per-cpu poll_list, and whoever clears that bit
 305         * can remove from the list right before clearing the bit.
 306         */
 307        struct list_head        poll_list;
 308
 309        unsigned long           state;
 310        int                     weight;
 311        unsigned int            gro_count;
 312        int                     (*poll)(struct napi_struct *, int);
 313#ifdef CONFIG_NETPOLL
 314        spinlock_t              poll_lock;
 315        int                     poll_owner;
 316#endif
 317        struct net_device       *dev;
 318        struct sk_buff          *gro_list;
 319        struct sk_buff          *skb;
 320        struct hrtimer          timer;
 321        struct list_head        dev_list;
 322        struct hlist_node       napi_hash_node;
 323        unsigned int            napi_id;
 324};
 325
 326enum {
 327        NAPI_STATE_SCHED,       /* Poll is scheduled */
 328        NAPI_STATE_DISABLE,     /* Disable pending */
 329        NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
 330        NAPI_STATE_HASHED,      /* In NAPI hash */
 331};
 332
 333enum gro_result {
 334        GRO_MERGED,
 335        GRO_MERGED_FREE,
 336        GRO_HELD,
 337        GRO_NORMAL,
 338        GRO_DROP,
 339};
 340typedef enum gro_result gro_result_t;
 341
 342/*
 343 * enum rx_handler_result - Possible return values for rx_handlers.
 344 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
 345 * further.
 346 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
 347 * case skb->dev was changed by rx_handler.
 348 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
 349 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
 350 *
 351 * rx_handlers are functions called from inside __netif_receive_skb(), to do
 352 * special processing of the skb, prior to delivery to protocol handlers.
 353 *
 354 * Currently, a net_device can only have a single rx_handler registered. Trying
 355 * to register a second rx_handler will return -EBUSY.
 356 *
 357 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
 358 * To unregister a rx_handler on a net_device, use
 359 * netdev_rx_handler_unregister().
 360 *
 361 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
 362 * do with the skb.
 363 *
 364 * If the rx_handler consumed to skb in some way, it should return
 365 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
 366 * the skb to be delivered in some other ways.
 367 *
 368 * If the rx_handler changed skb->dev, to divert the skb to another
 369 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
 370 * new device will be called if it exists.
 371 *
 372 * If the rx_handler consider the skb should be ignored, it should return
 373 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
 374 * are registered on exact device (ptype->dev == skb->dev).
 375 *
 376 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
 377 * delivered, it should return RX_HANDLER_PASS.
 378 *
 379 * A device without a registered rx_handler will behave as if rx_handler
 380 * returned RX_HANDLER_PASS.
 381 */
 382
 383enum rx_handler_result {
 384        RX_HANDLER_CONSUMED,
 385        RX_HANDLER_ANOTHER,
 386        RX_HANDLER_EXACT,
 387        RX_HANDLER_PASS,
 388};
 389typedef enum rx_handler_result rx_handler_result_t;
 390typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
 391
 392void __napi_schedule(struct napi_struct *n);
 393void __napi_schedule_irqoff(struct napi_struct *n);
 394
 395static inline bool napi_disable_pending(struct napi_struct *n)
 396{
 397        return test_bit(NAPI_STATE_DISABLE, &n->state);
 398}
 399
 400/**
 401 *      napi_schedule_prep - check if napi can be scheduled
 402 *      @n: napi context
 403 *
 404 * Test if NAPI routine is already running, and if not mark
 405 * it as running.  This is used as a condition variable
 406 * insure only one NAPI poll instance runs.  We also make
 407 * sure there is no pending NAPI disable.
 408 */
 409static inline bool napi_schedule_prep(struct napi_struct *n)
 410{
 411        return !napi_disable_pending(n) &&
 412                !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
 413}
 414
 415/**
 416 *      napi_schedule - schedule NAPI poll
 417 *      @n: napi context
 418 *
 419 * Schedule NAPI poll routine to be called if it is not already
 420 * running.
 421 */
 422static inline void napi_schedule(struct napi_struct *n)
 423{
 424        if (napi_schedule_prep(n))
 425                __napi_schedule(n);
 426}
 427
 428/**
 429 *      napi_schedule_irqoff - schedule NAPI poll
 430 *      @n: napi context
 431 *
 432 * Variant of napi_schedule(), assuming hard irqs are masked.
 433 */
 434static inline void napi_schedule_irqoff(struct napi_struct *n)
 435{
 436        if (napi_schedule_prep(n))
 437                __napi_schedule_irqoff(n);
 438}
 439
 440/* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
 441static inline bool napi_reschedule(struct napi_struct *napi)
 442{
 443        if (napi_schedule_prep(napi)) {
 444                __napi_schedule(napi);
 445                return true;
 446        }
 447        return false;
 448}
 449
 450void __napi_complete(struct napi_struct *n);
 451void napi_complete_done(struct napi_struct *n, int work_done);
 452/**
 453 *      napi_complete - NAPI processing complete
 454 *      @n: napi context
 455 *
 456 * Mark NAPI processing as complete.
 457 * Consider using napi_complete_done() instead.
 458 */
 459static inline void napi_complete(struct napi_struct *n)
 460{
 461        return napi_complete_done(n, 0);
 462}
 463
 464/**
 465 *      napi_by_id - lookup a NAPI by napi_id
 466 *      @napi_id: hashed napi_id
 467 *
 468 * lookup @napi_id in napi_hash table
 469 * must be called under rcu_read_lock()
 470 */
 471struct napi_struct *napi_by_id(unsigned int napi_id);
 472
 473/**
 474 *      napi_hash_add - add a NAPI to global hashtable
 475 *      @napi: napi context
 476 *
 477 * generate a new napi_id and store a @napi under it in napi_hash
 478 */
 479void napi_hash_add(struct napi_struct *napi);
 480
 481/**
 482 *      napi_hash_del - remove a NAPI from global table
 483 *      @napi: napi context
 484 *
 485 * Warning: caller must observe rcu grace period
 486 * before freeing memory containing @napi
 487 */
 488void napi_hash_del(struct napi_struct *napi);
 489
 490/**
 491 *      napi_disable - prevent NAPI from scheduling
 492 *      @n: napi context
 493 *
 494 * Stop NAPI from being scheduled on this context.
 495 * Waits till any outstanding processing completes.
 496 */
 497void napi_disable(struct napi_struct *n);
 498
 499/**
 500 *      napi_enable - enable NAPI scheduling
 501 *      @n: napi context
 502 *
 503 * Resume NAPI from being scheduled on this context.
 504 * Must be paired with napi_disable.
 505 */
 506static inline void napi_enable(struct napi_struct *n)
 507{
 508        BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
 509        smp_mb__before_atomic();
 510        clear_bit(NAPI_STATE_SCHED, &n->state);
 511}
 512
 513#ifdef CONFIG_SMP
 514/**
 515 *      napi_synchronize - wait until NAPI is not running
 516 *      @n: napi context
 517 *
 518 * Wait until NAPI is done being scheduled on this context.
 519 * Waits till any outstanding processing completes but
 520 * does not disable future activations.
 521 */
 522static inline void napi_synchronize(const struct napi_struct *n)
 523{
 524        while (test_bit(NAPI_STATE_SCHED, &n->state))
 525                msleep(1);
 526}
 527#else
 528# define napi_synchronize(n)    barrier()
 529#endif
 530
 531enum netdev_queue_state_t {
 532        __QUEUE_STATE_DRV_XOFF,
 533        __QUEUE_STATE_STACK_XOFF,
 534        __QUEUE_STATE_FROZEN,
 535};
 536
 537#define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
 538#define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
 539#define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
 540
 541#define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
 542#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
 543                                        QUEUE_STATE_FROZEN)
 544#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
 545                                        QUEUE_STATE_FROZEN)
 546
 547/*
 548 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
 549 * netif_tx_* functions below are used to manipulate this flag.  The
 550 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
 551 * queue independently.  The netif_xmit_*stopped functions below are called
 552 * to check if the queue has been stopped by the driver or stack (either
 553 * of the XOFF bits are set in the state).  Drivers should not need to call
 554 * netif_xmit*stopped functions, they should only be using netif_tx_*.
 555 */
 556
 557struct netdev_queue {
 558/*
 559 * read mostly part
 560 */
 561        struct net_device       *dev;
 562        struct Qdisc __rcu      *qdisc;
 563        struct Qdisc            *qdisc_sleeping;
 564#ifdef CONFIG_SYSFS
 565        struct kobject          kobj;
 566#endif
 567#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 568        int                     numa_node;
 569#endif
 570/*
 571 * write mostly part
 572 */
 573        spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
 574        int                     xmit_lock_owner;
 575        /*
 576         * please use this field instead of dev->trans_start
 577         */
 578        unsigned long           trans_start;
 579
 580        /*
 581         * Number of TX timeouts for this queue
 582         * (/sys/class/net/DEV/Q/trans_timeout)
 583         */
 584        unsigned long           trans_timeout;
 585
 586        unsigned long           state;
 587
 588#ifdef CONFIG_BQL
 589        struct dql              dql;
 590#endif
 591} ____cacheline_aligned_in_smp;
 592
 593static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
 594{
 595#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 596        return q->numa_node;
 597#else
 598        return NUMA_NO_NODE;
 599#endif
 600}
 601
 602static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
 603{
 604#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 605        q->numa_node = node;
 606#endif
 607}
 608
 609#ifdef CONFIG_RPS
 610/*
 611 * This structure holds an RPS map which can be of variable length.  The
 612 * map is an array of CPUs.
 613 */
 614struct rps_map {
 615        unsigned int len;
 616        struct rcu_head rcu;
 617        u16 cpus[0];
 618};
 619#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
 620
 621/*
 622 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
 623 * tail pointer for that CPU's input queue at the time of last enqueue, and
 624 * a hardware filter index.
 625 */
 626struct rps_dev_flow {
 627        u16 cpu;
 628        u16 filter;
 629        unsigned int last_qtail;
 630};
 631#define RPS_NO_FILTER 0xffff
 632
 633/*
 634 * The rps_dev_flow_table structure contains a table of flow mappings.
 635 */
 636struct rps_dev_flow_table {
 637        unsigned int mask;
 638        struct rcu_head rcu;
 639        struct rps_dev_flow flows[0];
 640};
 641#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
 642    ((_num) * sizeof(struct rps_dev_flow)))
 643
 644/*
 645 * The rps_sock_flow_table contains mappings of flows to the last CPU
 646 * on which they were processed by the application (set in recvmsg).
 647 * Each entry is a 32bit value. Upper part is the high order bits
 648 * of flow hash, lower part is cpu number.
 649 * rps_cpu_mask is used to partition the space, depending on number of
 650 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
 651 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
 652 * meaning we use 32-6=26 bits for the hash.
 653 */
 654struct rps_sock_flow_table {
 655        u32     mask;
 656
 657        u32     ents[0] ____cacheline_aligned_in_smp;
 658};
 659#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
 660
 661#define RPS_NO_CPU 0xffff
 662
 663extern u32 rps_cpu_mask;
 664extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
 665
 666static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
 667                                        u32 hash)
 668{
 669        if (table && hash) {
 670                unsigned int index = hash & table->mask;
 671                u32 val = hash & ~rps_cpu_mask;
 672
 673                /* We only give a hint, preemption can change cpu under us */
 674                val |= raw_smp_processor_id();
 675
 676                if (table->ents[index] != val)
 677                        table->ents[index] = val;
 678        }
 679}
 680
 681#ifdef CONFIG_RFS_ACCEL
 682bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
 683                         u16 filter_id);
 684#endif
 685#endif /* CONFIG_RPS */
 686
 687/* This structure contains an instance of an RX queue. */
 688struct netdev_rx_queue {
 689#ifdef CONFIG_RPS
 690        struct rps_map __rcu            *rps_map;
 691        struct rps_dev_flow_table __rcu *rps_flow_table;
 692#endif
 693        struct kobject                  kobj;
 694        struct net_device               *dev;
 695} ____cacheline_aligned_in_smp;
 696
 697/*
 698 * RX queue sysfs structures and functions.
 699 */
 700struct rx_queue_attribute {
 701        struct attribute attr;
 702        ssize_t (*show)(struct netdev_rx_queue *queue,
 703            struct rx_queue_attribute *attr, char *buf);
 704        ssize_t (*store)(struct netdev_rx_queue *queue,
 705            struct rx_queue_attribute *attr, const char *buf, size_t len);
 706};
 707
 708#ifdef CONFIG_XPS
 709/*
 710 * This structure holds an XPS map which can be of variable length.  The
 711 * map is an array of queues.
 712 */
 713struct xps_map {
 714        unsigned int len;
 715        unsigned int alloc_len;
 716        struct rcu_head rcu;
 717        u16 queues[0];
 718};
 719#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
 720#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))    \
 721    / sizeof(u16))
 722
 723/*
 724 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
 725 */
 726struct xps_dev_maps {
 727        struct rcu_head rcu;
 728        struct xps_map __rcu *cpu_map[0];
 729};
 730#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
 731    (nr_cpu_ids * sizeof(struct xps_map *)))
 732#endif /* CONFIG_XPS */
 733
 734#define TC_MAX_QUEUE    16
 735#define TC_BITMASK      15
 736/* HW offloaded queuing disciplines txq count and offset maps */
 737struct netdev_tc_txq {
 738        u16 count;
 739        u16 offset;
 740};
 741
 742#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
 743/*
 744 * This structure is to hold information about the device
 745 * configured to run FCoE protocol stack.
 746 */
 747struct netdev_fcoe_hbainfo {
 748        char    manufacturer[64];
 749        char    serial_number[64];
 750        char    hardware_version[64];
 751        char    driver_version[64];
 752        char    optionrom_version[64];
 753        char    firmware_version[64];
 754        char    model[256];
 755        char    model_description[256];
 756};
 757#endif
 758
 759#define MAX_PHYS_ITEM_ID_LEN 32
 760
 761/* This structure holds a unique identifier to identify some
 762 * physical item (port for example) used by a netdevice.
 763 */
 764struct netdev_phys_item_id {
 765        unsigned char id[MAX_PHYS_ITEM_ID_LEN];
 766        unsigned char id_len;
 767};
 768
 769typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
 770                                       struct sk_buff *skb);
 771
 772/*
 773 * This structure defines the management hooks for network devices.
 774 * The following hooks can be defined; unless noted otherwise, they are
 775 * optional and can be filled with a null pointer.
 776 *
 777 * int (*ndo_init)(struct net_device *dev);
 778 *     This function is called once when network device is registered.
 779 *     The network device can use this to any late stage initializaton
 780 *     or semantic validattion. It can fail with an error code which will
 781 *     be propogated back to register_netdev
 782 *
 783 * void (*ndo_uninit)(struct net_device *dev);
 784 *     This function is called when device is unregistered or when registration
 785 *     fails. It is not called if init fails.
 786 *
 787 * int (*ndo_open)(struct net_device *dev);
 788 *     This function is called when network device transistions to the up
 789 *     state.
 790 *
 791 * int (*ndo_stop)(struct net_device *dev);
 792 *     This function is called when network device transistions to the down
 793 *     state.
 794 *
 795 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
 796 *                               struct net_device *dev);
 797 *      Called when a packet needs to be transmitted.
 798 *      Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
 799 *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
 800 *      Required can not be NULL.
 801 *
 802 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
 803 *                         void *accel_priv, select_queue_fallback_t fallback);
 804 *      Called to decide which queue to when device supports multiple
 805 *      transmit queues.
 806 *
 807 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
 808 *      This function is called to allow device receiver to make
 809 *      changes to configuration when multicast or promiscious is enabled.
 810 *
 811 * void (*ndo_set_rx_mode)(struct net_device *dev);
 812 *      This function is called device changes address list filtering.
 813 *      If driver handles unicast address filtering, it should set
 814 *      IFF_UNICAST_FLT to its priv_flags.
 815 *
 816 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
 817 *      This function  is called when the Media Access Control address
 818 *      needs to be changed. If this interface is not defined, the
 819 *      mac address can not be changed.
 820 *
 821 * int (*ndo_validate_addr)(struct net_device *dev);
 822 *      Test if Media Access Control address is valid for the device.
 823 *
 824 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
 825 *      Called when a user request an ioctl which can't be handled by
 826 *      the generic interface code. If not defined ioctl's return
 827 *      not supported error code.
 828 *
 829 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
 830 *      Used to set network devices bus interface parameters. This interface
 831 *      is retained for legacy reason, new devices should use the bus
 832 *      interface (PCI) for low level management.
 833 *
 834 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
 835 *      Called when a user wants to change the Maximum Transfer Unit
 836 *      of a device. If not defined, any request to change MTU will
 837 *      will return an error.
 838 *
 839 * void (*ndo_tx_timeout)(struct net_device *dev);
 840 *      Callback uses when the transmitter has not made any progress
 841 *      for dev->watchdog ticks.
 842 *
 843 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
 844 *                      struct rtnl_link_stats64 *storage);
 845 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
 846 *      Called when a user wants to get the network device usage
 847 *      statistics. Drivers must do one of the following:
 848 *      1. Define @ndo_get_stats64 to fill in a zero-initialised
 849 *         rtnl_link_stats64 structure passed by the caller.
 850 *      2. Define @ndo_get_stats to update a net_device_stats structure
 851 *         (which should normally be dev->stats) and return a pointer to
 852 *         it. The structure may be changed asynchronously only if each
 853 *         field is written atomically.
 854 *      3. Update dev->stats asynchronously and atomically, and define
 855 *         neither operation.
 856 *
 857 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
 858 *      If device support VLAN filtering this function is called when a
 859 *      VLAN id is registered.
 860 *
 861 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
 862 *      If device support VLAN filtering this function is called when a
 863 *      VLAN id is unregistered.
 864 *
 865 * void (*ndo_poll_controller)(struct net_device *dev);
 866 *
 867 *      SR-IOV management functions.
 868 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
 869 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
 870 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
 871 *                        int max_tx_rate);
 872 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
 873 * int (*ndo_get_vf_config)(struct net_device *dev,
 874 *                          int vf, struct ifla_vf_info *ivf);
 875 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
 876 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
 877 *                        struct nlattr *port[]);
 878 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
 879 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
 880 *      Called to setup 'tc' number of traffic classes in the net device. This
 881 *      is always called from the stack with the rtnl lock held and netif tx
 882 *      queues stopped. This allows the netdevice to perform queue management
 883 *      safely.
 884 *
 885 *      Fiber Channel over Ethernet (FCoE) offload functions.
 886 * int (*ndo_fcoe_enable)(struct net_device *dev);
 887 *      Called when the FCoE protocol stack wants to start using LLD for FCoE
 888 *      so the underlying device can perform whatever needed configuration or
 889 *      initialization to support acceleration of FCoE traffic.
 890 *
 891 * int (*ndo_fcoe_disable)(struct net_device *dev);
 892 *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
 893 *      so the underlying device can perform whatever needed clean-ups to
 894 *      stop supporting acceleration of FCoE traffic.
 895 *
 896 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
 897 *                           struct scatterlist *sgl, unsigned int sgc);
 898 *      Called when the FCoE Initiator wants to initialize an I/O that
 899 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
 900 *      perform necessary setup and returns 1 to indicate the device is set up
 901 *      successfully to perform DDP on this I/O, otherwise this returns 0.
 902 *
 903 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
 904 *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
 905 *      indicated by the FC exchange id 'xid', so the underlying device can
 906 *      clean up and reuse resources for later DDP requests.
 907 *
 908 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
 909 *                            struct scatterlist *sgl, unsigned int sgc);
 910 *      Called when the FCoE Target wants to initialize an I/O that
 911 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
 912 *      perform necessary setup and returns 1 to indicate the device is set up
 913 *      successfully to perform DDP on this I/O, otherwise this returns 0.
 914 *
 915 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
 916 *                             struct netdev_fcoe_hbainfo *hbainfo);
 917 *      Called when the FCoE Protocol stack wants information on the underlying
 918 *      device. This information is utilized by the FCoE protocol stack to
 919 *      register attributes with Fiber Channel management service as per the
 920 *      FC-GS Fabric Device Management Information(FDMI) specification.
 921 *
 922 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
 923 *      Called when the underlying device wants to override default World Wide
 924 *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
 925 *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
 926 *      protocol stack to use.
 927 *
 928 *      RFS acceleration.
 929 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
 930 *                          u16 rxq_index, u32 flow_id);
 931 *      Set hardware filter for RFS.  rxq_index is the target queue index;
 932 *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
 933 *      Return the filter ID on success, or a negative error code.
 934 *
 935 *      Slave management functions (for bridge, bonding, etc).
 936 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
 937 *      Called to make another netdev an underling.
 938 *
 939 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
 940 *      Called to release previously enslaved netdev.
 941 *
 942 *      Feature/offload setting functions.
 943 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
 944 *              netdev_features_t features);
 945 *      Adjusts the requested feature flags according to device-specific
 946 *      constraints, and returns the resulting flags. Must not modify
 947 *      the device state.
 948 *
 949 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
 950 *      Called to update device configuration to new features. Passed
 951 *      feature set might be less than what was returned by ndo_fix_features()).
 952 *      Must return >0 or -errno if it changed dev->features itself.
 953 *
 954 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
 955 *                    struct net_device *dev,
 956 *                    const unsigned char *addr, u16 vid, u16 flags)
 957 *      Adds an FDB entry to dev for addr.
 958 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
 959 *                    struct net_device *dev,
 960 *                    const unsigned char *addr, u16 vid)
 961 *      Deletes the FDB entry from dev coresponding to addr.
 962 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
 963 *                     struct net_device *dev, struct net_device *filter_dev,
 964 *                     int idx)
 965 *      Used to add FDB entries to dump requests. Implementers should add
 966 *      entries to skb and update idx with the number of entries.
 967 *
 968 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
 969 *                           u16 flags)
 970 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
 971 *                           struct net_device *dev, u32 filter_mask)
 972 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
 973 *                           u16 flags);
 974 *
 975 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
 976 *      Called to change device carrier. Soft-devices (like dummy, team, etc)
 977 *      which do not represent real hardware may define this to allow their
 978 *      userspace components to manage their virtual carrier state. Devices
 979 *      that determine carrier state from physical hardware properties (eg
 980 *      network cables) or protocol-dependent mechanisms (eg
 981 *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
 982 *
 983 * int (*ndo_get_phys_port_id)(struct net_device *dev,
 984 *                             struct netdev_phys_item_id *ppid);
 985 *      Called to get ID of physical port of this device. If driver does
 986 *      not implement this, it is assumed that the hw is not able to have
 987 *      multiple net devices on single physical port.
 988 *
 989 * void (*ndo_add_vxlan_port)(struct  net_device *dev,
 990 *                            sa_family_t sa_family, __be16 port);
 991 *      Called by vxlan to notiy a driver about the UDP port and socket
 992 *      address family that vxlan is listnening to. It is called only when
 993 *      a new port starts listening. The operation is protected by the
 994 *      vxlan_net->sock_lock.
 995 *
 996 * void (*ndo_del_vxlan_port)(struct  net_device *dev,
 997 *                            sa_family_t sa_family, __be16 port);
 998 *      Called by vxlan to notify the driver about a UDP port and socket
 999 *      address family that vxlan is not listening to anymore. The operation
1000 *      is protected by the vxlan_net->sock_lock.
1001 *
1002 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1003 *                               struct net_device *dev)
1004 *      Called by upper layer devices to accelerate switching or other
1005 *      station functionality into hardware. 'pdev is the lowerdev
1006 *      to use for the offload and 'dev' is the net device that will
1007 *      back the offload. Returns a pointer to the private structure
1008 *      the upper layer will maintain.
1009 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1010 *      Called by upper layer device to delete the station created
1011 *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1012 *      the station and priv is the structure returned by the add
1013 *      operation.
1014 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1015 *                                    struct net_device *dev,
1016 *                                    void *priv);
1017 *      Callback to use for xmit over the accelerated station. This
1018 *      is used in place of ndo_start_xmit on accelerated net
1019 *      devices.
1020 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1021 *                                          struct net_device *dev
1022 *                                          netdev_features_t features);
1023 *      Called by core transmit path to determine if device is capable of
1024 *      performing offload operations on a given packet. This is to give
1025 *      the device an opportunity to implement any restrictions that cannot
1026 *      be otherwise expressed by feature flags. The check is called with
1027 *      the set of features that the stack has calculated and it returns
1028 *      those the driver believes to be appropriate.
1029 *
1030 * int (*ndo_switch_parent_id_get)(struct net_device *dev,
1031 *                                 struct netdev_phys_item_id *psid);
1032 *      Called to get an ID of the switch chip this port is part of.
1033 *      If driver implements this, it indicates that it represents a port
1034 *      of a switch chip.
1035 * int (*ndo_switch_port_stp_update)(struct net_device *dev, u8 state);
1036 *      Called to notify switch device port of bridge port STP
1037 *      state change.
1038 */
1039struct net_device_ops {
1040        int                     (*ndo_init)(struct net_device *dev);
1041        void                    (*ndo_uninit)(struct net_device *dev);
1042        int                     (*ndo_open)(struct net_device *dev);
1043        int                     (*ndo_stop)(struct net_device *dev);
1044        netdev_tx_t             (*ndo_start_xmit) (struct sk_buff *skb,
1045                                                   struct net_device *dev);
1046        u16                     (*ndo_select_queue)(struct net_device *dev,
1047                                                    struct sk_buff *skb,
1048                                                    void *accel_priv,
1049                                                    select_queue_fallback_t fallback);
1050        void                    (*ndo_change_rx_flags)(struct net_device *dev,
1051                                                       int flags);
1052        void                    (*ndo_set_rx_mode)(struct net_device *dev);
1053        int                     (*ndo_set_mac_address)(struct net_device *dev,
1054                                                       void *addr);
1055        int                     (*ndo_validate_addr)(struct net_device *dev);
1056        int                     (*ndo_do_ioctl)(struct net_device *dev,
1057                                                struct ifreq *ifr, int cmd);
1058        int                     (*ndo_set_config)(struct net_device *dev,
1059                                                  struct ifmap *map);
1060        int                     (*ndo_change_mtu)(struct net_device *dev,
1061                                                  int new_mtu);
1062        int                     (*ndo_neigh_setup)(struct net_device *dev,
1063                                                   struct neigh_parms *);
1064        void                    (*ndo_tx_timeout) (struct net_device *dev);
1065
1066        struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1067                                                     struct rtnl_link_stats64 *storage);
1068        struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1069
1070        int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1071                                                       __be16 proto, u16 vid);
1072        int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1073                                                        __be16 proto, u16 vid);
1074#ifdef CONFIG_NET_POLL_CONTROLLER
1075        void                    (*ndo_poll_controller)(struct net_device *dev);
1076        int                     (*ndo_netpoll_setup)(struct net_device *dev,
1077                                                     struct netpoll_info *info);
1078        void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1079#endif
1080#ifdef CONFIG_NET_RX_BUSY_POLL
1081        int                     (*ndo_busy_poll)(struct napi_struct *dev);
1082#endif
1083        int                     (*ndo_set_vf_mac)(struct net_device *dev,
1084                                                  int queue, u8 *mac);
1085        int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1086                                                   int queue, u16 vlan, u8 qos);
1087        int                     (*ndo_set_vf_rate)(struct net_device *dev,
1088                                                   int vf, int min_tx_rate,
1089                                                   int max_tx_rate);
1090        int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1091                                                       int vf, bool setting);
1092        int                     (*ndo_get_vf_config)(struct net_device *dev,
1093                                                     int vf,
1094                                                     struct ifla_vf_info *ivf);
1095        int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1096                                                         int vf, int link_state);
1097        int                     (*ndo_set_vf_port)(struct net_device *dev,
1098                                                   int vf,
1099                                                   struct nlattr *port[]);
1100        int                     (*ndo_get_vf_port)(struct net_device *dev,
1101                                                   int vf, struct sk_buff *skb);
1102        int                     (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1103#if IS_ENABLED(CONFIG_FCOE)
1104        int                     (*ndo_fcoe_enable)(struct net_device *dev);
1105        int                     (*ndo_fcoe_disable)(struct net_device *dev);
1106        int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1107                                                      u16 xid,
1108                                                      struct scatterlist *sgl,
1109                                                      unsigned int sgc);
1110        int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1111                                                     u16 xid);
1112        int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1113                                                       u16 xid,
1114                                                       struct scatterlist *sgl,
1115                                                       unsigned int sgc);
1116        int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1117                                                        struct netdev_fcoe_hbainfo *hbainfo);
1118#endif
1119
1120#if IS_ENABLED(CONFIG_LIBFCOE)
1121#define NETDEV_FCOE_WWNN 0
1122#define NETDEV_FCOE_WWPN 1
1123        int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1124                                                    u64 *wwn, int type);
1125#endif
1126
1127#ifdef CONFIG_RFS_ACCEL
1128        int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1129                                                     const struct sk_buff *skb,
1130                                                     u16 rxq_index,
1131                                                     u32 flow_id);
1132#endif
1133        int                     (*ndo_add_slave)(struct net_device *dev,
1134                                                 struct net_device *slave_dev);
1135        int                     (*ndo_del_slave)(struct net_device *dev,
1136                                                 struct net_device *slave_dev);
1137        netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1138                                                    netdev_features_t features);
1139        int                     (*ndo_set_features)(struct net_device *dev,
1140                                                    netdev_features_t features);
1141        int                     (*ndo_neigh_construct)(struct neighbour *n);
1142        void                    (*ndo_neigh_destroy)(struct neighbour *n);
1143
1144        int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1145                                               struct nlattr *tb[],
1146                                               struct net_device *dev,
1147                                               const unsigned char *addr,
1148                                               u16 vid,
1149                                               u16 flags);
1150        int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1151                                               struct nlattr *tb[],
1152                                               struct net_device *dev,
1153                                               const unsigned char *addr,
1154                                               u16 vid);
1155        int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1156                                                struct netlink_callback *cb,
1157                                                struct net_device *dev,
1158                                                struct net_device *filter_dev,
1159                                                int idx);
1160
1161        int                     (*ndo_bridge_setlink)(struct net_device *dev,
1162                                                      struct nlmsghdr *nlh,
1163                                                      u16 flags);
1164        int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1165                                                      u32 pid, u32 seq,
1166                                                      struct net_device *dev,
1167                                                      u32 filter_mask);
1168        int                     (*ndo_bridge_dellink)(struct net_device *dev,
1169                                                      struct nlmsghdr *nlh,
1170                                                      u16 flags);
1171        int                     (*ndo_change_carrier)(struct net_device *dev,
1172                                                      bool new_carrier);
1173        int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1174                                                        struct netdev_phys_item_id *ppid);
1175        void                    (*ndo_add_vxlan_port)(struct  net_device *dev,
1176                                                      sa_family_t sa_family,
1177                                                      __be16 port);
1178        void                    (*ndo_del_vxlan_port)(struct  net_device *dev,
1179                                                      sa_family_t sa_family,
1180                                                      __be16 port);
1181
1182        void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1183                                                        struct net_device *dev);
1184        void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1185                                                        void *priv);
1186
1187        netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1188                                                        struct net_device *dev,
1189                                                        void *priv);
1190        int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1191        netdev_features_t       (*ndo_features_check) (struct sk_buff *skb,
1192                                                       struct net_device *dev,
1193                                                       netdev_features_t features);
1194#ifdef CONFIG_NET_SWITCHDEV
1195        int                     (*ndo_switch_parent_id_get)(struct net_device *dev,
1196                                                            struct netdev_phys_item_id *psid);
1197        int                     (*ndo_switch_port_stp_update)(struct net_device *dev,
1198                                                              u8 state);
1199#endif
1200};
1201
1202/**
1203 * enum net_device_priv_flags - &struct net_device priv_flags
1204 *
1205 * These are the &struct net_device, they are only set internally
1206 * by drivers and used in the kernel. These flags are invisible to
1207 * userspace, this means that the order of these flags can change
1208 * during any kernel release.
1209 *
1210 * You should have a pretty good reason to be extending these flags.
1211 *
1212 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1213 * @IFF_EBRIDGE: Ethernet bridging device
1214 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1215 * @IFF_MASTER_8023AD: bonding master, 802.3ad
1216 * @IFF_MASTER_ALB: bonding master, balance-alb
1217 * @IFF_BONDING: bonding master or slave
1218 * @IFF_SLAVE_NEEDARP: need ARPs for validation
1219 * @IFF_ISATAP: ISATAP interface (RFC4214)
1220 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1221 * @IFF_WAN_HDLC: WAN HDLC device
1222 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1223 *      release skb->dst
1224 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1225 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1226 * @IFF_MACVLAN_PORT: device used as macvlan port
1227 * @IFF_BRIDGE_PORT: device used as bridge port
1228 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1229 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1230 * @IFF_UNICAST_FLT: Supports unicast filtering
1231 * @IFF_TEAM_PORT: device used as team port
1232 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1233 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1234 *      change when it's running
1235 * @IFF_MACVLAN: Macvlan device
1236 */
1237enum netdev_priv_flags {
1238        IFF_802_1Q_VLAN                 = 1<<0,
1239        IFF_EBRIDGE                     = 1<<1,
1240        IFF_SLAVE_INACTIVE              = 1<<2,
1241        IFF_MASTER_8023AD               = 1<<3,
1242        IFF_MASTER_ALB                  = 1<<4,
1243        IFF_BONDING                     = 1<<5,
1244        IFF_SLAVE_NEEDARP               = 1<<6,
1245        IFF_ISATAP                      = 1<<7,
1246        IFF_MASTER_ARPMON               = 1<<8,
1247        IFF_WAN_HDLC                    = 1<<9,
1248        IFF_XMIT_DST_RELEASE            = 1<<10,
1249        IFF_DONT_BRIDGE                 = 1<<11,
1250        IFF_DISABLE_NETPOLL             = 1<<12,
1251        IFF_MACVLAN_PORT                = 1<<13,
1252        IFF_BRIDGE_PORT                 = 1<<14,
1253        IFF_OVS_DATAPATH                = 1<<15,
1254        IFF_TX_SKB_SHARING              = 1<<16,
1255        IFF_UNICAST_FLT                 = 1<<17,
1256        IFF_TEAM_PORT                   = 1<<18,
1257        IFF_SUPP_NOFCS                  = 1<<19,
1258        IFF_LIVE_ADDR_CHANGE            = 1<<20,
1259        IFF_MACVLAN                     = 1<<21,
1260        IFF_XMIT_DST_RELEASE_PERM       = 1<<22,
1261        IFF_IPVLAN_MASTER               = 1<<23,
1262        IFF_IPVLAN_SLAVE                = 1<<24,
1263};
1264
1265#define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1266#define IFF_EBRIDGE                     IFF_EBRIDGE
1267#define IFF_SLAVE_INACTIVE              IFF_SLAVE_INACTIVE
1268#define IFF_MASTER_8023AD               IFF_MASTER_8023AD
1269#define IFF_MASTER_ALB                  IFF_MASTER_ALB
1270#define IFF_BONDING                     IFF_BONDING
1271#define IFF_SLAVE_NEEDARP               IFF_SLAVE_NEEDARP
1272#define IFF_ISATAP                      IFF_ISATAP
1273#define IFF_MASTER_ARPMON               IFF_MASTER_ARPMON
1274#define IFF_WAN_HDLC                    IFF_WAN_HDLC
1275#define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1276#define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1277#define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1278#define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1279#define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1280#define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1281#define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1282#define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1283#define IFF_TEAM_PORT                   IFF_TEAM_PORT
1284#define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1285#define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1286#define IFF_MACVLAN                     IFF_MACVLAN
1287#define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1288#define IFF_IPVLAN_MASTER               IFF_IPVLAN_MASTER
1289#define IFF_IPVLAN_SLAVE                IFF_IPVLAN_SLAVE
1290
1291/**
1292 *      struct net_device - The DEVICE structure.
1293 *              Actually, this whole structure is a big mistake.  It mixes I/O
1294 *              data with strictly "high-level" data, and it has to know about
1295 *              almost every data structure used in the INET module.
1296 *
1297 *      @name:  This is the first field of the "visible" part of this structure
1298 *              (i.e. as seen by users in the "Space.c" file).  It is the name
1299 *              of the interface.
1300 *
1301 *      @name_hlist:    Device name hash chain, please keep it close to name[]
1302 *      @ifalias:       SNMP alias
1303 *      @mem_end:       Shared memory end
1304 *      @mem_start:     Shared memory start
1305 *      @base_addr:     Device I/O address
1306 *      @irq:           Device IRQ number
1307 *
1308 *      @state:         Generic network queuing layer state, see netdev_state_t
1309 *      @dev_list:      The global list of network devices
1310 *      @napi_list:     List entry, that is used for polling napi devices
1311 *      @unreg_list:    List entry, that is used, when we are unregistering the
1312 *                      device, see the function unregister_netdev
1313 *      @close_list:    List entry, that is used, when we are closing the device
1314 *
1315 *      @adj_list:      Directly linked devices, like slaves for bonding
1316 *      @all_adj_list:  All linked devices, *including* neighbours
1317 *      @features:      Currently active device features
1318 *      @hw_features:   User-changeable features
1319 *
1320 *      @wanted_features:       User-requested features
1321 *      @vlan_features:         Mask of features inheritable by VLAN devices
1322 *
1323 *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1324 *                              This field indicates what encapsulation
1325 *                              offloads the hardware is capable of doing,
1326 *                              and drivers will need to set them appropriately.
1327 *
1328 *      @mpls_features: Mask of features inheritable by MPLS
1329 *
1330 *      @ifindex:       interface index
1331 *      @iflink:        unique device identifier
1332 *
1333 *      @stats:         Statistics struct, which was left as a legacy, use
1334 *                      rtnl_link_stats64 instead
1335 *
1336 *      @rx_dropped:    Dropped packets by core network,
1337 *                      do not use this in drivers
1338 *      @tx_dropped:    Dropped packets by core network,
1339 *                      do not use this in drivers
1340 *
1341 *      @carrier_changes:       Stats to monitor carrier on<->off transitions
1342 *
1343 *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1344 *                              instead of ioctl,
1345 *                              see <net/iw_handler.h> for details.
1346 *      @wireless_data: Instance data managed by the core of wireless extensions
1347 *
1348 *      @netdev_ops:    Includes several pointers to callbacks,
1349 *                      if one wants to override the ndo_*() functions
1350 *      @ethtool_ops:   Management operations
1351 *      @fwd_ops:       Management operations
1352 *      @header_ops:    Includes callbacks for creating,parsing,rebuilding,etc
1353 *                      of Layer 2 headers.
1354 *
1355 *      @flags:         Interface flags (a la BSD)
1356 *      @priv_flags:    Like 'flags' but invisible to userspace,
1357 *                      see if.h for the definitions
1358 *      @gflags:        Global flags ( kept as legacy )
1359 *      @padded:        How much padding added by alloc_netdev()
1360 *      @operstate:     RFC2863 operstate
1361 *      @link_mode:     Mapping policy to operstate
1362 *      @if_port:       Selectable AUI, TP, ...
1363 *      @dma:           DMA channel
1364 *      @mtu:           Interface MTU value
1365 *      @type:          Interface hardware type
1366 *      @hard_header_len: Hardware header length
1367 *
1368 *      @needed_headroom: Extra headroom the hardware may need, but not in all
1369 *                        cases can this be guaranteed
1370 *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1371 *                        cases can this be guaranteed. Some cases also use
1372 *                        LL_MAX_HEADER instead to allocate the skb
1373 *
1374 *      interface address info:
1375 *
1376 *      @perm_addr:             Permanent hw address
1377 *      @addr_assign_type:      Hw address assignment type
1378 *      @addr_len:              Hardware address length
1379 *      @neigh_priv_len;        Used in neigh_alloc(),
1380 *                              initialized only in atm/clip.c
1381 *      @dev_id:                Used to differentiate devices that share
1382 *                              the same link layer address
1383 *      @dev_port:              Used to differentiate devices that share
1384 *                              the same function
1385 *      @addr_list_lock:        XXX: need comments on this one
1386 *      @uc:                    unicast mac addresses
1387 *      @mc:                    multicast mac addresses
1388 *      @dev_addrs:             list of device hw addresses
1389 *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1390 *      @uc_promisc:            Counter, that indicates, that promiscuous mode
1391 *                              has been enabled due to the need to listen to
1392 *                              additional unicast addresses in a device that
1393 *                              does not implement ndo_set_rx_mode()
1394 *      @promiscuity:           Number of times, the NIC is told to work in
1395 *                              Promiscuous mode, if it becomes 0 the NIC will
1396 *                              exit from working in Promiscuous mode
1397 *      @allmulti:              Counter, enables or disables allmulticast mode
1398 *
1399 *      @vlan_info:     VLAN info
1400 *      @dsa_ptr:       dsa specific data
1401 *      @tipc_ptr:      TIPC specific data
1402 *      @atalk_ptr:     AppleTalk link
1403 *      @ip_ptr:        IPv4 specific data
1404 *      @dn_ptr:        DECnet specific data
1405 *      @ip6_ptr:       IPv6 specific data
1406 *      @ax25_ptr:      AX.25 specific data
1407 *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1408 *
1409 *      @last_rx:       Time of last Rx
1410 *      @dev_addr:      Hw address (before bcast,
1411 *                      because most packets are unicast)
1412 *
1413 *      @_rx:                   Array of RX queues
1414 *      @num_rx_queues:         Number of RX queues
1415 *                              allocated at register_netdev() time
1416 *      @real_num_rx_queues:    Number of RX queues currently active in device
1417 *
1418 *      @rx_handler:            handler for received packets
1419 *      @rx_handler_data:       XXX: need comments on this one
1420 *      @ingress_queue:         XXX: need comments on this one
1421 *      @broadcast:             hw bcast address
1422 *
1423 *      @_tx:                   Array of TX queues
1424 *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1425 *      @real_num_tx_queues:    Number of TX queues currently active in device
1426 *      @qdisc:                 Root qdisc from userspace point of view
1427 *      @tx_queue_len:          Max frames per queue allowed
1428 *      @tx_global_lock:        XXX: need comments on this one
1429 *
1430 *      @xps_maps:      XXX: need comments on this one
1431 *
1432 *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1433 *                      indexed by RX queue number. Assigned by driver.
1434 *                      This must only be set if the ndo_rx_flow_steer
1435 *                      operation is defined
1436 *
1437 *      @trans_start:           Time (in jiffies) of last Tx
1438 *      @watchdog_timeo:        Represents the timeout that is used by
1439 *                              the watchdog ( see dev_watchdog() )
1440 *      @watchdog_timer:        List of timers
1441 *
1442 *      @pcpu_refcnt:           Number of references to this device
1443 *      @todo_list:             Delayed register/unregister
1444 *      @index_hlist:           Device index hash chain
1445 *      @link_watch_list:       XXX: need comments on this one
1446 *
1447 *      @reg_state:             Register/unregister state machine
1448 *      @dismantle:             Device is going to be freed
1449 *      @rtnl_link_state:       This enum represents the phases of creating
1450 *                              a new link
1451 *
1452 *      @destructor:            Called from unregister,
1453 *                              can be used to call free_netdev
1454 *      @npinfo:                XXX: need comments on this one
1455 *      @nd_net:                Network namespace this network device is inside
1456 *
1457 *      @ml_priv:       Mid-layer private
1458 *      @lstats:        Loopback statistics
1459 *      @tstats:        Tunnel statistics
1460 *      @dstats:        Dummy statistics
1461 *      @vstats:        Virtual ethernet statistics
1462 *
1463 *      @garp_port:     GARP
1464 *      @mrp_port:      MRP
1465 *
1466 *      @dev:           Class/net/name entry
1467 *      @sysfs_groups:  Space for optional device, statistics and wireless
1468 *                      sysfs groups
1469 *
1470 *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1471 *      @rtnl_link_ops: Rtnl_link_ops
1472 *
1473 *      @gso_max_size:  Maximum size of generic segmentation offload
1474 *      @gso_max_segs:  Maximum number of segments that can be passed to the
1475 *                      NIC for GSO
1476 *      @gso_min_segs:  Minimum number of segments that can be passed to the
1477 *                      NIC for GSO
1478 *
1479 *      @dcbnl_ops:     Data Center Bridging netlink ops
1480 *      @num_tc:        Number of traffic classes in the net device
1481 *      @tc_to_txq:     XXX: need comments on this one
1482 *      @prio_tc_map    XXX: need comments on this one
1483 *
1484 *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1485 *
1486 *      @priomap:       XXX: need comments on this one
1487 *      @phydev:        Physical device may attach itself
1488 *                      for hardware timestamping
1489 *
1490 *      @qdisc_tx_busylock:     XXX: need comments on this one
1491 *
1492 *      @group:         The group, that the device belongs to
1493 *      @pm_qos_req:    Power Management QoS object
1494 *
1495 *      FIXME: cleanup struct net_device such that network protocol info
1496 *      moves out.
1497 */
1498
1499struct net_device {
1500        char                    name[IFNAMSIZ];
1501        struct hlist_node       name_hlist;
1502        char                    *ifalias;
1503        /*
1504         *      I/O specific fields
1505         *      FIXME: Merge these and struct ifmap into one
1506         */
1507        unsigned long           mem_end;
1508        unsigned long           mem_start;
1509        unsigned long           base_addr;
1510        int                     irq;
1511
1512        /*
1513         *      Some hardware also needs these fields (state,dev_list,
1514         *      napi_list,unreg_list,close_list) but they are not
1515         *      part of the usual set specified in Space.c.
1516         */
1517
1518        unsigned long           state;
1519
1520        struct list_head        dev_list;
1521        struct list_head        napi_list;
1522        struct list_head        unreg_list;
1523        struct list_head        close_list;
1524        struct list_head        ptype_all;
1525        struct list_head        ptype_specific;
1526
1527        struct {
1528                struct list_head upper;
1529                struct list_head lower;
1530        } adj_list;
1531
1532        struct {
1533                struct list_head upper;
1534                struct list_head lower;
1535        } all_adj_list;
1536
1537        netdev_features_t       features;
1538        netdev_features_t       hw_features;
1539        netdev_features_t       wanted_features;
1540        netdev_features_t       vlan_features;
1541        netdev_features_t       hw_enc_features;
1542        netdev_features_t       mpls_features;
1543
1544        int                     ifindex;
1545        int                     iflink;
1546
1547        struct net_device_stats stats;
1548
1549        atomic_long_t           rx_dropped;
1550        atomic_long_t           tx_dropped;
1551
1552        atomic_t                carrier_changes;
1553
1554#ifdef CONFIG_WIRELESS_EXT
1555        const struct iw_handler_def *   wireless_handlers;
1556        struct iw_public_data * wireless_data;
1557#endif
1558        const struct net_device_ops *netdev_ops;
1559        const struct ethtool_ops *ethtool_ops;
1560        const struct forwarding_accel_ops *fwd_ops;
1561
1562        const struct header_ops *header_ops;
1563
1564        unsigned int            flags;
1565        unsigned int            priv_flags;
1566
1567        unsigned short          gflags;
1568        unsigned short          padded;
1569
1570        unsigned char           operstate;
1571        unsigned char           link_mode;
1572
1573        unsigned char           if_port;
1574        unsigned char           dma;
1575
1576        unsigned int            mtu;
1577        unsigned short          type;
1578        unsigned short          hard_header_len;
1579
1580        unsigned short          needed_headroom;
1581        unsigned short          needed_tailroom;
1582
1583        /* Interface address info. */
1584        unsigned char           perm_addr[MAX_ADDR_LEN];
1585        unsigned char           addr_assign_type;
1586        unsigned char           addr_len;
1587        unsigned short          neigh_priv_len;
1588        unsigned short          dev_id;
1589        unsigned short          dev_port;
1590        spinlock_t              addr_list_lock;
1591        struct netdev_hw_addr_list      uc;
1592        struct netdev_hw_addr_list      mc;
1593        struct netdev_hw_addr_list      dev_addrs;
1594
1595#ifdef CONFIG_SYSFS
1596        struct kset             *queues_kset;
1597#endif
1598
1599        unsigned char           name_assign_type;
1600
1601        bool                    uc_promisc;
1602        unsigned int            promiscuity;
1603        unsigned int            allmulti;
1604
1605
1606        /* Protocol specific pointers */
1607
1608#if IS_ENABLED(CONFIG_VLAN_8021Q)
1609        struct vlan_info __rcu  *vlan_info;
1610#endif
1611#if IS_ENABLED(CONFIG_NET_DSA)
1612        struct dsa_switch_tree  *dsa_ptr;
1613#endif
1614#if IS_ENABLED(CONFIG_TIPC)
1615        struct tipc_bearer __rcu *tipc_ptr;
1616#endif
1617        void                    *atalk_ptr;
1618        struct in_device __rcu  *ip_ptr;
1619        struct dn_dev __rcu     *dn_ptr;
1620        struct inet6_dev __rcu  *ip6_ptr;
1621        void                    *ax25_ptr;
1622        struct wireless_dev     *ieee80211_ptr;
1623        struct wpan_dev         *ieee802154_ptr;
1624
1625/*
1626 * Cache lines mostly used on receive path (including eth_type_trans())
1627 */
1628        unsigned long           last_rx;
1629
1630        /* Interface address info used in eth_type_trans() */
1631        unsigned char           *dev_addr;
1632
1633
1634#ifdef CONFIG_SYSFS
1635        struct netdev_rx_queue  *_rx;
1636
1637        unsigned int            num_rx_queues;
1638        unsigned int            real_num_rx_queues;
1639
1640#endif
1641
1642        unsigned long           gro_flush_timeout;
1643        rx_handler_func_t __rcu *rx_handler;
1644        void __rcu              *rx_handler_data;
1645
1646        struct netdev_queue __rcu *ingress_queue;
1647        unsigned char           broadcast[MAX_ADDR_LEN];
1648
1649
1650/*
1651 * Cache lines mostly used on transmit path
1652 */
1653        struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1654        unsigned int            num_tx_queues;
1655        unsigned int            real_num_tx_queues;
1656        struct Qdisc            *qdisc;
1657        unsigned long           tx_queue_len;
1658        spinlock_t              tx_global_lock;
1659
1660#ifdef CONFIG_XPS
1661        struct xps_dev_maps __rcu *xps_maps;
1662#endif
1663#ifdef CONFIG_RFS_ACCEL
1664        struct cpu_rmap         *rx_cpu_rmap;
1665#endif
1666
1667        /* These may be needed for future network-power-down code. */
1668
1669        /*
1670         * trans_start here is expensive for high speed devices on SMP,
1671         * please use netdev_queue->trans_start instead.
1672         */
1673        unsigned long           trans_start;
1674
1675        int                     watchdog_timeo;
1676        struct timer_list       watchdog_timer;
1677
1678        int __percpu            *pcpu_refcnt;
1679        struct list_head        todo_list;
1680
1681        struct hlist_node       index_hlist;
1682        struct list_head        link_watch_list;
1683
1684        enum { NETREG_UNINITIALIZED=0,
1685               NETREG_REGISTERED,       /* completed register_netdevice */
1686               NETREG_UNREGISTERING,    /* called unregister_netdevice */
1687               NETREG_UNREGISTERED,     /* completed unregister todo */
1688               NETREG_RELEASED,         /* called free_netdev */
1689               NETREG_DUMMY,            /* dummy device for NAPI poll */
1690        } reg_state:8;
1691
1692        bool dismantle;
1693
1694        enum {
1695                RTNL_LINK_INITIALIZED,
1696                RTNL_LINK_INITIALIZING,
1697        } rtnl_link_state:16;
1698
1699        void (*destructor)(struct net_device *dev);
1700
1701#ifdef CONFIG_NETPOLL
1702        struct netpoll_info __rcu       *npinfo;
1703#endif
1704
1705#ifdef CONFIG_NET_NS
1706        struct net              *nd_net;
1707#endif
1708
1709        /* mid-layer private */
1710        union {
1711                void                                    *ml_priv;
1712                struct pcpu_lstats __percpu             *lstats;
1713                struct pcpu_sw_netstats __percpu        *tstats;
1714                struct pcpu_dstats __percpu             *dstats;
1715                struct pcpu_vstats __percpu             *vstats;
1716        };
1717
1718        struct garp_port __rcu  *garp_port;
1719        struct mrp_port __rcu   *mrp_port;
1720
1721        struct device   dev;
1722        const struct attribute_group *sysfs_groups[4];
1723        const struct attribute_group *sysfs_rx_queue_group;
1724
1725        const struct rtnl_link_ops *rtnl_link_ops;
1726
1727        /* for setting kernel sock attribute on TCP connection setup */
1728#define GSO_MAX_SIZE            65536
1729        unsigned int            gso_max_size;
1730#define GSO_MAX_SEGS            65535
1731        u16                     gso_max_segs;
1732        u16                     gso_min_segs;
1733#ifdef CONFIG_DCB
1734        const struct dcbnl_rtnl_ops *dcbnl_ops;
1735#endif
1736        u8 num_tc;
1737        struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1738        u8 prio_tc_map[TC_BITMASK + 1];
1739
1740#if IS_ENABLED(CONFIG_FCOE)
1741        unsigned int            fcoe_ddp_xid;
1742#endif
1743#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1744        struct netprio_map __rcu *priomap;
1745#endif
1746        struct phy_device *phydev;
1747        struct lock_class_key *qdisc_tx_busylock;
1748        int group;
1749        struct pm_qos_request   pm_qos_req;
1750};
1751#define to_net_dev(d) container_of(d, struct net_device, dev)
1752
1753#define NETDEV_ALIGN            32
1754
1755static inline
1756int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1757{
1758        return dev->prio_tc_map[prio & TC_BITMASK];
1759}
1760
1761static inline
1762int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1763{
1764        if (tc >= dev->num_tc)
1765                return -EINVAL;
1766
1767        dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1768        return 0;
1769}
1770
1771static inline
1772void netdev_reset_tc(struct net_device *dev)
1773{
1774        dev->num_tc = 0;
1775        memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1776        memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1777}
1778
1779static inline
1780int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1781{
1782        if (tc >= dev->num_tc)
1783                return -EINVAL;
1784
1785        dev->tc_to_txq[tc].count = count;
1786        dev->tc_to_txq[tc].offset = offset;
1787        return 0;
1788}
1789
1790static inline
1791int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1792{
1793        if (num_tc > TC_MAX_QUEUE)
1794                return -EINVAL;
1795
1796        dev->num_tc = num_tc;
1797        return 0;
1798}
1799
1800static inline
1801int netdev_get_num_tc(struct net_device *dev)
1802{
1803        return dev->num_tc;
1804}
1805
1806static inline
1807struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1808                                         unsigned int index)
1809{
1810        return &dev->_tx[index];
1811}
1812
1813static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1814                                                    const struct sk_buff *skb)
1815{
1816        return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1817}
1818
1819static inline void netdev_for_each_tx_queue(struct net_device *dev,
1820                                            void (*f)(struct net_device *,
1821                                                      struct netdev_queue *,
1822                                                      void *),
1823                                            void *arg)
1824{
1825        unsigned int i;
1826
1827        for (i = 0; i < dev->num_tx_queues; i++)
1828                f(dev, &dev->_tx[i], arg);
1829}
1830
1831struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1832                                    struct sk_buff *skb,
1833                                    void *accel_priv);
1834
1835/*
1836 * Net namespace inlines
1837 */
1838static inline
1839struct net *dev_net(const struct net_device *dev)
1840{
1841        return read_pnet(&dev->nd_net);
1842}
1843
1844static inline
1845void dev_net_set(struct net_device *dev, struct net *net)
1846{
1847#ifdef CONFIG_NET_NS
1848        release_net(dev->nd_net);
1849        dev->nd_net = hold_net(net);
1850#endif
1851}
1852
1853static inline bool netdev_uses_dsa(struct net_device *dev)
1854{
1855#if IS_ENABLED(CONFIG_NET_DSA)
1856        if (dev->dsa_ptr != NULL)
1857                return dsa_uses_tagged_protocol(dev->dsa_ptr);
1858#endif
1859        return false;
1860}
1861
1862/**
1863 *      netdev_priv - access network device private data
1864 *      @dev: network device
1865 *
1866 * Get network device private data
1867 */
1868static inline void *netdev_priv(const struct net_device *dev)
1869{
1870        return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1871}
1872
1873/* Set the sysfs physical device reference for the network logical device
1874 * if set prior to registration will cause a symlink during initialization.
1875 */
1876#define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
1877
1878/* Set the sysfs device type for the network logical device to allow
1879 * fine-grained identification of different network device types. For
1880 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1881 */
1882#define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
1883
1884/* Default NAPI poll() weight
1885 * Device drivers are strongly advised to not use bigger value
1886 */
1887#define NAPI_POLL_WEIGHT 64
1888
1889/**
1890 *      netif_napi_add - initialize a napi context
1891 *      @dev:  network device
1892 *      @napi: napi context
1893 *      @poll: polling function
1894 *      @weight: default weight
1895 *
1896 * netif_napi_add() must be used to initialize a napi context prior to calling
1897 * *any* of the other napi related functions.
1898 */
1899void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1900                    int (*poll)(struct napi_struct *, int), int weight);
1901
1902/**
1903 *  netif_napi_del - remove a napi context
1904 *  @napi: napi context
1905 *
1906 *  netif_napi_del() removes a napi context from the network device napi list
1907 */
1908void netif_napi_del(struct napi_struct *napi);
1909
1910struct napi_gro_cb {
1911        /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1912        void *frag0;
1913
1914        /* Length of frag0. */
1915        unsigned int frag0_len;
1916
1917        /* This indicates where we are processing relative to skb->data. */
1918        int data_offset;
1919
1920        /* This is non-zero if the packet cannot be merged with the new skb. */
1921        u16     flush;
1922
1923        /* Save the IP ID here and check when we get to the transport layer */
1924        u16     flush_id;
1925
1926        /* Number of segments aggregated. */
1927        u16     count;
1928
1929        /* Start offset for remote checksum offload */
1930        u16     gro_remcsum_start;
1931
1932        /* jiffies when first packet was created/queued */
1933        unsigned long age;
1934
1935        /* Used in ipv6_gro_receive() and foo-over-udp */
1936        u16     proto;
1937
1938        /* This is non-zero if the packet may be of the same flow. */
1939        u8      same_flow:1;
1940
1941        /* Used in udp_gro_receive */
1942        u8      udp_mark:1;
1943
1944        /* GRO checksum is valid */
1945        u8      csum_valid:1;
1946
1947        /* Number of checksums via CHECKSUM_UNNECESSARY */
1948        u8      csum_cnt:3;
1949
1950        /* Free the skb? */
1951        u8      free:2;
1952#define NAPI_GRO_FREE             1
1953#define NAPI_GRO_FREE_STOLEN_HEAD 2
1954
1955        /* Used in foo-over-udp, set in udp[46]_gro_receive */
1956        u8      is_ipv6:1;
1957
1958        /* 7 bit hole */
1959
1960        /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1961        __wsum  csum;
1962
1963        /* used in skb_gro_receive() slow path */
1964        struct sk_buff *last;
1965};
1966
1967#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1968
1969struct packet_type {
1970        __be16                  type;   /* This is really htons(ether_type). */
1971        struct net_device       *dev;   /* NULL is wildcarded here           */
1972        int                     (*func) (struct sk_buff *,
1973                                         struct net_device *,
1974                                         struct packet_type *,
1975                                         struct net_device *);
1976        bool                    (*id_match)(struct packet_type *ptype,
1977                                            struct sock *sk);
1978        void                    *af_packet_priv;
1979        struct list_head        list;
1980};
1981
1982struct offload_callbacks {
1983        struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
1984                                                netdev_features_t features);
1985        struct sk_buff          **(*gro_receive)(struct sk_buff **head,
1986                                                 struct sk_buff *skb);
1987        int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
1988};
1989
1990struct packet_offload {
1991        __be16                   type;  /* This is really htons(ether_type). */
1992        struct offload_callbacks callbacks;
1993        struct list_head         list;
1994};
1995
1996struct udp_offload;
1997
1998struct udp_offload_callbacks {
1999        struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2000                                                 struct sk_buff *skb,
2001                                                 struct udp_offload *uoff);
2002        int                     (*gro_complete)(struct sk_buff *skb,
2003                                                int nhoff,
2004                                                struct udp_offload *uoff);
2005};
2006
2007struct udp_offload {
2008        __be16                   port;
2009        u8                       ipproto;
2010        struct udp_offload_callbacks callbacks;
2011};
2012
2013/* often modified stats are per cpu, other are shared (netdev->stats) */
2014struct pcpu_sw_netstats {
2015        u64     rx_packets;
2016        u64     rx_bytes;
2017        u64     tx_packets;
2018        u64     tx_bytes;
2019        struct u64_stats_sync   syncp;
2020};
2021
2022#define netdev_alloc_pcpu_stats(type)                           \
2023({                                                              \
2024        typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2025        if (pcpu_stats) {                                       \
2026                int i;                                          \
2027                for_each_possible_cpu(i) {                      \
2028                        typeof(type) *stat;                     \
2029                        stat = per_cpu_ptr(pcpu_stats, i);      \
2030                        u64_stats_init(&stat->syncp);           \
2031                }                                               \
2032        }                                                       \
2033        pcpu_stats;                                             \
2034})
2035
2036#include <linux/notifier.h>
2037
2038/* netdevice notifier chain. Please remember to update the rtnetlink
2039 * notification exclusion list in rtnetlink_event() when adding new
2040 * types.
2041 */
2042#define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
2043#define NETDEV_DOWN     0x0002
2044#define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
2045                                   detected a hardware crash and restarted
2046                                   - we can use this eg to kick tcp sessions
2047                                   once done */
2048#define NETDEV_CHANGE   0x0004  /* Notify device state change */
2049#define NETDEV_REGISTER 0x0005
2050#define NETDEV_UNREGISTER       0x0006
2051#define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
2052#define NETDEV_CHANGEADDR       0x0008
2053#define NETDEV_GOING_DOWN       0x0009
2054#define NETDEV_CHANGENAME       0x000A
2055#define NETDEV_FEAT_CHANGE      0x000B
2056#define NETDEV_BONDING_FAILOVER 0x000C
2057#define NETDEV_PRE_UP           0x000D
2058#define NETDEV_PRE_TYPE_CHANGE  0x000E
2059#define NETDEV_POST_TYPE_CHANGE 0x000F
2060#define NETDEV_POST_INIT        0x0010
2061#define NETDEV_UNREGISTER_FINAL 0x0011
2062#define NETDEV_RELEASE          0x0012
2063#define NETDEV_NOTIFY_PEERS     0x0013
2064#define NETDEV_JOIN             0x0014
2065#define NETDEV_CHANGEUPPER      0x0015
2066#define NETDEV_RESEND_IGMP      0x0016
2067#define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2068#define NETDEV_CHANGEINFODATA   0x0018
2069#define NETDEV_BONDING_INFO     0x0019
2070
2071int register_netdevice_notifier(struct notifier_block *nb);
2072int unregister_netdevice_notifier(struct notifier_block *nb);
2073
2074struct netdev_notifier_info {
2075        struct net_device *dev;
2076};
2077
2078struct netdev_notifier_change_info {
2079        struct netdev_notifier_info info; /* must be first */
2080        unsigned int flags_changed;
2081};
2082
2083static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2084                                             struct net_device *dev)
2085{
2086        info->dev = dev;
2087}
2088
2089static inline struct net_device *
2090netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2091{
2092        return info->dev;
2093}
2094
2095int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2096
2097
2098extern rwlock_t                         dev_base_lock;          /* Device list lock */
2099
2100#define for_each_netdev(net, d)         \
2101                list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2102#define for_each_netdev_reverse(net, d) \
2103                list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2104#define for_each_netdev_rcu(net, d)             \
2105                list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2106#define for_each_netdev_safe(net, d, n) \
2107                list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2108#define for_each_netdev_continue(net, d)                \
2109                list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2110#define for_each_netdev_continue_rcu(net, d)            \
2111        list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2112#define for_each_netdev_in_bond_rcu(bond, slave)        \
2113                for_each_netdev_rcu(&init_net, slave)   \
2114                        if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2115#define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2116
2117static inline struct net_device *next_net_device(struct net_device *dev)
2118{
2119        struct list_head *lh;
2120        struct net *net;
2121
2122        net = dev_net(dev);
2123        lh = dev->dev_list.next;
2124        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2125}
2126
2127static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2128{
2129        struct list_head *lh;
2130        struct net *net;
2131
2132        net = dev_net(dev);
2133        lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2134        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2135}
2136
2137static inline struct net_device *first_net_device(struct net *net)
2138{
2139        return list_empty(&net->dev_base_head) ? NULL :
2140                net_device_entry(net->dev_base_head.next);
2141}
2142
2143static inline struct net_device *first_net_device_rcu(struct net *net)
2144{
2145        struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2146
2147        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2148}
2149
2150int netdev_boot_setup_check(struct net_device *dev);
2151unsigned long netdev_boot_base(const char *prefix, int unit);
2152struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2153                                       const char *hwaddr);
2154struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2155struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2156void dev_add_pack(struct packet_type *pt);
2157void dev_remove_pack(struct packet_type *pt);
2158void __dev_remove_pack(struct packet_type *pt);
2159void dev_add_offload(struct packet_offload *po);
2160void dev_remove_offload(struct packet_offload *po);
2161
2162struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2163                                      unsigned short mask);
2164struct net_device *dev_get_by_name(struct net *net, const char *name);
2165struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2166struct net_device *__dev_get_by_name(struct net *net, const char *name);
2167int dev_alloc_name(struct net_device *dev, const char *name);
2168int dev_open(struct net_device *dev);
2169int dev_close(struct net_device *dev);
2170void dev_disable_lro(struct net_device *dev);
2171int dev_loopback_xmit(struct sk_buff *newskb);
2172int dev_queue_xmit(struct sk_buff *skb);
2173int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2174int register_netdevice(struct net_device *dev);
2175void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2176void unregister_netdevice_many(struct list_head *head);
2177static inline void unregister_netdevice(struct net_device *dev)
2178{
2179        unregister_netdevice_queue(dev, NULL);
2180}
2181
2182int netdev_refcnt_read(const struct net_device *dev);
2183void free_netdev(struct net_device *dev);
2184void netdev_freemem(struct net_device *dev);
2185void synchronize_net(void);
2186int init_dummy_netdev(struct net_device *dev);
2187
2188DECLARE_PER_CPU(int, xmit_recursion);
2189static inline int dev_recursion_level(void)
2190{
2191        return this_cpu_read(xmit_recursion);
2192}
2193
2194struct net_device *dev_get_by_index(struct net *net, int ifindex);
2195struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2196struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2197int netdev_get_name(struct net *net, char *name, int ifindex);
2198int dev_restart(struct net_device *dev);
2199int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2200
2201static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2202{
2203        return NAPI_GRO_CB(skb)->data_offset;
2204}
2205
2206static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2207{
2208        return skb->len - NAPI_GRO_CB(skb)->data_offset;
2209}
2210
2211static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2212{
2213        NAPI_GRO_CB(skb)->data_offset += len;
2214}
2215
2216static inline void *skb_gro_header_fast(struct sk_buff *skb,
2217                                        unsigned int offset)
2218{
2219        return NAPI_GRO_CB(skb)->frag0 + offset;
2220}
2221
2222static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2223{
2224        return NAPI_GRO_CB(skb)->frag0_len < hlen;
2225}
2226
2227static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2228                                        unsigned int offset)
2229{
2230        if (!pskb_may_pull(skb, hlen))
2231                return NULL;
2232
2233        NAPI_GRO_CB(skb)->frag0 = NULL;
2234        NAPI_GRO_CB(skb)->frag0_len = 0;
2235        return skb->data + offset;
2236}
2237
2238static inline void *skb_gro_network_header(struct sk_buff *skb)
2239{
2240        return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2241               skb_network_offset(skb);
2242}
2243
2244static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2245                                        const void *start, unsigned int len)
2246{
2247        if (NAPI_GRO_CB(skb)->csum_valid)
2248                NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2249                                                  csum_partial(start, len, 0));
2250}
2251
2252/* GRO checksum functions. These are logical equivalents of the normal
2253 * checksum functions (in skbuff.h) except that they operate on the GRO
2254 * offsets and fields in sk_buff.
2255 */
2256
2257__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2258
2259static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2260{
2261        return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) ==
2262                skb_gro_offset(skb));
2263}
2264
2265static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2266                                                      bool zero_okay,
2267                                                      __sum16 check)
2268{
2269        return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2270                skb_checksum_start_offset(skb) <
2271                 skb_gro_offset(skb)) &&
2272                !skb_at_gro_remcsum_start(skb) &&
2273                NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2274                (!zero_okay || check));
2275}
2276
2277static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2278                                                           __wsum psum)
2279{
2280        if (NAPI_GRO_CB(skb)->csum_valid &&
2281            !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2282                return 0;
2283
2284        NAPI_GRO_CB(skb)->csum = psum;
2285
2286        return __skb_gro_checksum_complete(skb);
2287}
2288
2289static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2290{
2291        if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2292                /* Consume a checksum from CHECKSUM_UNNECESSARY */
2293                NAPI_GRO_CB(skb)->csum_cnt--;
2294        } else {
2295                /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2296                 * verified a new top level checksum or an encapsulated one
2297                 * during GRO. This saves work if we fallback to normal path.
2298                 */
2299                __skb_incr_checksum_unnecessary(skb);
2300        }
2301}
2302
2303#define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2304                                    compute_pseudo)                     \
2305({                                                                      \
2306        __sum16 __ret = 0;                                              \
2307        if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2308                __ret = __skb_gro_checksum_validate_complete(skb,       \
2309                                compute_pseudo(skb, proto));            \
2310        if (__ret)                                                      \
2311                __skb_mark_checksum_bad(skb);                           \
2312        else                                                            \
2313                skb_gro_incr_csum_unnecessary(skb);                     \
2314        __ret;                                                          \
2315})
2316
2317#define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2318        __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2319
2320#define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2321                                             compute_pseudo)            \
2322        __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2323
2324#define skb_gro_checksum_simple_validate(skb)                           \
2325        __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2326
2327static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2328{
2329        return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2330                !NAPI_GRO_CB(skb)->csum_valid);
2331}
2332
2333static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2334                                              __sum16 check, __wsum pseudo)
2335{
2336        NAPI_GRO_CB(skb)->csum = ~pseudo;
2337        NAPI_GRO_CB(skb)->csum_valid = 1;
2338}
2339
2340#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2341do {                                                                    \
2342        if (__skb_gro_checksum_convert_check(skb))                      \
2343                __skb_gro_checksum_convert(skb, check,                  \
2344                                           compute_pseudo(skb, proto)); \
2345} while (0)
2346
2347struct gro_remcsum {
2348        int offset;
2349        __wsum delta;
2350};
2351
2352static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2353{
2354        grc->offset = 0;
2355        grc->delta = 0;
2356}
2357
2358static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2359                                           int start, int offset,
2360                                           struct gro_remcsum *grc,
2361                                           bool nopartial)
2362{
2363        __wsum delta;
2364
2365        BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2366
2367        if (!nopartial) {
2368                NAPI_GRO_CB(skb)->gro_remcsum_start =
2369                    ((unsigned char *)ptr + start) - skb->head;
2370                return;
2371        }
2372
2373        delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2374
2375        /* Adjust skb->csum since we changed the packet */
2376        NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2377
2378        grc->offset = (ptr + offset) - (void *)skb->head;
2379        grc->delta = delta;
2380}
2381
2382static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2383                                           struct gro_remcsum *grc)
2384{
2385        if (!grc->delta)
2386                return;
2387
2388        remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta);
2389}
2390
2391static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2392                                  unsigned short type,
2393                                  const void *daddr, const void *saddr,
2394                                  unsigned int len)
2395{
2396        if (!dev->header_ops || !dev->header_ops->create)
2397                return 0;
2398
2399        return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2400}
2401
2402static inline int dev_parse_header(const struct sk_buff *skb,
2403                                   unsigned char *haddr)
2404{
2405        const struct net_device *dev = skb->dev;
2406
2407        if (!dev->header_ops || !dev->header_ops->parse)
2408                return 0;
2409        return dev->header_ops->parse(skb, haddr);
2410}
2411
2412static inline int dev_rebuild_header(struct sk_buff *skb)
2413{
2414        const struct net_device *dev = skb->dev;
2415
2416        if (!dev->header_ops || !dev->header_ops->rebuild)
2417                return 0;
2418        return dev->header_ops->rebuild(skb);
2419}
2420
2421typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2422int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2423static inline int unregister_gifconf(unsigned int family)
2424{
2425        return register_gifconf(family, NULL);
2426}
2427
2428#ifdef CONFIG_NET_FLOW_LIMIT
2429#define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2430struct sd_flow_limit {
2431        u64                     count;
2432        unsigned int            num_buckets;
2433        unsigned int            history_head;
2434        u16                     history[FLOW_LIMIT_HISTORY];
2435        u8                      buckets[];
2436};
2437
2438extern int netdev_flow_limit_table_len;
2439#endif /* CONFIG_NET_FLOW_LIMIT */
2440
2441/*
2442 * Incoming packets are placed on per-cpu queues
2443 */
2444struct softnet_data {
2445        struct list_head        poll_list;
2446        struct sk_buff_head     process_queue;
2447
2448        /* stats */
2449        unsigned int            processed;
2450        unsigned int            time_squeeze;
2451        unsigned int            cpu_collision;
2452        unsigned int            received_rps;
2453#ifdef CONFIG_RPS
2454        struct softnet_data     *rps_ipi_list;
2455#endif
2456#ifdef CONFIG_NET_FLOW_LIMIT
2457        struct sd_flow_limit __rcu *flow_limit;
2458#endif
2459        struct Qdisc            *output_queue;
2460        struct Qdisc            **output_queue_tailp;
2461        struct sk_buff          *completion_queue;
2462
2463#ifdef CONFIG_RPS
2464        /* Elements below can be accessed between CPUs for RPS */
2465        struct call_single_data csd ____cacheline_aligned_in_smp;
2466        struct softnet_data     *rps_ipi_next;
2467        unsigned int            cpu;
2468        unsigned int            input_queue_head;
2469        unsigned int            input_queue_tail;
2470#endif
2471        unsigned int            dropped;
2472        struct sk_buff_head     input_pkt_queue;
2473        struct napi_struct      backlog;
2474
2475};
2476
2477static inline void input_queue_head_incr(struct softnet_data *sd)
2478{
2479#ifdef CONFIG_RPS
2480        sd->input_queue_head++;
2481#endif
2482}
2483
2484static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2485                                              unsigned int *qtail)
2486{
2487#ifdef CONFIG_RPS
2488        *qtail = ++sd->input_queue_tail;
2489#endif
2490}
2491
2492DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2493
2494void __netif_schedule(struct Qdisc *q);
2495void netif_schedule_queue(struct netdev_queue *txq);
2496
2497static inline void netif_tx_schedule_all(struct net_device *dev)
2498{
2499        unsigned int i;
2500
2501        for (i = 0; i < dev->num_tx_queues; i++)
2502                netif_schedule_queue(netdev_get_tx_queue(dev, i));
2503}
2504
2505static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2506{
2507        clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2508}
2509
2510/**
2511 *      netif_start_queue - allow transmit
2512 *      @dev: network device
2513 *
2514 *      Allow upper layers to call the device hard_start_xmit routine.
2515 */
2516static inline void netif_start_queue(struct net_device *dev)
2517{
2518        netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2519}
2520
2521static inline void netif_tx_start_all_queues(struct net_device *dev)
2522{
2523        unsigned int i;
2524
2525        for (i = 0; i < dev->num_tx_queues; i++) {
2526                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2527                netif_tx_start_queue(txq);
2528        }
2529}
2530
2531void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2532
2533/**
2534 *      netif_wake_queue - restart transmit
2535 *      @dev: network device
2536 *
2537 *      Allow upper layers to call the device hard_start_xmit routine.
2538 *      Used for flow control when transmit resources are available.
2539 */
2540static inline void netif_wake_queue(struct net_device *dev)
2541{
2542        netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2543}
2544
2545static inline void netif_tx_wake_all_queues(struct net_device *dev)
2546{
2547        unsigned int i;
2548
2549        for (i = 0; i < dev->num_tx_queues; i++) {
2550                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2551                netif_tx_wake_queue(txq);
2552        }
2553}
2554
2555static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2556{
2557        if (WARN_ON(!dev_queue)) {
2558                pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2559                return;
2560        }
2561        set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2562}
2563
2564/**
2565 *      netif_stop_queue - stop transmitted packets
2566 *      @dev: network device
2567 *
2568 *      Stop upper layers calling the device hard_start_xmit routine.
2569 *      Used for flow control when transmit resources are unavailable.
2570 */
2571static inline void netif_stop_queue(struct net_device *dev)
2572{
2573        netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2574}
2575
2576static inline void netif_tx_stop_all_queues(struct net_device *dev)
2577{
2578        unsigned int i;
2579
2580        for (i = 0; i < dev->num_tx_queues; i++) {
2581                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2582                netif_tx_stop_queue(txq);
2583        }
2584}
2585
2586static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2587{
2588        return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2589}
2590
2591/**
2592 *      netif_queue_stopped - test if transmit queue is flowblocked
2593 *      @dev: network device
2594 *
2595 *      Test if transmit queue on device is currently unable to send.
2596 */
2597static inline bool netif_queue_stopped(const struct net_device *dev)
2598{
2599        return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2600}
2601
2602static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2603{
2604        return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2605}
2606
2607static inline bool
2608netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2609{
2610        return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2611}
2612
2613static inline bool
2614netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2615{
2616        return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2617}
2618
2619/**
2620 *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2621 *      @dev_queue: pointer to transmit queue
2622 *
2623 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2624 * to give appropriate hint to the cpu.
2625 */
2626static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2627{
2628#ifdef CONFIG_BQL
2629        prefetchw(&dev_queue->dql.num_queued);
2630#endif
2631}
2632
2633/**
2634 *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2635 *      @dev_queue: pointer to transmit queue
2636 *
2637 * BQL enabled drivers might use this helper in their TX completion path,
2638 * to give appropriate hint to the cpu.
2639 */
2640static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2641{
2642#ifdef CONFIG_BQL
2643        prefetchw(&dev_queue->dql.limit);
2644#endif
2645}
2646
2647static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2648                                        unsigned int bytes)
2649{
2650#ifdef CONFIG_BQL
2651        dql_queued(&dev_queue->dql, bytes);
2652
2653        if (likely(dql_avail(&dev_queue->dql) >= 0))
2654                return;
2655
2656        set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2657
2658        /*
2659         * The XOFF flag must be set before checking the dql_avail below,
2660         * because in netdev_tx_completed_queue we update the dql_completed
2661         * before checking the XOFF flag.
2662         */
2663        smp_mb();
2664
2665        /* check again in case another CPU has just made room avail */
2666        if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2667                clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2668#endif
2669}
2670
2671/**
2672 *      netdev_sent_queue - report the number of bytes queued to hardware
2673 *      @dev: network device
2674 *      @bytes: number of bytes queued to the hardware device queue
2675 *
2676 *      Report the number of bytes queued for sending/completion to the network
2677 *      device hardware queue. @bytes should be a good approximation and should
2678 *      exactly match netdev_completed_queue() @bytes
2679 */
2680static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2681{
2682        netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2683}
2684
2685static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2686                                             unsigned int pkts, unsigned int bytes)
2687{
2688#ifdef CONFIG_BQL
2689        if (unlikely(!bytes))
2690                return;
2691
2692        dql_completed(&dev_queue->dql, bytes);
2693
2694        /*
2695         * Without the memory barrier there is a small possiblity that
2696         * netdev_tx_sent_queue will miss the update and cause the queue to
2697         * be stopped forever
2698         */
2699        smp_mb();
2700
2701        if (dql_avail(&dev_queue->dql) < 0)
2702                return;
2703
2704        if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2705                netif_schedule_queue(dev_queue);
2706#endif
2707}
2708
2709/**
2710 *      netdev_completed_queue - report bytes and packets completed by device
2711 *      @dev: network device
2712 *      @pkts: actual number of packets sent over the medium
2713 *      @bytes: actual number of bytes sent over the medium
2714 *
2715 *      Report the number of bytes and packets transmitted by the network device
2716 *      hardware queue over the physical medium, @bytes must exactly match the
2717 *      @bytes amount passed to netdev_sent_queue()
2718 */
2719static inline void netdev_completed_queue(struct net_device *dev,
2720                                          unsigned int pkts, unsigned int bytes)
2721{
2722        netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2723}
2724
2725static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2726{
2727#ifdef CONFIG_BQL
2728        clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2729        dql_reset(&q->dql);
2730#endif
2731}
2732
2733/**
2734 *      netdev_reset_queue - reset the packets and bytes count of a network device
2735 *      @dev_queue: network device
2736 *
2737 *      Reset the bytes and packet count of a network device and clear the
2738 *      software flow control OFF bit for this network device
2739 */
2740static inline void netdev_reset_queue(struct net_device *dev_queue)
2741{
2742        netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2743}
2744
2745/**
2746 *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
2747 *      @dev: network device
2748 *      @queue_index: given tx queue index
2749 *
2750 *      Returns 0 if given tx queue index >= number of device tx queues,
2751 *      otherwise returns the originally passed tx queue index.
2752 */
2753static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2754{
2755        if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2756                net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2757                                     dev->name, queue_index,
2758                                     dev->real_num_tx_queues);
2759                return 0;
2760        }
2761
2762        return queue_index;
2763}
2764
2765/**
2766 *      netif_running - test if up
2767 *      @dev: network device
2768 *
2769 *      Test if the device has been brought up.
2770 */
2771static inline bool netif_running(const struct net_device *dev)
2772{
2773        return test_bit(__LINK_STATE_START, &dev->state);
2774}
2775
2776/*
2777 * Routines to manage the subqueues on a device.  We only need start
2778 * stop, and a check if it's stopped.  All other device management is
2779 * done at the overall netdevice level.
2780 * Also test the device if we're multiqueue.
2781 */
2782
2783/**
2784 *      netif_start_subqueue - allow sending packets on subqueue
2785 *      @dev: network device
2786 *      @queue_index: sub queue index
2787 *
2788 * Start individual transmit queue of a device with multiple transmit queues.
2789 */
2790static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2791{
2792        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2793
2794        netif_tx_start_queue(txq);
2795}
2796
2797/**
2798 *      netif_stop_subqueue - stop sending packets on subqueue
2799 *      @dev: network device
2800 *      @queue_index: sub queue index
2801 *
2802 * Stop individual transmit queue of a device with multiple transmit queues.
2803 */
2804static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2805{
2806        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2807        netif_tx_stop_queue(txq);
2808}
2809
2810/**
2811 *      netif_subqueue_stopped - test status of subqueue
2812 *      @dev: network device
2813 *      @queue_index: sub queue index
2814 *
2815 * Check individual transmit queue of a device with multiple transmit queues.
2816 */
2817static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2818                                            u16 queue_index)
2819{
2820        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2821
2822        return netif_tx_queue_stopped(txq);
2823}
2824
2825static inline bool netif_subqueue_stopped(const struct net_device *dev,
2826                                          struct sk_buff *skb)
2827{
2828        return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2829}
2830
2831void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2832
2833#ifdef CONFIG_XPS
2834int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2835                        u16 index);
2836#else
2837static inline int netif_set_xps_queue(struct net_device *dev,
2838                                      const struct cpumask *mask,
2839                                      u16 index)
2840{
2841        return 0;
2842}
2843#endif
2844
2845/*
2846 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2847 * as a distribution range limit for the returned value.
2848 */
2849static inline u16 skb_tx_hash(const struct net_device *dev,
2850                              struct sk_buff *skb)
2851{
2852        return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2853}
2854
2855/**
2856 *      netif_is_multiqueue - test if device has multiple transmit queues
2857 *      @dev: network device
2858 *
2859 * Check if device has multiple transmit queues
2860 */
2861static inline bool netif_is_multiqueue(const struct net_device *dev)
2862{
2863        return dev->num_tx_queues > 1;
2864}
2865
2866int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2867
2868#ifdef CONFIG_SYSFS
2869int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2870#else
2871static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2872                                                unsigned int rxq)
2873{
2874        return 0;
2875}
2876#endif
2877
2878#ifdef CONFIG_SYSFS
2879static inline unsigned int get_netdev_rx_queue_index(
2880                struct netdev_rx_queue *queue)
2881{
2882        struct net_device *dev = queue->dev;
2883        int index = queue - dev->_rx;
2884
2885        BUG_ON(index >= dev->num_rx_queues);
2886        return index;
2887}
2888#endif
2889
2890#define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
2891int netif_get_num_default_rss_queues(void);
2892
2893enum skb_free_reason {
2894        SKB_REASON_CONSUMED,
2895        SKB_REASON_DROPPED,
2896};
2897
2898void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2899void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2900
2901/*
2902 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2903 * interrupt context or with hardware interrupts being disabled.
2904 * (in_irq() || irqs_disabled())
2905 *
2906 * We provide four helpers that can be used in following contexts :
2907 *
2908 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2909 *  replacing kfree_skb(skb)
2910 *
2911 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2912 *  Typically used in place of consume_skb(skb) in TX completion path
2913 *
2914 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2915 *  replacing kfree_skb(skb)
2916 *
2917 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2918 *  and consumed a packet. Used in place of consume_skb(skb)
2919 */
2920static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2921{
2922        __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2923}
2924
2925static inline void dev_consume_skb_irq(struct sk_buff *skb)
2926{
2927        __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2928}
2929
2930static inline void dev_kfree_skb_any(struct sk_buff *skb)
2931{
2932        __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2933}
2934
2935static inline void dev_consume_skb_any(struct sk_buff *skb)
2936{
2937        __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2938}
2939
2940int netif_rx(struct sk_buff *skb);
2941int netif_rx_ni(struct sk_buff *skb);
2942int netif_receive_skb(struct sk_buff *skb);
2943gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2944void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2945struct sk_buff *napi_get_frags(struct napi_struct *napi);
2946gro_result_t napi_gro_frags(struct napi_struct *napi);
2947struct packet_offload *gro_find_receive_by_type(__be16 type);
2948struct packet_offload *gro_find_complete_by_type(__be16 type);
2949
2950static inline void napi_free_frags(struct napi_struct *napi)
2951{
2952        kfree_skb(napi->skb);
2953        napi->skb = NULL;
2954}
2955
2956int netdev_rx_handler_register(struct net_device *dev,
2957                               rx_handler_func_t *rx_handler,
2958                               void *rx_handler_data);
2959void netdev_rx_handler_unregister(struct net_device *dev);
2960
2961bool dev_valid_name(const char *name);
2962int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2963int dev_ethtool(struct net *net, struct ifreq *);
2964unsigned int dev_get_flags(const struct net_device *);
2965int __dev_change_flags(struct net_device *, unsigned int flags);
2966int dev_change_flags(struct net_device *, unsigned int);
2967void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2968                        unsigned int gchanges);
2969int dev_change_name(struct net_device *, const char *);
2970int dev_set_alias(struct net_device *, const char *, size_t);
2971int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2972int dev_set_mtu(struct net_device *, int);
2973void dev_set_group(struct net_device *, int);
2974int dev_set_mac_address(struct net_device *, struct sockaddr *);
2975int dev_change_carrier(struct net_device *, bool new_carrier);
2976int dev_get_phys_port_id(struct net_device *dev,
2977                         struct netdev_phys_item_id *ppid);
2978struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2979struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2980                                    struct netdev_queue *txq, int *ret);
2981int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2982int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2983bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2984
2985extern int              netdev_budget;
2986
2987/* Called by rtnetlink.c:rtnl_unlock() */
2988void netdev_run_todo(void);
2989
2990/**
2991 *      dev_put - release reference to device
2992 *      @dev: network device
2993 *
2994 * Release reference to device to allow it to be freed.
2995 */
2996static inline void dev_put(struct net_device *dev)
2997{
2998        this_cpu_dec(*dev->pcpu_refcnt);
2999}
3000
3001/**
3002 *      dev_hold - get reference to device
3003 *      @dev: network device
3004 *
3005 * Hold reference to device to keep it from being freed.
3006 */
3007static inline void dev_hold(struct net_device *dev)
3008{
3009        this_cpu_inc(*dev->pcpu_refcnt);
3010}
3011
3012/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3013 * and _off may be called from IRQ context, but it is caller
3014 * who is responsible for serialization of these calls.
3015 *
3016 * The name carrier is inappropriate, these functions should really be
3017 * called netif_lowerlayer_*() because they represent the state of any
3018 * kind of lower layer not just hardware media.
3019 */
3020
3021void linkwatch_init_dev(struct net_device *dev);
3022void linkwatch_fire_event(struct net_device *dev);
3023void linkwatch_forget_dev(struct net_device *dev);
3024
3025/**
3026 *      netif_carrier_ok - test if carrier present
3027 *      @dev: network device
3028 *
3029 * Check if carrier is present on device
3030 */
3031static inline bool netif_carrier_ok(const struct net_device *dev)
3032{
3033        return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3034}
3035
3036unsigned long dev_trans_start(struct net_device *dev);
3037
3038void __netdev_watchdog_up(struct net_device *dev);
3039
3040void netif_carrier_on(struct net_device *dev);
3041
3042void netif_carrier_off(struct net_device *dev);
3043
3044/**
3045 *      netif_dormant_on - mark device as dormant.
3046 *      @dev: network device
3047 *
3048 * Mark device as dormant (as per RFC2863).
3049 *
3050 * The dormant state indicates that the relevant interface is not
3051 * actually in a condition to pass packets (i.e., it is not 'up') but is
3052 * in a "pending" state, waiting for some external event.  For "on-
3053 * demand" interfaces, this new state identifies the situation where the
3054 * interface is waiting for events to place it in the up state.
3055 *
3056 */
3057static inline void netif_dormant_on(struct net_device *dev)
3058{
3059        if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3060                linkwatch_fire_event(dev);
3061}
3062
3063/**
3064 *      netif_dormant_off - set device as not dormant.
3065 *      @dev: network device
3066 *
3067 * Device is not in dormant state.
3068 */
3069static inline void netif_dormant_off(struct net_device *dev)
3070{
3071        if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3072                linkwatch_fire_event(dev);
3073}
3074
3075/**
3076 *      netif_dormant - test if carrier present
3077 *      @dev: network device
3078 *
3079 * Check if carrier is present on device
3080 */
3081static inline bool netif_dormant(const struct net_device *dev)
3082{
3083        return test_bit(__LINK_STATE_DORMANT, &dev->state);
3084}
3085
3086
3087/**
3088 *      netif_oper_up - test if device is operational
3089 *      @dev: network device
3090 *
3091 * Check if carrier is operational
3092 */
3093static inline bool netif_oper_up(const struct net_device *dev)
3094{
3095        return (dev->operstate == IF_OPER_UP ||
3096                dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3097}
3098
3099/**
3100 *      netif_device_present - is device available or removed
3101 *      @dev: network device
3102 *
3103 * Check if device has not been removed from system.
3104 */
3105static inline bool netif_device_present(struct net_device *dev)
3106{
3107        return test_bit(__LINK_STATE_PRESENT, &dev->state);
3108}
3109
3110void netif_device_detach(struct net_device *dev);
3111
3112void netif_device_attach(struct net_device *dev);
3113
3114/*
3115 * Network interface message level settings
3116 */
3117
3118enum {
3119        NETIF_MSG_DRV           = 0x0001,
3120        NETIF_MSG_PROBE         = 0x0002,
3121        NETIF_MSG_LINK          = 0x0004,
3122        NETIF_MSG_TIMER         = 0x0008,
3123        NETIF_MSG_IFDOWN        = 0x0010,
3124        NETIF_MSG_IFUP          = 0x0020,
3125        NETIF_MSG_RX_ERR        = 0x0040,
3126        NETIF_MSG_TX_ERR        = 0x0080,
3127        NETIF_MSG_TX_QUEUED     = 0x0100,
3128        NETIF_MSG_INTR          = 0x0200,
3129        NETIF_MSG_TX_DONE       = 0x0400,
3130        NETIF_MSG_RX_STATUS     = 0x0800,
3131        NETIF_MSG_PKTDATA       = 0x1000,
3132        NETIF_MSG_HW            = 0x2000,
3133        NETIF_MSG_WOL           = 0x4000,
3134};
3135
3136#define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3137#define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3138#define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3139#define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3140#define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3141#define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3142#define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3143#define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3144#define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3145#define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3146#define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3147#define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3148#define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3149#define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3150#define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3151
3152static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3153{
3154        /* use default */
3155        if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3156                return default_msg_enable_bits;
3157        if (debug_value == 0)   /* no output */
3158                return 0;
3159        /* set low N bits */
3160        return (1 << debug_value) - 1;
3161}
3162
3163static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3164{
3165        spin_lock(&txq->_xmit_lock);
3166        txq->xmit_lock_owner = cpu;
3167}
3168
3169static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3170{
3171        spin_lock_bh(&txq->_xmit_lock);
3172        txq->xmit_lock_owner = smp_processor_id();
3173}
3174
3175static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3176{
3177        bool ok = spin_trylock(&txq->_xmit_lock);
3178        if (likely(ok))
3179                txq->xmit_lock_owner = smp_processor_id();
3180        return ok;
3181}
3182
3183static inline void __netif_tx_unlock(struct netdev_queue *txq)
3184{
3185        txq->xmit_lock_owner = -1;
3186        spin_unlock(&txq->_xmit_lock);
3187}
3188
3189static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3190{
3191        txq->xmit_lock_owner = -1;
3192        spin_unlock_bh(&txq->_xmit_lock);
3193}
3194
3195static inline void txq_trans_update(struct netdev_queue *txq)
3196{
3197        if (txq->xmit_lock_owner != -1)
3198                txq->trans_start = jiffies;
3199}
3200
3201/**
3202 *      netif_tx_lock - grab network device transmit lock
3203 *      @dev: network device
3204 *
3205 * Get network device transmit lock
3206 */
3207static inline void netif_tx_lock(struct net_device *dev)
3208{
3209        unsigned int i;
3210        int cpu;
3211
3212        spin_lock(&dev->tx_global_lock);
3213        cpu = smp_processor_id();
3214        for (i = 0; i < dev->num_tx_queues; i++) {
3215                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3216
3217                /* We are the only thread of execution doing a
3218                 * freeze, but we have to grab the _xmit_lock in
3219                 * order to synchronize with threads which are in
3220                 * the ->hard_start_xmit() handler and already
3221                 * checked the frozen bit.
3222                 */
3223                __netif_tx_lock(txq, cpu);
3224                set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3225                __netif_tx_unlock(txq);
3226        }
3227}
3228
3229static inline void netif_tx_lock_bh(struct net_device *dev)
3230{
3231        local_bh_disable();
3232        netif_tx_lock(dev);
3233}
3234
3235static inline void netif_tx_unlock(struct net_device *dev)
3236{
3237        unsigned int i;
3238
3239        for (i = 0; i < dev->num_tx_queues; i++) {
3240                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3241
3242                /* No need to grab the _xmit_lock here.  If the
3243                 * queue is not stopped for another reason, we
3244                 * force a schedule.
3245                 */
3246                clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3247                netif_schedule_queue(txq);
3248        }
3249        spin_unlock(&dev->tx_global_lock);
3250}
3251
3252static inline void netif_tx_unlock_bh(struct net_device *dev)
3253{
3254        netif_tx_unlock(dev);
3255        local_bh_enable();
3256}
3257
3258#define HARD_TX_LOCK(dev, txq, cpu) {                   \
3259        if ((dev->features & NETIF_F_LLTX) == 0) {      \
3260                __netif_tx_lock(txq, cpu);              \
3261        }                                               \
3262}
3263
3264#define HARD_TX_TRYLOCK(dev, txq)                       \
3265        (((dev->features & NETIF_F_LLTX) == 0) ?        \
3266                __netif_tx_trylock(txq) :               \
3267                true )
3268
3269#define HARD_TX_UNLOCK(dev, txq) {                      \
3270        if ((dev->features & NETIF_F_LLTX) == 0) {      \
3271                __netif_tx_unlock(txq);                 \
3272        }                                               \
3273}
3274
3275static inline void netif_tx_disable(struct net_device *dev)
3276{
3277        unsigned int i;
3278        int cpu;
3279
3280        local_bh_disable();
3281        cpu = smp_processor_id();
3282        for (i = 0; i < dev->num_tx_queues; i++) {
3283                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3284
3285                __netif_tx_lock(txq, cpu);
3286                netif_tx_stop_queue(txq);
3287                __netif_tx_unlock(txq);
3288        }
3289        local_bh_enable();
3290}
3291
3292static inline void netif_addr_lock(struct net_device *dev)
3293{
3294        spin_lock(&dev->addr_list_lock);
3295}
3296
3297static inline void netif_addr_lock_nested(struct net_device *dev)
3298{
3299        int subclass = SINGLE_DEPTH_NESTING;
3300
3301        if (dev->netdev_ops->ndo_get_lock_subclass)
3302                subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3303
3304        spin_lock_nested(&dev->addr_list_lock, subclass);
3305}
3306
3307static inline void netif_addr_lock_bh(struct net_device *dev)
3308{
3309        spin_lock_bh(&dev->addr_list_lock);
3310}
3311
3312static inline void netif_addr_unlock(struct net_device *dev)
3313{
3314        spin_unlock(&dev->addr_list_lock);
3315}
3316
3317static inline void netif_addr_unlock_bh(struct net_device *dev)
3318{
3319        spin_unlock_bh(&dev->addr_list_lock);
3320}
3321
3322/*
3323 * dev_addrs walker. Should be used only for read access. Call with
3324 * rcu_read_lock held.
3325 */
3326#define for_each_dev_addr(dev, ha) \
3327                list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3328
3329/* These functions live elsewhere (drivers/net/net_init.c, but related) */
3330
3331void ether_setup(struct net_device *dev);
3332
3333/* Support for loadable net-drivers */
3334struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3335                                    unsigned char name_assign_type,
3336                                    void (*setup)(struct net_device *),
3337                                    unsigned int txqs, unsigned int rxqs);
3338#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3339        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3340
3341#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3342        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3343                         count)
3344
3345int register_netdev(struct net_device *dev);
3346void unregister_netdev(struct net_device *dev);
3347
3348/* General hardware address lists handling functions */
3349int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3350                   struct netdev_hw_addr_list *from_list, int addr_len);
3351void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3352                      struct netdev_hw_addr_list *from_list, int addr_len);
3353int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3354                       struct net_device *dev,
3355                       int (*sync)(struct net_device *, const unsigned char *),
3356                       int (*unsync)(struct net_device *,
3357                                     const unsigned char *));
3358void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3359                          struct net_device *dev,
3360                          int (*unsync)(struct net_device *,
3361                                        const unsigned char *));
3362void __hw_addr_init(struct netdev_hw_addr_list *list);
3363
3364/* Functions used for device addresses handling */
3365int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3366                 unsigned char addr_type);
3367int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3368                 unsigned char addr_type);
3369void dev_addr_flush(struct net_device *dev);
3370int dev_addr_init(struct net_device *dev);
3371
3372/* Functions used for unicast addresses handling */
3373int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3374int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3375int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3376int dev_uc_sync(struct net_device *to, struct net_device *from);
3377int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3378void dev_uc_unsync(struct net_device *to, struct net_device *from);
3379void dev_uc_flush(struct net_device *dev);
3380void dev_uc_init(struct net_device *dev);
3381
3382/**
3383 *  __dev_uc_sync - Synchonize device's unicast list
3384 *  @dev:  device to sync
3385 *  @sync: function to call if address should be added
3386 *  @unsync: function to call if address should be removed
3387 *
3388 *  Add newly added addresses to the interface, and release
3389 *  addresses that have been deleted.
3390 **/
3391static inline int __dev_uc_sync(struct net_device *dev,
3392                                int (*sync)(struct net_device *,
3393                                            const unsigned char *),
3394                                int (*unsync)(struct net_device *,
3395                                              const unsigned char *))
3396{
3397        return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3398}
3399
3400/**
3401 *  __dev_uc_unsync - Remove synchronized addresses from device
3402 *  @dev:  device to sync
3403 *  @unsync: function to call if address should be removed
3404 *
3405 *  Remove all addresses that were added to the device by dev_uc_sync().
3406 **/
3407static inline void __dev_uc_unsync(struct net_device *dev,
3408                                   int (*unsync)(struct net_device *,
3409                                                 const unsigned char *))
3410{
3411        __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3412}
3413
3414/* Functions used for multicast addresses handling */
3415int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3416int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3417int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3418int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3419int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3420int dev_mc_sync(struct net_device *to, struct net_device *from);
3421int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3422void dev_mc_unsync(struct net_device *to, struct net_device *from);
3423void dev_mc_flush(struct net_device *dev);
3424void dev_mc_init(struct net_device *dev);
3425
3426/**
3427 *  __dev_mc_sync - Synchonize device's multicast list
3428 *  @dev:  device to sync
3429 *  @sync: function to call if address should be added
3430 *  @unsync: function to call if address should be removed
3431 *
3432 *  Add newly added addresses to the interface, and release
3433 *  addresses that have been deleted.
3434 **/
3435static inline int __dev_mc_sync(struct net_device *dev,
3436                                int (*sync)(struct net_device *,
3437                                            const unsigned char *),
3438                                int (*unsync)(struct net_device *,
3439                                              const unsigned char *))
3440{
3441        return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3442}
3443
3444/**
3445 *  __dev_mc_unsync - Remove synchronized addresses from device
3446 *  @dev:  device to sync
3447 *  @unsync: function to call if address should be removed
3448 *
3449 *  Remove all addresses that were added to the device by dev_mc_sync().
3450 **/
3451static inline void __dev_mc_unsync(struct net_device *dev,
3452                                   int (*unsync)(struct net_device *,
3453                                                 const unsigned char *))
3454{
3455        __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3456}
3457
3458/* Functions used for secondary unicast and multicast support */
3459void dev_set_rx_mode(struct net_device *dev);
3460void __dev_set_rx_mode(struct net_device *dev);
3461int dev_set_promiscuity(struct net_device *dev, int inc);
3462int dev_set_allmulti(struct net_device *dev, int inc);
3463void netdev_state_change(struct net_device *dev);
3464void netdev_notify_peers(struct net_device *dev);
3465void netdev_features_change(struct net_device *dev);
3466/* Load a device via the kmod */
3467void dev_load(struct net *net, const char *name);
3468struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3469                                        struct rtnl_link_stats64 *storage);
3470void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3471                             const struct net_device_stats *netdev_stats);
3472
3473extern int              netdev_max_backlog;
3474extern int              netdev_tstamp_prequeue;
3475extern int              weight_p;
3476extern int              bpf_jit_enable;
3477
3478bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3479struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3480                                                     struct list_head **iter);
3481struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3482                                                     struct list_head **iter);
3483
3484/* iterate through upper list, must be called under RCU read lock */
3485#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3486        for (iter = &(dev)->adj_list.upper, \
3487             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3488             updev; \
3489             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3490
3491/* iterate through upper list, must be called under RCU read lock */
3492#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3493        for (iter = &(dev)->all_adj_list.upper, \
3494             updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3495             updev; \
3496             updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3497
3498void *netdev_lower_get_next_private(struct net_device *dev,
3499                                    struct list_head **iter);
3500void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3501                                        struct list_head **iter);
3502
3503#define netdev_for_each_lower_private(dev, priv, iter) \
3504        for (iter = (dev)->adj_list.lower.next, \
3505             priv = netdev_lower_get_next_private(dev, &(iter)); \
3506             priv; \
3507             priv = netdev_lower_get_next_private(dev, &(iter)))
3508
3509#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3510        for (iter = &(dev)->adj_list.lower, \
3511             priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3512             priv; \
3513             priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3514
3515void *netdev_lower_get_next(struct net_device *dev,
3516                                struct list_head **iter);
3517#define netdev_for_each_lower_dev(dev, ldev, iter) \
3518        for (iter = &(dev)->adj_list.lower, \
3519             ldev = netdev_lower_get_next(dev, &(iter)); \
3520             ldev; \
3521             ldev = netdev_lower_get_next(dev, &(iter)))
3522
3523void *netdev_adjacent_get_private(struct list_head *adj_list);
3524void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3525struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3526struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3527int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3528int netdev_master_upper_dev_link(struct net_device *dev,
3529                                 struct net_device *upper_dev);
3530int netdev_master_upper_dev_link_private(struct net_device *dev,
3531                                         struct net_device *upper_dev,
3532                                         void *private);
3533void netdev_upper_dev_unlink(struct net_device *dev,
3534                             struct net_device *upper_dev);
3535void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3536void *netdev_lower_dev_get_private(struct net_device *dev,
3537                                   struct net_device *lower_dev);
3538
3539/* RSS keys are 40 or 52 bytes long */
3540#define NETDEV_RSS_KEY_LEN 52
3541extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3542void netdev_rss_key_fill(void *buffer, size_t len);
3543
3544int dev_get_nest_level(struct net_device *dev,
3545                       bool (*type_check)(struct net_device *dev));
3546int skb_checksum_help(struct sk_buff *skb);
3547struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3548                                  netdev_features_t features, bool tx_path);
3549struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3550                                    netdev_features_t features);
3551
3552struct netdev_bonding_info {
3553        ifslave slave;
3554        ifbond  master;
3555};
3556
3557struct netdev_notifier_bonding_info {
3558        struct netdev_notifier_info info; /* must be first */
3559        struct netdev_bonding_info  bonding_info;
3560};
3561
3562void netdev_bonding_info_change(struct net_device *dev,
3563                                struct netdev_bonding_info *bonding_info);
3564
3565static inline
3566struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3567{
3568        return __skb_gso_segment(skb, features, true);
3569}
3570__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3571
3572static inline bool can_checksum_protocol(netdev_features_t features,
3573                                         __be16 protocol)
3574{
3575        return ((features & NETIF_F_GEN_CSUM) ||
3576                ((features & NETIF_F_V4_CSUM) &&
3577                 protocol == htons(ETH_P_IP)) ||
3578                ((features & NETIF_F_V6_CSUM) &&
3579                 protocol == htons(ETH_P_IPV6)) ||
3580                ((features & NETIF_F_FCOE_CRC) &&
3581                 protocol == htons(ETH_P_FCOE)));
3582}
3583
3584#ifdef CONFIG_BUG
3585void netdev_rx_csum_fault(struct net_device *dev);
3586#else
3587static inline void netdev_rx_csum_fault(struct net_device *dev)
3588{
3589}
3590#endif
3591/* rx skb timestamps */
3592void net_enable_timestamp(void);
3593void net_disable_timestamp(void);
3594
3595#ifdef CONFIG_PROC_FS
3596int __init dev_proc_init(void);
3597#else
3598#define dev_proc_init() 0
3599#endif
3600
3601static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3602                                              struct sk_buff *skb, struct net_device *dev,
3603                                              bool more)
3604{
3605        skb->xmit_more = more ? 1 : 0;
3606        return ops->ndo_start_xmit(skb, dev);
3607}
3608
3609static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3610                                            struct netdev_queue *txq, bool more)
3611{
3612        const struct net_device_ops *ops = dev->netdev_ops;
3613        int rc;
3614
3615        rc = __netdev_start_xmit(ops, skb, dev, more);
3616        if (rc == NETDEV_TX_OK)
3617                txq_trans_update(txq);
3618
3619        return rc;
3620}
3621
3622int netdev_class_create_file_ns(struct class_attribute *class_attr,
3623                                const void *ns);
3624void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3625                                 const void *ns);
3626
3627static inline int netdev_class_create_file(struct class_attribute *class_attr)
3628{
3629        return netdev_class_create_file_ns(class_attr, NULL);
3630}
3631
3632static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3633{
3634        netdev_class_remove_file_ns(class_attr, NULL);
3635}
3636
3637extern struct kobj_ns_type_operations net_ns_type_operations;
3638
3639const char *netdev_drivername(const struct net_device *dev);
3640
3641void linkwatch_run_queue(void);
3642
3643static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3644                                                          netdev_features_t f2)
3645{
3646        if (f1 & NETIF_F_GEN_CSUM)
3647                f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3648        if (f2 & NETIF_F_GEN_CSUM)
3649                f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3650        f1 &= f2;
3651        if (f1 & NETIF_F_GEN_CSUM)
3652                f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3653
3654        return f1;
3655}
3656
3657static inline netdev_features_t netdev_get_wanted_features(
3658        struct net_device *dev)
3659{
3660        return (dev->features & ~dev->hw_features) | dev->wanted_features;
3661}
3662netdev_features_t netdev_increment_features(netdev_features_t all,
3663        netdev_features_t one, netdev_features_t mask);
3664
3665/* Allow TSO being used on stacked device :
3666 * Performing the GSO segmentation before last device
3667 * is a performance improvement.
3668 */
3669static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3670                                                        netdev_features_t mask)
3671{
3672        return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3673}
3674
3675int __netdev_update_features(struct net_device *dev);
3676void netdev_update_features(struct net_device *dev);
3677void netdev_change_features(struct net_device *dev);
3678
3679void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3680                                        struct net_device *dev);
3681
3682netdev_features_t netif_skb_features(struct sk_buff *skb);
3683
3684static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3685{
3686        netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3687
3688        /* check flags correspondence */
3689        BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3690        BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3691        BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3692        BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3693        BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3694        BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3695        BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3696        BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3697        BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3698        BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3699        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3700        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3701        BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3702
3703        return (features & feature) == feature;
3704}
3705
3706static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3707{
3708        return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3709               (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3710}
3711
3712static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb,
3713                                   netdev_features_t features)
3714{
3715        return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3716                unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3717                         (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3718}
3719
3720static inline void netif_set_gso_max_size(struct net_device *dev,
3721                                          unsigned int size)
3722{
3723        dev->gso_max_size = size;
3724}
3725
3726static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3727                                        int pulled_hlen, u16 mac_offset,
3728                                        int mac_len)
3729{
3730        skb->protocol = protocol;
3731        skb->encapsulation = 1;
3732        skb_push(skb, pulled_hlen);
3733        skb_reset_transport_header(skb);
3734        skb->mac_header = mac_offset;
3735        skb->network_header = skb->mac_header + mac_len;
3736        skb->mac_len = mac_len;
3737}
3738
3739static inline bool netif_is_macvlan(struct net_device *dev)
3740{
3741        return dev->priv_flags & IFF_MACVLAN;
3742}
3743
3744static inline bool netif_is_macvlan_port(struct net_device *dev)
3745{
3746        return dev->priv_flags & IFF_MACVLAN_PORT;
3747}
3748
3749static inline bool netif_is_ipvlan(struct net_device *dev)
3750{
3751        return dev->priv_flags & IFF_IPVLAN_SLAVE;
3752}
3753
3754static inline bool netif_is_ipvlan_port(struct net_device *dev)
3755{
3756        return dev->priv_flags & IFF_IPVLAN_MASTER;
3757}
3758
3759static inline bool netif_is_bond_master(struct net_device *dev)
3760{
3761        return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3762}
3763
3764static inline bool netif_is_bond_slave(struct net_device *dev)
3765{
3766        return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3767}
3768
3769static inline bool netif_supports_nofcs(struct net_device *dev)
3770{
3771        return dev->priv_flags & IFF_SUPP_NOFCS;
3772}
3773
3774/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3775static inline void netif_keep_dst(struct net_device *dev)
3776{
3777        dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3778}
3779
3780extern struct pernet_operations __net_initdata loopback_net_ops;
3781
3782/* Logging, debugging and troubleshooting/diagnostic helpers. */
3783
3784/* netdev_printk helpers, similar to dev_printk */
3785
3786static inline const char *netdev_name(const struct net_device *dev)
3787{
3788        if (!dev->name[0] || strchr(dev->name, '%'))
3789                return "(unnamed net_device)";
3790        return dev->name;
3791}
3792
3793static inline const char *netdev_reg_state(const struct net_device *dev)
3794{
3795        switch (dev->reg_state) {
3796        case NETREG_UNINITIALIZED: return " (uninitialized)";
3797        case NETREG_REGISTERED: return "";
3798        case NETREG_UNREGISTERING: return " (unregistering)";
3799        case NETREG_UNREGISTERED: return " (unregistered)";
3800        case NETREG_RELEASED: return " (released)";
3801        case NETREG_DUMMY: return " (dummy)";
3802        }
3803
3804        WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3805        return " (unknown)";
3806}
3807
3808__printf(3, 4)
3809void netdev_printk(const char *level, const struct net_device *dev,
3810                   const char *format, ...);
3811__printf(2, 3)
3812void netdev_emerg(const struct net_device *dev, const char *format, ...);
3813__printf(2, 3)
3814void netdev_alert(const struct net_device *dev, const char *format, ...);
3815__printf(2, 3)
3816void netdev_crit(const struct net_device *dev, const char *format, ...);
3817__printf(2, 3)
3818void netdev_err(const struct net_device *dev, const char *format, ...);
3819__printf(2, 3)
3820void netdev_warn(const struct net_device *dev, const char *format, ...);
3821__printf(2, 3)
3822void netdev_notice(const struct net_device *dev, const char *format, ...);
3823__printf(2, 3)
3824void netdev_info(const struct net_device *dev, const char *format, ...);
3825
3826#define MODULE_ALIAS_NETDEV(device) \
3827        MODULE_ALIAS("netdev-" device)
3828
3829#if defined(CONFIG_DYNAMIC_DEBUG)
3830#define netdev_dbg(__dev, format, args...)                      \
3831do {                                                            \
3832        dynamic_netdev_dbg(__dev, format, ##args);              \
3833} while (0)
3834#elif defined(DEBUG)
3835#define netdev_dbg(__dev, format, args...)                      \
3836        netdev_printk(KERN_DEBUG, __dev, format, ##args)
3837#else
3838#define netdev_dbg(__dev, format, args...)                      \
3839({                                                              \
3840        if (0)                                                  \
3841                netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3842})
3843#endif
3844
3845#if defined(VERBOSE_DEBUG)
3846#define netdev_vdbg     netdev_dbg
3847#else
3848
3849#define netdev_vdbg(dev, format, args...)                       \
3850({                                                              \
3851        if (0)                                                  \
3852                netdev_printk(KERN_DEBUG, dev, format, ##args); \
3853        0;                                                      \
3854})
3855#endif
3856
3857/*
3858 * netdev_WARN() acts like dev_printk(), but with the key difference
3859 * of using a WARN/WARN_ON to get the message out, including the
3860 * file/line information and a backtrace.
3861 */
3862#define netdev_WARN(dev, format, args...)                       \
3863        WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),   \
3864             netdev_reg_state(dev), ##args)
3865
3866/* netif printk helpers, similar to netdev_printk */
3867
3868#define netif_printk(priv, type, level, dev, fmt, args...)      \
3869do {                                                            \
3870        if (netif_msg_##type(priv))                             \
3871                netdev_printk(level, (dev), fmt, ##args);       \
3872} while (0)
3873
3874#define netif_level(level, priv, type, dev, fmt, args...)       \
3875do {                                                            \
3876        if (netif_msg_##type(priv))                             \
3877                netdev_##level(dev, fmt, ##args);               \
3878} while (0)
3879
3880#define netif_emerg(priv, type, dev, fmt, args...)              \
3881        netif_level(emerg, priv, type, dev, fmt, ##args)
3882#define netif_alert(priv, type, dev, fmt, args...)              \
3883        netif_level(alert, priv, type, dev, fmt, ##args)
3884#define netif_crit(priv, type, dev, fmt, args...)               \
3885        netif_level(crit, priv, type, dev, fmt, ##args)
3886#define netif_err(priv, type, dev, fmt, args...)                \
3887        netif_level(err, priv, type, dev, fmt, ##args)
3888#define netif_warn(priv, type, dev, fmt, args...)               \
3889        netif_level(warn, priv, type, dev, fmt, ##args)
3890#define netif_notice(priv, type, dev, fmt, args...)             \
3891        netif_level(notice, priv, type, dev, fmt, ##args)
3892#define netif_info(priv, type, dev, fmt, args...)               \
3893        netif_level(info, priv, type, dev, fmt, ##args)
3894
3895#if defined(CONFIG_DYNAMIC_DEBUG)
3896#define netif_dbg(priv, type, netdev, format, args...)          \
3897do {                                                            \
3898        if (netif_msg_##type(priv))                             \
3899                dynamic_netdev_dbg(netdev, format, ##args);     \
3900} while (0)
3901#elif defined(DEBUG)
3902#define netif_dbg(priv, type, dev, format, args...)             \
3903        netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3904#else
3905#define netif_dbg(priv, type, dev, format, args...)                     \
3906({                                                                      \
3907        if (0)                                                          \
3908                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3909        0;                                                              \
3910})
3911#endif
3912
3913#if defined(VERBOSE_DEBUG)
3914#define netif_vdbg      netif_dbg
3915#else
3916#define netif_vdbg(priv, type, dev, format, args...)            \
3917({                                                              \
3918        if (0)                                                  \
3919                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3920        0;                                                      \
3921})
3922#endif
3923
3924/*
3925 *      The list of packet types we will receive (as opposed to discard)
3926 *      and the routines to invoke.
3927 *
3928 *      Why 16. Because with 16 the only overlap we get on a hash of the
3929 *      low nibble of the protocol value is RARP/SNAP/X.25.
3930 *
3931 *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3932 *             sure which should go first, but I bet it won't make much
3933 *             difference if we are running VLANs.  The good news is that
3934 *             this protocol won't be in the list unless compiled in, so
3935 *             the average user (w/out VLANs) will not be adversely affected.
3936 *             --BLG
3937 *
3938 *              0800    IP
3939 *              8100    802.1Q VLAN
3940 *              0001    802.3
3941 *              0002    AX.25
3942 *              0004    802.2
3943 *              8035    RARP
3944 *              0005    SNAP
3945 *              0805    X.25
3946 *              0806    ARP
3947 *              8137    IPX
3948 *              0009    Localtalk
3949 *              86DD    IPv6
3950 */
3951#define PTYPE_HASH_SIZE (16)
3952#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3953
3954#endif  /* _LINUX_NETDEVICE_H */
3955