linux/include/linux/rcupdate.h
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2001
  19 *
  20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
  21 *
  22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  24 * Papers:
  25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  27 *
  28 * For detailed explanation of Read-Copy Update mechanism see -
  29 *              http://lse.sourceforge.net/locking/rcupdate.html
  30 *
  31 */
  32
  33#ifndef __LINUX_RCUPDATE_H
  34#define __LINUX_RCUPDATE_H
  35
  36#include <linux/types.h>
  37#include <linux/cache.h>
  38#include <linux/spinlock.h>
  39#include <linux/threads.h>
  40#include <linux/cpumask.h>
  41#include <linux/seqlock.h>
  42#include <linux/lockdep.h>
  43#include <linux/completion.h>
  44#include <linux/debugobjects.h>
  45#include <linux/bug.h>
  46#include <linux/compiler.h>
  47#include <asm/barrier.h>
  48
  49extern int rcu_expedited; /* for sysctl */
  50
  51enum rcutorture_type {
  52        RCU_FLAVOR,
  53        RCU_BH_FLAVOR,
  54        RCU_SCHED_FLAVOR,
  55        RCU_TASKS_FLAVOR,
  56        SRCU_FLAVOR,
  57        INVALID_RCU_FLAVOR
  58};
  59
  60#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
  61void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
  62                            unsigned long *gpnum, unsigned long *completed);
  63void rcutorture_record_test_transition(void);
  64void rcutorture_record_progress(unsigned long vernum);
  65void do_trace_rcu_torture_read(const char *rcutorturename,
  66                               struct rcu_head *rhp,
  67                               unsigned long secs,
  68                               unsigned long c_old,
  69                               unsigned long c);
  70#else
  71static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
  72                                          int *flags,
  73                                          unsigned long *gpnum,
  74                                          unsigned long *completed)
  75{
  76        *flags = 0;
  77        *gpnum = 0;
  78        *completed = 0;
  79}
  80static inline void rcutorture_record_test_transition(void)
  81{
  82}
  83static inline void rcutorture_record_progress(unsigned long vernum)
  84{
  85}
  86#ifdef CONFIG_RCU_TRACE
  87void do_trace_rcu_torture_read(const char *rcutorturename,
  88                               struct rcu_head *rhp,
  89                               unsigned long secs,
  90                               unsigned long c_old,
  91                               unsigned long c);
  92#else
  93#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
  94        do { } while (0)
  95#endif
  96#endif
  97
  98#define UINT_CMP_GE(a, b)       (UINT_MAX / 2 >= (a) - (b))
  99#define UINT_CMP_LT(a, b)       (UINT_MAX / 2 < (a) - (b))
 100#define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
 101#define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
 102#define ulong2long(a)           (*(long *)(&(a)))
 103
 104/* Exported common interfaces */
 105
 106#ifdef CONFIG_PREEMPT_RCU
 107
 108/**
 109 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 110 * @head: structure to be used for queueing the RCU updates.
 111 * @func: actual callback function to be invoked after the grace period
 112 *
 113 * The callback function will be invoked some time after a full grace
 114 * period elapses, in other words after all pre-existing RCU read-side
 115 * critical sections have completed.  However, the callback function
 116 * might well execute concurrently with RCU read-side critical sections
 117 * that started after call_rcu() was invoked.  RCU read-side critical
 118 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 119 * and may be nested.
 120 *
 121 * Note that all CPUs must agree that the grace period extended beyond
 122 * all pre-existing RCU read-side critical section.  On systems with more
 123 * than one CPU, this means that when "func()" is invoked, each CPU is
 124 * guaranteed to have executed a full memory barrier since the end of its
 125 * last RCU read-side critical section whose beginning preceded the call
 126 * to call_rcu().  It also means that each CPU executing an RCU read-side
 127 * critical section that continues beyond the start of "func()" must have
 128 * executed a memory barrier after the call_rcu() but before the beginning
 129 * of that RCU read-side critical section.  Note that these guarantees
 130 * include CPUs that are offline, idle, or executing in user mode, as
 131 * well as CPUs that are executing in the kernel.
 132 *
 133 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 134 * resulting RCU callback function "func()", then both CPU A and CPU B are
 135 * guaranteed to execute a full memory barrier during the time interval
 136 * between the call to call_rcu() and the invocation of "func()" -- even
 137 * if CPU A and CPU B are the same CPU (but again only if the system has
 138 * more than one CPU).
 139 */
 140void call_rcu(struct rcu_head *head,
 141              void (*func)(struct rcu_head *head));
 142
 143#else /* #ifdef CONFIG_PREEMPT_RCU */
 144
 145/* In classic RCU, call_rcu() is just call_rcu_sched(). */
 146#define call_rcu        call_rcu_sched
 147
 148#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 149
 150/**
 151 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
 152 * @head: structure to be used for queueing the RCU updates.
 153 * @func: actual callback function to be invoked after the grace period
 154 *
 155 * The callback function will be invoked some time after a full grace
 156 * period elapses, in other words after all currently executing RCU
 157 * read-side critical sections have completed. call_rcu_bh() assumes
 158 * that the read-side critical sections end on completion of a softirq
 159 * handler. This means that read-side critical sections in process
 160 * context must not be interrupted by softirqs. This interface is to be
 161 * used when most of the read-side critical sections are in softirq context.
 162 * RCU read-side critical sections are delimited by :
 163 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
 164 *  OR
 165 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
 166 *  These may be nested.
 167 *
 168 * See the description of call_rcu() for more detailed information on
 169 * memory ordering guarantees.
 170 */
 171void call_rcu_bh(struct rcu_head *head,
 172                 void (*func)(struct rcu_head *head));
 173
 174/**
 175 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
 176 * @head: structure to be used for queueing the RCU updates.
 177 * @func: actual callback function to be invoked after the grace period
 178 *
 179 * The callback function will be invoked some time after a full grace
 180 * period elapses, in other words after all currently executing RCU
 181 * read-side critical sections have completed. call_rcu_sched() assumes
 182 * that the read-side critical sections end on enabling of preemption
 183 * or on voluntary preemption.
 184 * RCU read-side critical sections are delimited by :
 185 *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
 186 *  OR
 187 *  anything that disables preemption.
 188 *  These may be nested.
 189 *
 190 * See the description of call_rcu() for more detailed information on
 191 * memory ordering guarantees.
 192 */
 193void call_rcu_sched(struct rcu_head *head,
 194                    void (*func)(struct rcu_head *rcu));
 195
 196void synchronize_sched(void);
 197
 198/**
 199 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 200 * @head: structure to be used for queueing the RCU updates.
 201 * @func: actual callback function to be invoked after the grace period
 202 *
 203 * The callback function will be invoked some time after a full grace
 204 * period elapses, in other words after all currently executing RCU
 205 * read-side critical sections have completed. call_rcu_tasks() assumes
 206 * that the read-side critical sections end at a voluntary context
 207 * switch (not a preemption!), entry into idle, or transition to usermode
 208 * execution.  As such, there are no read-side primitives analogous to
 209 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
 210 * to determine that all tasks have passed through a safe state, not so
 211 * much for data-strcuture synchronization.
 212 *
 213 * See the description of call_rcu() for more detailed information on
 214 * memory ordering guarantees.
 215 */
 216void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head));
 217void synchronize_rcu_tasks(void);
 218void rcu_barrier_tasks(void);
 219
 220#ifdef CONFIG_PREEMPT_RCU
 221
 222void __rcu_read_lock(void);
 223void __rcu_read_unlock(void);
 224void rcu_read_unlock_special(struct task_struct *t);
 225void synchronize_rcu(void);
 226
 227/*
 228 * Defined as a macro as it is a very low level header included from
 229 * areas that don't even know about current.  This gives the rcu_read_lock()
 230 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
 231 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
 232 */
 233#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
 234
 235#else /* #ifdef CONFIG_PREEMPT_RCU */
 236
 237static inline void __rcu_read_lock(void)
 238{
 239        preempt_disable();
 240}
 241
 242static inline void __rcu_read_unlock(void)
 243{
 244        preempt_enable();
 245}
 246
 247static inline void synchronize_rcu(void)
 248{
 249        synchronize_sched();
 250}
 251
 252static inline int rcu_preempt_depth(void)
 253{
 254        return 0;
 255}
 256
 257#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 258
 259/* Internal to kernel */
 260void rcu_init(void);
 261void rcu_sched_qs(void);
 262void rcu_bh_qs(void);
 263void rcu_check_callbacks(int user);
 264struct notifier_block;
 265void rcu_idle_enter(void);
 266void rcu_idle_exit(void);
 267void rcu_irq_enter(void);
 268void rcu_irq_exit(void);
 269
 270#ifdef CONFIG_RCU_STALL_COMMON
 271void rcu_sysrq_start(void);
 272void rcu_sysrq_end(void);
 273#else /* #ifdef CONFIG_RCU_STALL_COMMON */
 274static inline void rcu_sysrq_start(void)
 275{
 276}
 277static inline void rcu_sysrq_end(void)
 278{
 279}
 280#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
 281
 282#ifdef CONFIG_RCU_USER_QS
 283void rcu_user_enter(void);
 284void rcu_user_exit(void);
 285#else
 286static inline void rcu_user_enter(void) { }
 287static inline void rcu_user_exit(void) { }
 288static inline void rcu_user_hooks_switch(struct task_struct *prev,
 289                                         struct task_struct *next) { }
 290#endif /* CONFIG_RCU_USER_QS */
 291
 292#ifdef CONFIG_RCU_NOCB_CPU
 293void rcu_init_nohz(void);
 294#else /* #ifdef CONFIG_RCU_NOCB_CPU */
 295static inline void rcu_init_nohz(void)
 296{
 297}
 298#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 299
 300/**
 301 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 302 * @a: Code that RCU needs to pay attention to.
 303 *
 304 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
 305 * in the inner idle loop, that is, between the rcu_idle_enter() and
 306 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
 307 * critical sections.  However, things like powertop need tracepoints
 308 * in the inner idle loop.
 309 *
 310 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 311 * will tell RCU that it needs to pay attending, invoke its argument
 312 * (in this example, a call to the do_something_with_RCU() function),
 313 * and then tell RCU to go back to ignoring this CPU.  It is permissible
 314 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
 315 * quite limited.  If deeper nesting is required, it will be necessary
 316 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
 317 */
 318#define RCU_NONIDLE(a) \
 319        do { \
 320                rcu_irq_enter(); \
 321                do { a; } while (0); \
 322                rcu_irq_exit(); \
 323        } while (0)
 324
 325/*
 326 * Note a voluntary context switch for RCU-tasks benefit.  This is a
 327 * macro rather than an inline function to avoid #include hell.
 328 */
 329#ifdef CONFIG_TASKS_RCU
 330#define TASKS_RCU(x) x
 331extern struct srcu_struct tasks_rcu_exit_srcu;
 332#define rcu_note_voluntary_context_switch(t) \
 333        do { \
 334                rcu_all_qs(); \
 335                if (ACCESS_ONCE((t)->rcu_tasks_holdout)) \
 336                        ACCESS_ONCE((t)->rcu_tasks_holdout) = false; \
 337        } while (0)
 338#else /* #ifdef CONFIG_TASKS_RCU */
 339#define TASKS_RCU(x) do { } while (0)
 340#define rcu_note_voluntary_context_switch(t)    rcu_all_qs()
 341#endif /* #else #ifdef CONFIG_TASKS_RCU */
 342
 343/**
 344 * cond_resched_rcu_qs - Report potential quiescent states to RCU
 345 *
 346 * This macro resembles cond_resched(), except that it is defined to
 347 * report potential quiescent states to RCU-tasks even if the cond_resched()
 348 * machinery were to be shut off, as some advocate for PREEMPT kernels.
 349 */
 350#define cond_resched_rcu_qs() \
 351do { \
 352        if (!cond_resched()) \
 353                rcu_note_voluntary_context_switch(current); \
 354} while (0)
 355
 356#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
 357bool __rcu_is_watching(void);
 358#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
 359
 360/*
 361 * Infrastructure to implement the synchronize_() primitives in
 362 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 363 */
 364
 365typedef void call_rcu_func_t(struct rcu_head *head,
 366                             void (*func)(struct rcu_head *head));
 367void wait_rcu_gp(call_rcu_func_t crf);
 368
 369#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
 370#include <linux/rcutree.h>
 371#elif defined(CONFIG_TINY_RCU)
 372#include <linux/rcutiny.h>
 373#else
 374#error "Unknown RCU implementation specified to kernel configuration"
 375#endif
 376
 377/*
 378 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
 379 * initialization and destruction of rcu_head on the stack. rcu_head structures
 380 * allocated dynamically in the heap or defined statically don't need any
 381 * initialization.
 382 */
 383#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 384void init_rcu_head(struct rcu_head *head);
 385void destroy_rcu_head(struct rcu_head *head);
 386void init_rcu_head_on_stack(struct rcu_head *head);
 387void destroy_rcu_head_on_stack(struct rcu_head *head);
 388#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 389static inline void init_rcu_head(struct rcu_head *head)
 390{
 391}
 392
 393static inline void destroy_rcu_head(struct rcu_head *head)
 394{
 395}
 396
 397static inline void init_rcu_head_on_stack(struct rcu_head *head)
 398{
 399}
 400
 401static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
 402{
 403}
 404#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 405
 406#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
 407bool rcu_lockdep_current_cpu_online(void);
 408#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 409static inline bool rcu_lockdep_current_cpu_online(void)
 410{
 411        return true;
 412}
 413#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 414
 415#ifdef CONFIG_DEBUG_LOCK_ALLOC
 416
 417static inline void rcu_lock_acquire(struct lockdep_map *map)
 418{
 419        lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
 420}
 421
 422static inline void rcu_lock_release(struct lockdep_map *map)
 423{
 424        lock_release(map, 1, _THIS_IP_);
 425}
 426
 427extern struct lockdep_map rcu_lock_map;
 428extern struct lockdep_map rcu_bh_lock_map;
 429extern struct lockdep_map rcu_sched_lock_map;
 430extern struct lockdep_map rcu_callback_map;
 431int debug_lockdep_rcu_enabled(void);
 432
 433int rcu_read_lock_held(void);
 434int rcu_read_lock_bh_held(void);
 435
 436/**
 437 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
 438 *
 439 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
 440 * RCU-sched read-side critical section.  In absence of
 441 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
 442 * critical section unless it can prove otherwise.  Note that disabling
 443 * of preemption (including disabling irqs) counts as an RCU-sched
 444 * read-side critical section.  This is useful for debug checks in functions
 445 * that required that they be called within an RCU-sched read-side
 446 * critical section.
 447 *
 448 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
 449 * and while lockdep is disabled.
 450 *
 451 * Note that if the CPU is in the idle loop from an RCU point of
 452 * view (ie: that we are in the section between rcu_idle_enter() and
 453 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
 454 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
 455 * that are in such a section, considering these as in extended quiescent
 456 * state, so such a CPU is effectively never in an RCU read-side critical
 457 * section regardless of what RCU primitives it invokes.  This state of
 458 * affairs is required --- we need to keep an RCU-free window in idle
 459 * where the CPU may possibly enter into low power mode. This way we can
 460 * notice an extended quiescent state to other CPUs that started a grace
 461 * period. Otherwise we would delay any grace period as long as we run in
 462 * the idle task.
 463 *
 464 * Similarly, we avoid claiming an SRCU read lock held if the current
 465 * CPU is offline.
 466 */
 467#ifdef CONFIG_PREEMPT_COUNT
 468static inline int rcu_read_lock_sched_held(void)
 469{
 470        int lockdep_opinion = 0;
 471
 472        if (!debug_lockdep_rcu_enabled())
 473                return 1;
 474        if (!rcu_is_watching())
 475                return 0;
 476        if (!rcu_lockdep_current_cpu_online())
 477                return 0;
 478        if (debug_locks)
 479                lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
 480        return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
 481}
 482#else /* #ifdef CONFIG_PREEMPT_COUNT */
 483static inline int rcu_read_lock_sched_held(void)
 484{
 485        return 1;
 486}
 487#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
 488
 489#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 490
 491# define rcu_lock_acquire(a)            do { } while (0)
 492# define rcu_lock_release(a)            do { } while (0)
 493
 494static inline int rcu_read_lock_held(void)
 495{
 496        return 1;
 497}
 498
 499static inline int rcu_read_lock_bh_held(void)
 500{
 501        return 1;
 502}
 503
 504#ifdef CONFIG_PREEMPT_COUNT
 505static inline int rcu_read_lock_sched_held(void)
 506{
 507        return preempt_count() != 0 || irqs_disabled();
 508}
 509#else /* #ifdef CONFIG_PREEMPT_COUNT */
 510static inline int rcu_read_lock_sched_held(void)
 511{
 512        return 1;
 513}
 514#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
 515
 516#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 517
 518#ifdef CONFIG_PROVE_RCU
 519
 520/**
 521 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
 522 * @c: condition to check
 523 * @s: informative message
 524 */
 525#define rcu_lockdep_assert(c, s)                                        \
 526        do {                                                            \
 527                static bool __section(.data.unlikely) __warned;         \
 528                if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
 529                        __warned = true;                                \
 530                        lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
 531                }                                                       \
 532        } while (0)
 533
 534#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
 535static inline void rcu_preempt_sleep_check(void)
 536{
 537        rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
 538                           "Illegal context switch in RCU read-side critical section");
 539}
 540#else /* #ifdef CONFIG_PROVE_RCU */
 541static inline void rcu_preempt_sleep_check(void)
 542{
 543}
 544#endif /* #else #ifdef CONFIG_PROVE_RCU */
 545
 546#define rcu_sleep_check()                                               \
 547        do {                                                            \
 548                rcu_preempt_sleep_check();                              \
 549                rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),     \
 550                                   "Illegal context switch in RCU-bh read-side critical section"); \
 551                rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),  \
 552                                   "Illegal context switch in RCU-sched read-side critical section"); \
 553        } while (0)
 554
 555#else /* #ifdef CONFIG_PROVE_RCU */
 556
 557#define rcu_lockdep_assert(c, s) do { } while (0)
 558#define rcu_sleep_check() do { } while (0)
 559
 560#endif /* #else #ifdef CONFIG_PROVE_RCU */
 561
 562/*
 563 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 564 * and rcu_assign_pointer().  Some of these could be folded into their
 565 * callers, but they are left separate in order to ease introduction of
 566 * multiple flavors of pointers to match the multiple flavors of RCU
 567 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
 568 * the future.
 569 */
 570
 571#ifdef __CHECKER__
 572#define rcu_dereference_sparse(p, space) \
 573        ((void)(((typeof(*p) space *)p) == p))
 574#else /* #ifdef __CHECKER__ */
 575#define rcu_dereference_sparse(p, space)
 576#endif /* #else #ifdef __CHECKER__ */
 577
 578#define __rcu_access_pointer(p, space) \
 579({ \
 580        typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
 581        rcu_dereference_sparse(p, space); \
 582        ((typeof(*p) __force __kernel *)(_________p1)); \
 583})
 584#define __rcu_dereference_check(p, c, space) \
 585({ \
 586        /* Dependency order vs. p above. */ \
 587        typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
 588        rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
 589        rcu_dereference_sparse(p, space); \
 590        ((typeof(*p) __force __kernel *)(________p1)); \
 591})
 592#define __rcu_dereference_protected(p, c, space) \
 593({ \
 594        rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
 595        rcu_dereference_sparse(p, space); \
 596        ((typeof(*p) __force __kernel *)(p)); \
 597})
 598
 599#define __rcu_access_index(p, space) \
 600({ \
 601        typeof(p) _________p1 = ACCESS_ONCE(p); \
 602        rcu_dereference_sparse(p, space); \
 603        (_________p1); \
 604})
 605#define __rcu_dereference_index_check(p, c) \
 606({ \
 607        /* Dependency order vs. p above. */ \
 608        typeof(p) _________p1 = lockless_dereference(p); \
 609        rcu_lockdep_assert(c, \
 610                           "suspicious rcu_dereference_index_check() usage"); \
 611        (_________p1); \
 612})
 613
 614/**
 615 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 616 * @v: The value to statically initialize with.
 617 */
 618#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
 619
 620/**
 621 * lockless_dereference() - safely load a pointer for later dereference
 622 * @p: The pointer to load
 623 *
 624 * Similar to rcu_dereference(), but for situations where the pointed-to
 625 * object's lifetime is managed by something other than RCU.  That
 626 * "something other" might be reference counting or simple immortality.
 627 */
 628#define lockless_dereference(p) \
 629({ \
 630        typeof(p) _________p1 = ACCESS_ONCE(p); \
 631        smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
 632        (_________p1); \
 633})
 634
 635/**
 636 * rcu_assign_pointer() - assign to RCU-protected pointer
 637 * @p: pointer to assign to
 638 * @v: value to assign (publish)
 639 *
 640 * Assigns the specified value to the specified RCU-protected
 641 * pointer, ensuring that any concurrent RCU readers will see
 642 * any prior initialization.
 643 *
 644 * Inserts memory barriers on architectures that require them
 645 * (which is most of them), and also prevents the compiler from
 646 * reordering the code that initializes the structure after the pointer
 647 * assignment.  More importantly, this call documents which pointers
 648 * will be dereferenced by RCU read-side code.
 649 *
 650 * In some special cases, you may use RCU_INIT_POINTER() instead
 651 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 652 * to the fact that it does not constrain either the CPU or the compiler.
 653 * That said, using RCU_INIT_POINTER() when you should have used
 654 * rcu_assign_pointer() is a very bad thing that results in
 655 * impossible-to-diagnose memory corruption.  So please be careful.
 656 * See the RCU_INIT_POINTER() comment header for details.
 657 *
 658 * Note that rcu_assign_pointer() evaluates each of its arguments only
 659 * once, appearances notwithstanding.  One of the "extra" evaluations
 660 * is in typeof() and the other visible only to sparse (__CHECKER__),
 661 * neither of which actually execute the argument.  As with most cpp
 662 * macros, this execute-arguments-only-once property is important, so
 663 * please be careful when making changes to rcu_assign_pointer() and the
 664 * other macros that it invokes.
 665 */
 666#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
 667
 668/**
 669 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 670 * @p: The pointer to read
 671 *
 672 * Return the value of the specified RCU-protected pointer, but omit the
 673 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
 674 * when the value of this pointer is accessed, but the pointer is not
 675 * dereferenced, for example, when testing an RCU-protected pointer against
 676 * NULL.  Although rcu_access_pointer() may also be used in cases where
 677 * update-side locks prevent the value of the pointer from changing, you
 678 * should instead use rcu_dereference_protected() for this use case.
 679 *
 680 * It is also permissible to use rcu_access_pointer() when read-side
 681 * access to the pointer was removed at least one grace period ago, as
 682 * is the case in the context of the RCU callback that is freeing up
 683 * the data, or after a synchronize_rcu() returns.  This can be useful
 684 * when tearing down multi-linked structures after a grace period
 685 * has elapsed.
 686 */
 687#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
 688
 689/**
 690 * rcu_dereference_check() - rcu_dereference with debug checking
 691 * @p: The pointer to read, prior to dereferencing
 692 * @c: The conditions under which the dereference will take place
 693 *
 694 * Do an rcu_dereference(), but check that the conditions under which the
 695 * dereference will take place are correct.  Typically the conditions
 696 * indicate the various locking conditions that should be held at that
 697 * point.  The check should return true if the conditions are satisfied.
 698 * An implicit check for being in an RCU read-side critical section
 699 * (rcu_read_lock()) is included.
 700 *
 701 * For example:
 702 *
 703 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 704 *
 705 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 706 * if either rcu_read_lock() is held, or that the lock required to replace
 707 * the bar struct at foo->bar is held.
 708 *
 709 * Note that the list of conditions may also include indications of when a lock
 710 * need not be held, for example during initialisation or destruction of the
 711 * target struct:
 712 *
 713 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 714 *                                            atomic_read(&foo->usage) == 0);
 715 *
 716 * Inserts memory barriers on architectures that require them
 717 * (currently only the Alpha), prevents the compiler from refetching
 718 * (and from merging fetches), and, more importantly, documents exactly
 719 * which pointers are protected by RCU and checks that the pointer is
 720 * annotated as __rcu.
 721 */
 722#define rcu_dereference_check(p, c) \
 723        __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
 724
 725/**
 726 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 727 * @p: The pointer to read, prior to dereferencing
 728 * @c: The conditions under which the dereference will take place
 729 *
 730 * This is the RCU-bh counterpart to rcu_dereference_check().
 731 */
 732#define rcu_dereference_bh_check(p, c) \
 733        __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
 734
 735/**
 736 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 737 * @p: The pointer to read, prior to dereferencing
 738 * @c: The conditions under which the dereference will take place
 739 *
 740 * This is the RCU-sched counterpart to rcu_dereference_check().
 741 */
 742#define rcu_dereference_sched_check(p, c) \
 743        __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
 744                                __rcu)
 745
 746#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
 747
 748/*
 749 * The tracing infrastructure traces RCU (we want that), but unfortunately
 750 * some of the RCU checks causes tracing to lock up the system.
 751 *
 752 * The tracing version of rcu_dereference_raw() must not call
 753 * rcu_read_lock_held().
 754 */
 755#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
 756
 757/**
 758 * rcu_access_index() - fetch RCU index with no dereferencing
 759 * @p: The index to read
 760 *
 761 * Return the value of the specified RCU-protected index, but omit the
 762 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
 763 * when the value of this index is accessed, but the index is not
 764 * dereferenced, for example, when testing an RCU-protected index against
 765 * -1.  Although rcu_access_index() may also be used in cases where
 766 * update-side locks prevent the value of the index from changing, you
 767 * should instead use rcu_dereference_index_protected() for this use case.
 768 */
 769#define rcu_access_index(p) __rcu_access_index((p), __rcu)
 770
 771/**
 772 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
 773 * @p: The pointer to read, prior to dereferencing
 774 * @c: The conditions under which the dereference will take place
 775 *
 776 * Similar to rcu_dereference_check(), but omits the sparse checking.
 777 * This allows rcu_dereference_index_check() to be used on integers,
 778 * which can then be used as array indices.  Attempting to use
 779 * rcu_dereference_check() on an integer will give compiler warnings
 780 * because the sparse address-space mechanism relies on dereferencing
 781 * the RCU-protected pointer.  Dereferencing integers is not something
 782 * that even gcc will put up with.
 783 *
 784 * Note that this function does not implicitly check for RCU read-side
 785 * critical sections.  If this function gains lots of uses, it might
 786 * make sense to provide versions for each flavor of RCU, but it does
 787 * not make sense as of early 2010.
 788 */
 789#define rcu_dereference_index_check(p, c) \
 790        __rcu_dereference_index_check((p), (c))
 791
 792/**
 793 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 794 * @p: The pointer to read, prior to dereferencing
 795 * @c: The conditions under which the dereference will take place
 796 *
 797 * Return the value of the specified RCU-protected pointer, but omit
 798 * both the smp_read_barrier_depends() and the ACCESS_ONCE().  This
 799 * is useful in cases where update-side locks prevent the value of the
 800 * pointer from changing.  Please note that this primitive does -not-
 801 * prevent the compiler from repeating this reference or combining it
 802 * with other references, so it should not be used without protection
 803 * of appropriate locks.
 804 *
 805 * This function is only for update-side use.  Using this function
 806 * when protected only by rcu_read_lock() will result in infrequent
 807 * but very ugly failures.
 808 */
 809#define rcu_dereference_protected(p, c) \
 810        __rcu_dereference_protected((p), (c), __rcu)
 811
 812
 813/**
 814 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 815 * @p: The pointer to read, prior to dereferencing
 816 *
 817 * This is a simple wrapper around rcu_dereference_check().
 818 */
 819#define rcu_dereference(p) rcu_dereference_check(p, 0)
 820
 821/**
 822 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 823 * @p: The pointer to read, prior to dereferencing
 824 *
 825 * Makes rcu_dereference_check() do the dirty work.
 826 */
 827#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 828
 829/**
 830 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 831 * @p: The pointer to read, prior to dereferencing
 832 *
 833 * Makes rcu_dereference_check() do the dirty work.
 834 */
 835#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 836
 837/**
 838 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 839 *
 840 * When synchronize_rcu() is invoked on one CPU while other CPUs
 841 * are within RCU read-side critical sections, then the
 842 * synchronize_rcu() is guaranteed to block until after all the other
 843 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 844 * on one CPU while other CPUs are within RCU read-side critical
 845 * sections, invocation of the corresponding RCU callback is deferred
 846 * until after the all the other CPUs exit their critical sections.
 847 *
 848 * Note, however, that RCU callbacks are permitted to run concurrently
 849 * with new RCU read-side critical sections.  One way that this can happen
 850 * is via the following sequence of events: (1) CPU 0 enters an RCU
 851 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 852 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 853 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 854 * callback is invoked.  This is legal, because the RCU read-side critical
 855 * section that was running concurrently with the call_rcu() (and which
 856 * therefore might be referencing something that the corresponding RCU
 857 * callback would free up) has completed before the corresponding
 858 * RCU callback is invoked.
 859 *
 860 * RCU read-side critical sections may be nested.  Any deferred actions
 861 * will be deferred until the outermost RCU read-side critical section
 862 * completes.
 863 *
 864 * You can avoid reading and understanding the next paragraph by
 865 * following this rule: don't put anything in an rcu_read_lock() RCU
 866 * read-side critical section that would block in a !PREEMPT kernel.
 867 * But if you want the full story, read on!
 868 *
 869 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
 870 * it is illegal to block while in an RCU read-side critical section.
 871 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
 872 * kernel builds, RCU read-side critical sections may be preempted,
 873 * but explicit blocking is illegal.  Finally, in preemptible RCU
 874 * implementations in real-time (with -rt patchset) kernel builds, RCU
 875 * read-side critical sections may be preempted and they may also block, but
 876 * only when acquiring spinlocks that are subject to priority inheritance.
 877 */
 878static inline void rcu_read_lock(void)
 879{
 880        __rcu_read_lock();
 881        __acquire(RCU);
 882        rcu_lock_acquire(&rcu_lock_map);
 883        rcu_lockdep_assert(rcu_is_watching(),
 884                           "rcu_read_lock() used illegally while idle");
 885}
 886
 887/*
 888 * So where is rcu_write_lock()?  It does not exist, as there is no
 889 * way for writers to lock out RCU readers.  This is a feature, not
 890 * a bug -- this property is what provides RCU's performance benefits.
 891 * Of course, writers must coordinate with each other.  The normal
 892 * spinlock primitives work well for this, but any other technique may be
 893 * used as well.  RCU does not care how the writers keep out of each
 894 * others' way, as long as they do so.
 895 */
 896
 897/**
 898 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 899 *
 900 * In most situations, rcu_read_unlock() is immune from deadlock.
 901 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
 902 * is responsible for deboosting, which it does via rt_mutex_unlock().
 903 * Unfortunately, this function acquires the scheduler's runqueue and
 904 * priority-inheritance spinlocks.  This means that deadlock could result
 905 * if the caller of rcu_read_unlock() already holds one of these locks or
 906 * any lock that is ever acquired while holding them; or any lock which
 907 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
 908 * does not disable irqs while taking ->wait_lock.
 909 *
 910 * That said, RCU readers are never priority boosted unless they were
 911 * preempted.  Therefore, one way to avoid deadlock is to make sure
 912 * that preemption never happens within any RCU read-side critical
 913 * section whose outermost rcu_read_unlock() is called with one of
 914 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
 915 * a number of ways, for example, by invoking preempt_disable() before
 916 * critical section's outermost rcu_read_lock().
 917 *
 918 * Given that the set of locks acquired by rt_mutex_unlock() might change
 919 * at any time, a somewhat more future-proofed approach is to make sure
 920 * that that preemption never happens within any RCU read-side critical
 921 * section whose outermost rcu_read_unlock() is called with irqs disabled.
 922 * This approach relies on the fact that rt_mutex_unlock() currently only
 923 * acquires irq-disabled locks.
 924 *
 925 * The second of these two approaches is best in most situations,
 926 * however, the first approach can also be useful, at least to those
 927 * developers willing to keep abreast of the set of locks acquired by
 928 * rt_mutex_unlock().
 929 *
 930 * See rcu_read_lock() for more information.
 931 */
 932static inline void rcu_read_unlock(void)
 933{
 934        rcu_lockdep_assert(rcu_is_watching(),
 935                           "rcu_read_unlock() used illegally while idle");
 936        rcu_lock_release(&rcu_lock_map);
 937        __release(RCU);
 938        __rcu_read_unlock();
 939}
 940
 941/**
 942 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 943 *
 944 * This is equivalent of rcu_read_lock(), but to be used when updates
 945 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
 946 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
 947 * softirq handler to be a quiescent state, a process in RCU read-side
 948 * critical section must be protected by disabling softirqs. Read-side
 949 * critical sections in interrupt context can use just rcu_read_lock(),
 950 * though this should at least be commented to avoid confusing people
 951 * reading the code.
 952 *
 953 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 954 * must occur in the same context, for example, it is illegal to invoke
 955 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 956 * was invoked from some other task.
 957 */
 958static inline void rcu_read_lock_bh(void)
 959{
 960        local_bh_disable();
 961        __acquire(RCU_BH);
 962        rcu_lock_acquire(&rcu_bh_lock_map);
 963        rcu_lockdep_assert(rcu_is_watching(),
 964                           "rcu_read_lock_bh() used illegally while idle");
 965}
 966
 967/*
 968 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
 969 *
 970 * See rcu_read_lock_bh() for more information.
 971 */
 972static inline void rcu_read_unlock_bh(void)
 973{
 974        rcu_lockdep_assert(rcu_is_watching(),
 975                           "rcu_read_unlock_bh() used illegally while idle");
 976        rcu_lock_release(&rcu_bh_lock_map);
 977        __release(RCU_BH);
 978        local_bh_enable();
 979}
 980
 981/**
 982 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 983 *
 984 * This is equivalent of rcu_read_lock(), but to be used when updates
 985 * are being done using call_rcu_sched() or synchronize_rcu_sched().
 986 * Read-side critical sections can also be introduced by anything that
 987 * disables preemption, including local_irq_disable() and friends.
 988 *
 989 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 990 * must occur in the same context, for example, it is illegal to invoke
 991 * rcu_read_unlock_sched() from process context if the matching
 992 * rcu_read_lock_sched() was invoked from an NMI handler.
 993 */
 994static inline void rcu_read_lock_sched(void)
 995{
 996        preempt_disable();
 997        __acquire(RCU_SCHED);
 998        rcu_lock_acquire(&rcu_sched_lock_map);
 999        rcu_lockdep_assert(rcu_is_watching(),
1000                           "rcu_read_lock_sched() used illegally while idle");
1001}
1002
1003/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1004static inline notrace void rcu_read_lock_sched_notrace(void)
1005{
1006        preempt_disable_notrace();
1007        __acquire(RCU_SCHED);
1008}
1009
1010/*
1011 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
1012 *
1013 * See rcu_read_lock_sched for more information.
1014 */
1015static inline void rcu_read_unlock_sched(void)
1016{
1017        rcu_lockdep_assert(rcu_is_watching(),
1018                           "rcu_read_unlock_sched() used illegally while idle");
1019        rcu_lock_release(&rcu_sched_lock_map);
1020        __release(RCU_SCHED);
1021        preempt_enable();
1022}
1023
1024/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1025static inline notrace void rcu_read_unlock_sched_notrace(void)
1026{
1027        __release(RCU_SCHED);
1028        preempt_enable_notrace();
1029}
1030
1031/**
1032 * RCU_INIT_POINTER() - initialize an RCU protected pointer
1033 *
1034 * Initialize an RCU-protected pointer in special cases where readers
1035 * do not need ordering constraints on the CPU or the compiler.  These
1036 * special cases are:
1037 *
1038 * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1039 * 2.   The caller has taken whatever steps are required to prevent
1040 *      RCU readers from concurrently accessing this pointer -or-
1041 * 3.   The referenced data structure has already been exposed to
1042 *      readers either at compile time or via rcu_assign_pointer() -and-
1043 *      a.      You have not made -any- reader-visible changes to
1044 *              this structure since then -or-
1045 *      b.      It is OK for readers accessing this structure from its
1046 *              new location to see the old state of the structure.  (For
1047 *              example, the changes were to statistical counters or to
1048 *              other state where exact synchronization is not required.)
1049 *
1050 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1051 * result in impossible-to-diagnose memory corruption.  As in the structures
1052 * will look OK in crash dumps, but any concurrent RCU readers might
1053 * see pre-initialized values of the referenced data structure.  So
1054 * please be very careful how you use RCU_INIT_POINTER()!!!
1055 *
1056 * If you are creating an RCU-protected linked structure that is accessed
1057 * by a single external-to-structure RCU-protected pointer, then you may
1058 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1059 * pointers, but you must use rcu_assign_pointer() to initialize the
1060 * external-to-structure pointer -after- you have completely initialized
1061 * the reader-accessible portions of the linked structure.
1062 *
1063 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1064 * ordering guarantees for either the CPU or the compiler.
1065 */
1066#define RCU_INIT_POINTER(p, v) \
1067        do { \
1068                rcu_dereference_sparse(p, __rcu); \
1069                p = RCU_INITIALIZER(v); \
1070        } while (0)
1071
1072/**
1073 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1074 *
1075 * GCC-style initialization for an RCU-protected pointer in a structure field.
1076 */
1077#define RCU_POINTER_INITIALIZER(p, v) \
1078                .p = RCU_INITIALIZER(v)
1079
1080/*
1081 * Does the specified offset indicate that the corresponding rcu_head
1082 * structure can be handled by kfree_rcu()?
1083 */
1084#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1085
1086/*
1087 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1088 */
1089#define __kfree_rcu(head, offset) \
1090        do { \
1091                BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1092                kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
1093        } while (0)
1094
1095/**
1096 * kfree_rcu() - kfree an object after a grace period.
1097 * @ptr:        pointer to kfree
1098 * @rcu_head:   the name of the struct rcu_head within the type of @ptr.
1099 *
1100 * Many rcu callbacks functions just call kfree() on the base structure.
1101 * These functions are trivial, but their size adds up, and furthermore
1102 * when they are used in a kernel module, that module must invoke the
1103 * high-latency rcu_barrier() function at module-unload time.
1104 *
1105 * The kfree_rcu() function handles this issue.  Rather than encoding a
1106 * function address in the embedded rcu_head structure, kfree_rcu() instead
1107 * encodes the offset of the rcu_head structure within the base structure.
1108 * Because the functions are not allowed in the low-order 4096 bytes of
1109 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1110 * If the offset is larger than 4095 bytes, a compile-time error will
1111 * be generated in __kfree_rcu().  If this error is triggered, you can
1112 * either fall back to use of call_rcu() or rearrange the structure to
1113 * position the rcu_head structure into the first 4096 bytes.
1114 *
1115 * Note that the allowable offset might decrease in the future, for example,
1116 * to allow something like kmem_cache_free_rcu().
1117 *
1118 * The BUILD_BUG_ON check must not involve any function calls, hence the
1119 * checks are done in macros here.
1120 */
1121#define kfree_rcu(ptr, rcu_head)                                        \
1122        __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1123
1124#if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL)
1125static inline int rcu_needs_cpu(unsigned long *delta_jiffies)
1126{
1127        *delta_jiffies = ULONG_MAX;
1128        return 0;
1129}
1130#endif /* #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) */
1131
1132#if defined(CONFIG_RCU_NOCB_CPU_ALL)
1133static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1134#elif defined(CONFIG_RCU_NOCB_CPU)
1135bool rcu_is_nocb_cpu(int cpu);
1136#else
1137static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1138#endif
1139
1140
1141/* Only for use by adaptive-ticks code. */
1142#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1143bool rcu_sys_is_idle(void);
1144void rcu_sysidle_force_exit(void);
1145#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1146
1147static inline bool rcu_sys_is_idle(void)
1148{
1149        return false;
1150}
1151
1152static inline void rcu_sysidle_force_exit(void)
1153{
1154}
1155
1156#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1157
1158
1159#endif /* __LINUX_RCUPDATE_H */
1160