1/* 2 * Remote Processor Framework 3 * 4 * Copyright(c) 2011 Texas Instruments, Inc. 5 * Copyright(c) 2011 Google, Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * * Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * * Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * * Neither the name Texas Instruments nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35#ifndef REMOTEPROC_H 36#define REMOTEPROC_H 37 38#include <linux/types.h> 39#include <linux/klist.h> 40#include <linux/mutex.h> 41#include <linux/virtio.h> 42#include <linux/completion.h> 43#include <linux/idr.h> 44 45/** 46 * struct resource_table - firmware resource table header 47 * @ver: version number 48 * @num: number of resource entries 49 * @reserved: reserved (must be zero) 50 * @offset: array of offsets pointing at the various resource entries 51 * 52 * A resource table is essentially a list of system resources required 53 * by the remote processor. It may also include configuration entries. 54 * If needed, the remote processor firmware should contain this table 55 * as a dedicated ".resource_table" ELF section. 56 * 57 * Some resources entries are mere announcements, where the host is informed 58 * of specific remoteproc configuration. Other entries require the host to 59 * do something (e.g. allocate a system resource). Sometimes a negotiation 60 * is expected, where the firmware requests a resource, and once allocated, 61 * the host should provide back its details (e.g. address of an allocated 62 * memory region). 63 * 64 * The header of the resource table, as expressed by this structure, 65 * contains a version number (should we need to change this format in the 66 * future), the number of available resource entries, and their offsets 67 * in the table. 68 * 69 * Immediately following this header are the resource entries themselves, 70 * each of which begins with a resource entry header (as described below). 71 */ 72struct resource_table { 73 u32 ver; 74 u32 num; 75 u32 reserved[2]; 76 u32 offset[0]; 77} __packed; 78 79/** 80 * struct fw_rsc_hdr - firmware resource entry header 81 * @type: resource type 82 * @data: resource data 83 * 84 * Every resource entry begins with a 'struct fw_rsc_hdr' header providing 85 * its @type. The content of the entry itself will immediately follow 86 * this header, and it should be parsed according to the resource type. 87 */ 88struct fw_rsc_hdr { 89 u32 type; 90 u8 data[0]; 91} __packed; 92 93/** 94 * enum fw_resource_type - types of resource entries 95 * 96 * @RSC_CARVEOUT: request for allocation of a physically contiguous 97 * memory region. 98 * @RSC_DEVMEM: request to iommu_map a memory-based peripheral. 99 * @RSC_TRACE: announces the availability of a trace buffer into which 100 * the remote processor will be writing logs. 101 * @RSC_VDEV: declare support for a virtio device, and serve as its 102 * virtio header. 103 * @RSC_LAST: just keep this one at the end 104 * 105 * For more details regarding a specific resource type, please see its 106 * dedicated structure below. 107 * 108 * Please note that these values are used as indices to the rproc_handle_rsc 109 * lookup table, so please keep them sane. Moreover, @RSC_LAST is used to 110 * check the validity of an index before the lookup table is accessed, so 111 * please update it as needed. 112 */ 113enum fw_resource_type { 114 RSC_CARVEOUT = 0, 115 RSC_DEVMEM = 1, 116 RSC_TRACE = 2, 117 RSC_VDEV = 3, 118 RSC_LAST = 4, 119}; 120 121#define FW_RSC_ADDR_ANY (0xFFFFFFFFFFFFFFFF) 122 123/** 124 * struct fw_rsc_carveout - physically contiguous memory request 125 * @da: device address 126 * @pa: physical address 127 * @len: length (in bytes) 128 * @flags: iommu protection flags 129 * @reserved: reserved (must be zero) 130 * @name: human-readable name of the requested memory region 131 * 132 * This resource entry requests the host to allocate a physically contiguous 133 * memory region. 134 * 135 * These request entries should precede other firmware resource entries, 136 * as other entries might request placing other data objects inside 137 * these memory regions (e.g. data/code segments, trace resource entries, ...). 138 * 139 * Allocating memory this way helps utilizing the reserved physical memory 140 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 141 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 142 * pressure is important; it may have a substantial impact on performance. 143 * 144 * If the firmware is compiled with static addresses, then @da should specify 145 * the expected device address of this memory region. If @da is set to 146 * FW_RSC_ADDR_ANY, then the host will dynamically allocate it, and then 147 * overwrite @da with the dynamically allocated address. 148 * 149 * We will always use @da to negotiate the device addresses, even if it 150 * isn't using an iommu. In that case, though, it will obviously contain 151 * physical addresses. 152 * 153 * Some remote processors needs to know the allocated physical address 154 * even if they do use an iommu. This is needed, e.g., if they control 155 * hardware accelerators which access the physical memory directly (this 156 * is the case with OMAP4 for instance). In that case, the host will 157 * overwrite @pa with the dynamically allocated physical address. 158 * Generally we don't want to expose physical addresses if we don't have to 159 * (remote processors are generally _not_ trusted), so we might want to 160 * change this to happen _only_ when explicitly required by the hardware. 161 * 162 * @flags is used to provide IOMMU protection flags, and @name should 163 * (optionally) contain a human readable name of this carveout region 164 * (mainly for debugging purposes). 165 */ 166struct fw_rsc_carveout { 167 u32 da; 168 u32 pa; 169 u32 len; 170 u32 flags; 171 u32 reserved; 172 u8 name[32]; 173} __packed; 174 175/** 176 * struct fw_rsc_devmem - iommu mapping request 177 * @da: device address 178 * @pa: physical address 179 * @len: length (in bytes) 180 * @flags: iommu protection flags 181 * @reserved: reserved (must be zero) 182 * @name: human-readable name of the requested region to be mapped 183 * 184 * This resource entry requests the host to iommu map a physically contiguous 185 * memory region. This is needed in case the remote processor requires 186 * access to certain memory-based peripherals; _never_ use it to access 187 * regular memory. 188 * 189 * This is obviously only needed if the remote processor is accessing memory 190 * via an iommu. 191 * 192 * @da should specify the required device address, @pa should specify 193 * the physical address we want to map, @len should specify the size of 194 * the mapping and @flags is the IOMMU protection flags. As always, @name may 195 * (optionally) contain a human readable name of this mapping (mainly for 196 * debugging purposes). 197 * 198 * Note: at this point we just "trust" those devmem entries to contain valid 199 * physical addresses, but this isn't safe and will be changed: eventually we 200 * want remoteproc implementations to provide us ranges of physical addresses 201 * the firmware is allowed to request, and not allow firmwares to request 202 * access to physical addresses that are outside those ranges. 203 */ 204struct fw_rsc_devmem { 205 u32 da; 206 u32 pa; 207 u32 len; 208 u32 flags; 209 u32 reserved; 210 u8 name[32]; 211} __packed; 212 213/** 214 * struct fw_rsc_trace - trace buffer declaration 215 * @da: device address 216 * @len: length (in bytes) 217 * @reserved: reserved (must be zero) 218 * @name: human-readable name of the trace buffer 219 * 220 * This resource entry provides the host information about a trace buffer 221 * into which the remote processor will write log messages. 222 * 223 * @da specifies the device address of the buffer, @len specifies 224 * its size, and @name may contain a human readable name of the trace buffer. 225 * 226 * After booting the remote processor, the trace buffers are exposed to the 227 * user via debugfs entries (called trace0, trace1, etc..). 228 */ 229struct fw_rsc_trace { 230 u32 da; 231 u32 len; 232 u32 reserved; 233 u8 name[32]; 234} __packed; 235 236/** 237 * struct fw_rsc_vdev_vring - vring descriptor entry 238 * @da: device address 239 * @align: the alignment between the consumer and producer parts of the vring 240 * @num: num of buffers supported by this vring (must be power of two) 241 * @notifyid is a unique rproc-wide notify index for this vring. This notify 242 * index is used when kicking a remote processor, to let it know that this 243 * vring is triggered. 244 * @reserved: reserved (must be zero) 245 * 246 * This descriptor is not a resource entry by itself; it is part of the 247 * vdev resource type (see below). 248 * 249 * Note that @da should either contain the device address where 250 * the remote processor is expecting the vring, or indicate that 251 * dynamically allocation of the vring's device address is supported. 252 */ 253struct fw_rsc_vdev_vring { 254 u32 da; 255 u32 align; 256 u32 num; 257 u32 notifyid; 258 u32 reserved; 259} __packed; 260 261/** 262 * struct fw_rsc_vdev - virtio device header 263 * @id: virtio device id (as in virtio_ids.h) 264 * @notifyid is a unique rproc-wide notify index for this vdev. This notify 265 * index is used when kicking a remote processor, to let it know that the 266 * status/features of this vdev have changes. 267 * @dfeatures specifies the virtio device features supported by the firmware 268 * @gfeatures is a place holder used by the host to write back the 269 * negotiated features that are supported by both sides. 270 * @config_len is the size of the virtio config space of this vdev. The config 271 * space lies in the resource table immediate after this vdev header. 272 * @status is a place holder where the host will indicate its virtio progress. 273 * @num_of_vrings indicates how many vrings are described in this vdev header 274 * @reserved: reserved (must be zero) 275 * @vring is an array of @num_of_vrings entries of 'struct fw_rsc_vdev_vring'. 276 * 277 * This resource is a virtio device header: it provides information about 278 * the vdev, and is then used by the host and its peer remote processors 279 * to negotiate and share certain virtio properties. 280 * 281 * By providing this resource entry, the firmware essentially asks remoteproc 282 * to statically allocate a vdev upon registration of the rproc (dynamic vdev 283 * allocation is not yet supported). 284 * 285 * Note: unlike virtualization systems, the term 'host' here means 286 * the Linux side which is running remoteproc to control the remote 287 * processors. We use the name 'gfeatures' to comply with virtio's terms, 288 * though there isn't really any virtualized guest OS here: it's the host 289 * which is responsible for negotiating the final features. 290 * Yeah, it's a bit confusing. 291 * 292 * Note: immediately following this structure is the virtio config space for 293 * this vdev (which is specific to the vdev; for more info, read the virtio 294 * spec). the size of the config space is specified by @config_len. 295 */ 296struct fw_rsc_vdev { 297 u32 id; 298 u32 notifyid; 299 u32 dfeatures; 300 u32 gfeatures; 301 u32 config_len; 302 u8 status; 303 u8 num_of_vrings; 304 u8 reserved[2]; 305 struct fw_rsc_vdev_vring vring[0]; 306} __packed; 307 308/** 309 * struct rproc_mem_entry - memory entry descriptor 310 * @va: virtual address 311 * @dma: dma address 312 * @len: length, in bytes 313 * @da: device address 314 * @priv: associated data 315 * @node: list node 316 */ 317struct rproc_mem_entry { 318 void *va; 319 dma_addr_t dma; 320 int len; 321 u32 da; 322 void *priv; 323 struct list_head node; 324}; 325 326struct rproc; 327 328/** 329 * struct rproc_ops - platform-specific device handlers 330 * @start: power on the device and boot it 331 * @stop: power off the device 332 * @kick: kick a virtqueue (virtqueue id given as a parameter) 333 */ 334struct rproc_ops { 335 int (*start)(struct rproc *rproc); 336 int (*stop)(struct rproc *rproc); 337 void (*kick)(struct rproc *rproc, int vqid); 338}; 339 340/** 341 * enum rproc_state - remote processor states 342 * @RPROC_OFFLINE: device is powered off 343 * @RPROC_SUSPENDED: device is suspended; needs to be woken up to receive 344 * a message. 345 * @RPROC_RUNNING: device is up and running 346 * @RPROC_CRASHED: device has crashed; need to start recovery 347 * @RPROC_LAST: just keep this one at the end 348 * 349 * Please note that the values of these states are used as indices 350 * to rproc_state_string, a state-to-name lookup table, 351 * so please keep the two synchronized. @RPROC_LAST is used to check 352 * the validity of an index before the lookup table is accessed, so 353 * please update it as needed too. 354 */ 355enum rproc_state { 356 RPROC_OFFLINE = 0, 357 RPROC_SUSPENDED = 1, 358 RPROC_RUNNING = 2, 359 RPROC_CRASHED = 3, 360 RPROC_LAST = 4, 361}; 362 363/** 364 * enum rproc_crash_type - remote processor crash types 365 * @RPROC_MMUFAULT: iommu fault 366 * 367 * Each element of the enum is used as an array index. So that, the value of 368 * the elements should be always something sane. 369 * 370 * Feel free to add more types when needed. 371 */ 372enum rproc_crash_type { 373 RPROC_MMUFAULT, 374}; 375 376/** 377 * struct rproc - represents a physical remote processor device 378 * @node: klist node of this rproc object 379 * @domain: iommu domain 380 * @name: human readable name of the rproc 381 * @firmware: name of firmware file to be loaded 382 * @priv: private data which belongs to the platform-specific rproc module 383 * @ops: platform-specific start/stop rproc handlers 384 * @dev: virtual device for refcounting and common remoteproc behavior 385 * @fw_ops: firmware-specific handlers 386 * @power: refcount of users who need this rproc powered up 387 * @state: state of the device 388 * @lock: lock which protects concurrent manipulations of the rproc 389 * @dbg_dir: debugfs directory of this rproc device 390 * @traces: list of trace buffers 391 * @num_traces: number of trace buffers 392 * @carveouts: list of physically contiguous memory allocations 393 * @mappings: list of iommu mappings we initiated, needed on shutdown 394 * @firmware_loading_complete: marks e/o asynchronous firmware loading 395 * @bootaddr: address of first instruction to boot rproc with (optional) 396 * @rvdevs: list of remote virtio devices 397 * @notifyids: idr for dynamically assigning rproc-wide unique notify ids 398 * @index: index of this rproc device 399 * @crash_handler: workqueue for handling a crash 400 * @crash_cnt: crash counter 401 * @crash_comp: completion used to sync crash handler and the rproc reload 402 * @recovery_disabled: flag that state if recovery was disabled 403 * @max_notifyid: largest allocated notify id. 404 * @table_ptr: pointer to the resource table in effect 405 * @cached_table: copy of the resource table 406 * @table_csum: checksum of the resource table 407 */ 408struct rproc { 409 struct klist_node node; 410 struct iommu_domain *domain; 411 const char *name; 412 const char *firmware; 413 void *priv; 414 const struct rproc_ops *ops; 415 struct device dev; 416 const struct rproc_fw_ops *fw_ops; 417 atomic_t power; 418 unsigned int state; 419 struct mutex lock; 420 struct dentry *dbg_dir; 421 struct list_head traces; 422 int num_traces; 423 struct list_head carveouts; 424 struct list_head mappings; 425 struct completion firmware_loading_complete; 426 u32 bootaddr; 427 struct list_head rvdevs; 428 struct idr notifyids; 429 int index; 430 struct work_struct crash_handler; 431 unsigned crash_cnt; 432 struct completion crash_comp; 433 bool recovery_disabled; 434 int max_notifyid; 435 struct resource_table *table_ptr; 436 struct resource_table *cached_table; 437 u32 table_csum; 438}; 439 440/* we currently support only two vrings per rvdev */ 441 442#define RVDEV_NUM_VRINGS 2 443 444/** 445 * struct rproc_vring - remoteproc vring state 446 * @va: virtual address 447 * @dma: dma address 448 * @len: length, in bytes 449 * @da: device address 450 * @align: vring alignment 451 * @notifyid: rproc-specific unique vring index 452 * @rvdev: remote vdev 453 * @vq: the virtqueue of this vring 454 */ 455struct rproc_vring { 456 void *va; 457 dma_addr_t dma; 458 int len; 459 u32 da; 460 u32 align; 461 int notifyid; 462 struct rproc_vdev *rvdev; 463 struct virtqueue *vq; 464}; 465 466/** 467 * struct rproc_vdev - remoteproc state for a supported virtio device 468 * @node: list node 469 * @rproc: the rproc handle 470 * @vdev: the virio device 471 * @vring: the vrings for this vdev 472 * @rsc_offset: offset of the vdev's resource entry 473 */ 474struct rproc_vdev { 475 struct list_head node; 476 struct rproc *rproc; 477 struct virtio_device vdev; 478 struct rproc_vring vring[RVDEV_NUM_VRINGS]; 479 u32 rsc_offset; 480}; 481 482struct rproc *rproc_alloc(struct device *dev, const char *name, 483 const struct rproc_ops *ops, 484 const char *firmware, int len); 485void rproc_put(struct rproc *rproc); 486int rproc_add(struct rproc *rproc); 487int rproc_del(struct rproc *rproc); 488 489int rproc_boot(struct rproc *rproc); 490void rproc_shutdown(struct rproc *rproc); 491void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type); 492 493static inline struct rproc_vdev *vdev_to_rvdev(struct virtio_device *vdev) 494{ 495 return container_of(vdev, struct rproc_vdev, vdev); 496} 497 498static inline struct rproc *vdev_to_rproc(struct virtio_device *vdev) 499{ 500 struct rproc_vdev *rvdev = vdev_to_rvdev(vdev); 501 502 return rvdev->rproc; 503} 504 505#endif /* REMOTEPROC_H */ 506