linux/kernel/audit.c
<<
>>
Prefs
   1/* audit.c -- Auditing support
   2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
   3 * System-call specific features have moved to auditsc.c
   4 *
   5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
   6 * All Rights Reserved.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 *
  22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  23 *
  24 * Goals: 1) Integrate fully with Security Modules.
  25 *        2) Minimal run-time overhead:
  26 *           a) Minimal when syscall auditing is disabled (audit_enable=0).
  27 *           b) Small when syscall auditing is enabled and no audit record
  28 *              is generated (defer as much work as possible to record
  29 *              generation time):
  30 *              i) context is allocated,
  31 *              ii) names from getname are stored without a copy, and
  32 *              iii) inode information stored from path_lookup.
  33 *        3) Ability to disable syscall auditing at boot time (audit=0).
  34 *        4) Usable by other parts of the kernel (if audit_log* is called,
  35 *           then a syscall record will be generated automatically for the
  36 *           current syscall).
  37 *        5) Netlink interface to user-space.
  38 *        6) Support low-overhead kernel-based filtering to minimize the
  39 *           information that must be passed to user-space.
  40 *
  41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
  42 */
  43
  44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  45
  46#include <linux/init.h>
  47#include <linux/types.h>
  48#include <linux/atomic.h>
  49#include <linux/mm.h>
  50#include <linux/export.h>
  51#include <linux/slab.h>
  52#include <linux/err.h>
  53#include <linux/kthread.h>
  54#include <linux/kernel.h>
  55#include <linux/syscalls.h>
  56
  57#include <linux/audit.h>
  58
  59#include <net/sock.h>
  60#include <net/netlink.h>
  61#include <linux/skbuff.h>
  62#ifdef CONFIG_SECURITY
  63#include <linux/security.h>
  64#endif
  65#include <linux/freezer.h>
  66#include <linux/tty.h>
  67#include <linux/pid_namespace.h>
  68#include <net/netns/generic.h>
  69
  70#include "audit.h"
  71
  72/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  73 * (Initialization happens after skb_init is called.) */
  74#define AUDIT_DISABLED          -1
  75#define AUDIT_UNINITIALIZED     0
  76#define AUDIT_INITIALIZED       1
  77static int      audit_initialized;
  78
  79#define AUDIT_OFF       0
  80#define AUDIT_ON        1
  81#define AUDIT_LOCKED    2
  82u32             audit_enabled;
  83u32             audit_ever_enabled;
  84
  85EXPORT_SYMBOL_GPL(audit_enabled);
  86
  87/* Default state when kernel boots without any parameters. */
  88static u32      audit_default;
  89
  90/* If auditing cannot proceed, audit_failure selects what happens. */
  91static u32      audit_failure = AUDIT_FAIL_PRINTK;
  92
  93/*
  94 * If audit records are to be written to the netlink socket, audit_pid
  95 * contains the pid of the auditd process and audit_nlk_portid contains
  96 * the portid to use to send netlink messages to that process.
  97 */
  98int             audit_pid;
  99static __u32    audit_nlk_portid;
 100
 101/* If audit_rate_limit is non-zero, limit the rate of sending audit records
 102 * to that number per second.  This prevents DoS attacks, but results in
 103 * audit records being dropped. */
 104static u32      audit_rate_limit;
 105
 106/* Number of outstanding audit_buffers allowed.
 107 * When set to zero, this means unlimited. */
 108static u32      audit_backlog_limit = 64;
 109#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
 110static u32      audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
 111static u32      audit_backlog_wait_overflow = 0;
 112
 113/* The identity of the user shutting down the audit system. */
 114kuid_t          audit_sig_uid = INVALID_UID;
 115pid_t           audit_sig_pid = -1;
 116u32             audit_sig_sid = 0;
 117
 118/* Records can be lost in several ways:
 119   0) [suppressed in audit_alloc]
 120   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
 121   2) out of memory in audit_log_move [alloc_skb]
 122   3) suppressed due to audit_rate_limit
 123   4) suppressed due to audit_backlog_limit
 124*/
 125static atomic_t    audit_lost = ATOMIC_INIT(0);
 126
 127/* The netlink socket. */
 128static struct sock *audit_sock;
 129static int audit_net_id;
 130
 131/* Hash for inode-based rules */
 132struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
 133
 134/* The audit_freelist is a list of pre-allocated audit buffers (if more
 135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
 136 * being placed on the freelist). */
 137static DEFINE_SPINLOCK(audit_freelist_lock);
 138static int         audit_freelist_count;
 139static LIST_HEAD(audit_freelist);
 140
 141static struct sk_buff_head audit_skb_queue;
 142/* queue of skbs to send to auditd when/if it comes back */
 143static struct sk_buff_head audit_skb_hold_queue;
 144static struct task_struct *kauditd_task;
 145static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
 146static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
 147
 148static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
 149                                   .mask = -1,
 150                                   .features = 0,
 151                                   .lock = 0,};
 152
 153static char *audit_feature_names[2] = {
 154        "only_unset_loginuid",
 155        "loginuid_immutable",
 156};
 157
 158
 159/* Serialize requests from userspace. */
 160DEFINE_MUTEX(audit_cmd_mutex);
 161
 162/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
 163 * audit records.  Since printk uses a 1024 byte buffer, this buffer
 164 * should be at least that large. */
 165#define AUDIT_BUFSIZ 1024
 166
 167/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
 168 * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
 169#define AUDIT_MAXFREE  (2*NR_CPUS)
 170
 171/* The audit_buffer is used when formatting an audit record.  The caller
 172 * locks briefly to get the record off the freelist or to allocate the
 173 * buffer, and locks briefly to send the buffer to the netlink layer or
 174 * to place it on a transmit queue.  Multiple audit_buffers can be in
 175 * use simultaneously. */
 176struct audit_buffer {
 177        struct list_head     list;
 178        struct sk_buff       *skb;      /* formatted skb ready to send */
 179        struct audit_context *ctx;      /* NULL or associated context */
 180        gfp_t                gfp_mask;
 181};
 182
 183struct audit_reply {
 184        __u32 portid;
 185        struct net *net;
 186        struct sk_buff *skb;
 187};
 188
 189static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
 190{
 191        if (ab) {
 192                struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
 193                nlh->nlmsg_pid = portid;
 194        }
 195}
 196
 197void audit_panic(const char *message)
 198{
 199        switch (audit_failure) {
 200        case AUDIT_FAIL_SILENT:
 201                break;
 202        case AUDIT_FAIL_PRINTK:
 203                if (printk_ratelimit())
 204                        pr_err("%s\n", message);
 205                break;
 206        case AUDIT_FAIL_PANIC:
 207                /* test audit_pid since printk is always losey, why bother? */
 208                if (audit_pid)
 209                        panic("audit: %s\n", message);
 210                break;
 211        }
 212}
 213
 214static inline int audit_rate_check(void)
 215{
 216        static unsigned long    last_check = 0;
 217        static int              messages   = 0;
 218        static DEFINE_SPINLOCK(lock);
 219        unsigned long           flags;
 220        unsigned long           now;
 221        unsigned long           elapsed;
 222        int                     retval     = 0;
 223
 224        if (!audit_rate_limit) return 1;
 225
 226        spin_lock_irqsave(&lock, flags);
 227        if (++messages < audit_rate_limit) {
 228                retval = 1;
 229        } else {
 230                now     = jiffies;
 231                elapsed = now - last_check;
 232                if (elapsed > HZ) {
 233                        last_check = now;
 234                        messages   = 0;
 235                        retval     = 1;
 236                }
 237        }
 238        spin_unlock_irqrestore(&lock, flags);
 239
 240        return retval;
 241}
 242
 243/**
 244 * audit_log_lost - conditionally log lost audit message event
 245 * @message: the message stating reason for lost audit message
 246 *
 247 * Emit at least 1 message per second, even if audit_rate_check is
 248 * throttling.
 249 * Always increment the lost messages counter.
 250*/
 251void audit_log_lost(const char *message)
 252{
 253        static unsigned long    last_msg = 0;
 254        static DEFINE_SPINLOCK(lock);
 255        unsigned long           flags;
 256        unsigned long           now;
 257        int                     print;
 258
 259        atomic_inc(&audit_lost);
 260
 261        print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
 262
 263        if (!print) {
 264                spin_lock_irqsave(&lock, flags);
 265                now = jiffies;
 266                if (now - last_msg > HZ) {
 267                        print = 1;
 268                        last_msg = now;
 269                }
 270                spin_unlock_irqrestore(&lock, flags);
 271        }
 272
 273        if (print) {
 274                if (printk_ratelimit())
 275                        pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
 276                                atomic_read(&audit_lost),
 277                                audit_rate_limit,
 278                                audit_backlog_limit);
 279                audit_panic(message);
 280        }
 281}
 282
 283static int audit_log_config_change(char *function_name, u32 new, u32 old,
 284                                   int allow_changes)
 285{
 286        struct audit_buffer *ab;
 287        int rc = 0;
 288
 289        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 290        if (unlikely(!ab))
 291                return rc;
 292        audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
 293        audit_log_session_info(ab);
 294        rc = audit_log_task_context(ab);
 295        if (rc)
 296                allow_changes = 0; /* Something weird, deny request */
 297        audit_log_format(ab, " res=%d", allow_changes);
 298        audit_log_end(ab);
 299        return rc;
 300}
 301
 302static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
 303{
 304        int allow_changes, rc = 0;
 305        u32 old = *to_change;
 306
 307        /* check if we are locked */
 308        if (audit_enabled == AUDIT_LOCKED)
 309                allow_changes = 0;
 310        else
 311                allow_changes = 1;
 312
 313        if (audit_enabled != AUDIT_OFF) {
 314                rc = audit_log_config_change(function_name, new, old, allow_changes);
 315                if (rc)
 316                        allow_changes = 0;
 317        }
 318
 319        /* If we are allowed, make the change */
 320        if (allow_changes == 1)
 321                *to_change = new;
 322        /* Not allowed, update reason */
 323        else if (rc == 0)
 324                rc = -EPERM;
 325        return rc;
 326}
 327
 328static int audit_set_rate_limit(u32 limit)
 329{
 330        return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
 331}
 332
 333static int audit_set_backlog_limit(u32 limit)
 334{
 335        return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
 336}
 337
 338static int audit_set_backlog_wait_time(u32 timeout)
 339{
 340        return audit_do_config_change("audit_backlog_wait_time",
 341                                      &audit_backlog_wait_time, timeout);
 342}
 343
 344static int audit_set_enabled(u32 state)
 345{
 346        int rc;
 347        if (state < AUDIT_OFF || state > AUDIT_LOCKED)
 348                return -EINVAL;
 349
 350        rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
 351        if (!rc)
 352                audit_ever_enabled |= !!state;
 353
 354        return rc;
 355}
 356
 357static int audit_set_failure(u32 state)
 358{
 359        if (state != AUDIT_FAIL_SILENT
 360            && state != AUDIT_FAIL_PRINTK
 361            && state != AUDIT_FAIL_PANIC)
 362                return -EINVAL;
 363
 364        return audit_do_config_change("audit_failure", &audit_failure, state);
 365}
 366
 367/*
 368 * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
 369 * already have been sent via prink/syslog and so if these messages are dropped
 370 * it is not a huge concern since we already passed the audit_log_lost()
 371 * notification and stuff.  This is just nice to get audit messages during
 372 * boot before auditd is running or messages generated while auditd is stopped.
 373 * This only holds messages is audit_default is set, aka booting with audit=1
 374 * or building your kernel that way.
 375 */
 376static void audit_hold_skb(struct sk_buff *skb)
 377{
 378        if (audit_default &&
 379            (!audit_backlog_limit ||
 380             skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
 381                skb_queue_tail(&audit_skb_hold_queue, skb);
 382        else
 383                kfree_skb(skb);
 384}
 385
 386/*
 387 * For one reason or another this nlh isn't getting delivered to the userspace
 388 * audit daemon, just send it to printk.
 389 */
 390static void audit_printk_skb(struct sk_buff *skb)
 391{
 392        struct nlmsghdr *nlh = nlmsg_hdr(skb);
 393        char *data = nlmsg_data(nlh);
 394
 395        if (nlh->nlmsg_type != AUDIT_EOE) {
 396                if (printk_ratelimit())
 397                        pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
 398                else
 399                        audit_log_lost("printk limit exceeded");
 400        }
 401
 402        audit_hold_skb(skb);
 403}
 404
 405static void kauditd_send_skb(struct sk_buff *skb)
 406{
 407        int err;
 408        /* take a reference in case we can't send it and we want to hold it */
 409        skb_get(skb);
 410        err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
 411        if (err < 0) {
 412                BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
 413                if (audit_pid) {
 414                        pr_err("*NO* daemon at audit_pid=%d\n", audit_pid);
 415                        audit_log_lost("auditd disappeared");
 416                        audit_pid = 0;
 417                        audit_sock = NULL;
 418                }
 419                /* we might get lucky and get this in the next auditd */
 420                audit_hold_skb(skb);
 421        } else
 422                /* drop the extra reference if sent ok */
 423                consume_skb(skb);
 424}
 425
 426/*
 427 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
 428 *
 429 * This function doesn't consume an skb as might be expected since it has to
 430 * copy it anyways.
 431 */
 432static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
 433{
 434        struct sk_buff          *copy;
 435        struct audit_net        *aunet = net_generic(&init_net, audit_net_id);
 436        struct sock             *sock = aunet->nlsk;
 437
 438        if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
 439                return;
 440
 441        /*
 442         * The seemingly wasteful skb_copy() rather than bumping the refcount
 443         * using skb_get() is necessary because non-standard mods are made to
 444         * the skb by the original kaudit unicast socket send routine.  The
 445         * existing auditd daemon assumes this breakage.  Fixing this would
 446         * require co-ordinating a change in the established protocol between
 447         * the kaudit kernel subsystem and the auditd userspace code.  There is
 448         * no reason for new multicast clients to continue with this
 449         * non-compliance.
 450         */
 451        copy = skb_copy(skb, gfp_mask);
 452        if (!copy)
 453                return;
 454
 455        nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
 456}
 457
 458/*
 459 * flush_hold_queue - empty the hold queue if auditd appears
 460 *
 461 * If auditd just started, drain the queue of messages already
 462 * sent to syslog/printk.  Remember loss here is ok.  We already
 463 * called audit_log_lost() if it didn't go out normally.  so the
 464 * race between the skb_dequeue and the next check for audit_pid
 465 * doesn't matter.
 466 *
 467 * If you ever find kauditd to be too slow we can get a perf win
 468 * by doing our own locking and keeping better track if there
 469 * are messages in this queue.  I don't see the need now, but
 470 * in 5 years when I want to play with this again I'll see this
 471 * note and still have no friggin idea what i'm thinking today.
 472 */
 473static void flush_hold_queue(void)
 474{
 475        struct sk_buff *skb;
 476
 477        if (!audit_default || !audit_pid)
 478                return;
 479
 480        skb = skb_dequeue(&audit_skb_hold_queue);
 481        if (likely(!skb))
 482                return;
 483
 484        while (skb && audit_pid) {
 485                kauditd_send_skb(skb);
 486                skb = skb_dequeue(&audit_skb_hold_queue);
 487        }
 488
 489        /*
 490         * if auditd just disappeared but we
 491         * dequeued an skb we need to drop ref
 492         */
 493        if (skb)
 494                consume_skb(skb);
 495}
 496
 497static int kauditd_thread(void *dummy)
 498{
 499        set_freezable();
 500        while (!kthread_should_stop()) {
 501                struct sk_buff *skb;
 502
 503                flush_hold_queue();
 504
 505                skb = skb_dequeue(&audit_skb_queue);
 506
 507                if (skb) {
 508                        if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
 509                                wake_up(&audit_backlog_wait);
 510                        if (audit_pid)
 511                                kauditd_send_skb(skb);
 512                        else
 513                                audit_printk_skb(skb);
 514                        continue;
 515                }
 516
 517                wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
 518        }
 519        return 0;
 520}
 521
 522int audit_send_list(void *_dest)
 523{
 524        struct audit_netlink_list *dest = _dest;
 525        struct sk_buff *skb;
 526        struct net *net = dest->net;
 527        struct audit_net *aunet = net_generic(net, audit_net_id);
 528
 529        /* wait for parent to finish and send an ACK */
 530        mutex_lock(&audit_cmd_mutex);
 531        mutex_unlock(&audit_cmd_mutex);
 532
 533        while ((skb = __skb_dequeue(&dest->q)) != NULL)
 534                netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
 535
 536        put_net(net);
 537        kfree(dest);
 538
 539        return 0;
 540}
 541
 542struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
 543                                 int multi, const void *payload, int size)
 544{
 545        struct sk_buff  *skb;
 546        struct nlmsghdr *nlh;
 547        void            *data;
 548        int             flags = multi ? NLM_F_MULTI : 0;
 549        int             t     = done  ? NLMSG_DONE  : type;
 550
 551        skb = nlmsg_new(size, GFP_KERNEL);
 552        if (!skb)
 553                return NULL;
 554
 555        nlh     = nlmsg_put(skb, portid, seq, t, size, flags);
 556        if (!nlh)
 557                goto out_kfree_skb;
 558        data = nlmsg_data(nlh);
 559        memcpy(data, payload, size);
 560        return skb;
 561
 562out_kfree_skb:
 563        kfree_skb(skb);
 564        return NULL;
 565}
 566
 567static int audit_send_reply_thread(void *arg)
 568{
 569        struct audit_reply *reply = (struct audit_reply *)arg;
 570        struct net *net = reply->net;
 571        struct audit_net *aunet = net_generic(net, audit_net_id);
 572
 573        mutex_lock(&audit_cmd_mutex);
 574        mutex_unlock(&audit_cmd_mutex);
 575
 576        /* Ignore failure. It'll only happen if the sender goes away,
 577           because our timeout is set to infinite. */
 578        netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
 579        put_net(net);
 580        kfree(reply);
 581        return 0;
 582}
 583/**
 584 * audit_send_reply - send an audit reply message via netlink
 585 * @request_skb: skb of request we are replying to (used to target the reply)
 586 * @seq: sequence number
 587 * @type: audit message type
 588 * @done: done (last) flag
 589 * @multi: multi-part message flag
 590 * @payload: payload data
 591 * @size: payload size
 592 *
 593 * Allocates an skb, builds the netlink message, and sends it to the port id.
 594 * No failure notifications.
 595 */
 596static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
 597                             int multi, const void *payload, int size)
 598{
 599        u32 portid = NETLINK_CB(request_skb).portid;
 600        struct net *net = sock_net(NETLINK_CB(request_skb).sk);
 601        struct sk_buff *skb;
 602        struct task_struct *tsk;
 603        struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
 604                                            GFP_KERNEL);
 605
 606        if (!reply)
 607                return;
 608
 609        skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
 610        if (!skb)
 611                goto out;
 612
 613        reply->net = get_net(net);
 614        reply->portid = portid;
 615        reply->skb = skb;
 616
 617        tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
 618        if (!IS_ERR(tsk))
 619                return;
 620        kfree_skb(skb);
 621out:
 622        kfree(reply);
 623}
 624
 625/*
 626 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
 627 * control messages.
 628 */
 629static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
 630{
 631        int err = 0;
 632
 633        /* Only support initial user namespace for now. */
 634        /*
 635         * We return ECONNREFUSED because it tricks userspace into thinking
 636         * that audit was not configured into the kernel.  Lots of users
 637         * configure their PAM stack (because that's what the distro does)
 638         * to reject login if unable to send messages to audit.  If we return
 639         * ECONNREFUSED the PAM stack thinks the kernel does not have audit
 640         * configured in and will let login proceed.  If we return EPERM
 641         * userspace will reject all logins.  This should be removed when we
 642         * support non init namespaces!!
 643         */
 644        if (current_user_ns() != &init_user_ns)
 645                return -ECONNREFUSED;
 646
 647        switch (msg_type) {
 648        case AUDIT_LIST:
 649        case AUDIT_ADD:
 650        case AUDIT_DEL:
 651                return -EOPNOTSUPP;
 652        case AUDIT_GET:
 653        case AUDIT_SET:
 654        case AUDIT_GET_FEATURE:
 655        case AUDIT_SET_FEATURE:
 656        case AUDIT_LIST_RULES:
 657        case AUDIT_ADD_RULE:
 658        case AUDIT_DEL_RULE:
 659        case AUDIT_SIGNAL_INFO:
 660        case AUDIT_TTY_GET:
 661        case AUDIT_TTY_SET:
 662        case AUDIT_TRIM:
 663        case AUDIT_MAKE_EQUIV:
 664                /* Only support auditd and auditctl in initial pid namespace
 665                 * for now. */
 666                if ((task_active_pid_ns(current) != &init_pid_ns))
 667                        return -EPERM;
 668
 669                if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
 670                        err = -EPERM;
 671                break;
 672        case AUDIT_USER:
 673        case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
 674        case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
 675                if (!netlink_capable(skb, CAP_AUDIT_WRITE))
 676                        err = -EPERM;
 677                break;
 678        default:  /* bad msg */
 679                err = -EINVAL;
 680        }
 681
 682        return err;
 683}
 684
 685static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
 686{
 687        int rc = 0;
 688        uid_t uid = from_kuid(&init_user_ns, current_uid());
 689        pid_t pid = task_tgid_nr(current);
 690
 691        if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
 692                *ab = NULL;
 693                return rc;
 694        }
 695
 696        *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
 697        if (unlikely(!*ab))
 698                return rc;
 699        audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
 700        audit_log_session_info(*ab);
 701        audit_log_task_context(*ab);
 702
 703        return rc;
 704}
 705
 706int is_audit_feature_set(int i)
 707{
 708        return af.features & AUDIT_FEATURE_TO_MASK(i);
 709}
 710
 711
 712static int audit_get_feature(struct sk_buff *skb)
 713{
 714        u32 seq;
 715
 716        seq = nlmsg_hdr(skb)->nlmsg_seq;
 717
 718        audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
 719
 720        return 0;
 721}
 722
 723static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
 724                                     u32 old_lock, u32 new_lock, int res)
 725{
 726        struct audit_buffer *ab;
 727
 728        if (audit_enabled == AUDIT_OFF)
 729                return;
 730
 731        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
 732        audit_log_task_info(ab, current);
 733        audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
 734                         audit_feature_names[which], !!old_feature, !!new_feature,
 735                         !!old_lock, !!new_lock, res);
 736        audit_log_end(ab);
 737}
 738
 739static int audit_set_feature(struct sk_buff *skb)
 740{
 741        struct audit_features *uaf;
 742        int i;
 743
 744        BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
 745        uaf = nlmsg_data(nlmsg_hdr(skb));
 746
 747        /* if there is ever a version 2 we should handle that here */
 748
 749        for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
 750                u32 feature = AUDIT_FEATURE_TO_MASK(i);
 751                u32 old_feature, new_feature, old_lock, new_lock;
 752
 753                /* if we are not changing this feature, move along */
 754                if (!(feature & uaf->mask))
 755                        continue;
 756
 757                old_feature = af.features & feature;
 758                new_feature = uaf->features & feature;
 759                new_lock = (uaf->lock | af.lock) & feature;
 760                old_lock = af.lock & feature;
 761
 762                /* are we changing a locked feature? */
 763                if (old_lock && (new_feature != old_feature)) {
 764                        audit_log_feature_change(i, old_feature, new_feature,
 765                                                 old_lock, new_lock, 0);
 766                        return -EPERM;
 767                }
 768        }
 769        /* nothing invalid, do the changes */
 770        for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
 771                u32 feature = AUDIT_FEATURE_TO_MASK(i);
 772                u32 old_feature, new_feature, old_lock, new_lock;
 773
 774                /* if we are not changing this feature, move along */
 775                if (!(feature & uaf->mask))
 776                        continue;
 777
 778                old_feature = af.features & feature;
 779                new_feature = uaf->features & feature;
 780                old_lock = af.lock & feature;
 781                new_lock = (uaf->lock | af.lock) & feature;
 782
 783                if (new_feature != old_feature)
 784                        audit_log_feature_change(i, old_feature, new_feature,
 785                                                 old_lock, new_lock, 1);
 786
 787                if (new_feature)
 788                        af.features |= feature;
 789                else
 790                        af.features &= ~feature;
 791                af.lock |= new_lock;
 792        }
 793
 794        return 0;
 795}
 796
 797static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
 798{
 799        u32                     seq;
 800        void                    *data;
 801        int                     err;
 802        struct audit_buffer     *ab;
 803        u16                     msg_type = nlh->nlmsg_type;
 804        struct audit_sig_info   *sig_data;
 805        char                    *ctx = NULL;
 806        u32                     len;
 807
 808        err = audit_netlink_ok(skb, msg_type);
 809        if (err)
 810                return err;
 811
 812        /* As soon as there's any sign of userspace auditd,
 813         * start kauditd to talk to it */
 814        if (!kauditd_task) {
 815                kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
 816                if (IS_ERR(kauditd_task)) {
 817                        err = PTR_ERR(kauditd_task);
 818                        kauditd_task = NULL;
 819                        return err;
 820                }
 821        }
 822        seq  = nlh->nlmsg_seq;
 823        data = nlmsg_data(nlh);
 824
 825        switch (msg_type) {
 826        case AUDIT_GET: {
 827                struct audit_status     s;
 828                memset(&s, 0, sizeof(s));
 829                s.enabled               = audit_enabled;
 830                s.failure               = audit_failure;
 831                s.pid                   = audit_pid;
 832                s.rate_limit            = audit_rate_limit;
 833                s.backlog_limit         = audit_backlog_limit;
 834                s.lost                  = atomic_read(&audit_lost);
 835                s.backlog               = skb_queue_len(&audit_skb_queue);
 836                s.feature_bitmap        = AUDIT_FEATURE_BITMAP_ALL;
 837                s.backlog_wait_time     = audit_backlog_wait_time;
 838                audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
 839                break;
 840        }
 841        case AUDIT_SET: {
 842                struct audit_status     s;
 843                memset(&s, 0, sizeof(s));
 844                /* guard against past and future API changes */
 845                memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
 846                if (s.mask & AUDIT_STATUS_ENABLED) {
 847                        err = audit_set_enabled(s.enabled);
 848                        if (err < 0)
 849                                return err;
 850                }
 851                if (s.mask & AUDIT_STATUS_FAILURE) {
 852                        err = audit_set_failure(s.failure);
 853                        if (err < 0)
 854                                return err;
 855                }
 856                if (s.mask & AUDIT_STATUS_PID) {
 857                        int new_pid = s.pid;
 858
 859                        if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
 860                                return -EACCES;
 861                        if (audit_enabled != AUDIT_OFF)
 862                                audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
 863                        audit_pid = new_pid;
 864                        audit_nlk_portid = NETLINK_CB(skb).portid;
 865                        audit_sock = skb->sk;
 866                }
 867                if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
 868                        err = audit_set_rate_limit(s.rate_limit);
 869                        if (err < 0)
 870                                return err;
 871                }
 872                if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
 873                        err = audit_set_backlog_limit(s.backlog_limit);
 874                        if (err < 0)
 875                                return err;
 876                }
 877                if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
 878                        if (sizeof(s) > (size_t)nlh->nlmsg_len)
 879                                return -EINVAL;
 880                        if (s.backlog_wait_time < 0 ||
 881                            s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
 882                                return -EINVAL;
 883                        err = audit_set_backlog_wait_time(s.backlog_wait_time);
 884                        if (err < 0)
 885                                return err;
 886                }
 887                break;
 888        }
 889        case AUDIT_GET_FEATURE:
 890                err = audit_get_feature(skb);
 891                if (err)
 892                        return err;
 893                break;
 894        case AUDIT_SET_FEATURE:
 895                err = audit_set_feature(skb);
 896                if (err)
 897                        return err;
 898                break;
 899        case AUDIT_USER:
 900        case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
 901        case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
 902                if (!audit_enabled && msg_type != AUDIT_USER_AVC)
 903                        return 0;
 904
 905                err = audit_filter_user(msg_type);
 906                if (err == 1) { /* match or error */
 907                        err = 0;
 908                        if (msg_type == AUDIT_USER_TTY) {
 909                                err = tty_audit_push_current();
 910                                if (err)
 911                                        break;
 912                        }
 913                        mutex_unlock(&audit_cmd_mutex);
 914                        audit_log_common_recv_msg(&ab, msg_type);
 915                        if (msg_type != AUDIT_USER_TTY)
 916                                audit_log_format(ab, " msg='%.*s'",
 917                                                 AUDIT_MESSAGE_TEXT_MAX,
 918                                                 (char *)data);
 919                        else {
 920                                int size;
 921
 922                                audit_log_format(ab, " data=");
 923                                size = nlmsg_len(nlh);
 924                                if (size > 0 &&
 925                                    ((unsigned char *)data)[size - 1] == '\0')
 926                                        size--;
 927                                audit_log_n_untrustedstring(ab, data, size);
 928                        }
 929                        audit_set_portid(ab, NETLINK_CB(skb).portid);
 930                        audit_log_end(ab);
 931                        mutex_lock(&audit_cmd_mutex);
 932                }
 933                break;
 934        case AUDIT_ADD_RULE:
 935        case AUDIT_DEL_RULE:
 936                if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
 937                        return -EINVAL;
 938                if (audit_enabled == AUDIT_LOCKED) {
 939                        audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 940                        audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
 941                        audit_log_end(ab);
 942                        return -EPERM;
 943                }
 944                err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
 945                                           seq, data, nlmsg_len(nlh));
 946                break;
 947        case AUDIT_LIST_RULES:
 948                err = audit_list_rules_send(skb, seq);
 949                break;
 950        case AUDIT_TRIM:
 951                audit_trim_trees();
 952                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 953                audit_log_format(ab, " op=trim res=1");
 954                audit_log_end(ab);
 955                break;
 956        case AUDIT_MAKE_EQUIV: {
 957                void *bufp = data;
 958                u32 sizes[2];
 959                size_t msglen = nlmsg_len(nlh);
 960                char *old, *new;
 961
 962                err = -EINVAL;
 963                if (msglen < 2 * sizeof(u32))
 964                        break;
 965                memcpy(sizes, bufp, 2 * sizeof(u32));
 966                bufp += 2 * sizeof(u32);
 967                msglen -= 2 * sizeof(u32);
 968                old = audit_unpack_string(&bufp, &msglen, sizes[0]);
 969                if (IS_ERR(old)) {
 970                        err = PTR_ERR(old);
 971                        break;
 972                }
 973                new = audit_unpack_string(&bufp, &msglen, sizes[1]);
 974                if (IS_ERR(new)) {
 975                        err = PTR_ERR(new);
 976                        kfree(old);
 977                        break;
 978                }
 979                /* OK, here comes... */
 980                err = audit_tag_tree(old, new);
 981
 982                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 983
 984                audit_log_format(ab, " op=make_equiv old=");
 985                audit_log_untrustedstring(ab, old);
 986                audit_log_format(ab, " new=");
 987                audit_log_untrustedstring(ab, new);
 988                audit_log_format(ab, " res=%d", !err);
 989                audit_log_end(ab);
 990                kfree(old);
 991                kfree(new);
 992                break;
 993        }
 994        case AUDIT_SIGNAL_INFO:
 995                len = 0;
 996                if (audit_sig_sid) {
 997                        err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
 998                        if (err)
 999                                return err;
1000                }
1001                sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1002                if (!sig_data) {
1003                        if (audit_sig_sid)
1004                                security_release_secctx(ctx, len);
1005                        return -ENOMEM;
1006                }
1007                sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1008                sig_data->pid = audit_sig_pid;
1009                if (audit_sig_sid) {
1010                        memcpy(sig_data->ctx, ctx, len);
1011                        security_release_secctx(ctx, len);
1012                }
1013                audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1014                                 sig_data, sizeof(*sig_data) + len);
1015                kfree(sig_data);
1016                break;
1017        case AUDIT_TTY_GET: {
1018                struct audit_tty_status s;
1019                struct task_struct *tsk = current;
1020
1021                spin_lock(&tsk->sighand->siglock);
1022                s.enabled = tsk->signal->audit_tty;
1023                s.log_passwd = tsk->signal->audit_tty_log_passwd;
1024                spin_unlock(&tsk->sighand->siglock);
1025
1026                audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1027                break;
1028        }
1029        case AUDIT_TTY_SET: {
1030                struct audit_tty_status s, old;
1031                struct task_struct *tsk = current;
1032                struct audit_buffer     *ab;
1033
1034                memset(&s, 0, sizeof(s));
1035                /* guard against past and future API changes */
1036                memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1037                /* check if new data is valid */
1038                if ((s.enabled != 0 && s.enabled != 1) ||
1039                    (s.log_passwd != 0 && s.log_passwd != 1))
1040                        err = -EINVAL;
1041
1042                spin_lock(&tsk->sighand->siglock);
1043                old.enabled = tsk->signal->audit_tty;
1044                old.log_passwd = tsk->signal->audit_tty_log_passwd;
1045                if (!err) {
1046                        tsk->signal->audit_tty = s.enabled;
1047                        tsk->signal->audit_tty_log_passwd = s.log_passwd;
1048                }
1049                spin_unlock(&tsk->sighand->siglock);
1050
1051                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1052                audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1053                                 " old-log_passwd=%d new-log_passwd=%d res=%d",
1054                                 old.enabled, s.enabled, old.log_passwd,
1055                                 s.log_passwd, !err);
1056                audit_log_end(ab);
1057                break;
1058        }
1059        default:
1060                err = -EINVAL;
1061                break;
1062        }
1063
1064        return err < 0 ? err : 0;
1065}
1066
1067/*
1068 * Get message from skb.  Each message is processed by audit_receive_msg.
1069 * Malformed skbs with wrong length are discarded silently.
1070 */
1071static void audit_receive_skb(struct sk_buff *skb)
1072{
1073        struct nlmsghdr *nlh;
1074        /*
1075         * len MUST be signed for nlmsg_next to be able to dec it below 0
1076         * if the nlmsg_len was not aligned
1077         */
1078        int len;
1079        int err;
1080
1081        nlh = nlmsg_hdr(skb);
1082        len = skb->len;
1083
1084        while (nlmsg_ok(nlh, len)) {
1085                err = audit_receive_msg(skb, nlh);
1086                /* if err or if this message says it wants a response */
1087                if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1088                        netlink_ack(skb, nlh, err);
1089
1090                nlh = nlmsg_next(nlh, &len);
1091        }
1092}
1093
1094/* Receive messages from netlink socket. */
1095static void audit_receive(struct sk_buff  *skb)
1096{
1097        mutex_lock(&audit_cmd_mutex);
1098        audit_receive_skb(skb);
1099        mutex_unlock(&audit_cmd_mutex);
1100}
1101
1102/* Run custom bind function on netlink socket group connect or bind requests. */
1103static int audit_bind(struct net *net, int group)
1104{
1105        if (!capable(CAP_AUDIT_READ))
1106                return -EPERM;
1107
1108        return 0;
1109}
1110
1111static int __net_init audit_net_init(struct net *net)
1112{
1113        struct netlink_kernel_cfg cfg = {
1114                .input  = audit_receive,
1115                .bind   = audit_bind,
1116                .flags  = NL_CFG_F_NONROOT_RECV,
1117                .groups = AUDIT_NLGRP_MAX,
1118        };
1119
1120        struct audit_net *aunet = net_generic(net, audit_net_id);
1121
1122        aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1123        if (aunet->nlsk == NULL) {
1124                audit_panic("cannot initialize netlink socket in namespace");
1125                return -ENOMEM;
1126        }
1127        aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1128        return 0;
1129}
1130
1131static void __net_exit audit_net_exit(struct net *net)
1132{
1133        struct audit_net *aunet = net_generic(net, audit_net_id);
1134        struct sock *sock = aunet->nlsk;
1135        if (sock == audit_sock) {
1136                audit_pid = 0;
1137                audit_sock = NULL;
1138        }
1139
1140        RCU_INIT_POINTER(aunet->nlsk, NULL);
1141        synchronize_net();
1142        netlink_kernel_release(sock);
1143}
1144
1145static struct pernet_operations audit_net_ops __net_initdata = {
1146        .init = audit_net_init,
1147        .exit = audit_net_exit,
1148        .id = &audit_net_id,
1149        .size = sizeof(struct audit_net),
1150};
1151
1152/* Initialize audit support at boot time. */
1153static int __init audit_init(void)
1154{
1155        int i;
1156
1157        if (audit_initialized == AUDIT_DISABLED)
1158                return 0;
1159
1160        pr_info("initializing netlink subsys (%s)\n",
1161                audit_default ? "enabled" : "disabled");
1162        register_pernet_subsys(&audit_net_ops);
1163
1164        skb_queue_head_init(&audit_skb_queue);
1165        skb_queue_head_init(&audit_skb_hold_queue);
1166        audit_initialized = AUDIT_INITIALIZED;
1167        audit_enabled = audit_default;
1168        audit_ever_enabled |= !!audit_default;
1169
1170        audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1171
1172        for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1173                INIT_LIST_HEAD(&audit_inode_hash[i]);
1174
1175        return 0;
1176}
1177__initcall(audit_init);
1178
1179/* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1180static int __init audit_enable(char *str)
1181{
1182        audit_default = !!simple_strtol(str, NULL, 0);
1183        if (!audit_default)
1184                audit_initialized = AUDIT_DISABLED;
1185
1186        pr_info("%s\n", audit_default ?
1187                "enabled (after initialization)" : "disabled (until reboot)");
1188
1189        return 1;
1190}
1191__setup("audit=", audit_enable);
1192
1193/* Process kernel command-line parameter at boot time.
1194 * audit_backlog_limit=<n> */
1195static int __init audit_backlog_limit_set(char *str)
1196{
1197        u32 audit_backlog_limit_arg;
1198
1199        pr_info("audit_backlog_limit: ");
1200        if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1201                pr_cont("using default of %u, unable to parse %s\n",
1202                        audit_backlog_limit, str);
1203                return 1;
1204        }
1205
1206        audit_backlog_limit = audit_backlog_limit_arg;
1207        pr_cont("%d\n", audit_backlog_limit);
1208
1209        return 1;
1210}
1211__setup("audit_backlog_limit=", audit_backlog_limit_set);
1212
1213static void audit_buffer_free(struct audit_buffer *ab)
1214{
1215        unsigned long flags;
1216
1217        if (!ab)
1218                return;
1219
1220        if (ab->skb)
1221                kfree_skb(ab->skb);
1222
1223        spin_lock_irqsave(&audit_freelist_lock, flags);
1224        if (audit_freelist_count > AUDIT_MAXFREE)
1225                kfree(ab);
1226        else {
1227                audit_freelist_count++;
1228                list_add(&ab->list, &audit_freelist);
1229        }
1230        spin_unlock_irqrestore(&audit_freelist_lock, flags);
1231}
1232
1233static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1234                                                gfp_t gfp_mask, int type)
1235{
1236        unsigned long flags;
1237        struct audit_buffer *ab = NULL;
1238        struct nlmsghdr *nlh;
1239
1240        spin_lock_irqsave(&audit_freelist_lock, flags);
1241        if (!list_empty(&audit_freelist)) {
1242                ab = list_entry(audit_freelist.next,
1243                                struct audit_buffer, list);
1244                list_del(&ab->list);
1245                --audit_freelist_count;
1246        }
1247        spin_unlock_irqrestore(&audit_freelist_lock, flags);
1248
1249        if (!ab) {
1250                ab = kmalloc(sizeof(*ab), gfp_mask);
1251                if (!ab)
1252                        goto err;
1253        }
1254
1255        ab->ctx = ctx;
1256        ab->gfp_mask = gfp_mask;
1257
1258        ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1259        if (!ab->skb)
1260                goto err;
1261
1262        nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1263        if (!nlh)
1264                goto out_kfree_skb;
1265
1266        return ab;
1267
1268out_kfree_skb:
1269        kfree_skb(ab->skb);
1270        ab->skb = NULL;
1271err:
1272        audit_buffer_free(ab);
1273        return NULL;
1274}
1275
1276/**
1277 * audit_serial - compute a serial number for the audit record
1278 *
1279 * Compute a serial number for the audit record.  Audit records are
1280 * written to user-space as soon as they are generated, so a complete
1281 * audit record may be written in several pieces.  The timestamp of the
1282 * record and this serial number are used by the user-space tools to
1283 * determine which pieces belong to the same audit record.  The
1284 * (timestamp,serial) tuple is unique for each syscall and is live from
1285 * syscall entry to syscall exit.
1286 *
1287 * NOTE: Another possibility is to store the formatted records off the
1288 * audit context (for those records that have a context), and emit them
1289 * all at syscall exit.  However, this could delay the reporting of
1290 * significant errors until syscall exit (or never, if the system
1291 * halts).
1292 */
1293unsigned int audit_serial(void)
1294{
1295        static atomic_t serial = ATOMIC_INIT(0);
1296
1297        return atomic_add_return(1, &serial);
1298}
1299
1300static inline void audit_get_stamp(struct audit_context *ctx,
1301                                   struct timespec *t, unsigned int *serial)
1302{
1303        if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1304                *t = CURRENT_TIME;
1305                *serial = audit_serial();
1306        }
1307}
1308
1309/*
1310 * Wait for auditd to drain the queue a little
1311 */
1312static long wait_for_auditd(long sleep_time)
1313{
1314        DECLARE_WAITQUEUE(wait, current);
1315        set_current_state(TASK_UNINTERRUPTIBLE);
1316        add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1317
1318        if (audit_backlog_limit &&
1319            skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1320                sleep_time = schedule_timeout(sleep_time);
1321
1322        __set_current_state(TASK_RUNNING);
1323        remove_wait_queue(&audit_backlog_wait, &wait);
1324
1325        return sleep_time;
1326}
1327
1328/**
1329 * audit_log_start - obtain an audit buffer
1330 * @ctx: audit_context (may be NULL)
1331 * @gfp_mask: type of allocation
1332 * @type: audit message type
1333 *
1334 * Returns audit_buffer pointer on success or NULL on error.
1335 *
1336 * Obtain an audit buffer.  This routine does locking to obtain the
1337 * audit buffer, but then no locking is required for calls to
1338 * audit_log_*format.  If the task (ctx) is a task that is currently in a
1339 * syscall, then the syscall is marked as auditable and an audit record
1340 * will be written at syscall exit.  If there is no associated task, then
1341 * task context (ctx) should be NULL.
1342 */
1343struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1344                                     int type)
1345{
1346        struct audit_buffer     *ab     = NULL;
1347        struct timespec         t;
1348        unsigned int            uninitialized_var(serial);
1349        int reserve = 5; /* Allow atomic callers to go up to five
1350                            entries over the normal backlog limit */
1351        unsigned long timeout_start = jiffies;
1352
1353        if (audit_initialized != AUDIT_INITIALIZED)
1354                return NULL;
1355
1356        if (unlikely(audit_filter_type(type)))
1357                return NULL;
1358
1359        if (gfp_mask & __GFP_WAIT) {
1360                if (audit_pid && audit_pid == current->pid)
1361                        gfp_mask &= ~__GFP_WAIT;
1362                else
1363                        reserve = 0;
1364        }
1365
1366        while (audit_backlog_limit
1367               && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1368                if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1369                        long sleep_time;
1370
1371                        sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1372                        if (sleep_time > 0) {
1373                                sleep_time = wait_for_auditd(sleep_time);
1374                                if (sleep_time > 0)
1375                                        continue;
1376                        }
1377                }
1378                if (audit_rate_check() && printk_ratelimit())
1379                        pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1380                                skb_queue_len(&audit_skb_queue),
1381                                audit_backlog_limit);
1382                audit_log_lost("backlog limit exceeded");
1383                audit_backlog_wait_time = audit_backlog_wait_overflow;
1384                wake_up(&audit_backlog_wait);
1385                return NULL;
1386        }
1387
1388        audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1389
1390        ab = audit_buffer_alloc(ctx, gfp_mask, type);
1391        if (!ab) {
1392                audit_log_lost("out of memory in audit_log_start");
1393                return NULL;
1394        }
1395
1396        audit_get_stamp(ab->ctx, &t, &serial);
1397
1398        audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1399                         t.tv_sec, t.tv_nsec/1000000, serial);
1400        return ab;
1401}
1402
1403/**
1404 * audit_expand - expand skb in the audit buffer
1405 * @ab: audit_buffer
1406 * @extra: space to add at tail of the skb
1407 *
1408 * Returns 0 (no space) on failed expansion, or available space if
1409 * successful.
1410 */
1411static inline int audit_expand(struct audit_buffer *ab, int extra)
1412{
1413        struct sk_buff *skb = ab->skb;
1414        int oldtail = skb_tailroom(skb);
1415        int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1416        int newtail = skb_tailroom(skb);
1417
1418        if (ret < 0) {
1419                audit_log_lost("out of memory in audit_expand");
1420                return 0;
1421        }
1422
1423        skb->truesize += newtail - oldtail;
1424        return newtail;
1425}
1426
1427/*
1428 * Format an audit message into the audit buffer.  If there isn't enough
1429 * room in the audit buffer, more room will be allocated and vsnprint
1430 * will be called a second time.  Currently, we assume that a printk
1431 * can't format message larger than 1024 bytes, so we don't either.
1432 */
1433static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1434                              va_list args)
1435{
1436        int len, avail;
1437        struct sk_buff *skb;
1438        va_list args2;
1439
1440        if (!ab)
1441                return;
1442
1443        BUG_ON(!ab->skb);
1444        skb = ab->skb;
1445        avail = skb_tailroom(skb);
1446        if (avail == 0) {
1447                avail = audit_expand(ab, AUDIT_BUFSIZ);
1448                if (!avail)
1449                        goto out;
1450        }
1451        va_copy(args2, args);
1452        len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1453        if (len >= avail) {
1454                /* The printk buffer is 1024 bytes long, so if we get
1455                 * here and AUDIT_BUFSIZ is at least 1024, then we can
1456                 * log everything that printk could have logged. */
1457                avail = audit_expand(ab,
1458                        max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1459                if (!avail)
1460                        goto out_va_end;
1461                len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1462        }
1463        if (len > 0)
1464                skb_put(skb, len);
1465out_va_end:
1466        va_end(args2);
1467out:
1468        return;
1469}
1470
1471/**
1472 * audit_log_format - format a message into the audit buffer.
1473 * @ab: audit_buffer
1474 * @fmt: format string
1475 * @...: optional parameters matching @fmt string
1476 *
1477 * All the work is done in audit_log_vformat.
1478 */
1479void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1480{
1481        va_list args;
1482
1483        if (!ab)
1484                return;
1485        va_start(args, fmt);
1486        audit_log_vformat(ab, fmt, args);
1487        va_end(args);
1488}
1489
1490/**
1491 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1492 * @ab: the audit_buffer
1493 * @buf: buffer to convert to hex
1494 * @len: length of @buf to be converted
1495 *
1496 * No return value; failure to expand is silently ignored.
1497 *
1498 * This function will take the passed buf and convert it into a string of
1499 * ascii hex digits. The new string is placed onto the skb.
1500 */
1501void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1502                size_t len)
1503{
1504        int i, avail, new_len;
1505        unsigned char *ptr;
1506        struct sk_buff *skb;
1507
1508        if (!ab)
1509                return;
1510
1511        BUG_ON(!ab->skb);
1512        skb = ab->skb;
1513        avail = skb_tailroom(skb);
1514        new_len = len<<1;
1515        if (new_len >= avail) {
1516                /* Round the buffer request up to the next multiple */
1517                new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1518                avail = audit_expand(ab, new_len);
1519                if (!avail)
1520                        return;
1521        }
1522
1523        ptr = skb_tail_pointer(skb);
1524        for (i = 0; i < len; i++)
1525                ptr = hex_byte_pack_upper(ptr, buf[i]);
1526        *ptr = 0;
1527        skb_put(skb, len << 1); /* new string is twice the old string */
1528}
1529
1530/*
1531 * Format a string of no more than slen characters into the audit buffer,
1532 * enclosed in quote marks.
1533 */
1534void audit_log_n_string(struct audit_buffer *ab, const char *string,
1535                        size_t slen)
1536{
1537        int avail, new_len;
1538        unsigned char *ptr;
1539        struct sk_buff *skb;
1540
1541        if (!ab)
1542                return;
1543
1544        BUG_ON(!ab->skb);
1545        skb = ab->skb;
1546        avail = skb_tailroom(skb);
1547        new_len = slen + 3;     /* enclosing quotes + null terminator */
1548        if (new_len > avail) {
1549                avail = audit_expand(ab, new_len);
1550                if (!avail)
1551                        return;
1552        }
1553        ptr = skb_tail_pointer(skb);
1554        *ptr++ = '"';
1555        memcpy(ptr, string, slen);
1556        ptr += slen;
1557        *ptr++ = '"';
1558        *ptr = 0;
1559        skb_put(skb, slen + 2); /* don't include null terminator */
1560}
1561
1562/**
1563 * audit_string_contains_control - does a string need to be logged in hex
1564 * @string: string to be checked
1565 * @len: max length of the string to check
1566 */
1567int audit_string_contains_control(const char *string, size_t len)
1568{
1569        const unsigned char *p;
1570        for (p = string; p < (const unsigned char *)string + len; p++) {
1571                if (*p == '"' || *p < 0x21 || *p > 0x7e)
1572                        return 1;
1573        }
1574        return 0;
1575}
1576
1577/**
1578 * audit_log_n_untrustedstring - log a string that may contain random characters
1579 * @ab: audit_buffer
1580 * @len: length of string (not including trailing null)
1581 * @string: string to be logged
1582 *
1583 * This code will escape a string that is passed to it if the string
1584 * contains a control character, unprintable character, double quote mark,
1585 * or a space. Unescaped strings will start and end with a double quote mark.
1586 * Strings that are escaped are printed in hex (2 digits per char).
1587 *
1588 * The caller specifies the number of characters in the string to log, which may
1589 * or may not be the entire string.
1590 */
1591void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1592                                 size_t len)
1593{
1594        if (audit_string_contains_control(string, len))
1595                audit_log_n_hex(ab, string, len);
1596        else
1597                audit_log_n_string(ab, string, len);
1598}
1599
1600/**
1601 * audit_log_untrustedstring - log a string that may contain random characters
1602 * @ab: audit_buffer
1603 * @string: string to be logged
1604 *
1605 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1606 * determine string length.
1607 */
1608void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1609{
1610        audit_log_n_untrustedstring(ab, string, strlen(string));
1611}
1612
1613/* This is a helper-function to print the escaped d_path */
1614void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1615                      const struct path *path)
1616{
1617        char *p, *pathname;
1618
1619        if (prefix)
1620                audit_log_format(ab, "%s", prefix);
1621
1622        /* We will allow 11 spaces for ' (deleted)' to be appended */
1623        pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1624        if (!pathname) {
1625                audit_log_string(ab, "<no_memory>");
1626                return;
1627        }
1628        p = d_path(path, pathname, PATH_MAX+11);
1629        if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1630                /* FIXME: can we save some information here? */
1631                audit_log_string(ab, "<too_long>");
1632        } else
1633                audit_log_untrustedstring(ab, p);
1634        kfree(pathname);
1635}
1636
1637void audit_log_session_info(struct audit_buffer *ab)
1638{
1639        unsigned int sessionid = audit_get_sessionid(current);
1640        uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1641
1642        audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1643}
1644
1645void audit_log_key(struct audit_buffer *ab, char *key)
1646{
1647        audit_log_format(ab, " key=");
1648        if (key)
1649                audit_log_untrustedstring(ab, key);
1650        else
1651                audit_log_format(ab, "(null)");
1652}
1653
1654void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1655{
1656        int i;
1657
1658        audit_log_format(ab, " %s=", prefix);
1659        CAP_FOR_EACH_U32(i) {
1660                audit_log_format(ab, "%08x",
1661                                 cap->cap[CAP_LAST_U32 - i]);
1662        }
1663}
1664
1665static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1666{
1667        kernel_cap_t *perm = &name->fcap.permitted;
1668        kernel_cap_t *inh = &name->fcap.inheritable;
1669        int log = 0;
1670
1671        if (!cap_isclear(*perm)) {
1672                audit_log_cap(ab, "cap_fp", perm);
1673                log = 1;
1674        }
1675        if (!cap_isclear(*inh)) {
1676                audit_log_cap(ab, "cap_fi", inh);
1677                log = 1;
1678        }
1679
1680        if (log)
1681                audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1682                                 name->fcap.fE, name->fcap_ver);
1683}
1684
1685static inline int audit_copy_fcaps(struct audit_names *name,
1686                                   const struct dentry *dentry)
1687{
1688        struct cpu_vfs_cap_data caps;
1689        int rc;
1690
1691        if (!dentry)
1692                return 0;
1693
1694        rc = get_vfs_caps_from_disk(dentry, &caps);
1695        if (rc)
1696                return rc;
1697
1698        name->fcap.permitted = caps.permitted;
1699        name->fcap.inheritable = caps.inheritable;
1700        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1701        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1702                                VFS_CAP_REVISION_SHIFT;
1703
1704        return 0;
1705}
1706
1707/* Copy inode data into an audit_names. */
1708void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1709                      const struct inode *inode)
1710{
1711        name->ino   = inode->i_ino;
1712        name->dev   = inode->i_sb->s_dev;
1713        name->mode  = inode->i_mode;
1714        name->uid   = inode->i_uid;
1715        name->gid   = inode->i_gid;
1716        name->rdev  = inode->i_rdev;
1717        security_inode_getsecid(inode, &name->osid);
1718        audit_copy_fcaps(name, dentry);
1719}
1720
1721/**
1722 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1723 * @context: audit_context for the task
1724 * @n: audit_names structure with reportable details
1725 * @path: optional path to report instead of audit_names->name
1726 * @record_num: record number to report when handling a list of names
1727 * @call_panic: optional pointer to int that will be updated if secid fails
1728 */
1729void audit_log_name(struct audit_context *context, struct audit_names *n,
1730                    struct path *path, int record_num, int *call_panic)
1731{
1732        struct audit_buffer *ab;
1733        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1734        if (!ab)
1735                return;
1736
1737        audit_log_format(ab, "item=%d", record_num);
1738
1739        if (path)
1740                audit_log_d_path(ab, " name=", path);
1741        else if (n->name) {
1742                switch (n->name_len) {
1743                case AUDIT_NAME_FULL:
1744                        /* log the full path */
1745                        audit_log_format(ab, " name=");
1746                        audit_log_untrustedstring(ab, n->name->name);
1747                        break;
1748                case 0:
1749                        /* name was specified as a relative path and the
1750                         * directory component is the cwd */
1751                        audit_log_d_path(ab, " name=", &context->pwd);
1752                        break;
1753                default:
1754                        /* log the name's directory component */
1755                        audit_log_format(ab, " name=");
1756                        audit_log_n_untrustedstring(ab, n->name->name,
1757                                                    n->name_len);
1758                }
1759        } else
1760                audit_log_format(ab, " name=(null)");
1761
1762        if (n->ino != (unsigned long)-1) {
1763                audit_log_format(ab, " inode=%lu"
1764                                 " dev=%02x:%02x mode=%#ho"
1765                                 " ouid=%u ogid=%u rdev=%02x:%02x",
1766                                 n->ino,
1767                                 MAJOR(n->dev),
1768                                 MINOR(n->dev),
1769                                 n->mode,
1770                                 from_kuid(&init_user_ns, n->uid),
1771                                 from_kgid(&init_user_ns, n->gid),
1772                                 MAJOR(n->rdev),
1773                                 MINOR(n->rdev));
1774        }
1775        if (n->osid != 0) {
1776                char *ctx = NULL;
1777                u32 len;
1778                if (security_secid_to_secctx(
1779                        n->osid, &ctx, &len)) {
1780                        audit_log_format(ab, " osid=%u", n->osid);
1781                        if (call_panic)
1782                                *call_panic = 2;
1783                } else {
1784                        audit_log_format(ab, " obj=%s", ctx);
1785                        security_release_secctx(ctx, len);
1786                }
1787        }
1788
1789        /* log the audit_names record type */
1790        audit_log_format(ab, " nametype=");
1791        switch(n->type) {
1792        case AUDIT_TYPE_NORMAL:
1793                audit_log_format(ab, "NORMAL");
1794                break;
1795        case AUDIT_TYPE_PARENT:
1796                audit_log_format(ab, "PARENT");
1797                break;
1798        case AUDIT_TYPE_CHILD_DELETE:
1799                audit_log_format(ab, "DELETE");
1800                break;
1801        case AUDIT_TYPE_CHILD_CREATE:
1802                audit_log_format(ab, "CREATE");
1803                break;
1804        default:
1805                audit_log_format(ab, "UNKNOWN");
1806                break;
1807        }
1808
1809        audit_log_fcaps(ab, n);
1810        audit_log_end(ab);
1811}
1812
1813int audit_log_task_context(struct audit_buffer *ab)
1814{
1815        char *ctx = NULL;
1816        unsigned len;
1817        int error;
1818        u32 sid;
1819
1820        security_task_getsecid(current, &sid);
1821        if (!sid)
1822                return 0;
1823
1824        error = security_secid_to_secctx(sid, &ctx, &len);
1825        if (error) {
1826                if (error != -EINVAL)
1827                        goto error_path;
1828                return 0;
1829        }
1830
1831        audit_log_format(ab, " subj=%s", ctx);
1832        security_release_secctx(ctx, len);
1833        return 0;
1834
1835error_path:
1836        audit_panic("error in audit_log_task_context");
1837        return error;
1838}
1839EXPORT_SYMBOL(audit_log_task_context);
1840
1841void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1842{
1843        const struct cred *cred;
1844        char comm[sizeof(tsk->comm)];
1845        struct mm_struct *mm = tsk->mm;
1846        char *tty;
1847
1848        if (!ab)
1849                return;
1850
1851        /* tsk == current */
1852        cred = current_cred();
1853
1854        spin_lock_irq(&tsk->sighand->siglock);
1855        if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1856                tty = tsk->signal->tty->name;
1857        else
1858                tty = "(none)";
1859        spin_unlock_irq(&tsk->sighand->siglock);
1860
1861        audit_log_format(ab,
1862                         " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1863                         " euid=%u suid=%u fsuid=%u"
1864                         " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1865                         task_ppid_nr(tsk),
1866                         task_pid_nr(tsk),
1867                         from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1868                         from_kuid(&init_user_ns, cred->uid),
1869                         from_kgid(&init_user_ns, cred->gid),
1870                         from_kuid(&init_user_ns, cred->euid),
1871                         from_kuid(&init_user_ns, cred->suid),
1872                         from_kuid(&init_user_ns, cred->fsuid),
1873                         from_kgid(&init_user_ns, cred->egid),
1874                         from_kgid(&init_user_ns, cred->sgid),
1875                         from_kgid(&init_user_ns, cred->fsgid),
1876                         tty, audit_get_sessionid(tsk));
1877
1878        audit_log_format(ab, " comm=");
1879        audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1880
1881        if (mm) {
1882                down_read(&mm->mmap_sem);
1883                if (mm->exe_file)
1884                        audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1885                up_read(&mm->mmap_sem);
1886        } else
1887                audit_log_format(ab, " exe=(null)");
1888        audit_log_task_context(ab);
1889}
1890EXPORT_SYMBOL(audit_log_task_info);
1891
1892/**
1893 * audit_log_link_denied - report a link restriction denial
1894 * @operation: specific link opreation
1895 * @link: the path that triggered the restriction
1896 */
1897void audit_log_link_denied(const char *operation, struct path *link)
1898{
1899        struct audit_buffer *ab;
1900        struct audit_names *name;
1901
1902        name = kzalloc(sizeof(*name), GFP_NOFS);
1903        if (!name)
1904                return;
1905
1906        /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1907        ab = audit_log_start(current->audit_context, GFP_KERNEL,
1908                             AUDIT_ANOM_LINK);
1909        if (!ab)
1910                goto out;
1911        audit_log_format(ab, "op=%s", operation);
1912        audit_log_task_info(ab, current);
1913        audit_log_format(ab, " res=0");
1914        audit_log_end(ab);
1915
1916        /* Generate AUDIT_PATH record with object. */
1917        name->type = AUDIT_TYPE_NORMAL;
1918        audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1919        audit_log_name(current->audit_context, name, link, 0, NULL);
1920out:
1921        kfree(name);
1922}
1923
1924/**
1925 * audit_log_end - end one audit record
1926 * @ab: the audit_buffer
1927 *
1928 * netlink_unicast() cannot be called inside an irq context because it blocks
1929 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1930 * on a queue and a tasklet is scheduled to remove them from the queue outside
1931 * the irq context.  May be called in any context.
1932 */
1933void audit_log_end(struct audit_buffer *ab)
1934{
1935        if (!ab)
1936                return;
1937        if (!audit_rate_check()) {
1938                audit_log_lost("rate limit exceeded");
1939        } else {
1940                struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1941
1942                nlh->nlmsg_len = ab->skb->len;
1943                kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1944
1945                /*
1946                 * The original kaudit unicast socket sends up messages with
1947                 * nlmsg_len set to the payload length rather than the entire
1948                 * message length.  This breaks the standard set by netlink.
1949                 * The existing auditd daemon assumes this breakage.  Fixing
1950                 * this would require co-ordinating a change in the established
1951                 * protocol between the kaudit kernel subsystem and the auditd
1952                 * userspace code.
1953                 */
1954                nlh->nlmsg_len -= NLMSG_HDRLEN;
1955
1956                if (audit_pid) {
1957                        skb_queue_tail(&audit_skb_queue, ab->skb);
1958                        wake_up_interruptible(&kauditd_wait);
1959                } else {
1960                        audit_printk_skb(ab->skb);
1961                }
1962                ab->skb = NULL;
1963        }
1964        audit_buffer_free(ab);
1965}
1966
1967/**
1968 * audit_log - Log an audit record
1969 * @ctx: audit context
1970 * @gfp_mask: type of allocation
1971 * @type: audit message type
1972 * @fmt: format string to use
1973 * @...: variable parameters matching the format string
1974 *
1975 * This is a convenience function that calls audit_log_start,
1976 * audit_log_vformat, and audit_log_end.  It may be called
1977 * in any context.
1978 */
1979void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1980               const char *fmt, ...)
1981{
1982        struct audit_buffer *ab;
1983        va_list args;
1984
1985        ab = audit_log_start(ctx, gfp_mask, type);
1986        if (ab) {
1987                va_start(args, fmt);
1988                audit_log_vformat(ab, fmt, args);
1989                va_end(args);
1990                audit_log_end(ab);
1991        }
1992}
1993
1994#ifdef CONFIG_SECURITY
1995/**
1996 * audit_log_secctx - Converts and logs SELinux context
1997 * @ab: audit_buffer
1998 * @secid: security number
1999 *
2000 * This is a helper function that calls security_secid_to_secctx to convert
2001 * secid to secctx and then adds the (converted) SELinux context to the audit
2002 * log by calling audit_log_format, thus also preventing leak of internal secid
2003 * to userspace. If secid cannot be converted audit_panic is called.
2004 */
2005void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2006{
2007        u32 len;
2008        char *secctx;
2009
2010        if (security_secid_to_secctx(secid, &secctx, &len)) {
2011                audit_panic("Cannot convert secid to context");
2012        } else {
2013                audit_log_format(ab, " obj=%s", secctx);
2014                security_release_secctx(secctx, len);
2015        }
2016}
2017EXPORT_SYMBOL(audit_log_secctx);
2018#endif
2019
2020EXPORT_SYMBOL(audit_log_start);
2021EXPORT_SYMBOL(audit_log_end);
2022EXPORT_SYMBOL(audit_log_format);
2023EXPORT_SYMBOL(audit_log);
2024