linux/kernel/cpuset.c
<<
>>
Prefs
   1/*
   2 *  kernel/cpuset.c
   3 *
   4 *  Processor and Memory placement constraints for sets of tasks.
   5 *
   6 *  Copyright (C) 2003 BULL SA.
   7 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
   8 *  Copyright (C) 2006 Google, Inc
   9 *
  10 *  Portions derived from Patrick Mochel's sysfs code.
  11 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  12 *
  13 *  2003-10-10 Written by Simon Derr.
  14 *  2003-10-22 Updates by Stephen Hemminger.
  15 *  2004 May-July Rework by Paul Jackson.
  16 *  2006 Rework by Paul Menage to use generic cgroups
  17 *  2008 Rework of the scheduler domains and CPU hotplug handling
  18 *       by Max Krasnyansky
  19 *
  20 *  This file is subject to the terms and conditions of the GNU General Public
  21 *  License.  See the file COPYING in the main directory of the Linux
  22 *  distribution for more details.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/cpumask.h>
  27#include <linux/cpuset.h>
  28#include <linux/err.h>
  29#include <linux/errno.h>
  30#include <linux/file.h>
  31#include <linux/fs.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/kernel.h>
  35#include <linux/kmod.h>
  36#include <linux/list.h>
  37#include <linux/mempolicy.h>
  38#include <linux/mm.h>
  39#include <linux/memory.h>
  40#include <linux/export.h>
  41#include <linux/mount.h>
  42#include <linux/namei.h>
  43#include <linux/pagemap.h>
  44#include <linux/proc_fs.h>
  45#include <linux/rcupdate.h>
  46#include <linux/sched.h>
  47#include <linux/seq_file.h>
  48#include <linux/security.h>
  49#include <linux/slab.h>
  50#include <linux/spinlock.h>
  51#include <linux/stat.h>
  52#include <linux/string.h>
  53#include <linux/time.h>
  54#include <linux/backing-dev.h>
  55#include <linux/sort.h>
  56
  57#include <asm/uaccess.h>
  58#include <linux/atomic.h>
  59#include <linux/mutex.h>
  60#include <linux/workqueue.h>
  61#include <linux/cgroup.h>
  62#include <linux/wait.h>
  63
  64struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
  65
  66/* See "Frequency meter" comments, below. */
  67
  68struct fmeter {
  69        int cnt;                /* unprocessed events count */
  70        int val;                /* most recent output value */
  71        time_t time;            /* clock (secs) when val computed */
  72        spinlock_t lock;        /* guards read or write of above */
  73};
  74
  75struct cpuset {
  76        struct cgroup_subsys_state css;
  77
  78        unsigned long flags;            /* "unsigned long" so bitops work */
  79
  80        /*
  81         * On default hierarchy:
  82         *
  83         * The user-configured masks can only be changed by writing to
  84         * cpuset.cpus and cpuset.mems, and won't be limited by the
  85         * parent masks.
  86         *
  87         * The effective masks is the real masks that apply to the tasks
  88         * in the cpuset. They may be changed if the configured masks are
  89         * changed or hotplug happens.
  90         *
  91         * effective_mask == configured_mask & parent's effective_mask,
  92         * and if it ends up empty, it will inherit the parent's mask.
  93         *
  94         *
  95         * On legacy hierachy:
  96         *
  97         * The user-configured masks are always the same with effective masks.
  98         */
  99
 100        /* user-configured CPUs and Memory Nodes allow to tasks */
 101        cpumask_var_t cpus_allowed;
 102        nodemask_t mems_allowed;
 103
 104        /* effective CPUs and Memory Nodes allow to tasks */
 105        cpumask_var_t effective_cpus;
 106        nodemask_t effective_mems;
 107
 108        /*
 109         * This is old Memory Nodes tasks took on.
 110         *
 111         * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
 112         * - A new cpuset's old_mems_allowed is initialized when some
 113         *   task is moved into it.
 114         * - old_mems_allowed is used in cpuset_migrate_mm() when we change
 115         *   cpuset.mems_allowed and have tasks' nodemask updated, and
 116         *   then old_mems_allowed is updated to mems_allowed.
 117         */
 118        nodemask_t old_mems_allowed;
 119
 120        struct fmeter fmeter;           /* memory_pressure filter */
 121
 122        /*
 123         * Tasks are being attached to this cpuset.  Used to prevent
 124         * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
 125         */
 126        int attach_in_progress;
 127
 128        /* partition number for rebuild_sched_domains() */
 129        int pn;
 130
 131        /* for custom sched domain */
 132        int relax_domain_level;
 133};
 134
 135static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
 136{
 137        return css ? container_of(css, struct cpuset, css) : NULL;
 138}
 139
 140/* Retrieve the cpuset for a task */
 141static inline struct cpuset *task_cs(struct task_struct *task)
 142{
 143        return css_cs(task_css(task, cpuset_cgrp_id));
 144}
 145
 146static inline struct cpuset *parent_cs(struct cpuset *cs)
 147{
 148        return css_cs(cs->css.parent);
 149}
 150
 151#ifdef CONFIG_NUMA
 152static inline bool task_has_mempolicy(struct task_struct *task)
 153{
 154        return task->mempolicy;
 155}
 156#else
 157static inline bool task_has_mempolicy(struct task_struct *task)
 158{
 159        return false;
 160}
 161#endif
 162
 163
 164/* bits in struct cpuset flags field */
 165typedef enum {
 166        CS_ONLINE,
 167        CS_CPU_EXCLUSIVE,
 168        CS_MEM_EXCLUSIVE,
 169        CS_MEM_HARDWALL,
 170        CS_MEMORY_MIGRATE,
 171        CS_SCHED_LOAD_BALANCE,
 172        CS_SPREAD_PAGE,
 173        CS_SPREAD_SLAB,
 174} cpuset_flagbits_t;
 175
 176/* convenient tests for these bits */
 177static inline bool is_cpuset_online(const struct cpuset *cs)
 178{
 179        return test_bit(CS_ONLINE, &cs->flags);
 180}
 181
 182static inline int is_cpu_exclusive(const struct cpuset *cs)
 183{
 184        return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
 185}
 186
 187static inline int is_mem_exclusive(const struct cpuset *cs)
 188{
 189        return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
 190}
 191
 192static inline int is_mem_hardwall(const struct cpuset *cs)
 193{
 194        return test_bit(CS_MEM_HARDWALL, &cs->flags);
 195}
 196
 197static inline int is_sched_load_balance(const struct cpuset *cs)
 198{
 199        return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 200}
 201
 202static inline int is_memory_migrate(const struct cpuset *cs)
 203{
 204        return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
 205}
 206
 207static inline int is_spread_page(const struct cpuset *cs)
 208{
 209        return test_bit(CS_SPREAD_PAGE, &cs->flags);
 210}
 211
 212static inline int is_spread_slab(const struct cpuset *cs)
 213{
 214        return test_bit(CS_SPREAD_SLAB, &cs->flags);
 215}
 216
 217static struct cpuset top_cpuset = {
 218        .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
 219                  (1 << CS_MEM_EXCLUSIVE)),
 220};
 221
 222/**
 223 * cpuset_for_each_child - traverse online children of a cpuset
 224 * @child_cs: loop cursor pointing to the current child
 225 * @pos_css: used for iteration
 226 * @parent_cs: target cpuset to walk children of
 227 *
 228 * Walk @child_cs through the online children of @parent_cs.  Must be used
 229 * with RCU read locked.
 230 */
 231#define cpuset_for_each_child(child_cs, pos_css, parent_cs)             \
 232        css_for_each_child((pos_css), &(parent_cs)->css)                \
 233                if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
 234
 235/**
 236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 237 * @des_cs: loop cursor pointing to the current descendant
 238 * @pos_css: used for iteration
 239 * @root_cs: target cpuset to walk ancestor of
 240 *
 241 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 242 * with RCU read locked.  The caller may modify @pos_css by calling
 243 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 244 * iteration and the first node to be visited.
 245 */
 246#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)        \
 247        css_for_each_descendant_pre((pos_css), &(root_cs)->css)         \
 248                if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
 249
 250/*
 251 * There are two global locks guarding cpuset structures - cpuset_mutex and
 252 * callback_lock. We also require taking task_lock() when dereferencing a
 253 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 254 * comment.
 255 *
 256 * A task must hold both locks to modify cpusets.  If a task holds
 257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 258 * is the only task able to also acquire callback_lock and be able to
 259 * modify cpusets.  It can perform various checks on the cpuset structure
 260 * first, knowing nothing will change.  It can also allocate memory while
 261 * just holding cpuset_mutex.  While it is performing these checks, various
 262 * callback routines can briefly acquire callback_lock to query cpusets.
 263 * Once it is ready to make the changes, it takes callback_lock, blocking
 264 * everyone else.
 265 *
 266 * Calls to the kernel memory allocator can not be made while holding
 267 * callback_lock, as that would risk double tripping on callback_lock
 268 * from one of the callbacks into the cpuset code from within
 269 * __alloc_pages().
 270 *
 271 * If a task is only holding callback_lock, then it has read-only
 272 * access to cpusets.
 273 *
 274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 275 * by other task, we use alloc_lock in the task_struct fields to protect
 276 * them.
 277 *
 278 * The cpuset_common_file_read() handlers only hold callback_lock across
 279 * small pieces of code, such as when reading out possibly multi-word
 280 * cpumasks and nodemasks.
 281 *
 282 * Accessing a task's cpuset should be done in accordance with the
 283 * guidelines for accessing subsystem state in kernel/cgroup.c
 284 */
 285
 286static DEFINE_MUTEX(cpuset_mutex);
 287static DEFINE_SPINLOCK(callback_lock);
 288
 289/*
 290 * CPU / memory hotplug is handled asynchronously.
 291 */
 292static void cpuset_hotplug_workfn(struct work_struct *work);
 293static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
 294
 295static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
 296
 297/*
 298 * This is ugly, but preserves the userspace API for existing cpuset
 299 * users. If someone tries to mount the "cpuset" filesystem, we
 300 * silently switch it to mount "cgroup" instead
 301 */
 302static struct dentry *cpuset_mount(struct file_system_type *fs_type,
 303                         int flags, const char *unused_dev_name, void *data)
 304{
 305        struct file_system_type *cgroup_fs = get_fs_type("cgroup");
 306        struct dentry *ret = ERR_PTR(-ENODEV);
 307        if (cgroup_fs) {
 308                char mountopts[] =
 309                        "cpuset,noprefix,"
 310                        "release_agent=/sbin/cpuset_release_agent";
 311                ret = cgroup_fs->mount(cgroup_fs, flags,
 312                                           unused_dev_name, mountopts);
 313                put_filesystem(cgroup_fs);
 314        }
 315        return ret;
 316}
 317
 318static struct file_system_type cpuset_fs_type = {
 319        .name = "cpuset",
 320        .mount = cpuset_mount,
 321};
 322
 323/*
 324 * Return in pmask the portion of a cpusets's cpus_allowed that
 325 * are online.  If none are online, walk up the cpuset hierarchy
 326 * until we find one that does have some online cpus.  The top
 327 * cpuset always has some cpus online.
 328 *
 329 * One way or another, we guarantee to return some non-empty subset
 330 * of cpu_online_mask.
 331 *
 332 * Call with callback_lock or cpuset_mutex held.
 333 */
 334static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
 335{
 336        while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
 337                cs = parent_cs(cs);
 338        cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
 339}
 340
 341/*
 342 * Return in *pmask the portion of a cpusets's mems_allowed that
 343 * are online, with memory.  If none are online with memory, walk
 344 * up the cpuset hierarchy until we find one that does have some
 345 * online mems.  The top cpuset always has some mems online.
 346 *
 347 * One way or another, we guarantee to return some non-empty subset
 348 * of node_states[N_MEMORY].
 349 *
 350 * Call with callback_lock or cpuset_mutex held.
 351 */
 352static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
 353{
 354        while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
 355                cs = parent_cs(cs);
 356        nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
 357}
 358
 359/*
 360 * update task's spread flag if cpuset's page/slab spread flag is set
 361 *
 362 * Call with callback_lock or cpuset_mutex held.
 363 */
 364static void cpuset_update_task_spread_flag(struct cpuset *cs,
 365                                        struct task_struct *tsk)
 366{
 367        if (is_spread_page(cs))
 368                task_set_spread_page(tsk);
 369        else
 370                task_clear_spread_page(tsk);
 371
 372        if (is_spread_slab(cs))
 373                task_set_spread_slab(tsk);
 374        else
 375                task_clear_spread_slab(tsk);
 376}
 377
 378/*
 379 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 380 *
 381 * One cpuset is a subset of another if all its allowed CPUs and
 382 * Memory Nodes are a subset of the other, and its exclusive flags
 383 * are only set if the other's are set.  Call holding cpuset_mutex.
 384 */
 385
 386static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
 387{
 388        return  cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
 389                nodes_subset(p->mems_allowed, q->mems_allowed) &&
 390                is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
 391                is_mem_exclusive(p) <= is_mem_exclusive(q);
 392}
 393
 394/**
 395 * alloc_trial_cpuset - allocate a trial cpuset
 396 * @cs: the cpuset that the trial cpuset duplicates
 397 */
 398static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
 399{
 400        struct cpuset *trial;
 401
 402        trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
 403        if (!trial)
 404                return NULL;
 405
 406        if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
 407                goto free_cs;
 408        if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
 409                goto free_cpus;
 410
 411        cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
 412        cpumask_copy(trial->effective_cpus, cs->effective_cpus);
 413        return trial;
 414
 415free_cpus:
 416        free_cpumask_var(trial->cpus_allowed);
 417free_cs:
 418        kfree(trial);
 419        return NULL;
 420}
 421
 422/**
 423 * free_trial_cpuset - free the trial cpuset
 424 * @trial: the trial cpuset to be freed
 425 */
 426static void free_trial_cpuset(struct cpuset *trial)
 427{
 428        free_cpumask_var(trial->effective_cpus);
 429        free_cpumask_var(trial->cpus_allowed);
 430        kfree(trial);
 431}
 432
 433/*
 434 * validate_change() - Used to validate that any proposed cpuset change
 435 *                     follows the structural rules for cpusets.
 436 *
 437 * If we replaced the flag and mask values of the current cpuset
 438 * (cur) with those values in the trial cpuset (trial), would
 439 * our various subset and exclusive rules still be valid?  Presumes
 440 * cpuset_mutex held.
 441 *
 442 * 'cur' is the address of an actual, in-use cpuset.  Operations
 443 * such as list traversal that depend on the actual address of the
 444 * cpuset in the list must use cur below, not trial.
 445 *
 446 * 'trial' is the address of bulk structure copy of cur, with
 447 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 448 * or flags changed to new, trial values.
 449 *
 450 * Return 0 if valid, -errno if not.
 451 */
 452
 453static int validate_change(struct cpuset *cur, struct cpuset *trial)
 454{
 455        struct cgroup_subsys_state *css;
 456        struct cpuset *c, *par;
 457        int ret;
 458
 459        rcu_read_lock();
 460
 461        /* Each of our child cpusets must be a subset of us */
 462        ret = -EBUSY;
 463        cpuset_for_each_child(c, css, cur)
 464                if (!is_cpuset_subset(c, trial))
 465                        goto out;
 466
 467        /* Remaining checks don't apply to root cpuset */
 468        ret = 0;
 469        if (cur == &top_cpuset)
 470                goto out;
 471
 472        par = parent_cs(cur);
 473
 474        /* On legacy hiearchy, we must be a subset of our parent cpuset. */
 475        ret = -EACCES;
 476        if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
 477                goto out;
 478
 479        /*
 480         * If either I or some sibling (!= me) is exclusive, we can't
 481         * overlap
 482         */
 483        ret = -EINVAL;
 484        cpuset_for_each_child(c, css, par) {
 485                if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
 486                    c != cur &&
 487                    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
 488                        goto out;
 489                if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
 490                    c != cur &&
 491                    nodes_intersects(trial->mems_allowed, c->mems_allowed))
 492                        goto out;
 493        }
 494
 495        /*
 496         * Cpusets with tasks - existing or newly being attached - can't
 497         * be changed to have empty cpus_allowed or mems_allowed.
 498         */
 499        ret = -ENOSPC;
 500        if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
 501                if (!cpumask_empty(cur->cpus_allowed) &&
 502                    cpumask_empty(trial->cpus_allowed))
 503                        goto out;
 504                if (!nodes_empty(cur->mems_allowed) &&
 505                    nodes_empty(trial->mems_allowed))
 506                        goto out;
 507        }
 508
 509        /*
 510         * We can't shrink if we won't have enough room for SCHED_DEADLINE
 511         * tasks.
 512         */
 513        ret = -EBUSY;
 514        if (is_cpu_exclusive(cur) &&
 515            !cpuset_cpumask_can_shrink(cur->cpus_allowed,
 516                                       trial->cpus_allowed))
 517                goto out;
 518
 519        ret = 0;
 520out:
 521        rcu_read_unlock();
 522        return ret;
 523}
 524
 525#ifdef CONFIG_SMP
 526/*
 527 * Helper routine for generate_sched_domains().
 528 * Do cpusets a, b have overlapping effective cpus_allowed masks?
 529 */
 530static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
 531{
 532        return cpumask_intersects(a->effective_cpus, b->effective_cpus);
 533}
 534
 535static void
 536update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
 537{
 538        if (dattr->relax_domain_level < c->relax_domain_level)
 539                dattr->relax_domain_level = c->relax_domain_level;
 540        return;
 541}
 542
 543static void update_domain_attr_tree(struct sched_domain_attr *dattr,
 544                                    struct cpuset *root_cs)
 545{
 546        struct cpuset *cp;
 547        struct cgroup_subsys_state *pos_css;
 548
 549        rcu_read_lock();
 550        cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
 551                /* skip the whole subtree if @cp doesn't have any CPU */
 552                if (cpumask_empty(cp->cpus_allowed)) {
 553                        pos_css = css_rightmost_descendant(pos_css);
 554                        continue;
 555                }
 556
 557                if (is_sched_load_balance(cp))
 558                        update_domain_attr(dattr, cp);
 559        }
 560        rcu_read_unlock();
 561}
 562
 563/*
 564 * generate_sched_domains()
 565 *
 566 * This function builds a partial partition of the systems CPUs
 567 * A 'partial partition' is a set of non-overlapping subsets whose
 568 * union is a subset of that set.
 569 * The output of this function needs to be passed to kernel/sched/core.c
 570 * partition_sched_domains() routine, which will rebuild the scheduler's
 571 * load balancing domains (sched domains) as specified by that partial
 572 * partition.
 573 *
 574 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
 575 * for a background explanation of this.
 576 *
 577 * Does not return errors, on the theory that the callers of this
 578 * routine would rather not worry about failures to rebuild sched
 579 * domains when operating in the severe memory shortage situations
 580 * that could cause allocation failures below.
 581 *
 582 * Must be called with cpuset_mutex held.
 583 *
 584 * The three key local variables below are:
 585 *    q  - a linked-list queue of cpuset pointers, used to implement a
 586 *         top-down scan of all cpusets.  This scan loads a pointer
 587 *         to each cpuset marked is_sched_load_balance into the
 588 *         array 'csa'.  For our purposes, rebuilding the schedulers
 589 *         sched domains, we can ignore !is_sched_load_balance cpusets.
 590 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 591 *         that need to be load balanced, for convenient iterative
 592 *         access by the subsequent code that finds the best partition,
 593 *         i.e the set of domains (subsets) of CPUs such that the
 594 *         cpus_allowed of every cpuset marked is_sched_load_balance
 595 *         is a subset of one of these domains, while there are as
 596 *         many such domains as possible, each as small as possible.
 597 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 598 *         the kernel/sched/core.c routine partition_sched_domains() in a
 599 *         convenient format, that can be easily compared to the prior
 600 *         value to determine what partition elements (sched domains)
 601 *         were changed (added or removed.)
 602 *
 603 * Finding the best partition (set of domains):
 604 *      The triple nested loops below over i, j, k scan over the
 605 *      load balanced cpusets (using the array of cpuset pointers in
 606 *      csa[]) looking for pairs of cpusets that have overlapping
 607 *      cpus_allowed, but which don't have the same 'pn' partition
 608 *      number and gives them in the same partition number.  It keeps
 609 *      looping on the 'restart' label until it can no longer find
 610 *      any such pairs.
 611 *
 612 *      The union of the cpus_allowed masks from the set of
 613 *      all cpusets having the same 'pn' value then form the one
 614 *      element of the partition (one sched domain) to be passed to
 615 *      partition_sched_domains().
 616 */
 617static int generate_sched_domains(cpumask_var_t **domains,
 618                        struct sched_domain_attr **attributes)
 619{
 620        struct cpuset *cp;      /* scans q */
 621        struct cpuset **csa;    /* array of all cpuset ptrs */
 622        int csn;                /* how many cpuset ptrs in csa so far */
 623        int i, j, k;            /* indices for partition finding loops */
 624        cpumask_var_t *doms;    /* resulting partition; i.e. sched domains */
 625        struct sched_domain_attr *dattr;  /* attributes for custom domains */
 626        int ndoms = 0;          /* number of sched domains in result */
 627        int nslot;              /* next empty doms[] struct cpumask slot */
 628        struct cgroup_subsys_state *pos_css;
 629
 630        doms = NULL;
 631        dattr = NULL;
 632        csa = NULL;
 633
 634        /* Special case for the 99% of systems with one, full, sched domain */
 635        if (is_sched_load_balance(&top_cpuset)) {
 636                ndoms = 1;
 637                doms = alloc_sched_domains(ndoms);
 638                if (!doms)
 639                        goto done;
 640
 641                dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
 642                if (dattr) {
 643                        *dattr = SD_ATTR_INIT;
 644                        update_domain_attr_tree(dattr, &top_cpuset);
 645                }
 646                cpumask_copy(doms[0], top_cpuset.effective_cpus);
 647
 648                goto done;
 649        }
 650
 651        csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
 652        if (!csa)
 653                goto done;
 654        csn = 0;
 655
 656        rcu_read_lock();
 657        cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
 658                if (cp == &top_cpuset)
 659                        continue;
 660                /*
 661                 * Continue traversing beyond @cp iff @cp has some CPUs and
 662                 * isn't load balancing.  The former is obvious.  The
 663                 * latter: All child cpusets contain a subset of the
 664                 * parent's cpus, so just skip them, and then we call
 665                 * update_domain_attr_tree() to calc relax_domain_level of
 666                 * the corresponding sched domain.
 667                 */
 668                if (!cpumask_empty(cp->cpus_allowed) &&
 669                    !is_sched_load_balance(cp))
 670                        continue;
 671
 672                if (is_sched_load_balance(cp))
 673                        csa[csn++] = cp;
 674
 675                /* skip @cp's subtree */
 676                pos_css = css_rightmost_descendant(pos_css);
 677        }
 678        rcu_read_unlock();
 679
 680        for (i = 0; i < csn; i++)
 681                csa[i]->pn = i;
 682        ndoms = csn;
 683
 684restart:
 685        /* Find the best partition (set of sched domains) */
 686        for (i = 0; i < csn; i++) {
 687                struct cpuset *a = csa[i];
 688                int apn = a->pn;
 689
 690                for (j = 0; j < csn; j++) {
 691                        struct cpuset *b = csa[j];
 692                        int bpn = b->pn;
 693
 694                        if (apn != bpn && cpusets_overlap(a, b)) {
 695                                for (k = 0; k < csn; k++) {
 696                                        struct cpuset *c = csa[k];
 697
 698                                        if (c->pn == bpn)
 699                                                c->pn = apn;
 700                                }
 701                                ndoms--;        /* one less element */
 702                                goto restart;
 703                        }
 704                }
 705        }
 706
 707        /*
 708         * Now we know how many domains to create.
 709         * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
 710         */
 711        doms = alloc_sched_domains(ndoms);
 712        if (!doms)
 713                goto done;
 714
 715        /*
 716         * The rest of the code, including the scheduler, can deal with
 717         * dattr==NULL case. No need to abort if alloc fails.
 718         */
 719        dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
 720
 721        for (nslot = 0, i = 0; i < csn; i++) {
 722                struct cpuset *a = csa[i];
 723                struct cpumask *dp;
 724                int apn = a->pn;
 725
 726                if (apn < 0) {
 727                        /* Skip completed partitions */
 728                        continue;
 729                }
 730
 731                dp = doms[nslot];
 732
 733                if (nslot == ndoms) {
 734                        static int warnings = 10;
 735                        if (warnings) {
 736                                pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
 737                                        nslot, ndoms, csn, i, apn);
 738                                warnings--;
 739                        }
 740                        continue;
 741                }
 742
 743                cpumask_clear(dp);
 744                if (dattr)
 745                        *(dattr + nslot) = SD_ATTR_INIT;
 746                for (j = i; j < csn; j++) {
 747                        struct cpuset *b = csa[j];
 748
 749                        if (apn == b->pn) {
 750                                cpumask_or(dp, dp, b->effective_cpus);
 751                                if (dattr)
 752                                        update_domain_attr_tree(dattr + nslot, b);
 753
 754                                /* Done with this partition */
 755                                b->pn = -1;
 756                        }
 757                }
 758                nslot++;
 759        }
 760        BUG_ON(nslot != ndoms);
 761
 762done:
 763        kfree(csa);
 764
 765        /*
 766         * Fallback to the default domain if kmalloc() failed.
 767         * See comments in partition_sched_domains().
 768         */
 769        if (doms == NULL)
 770                ndoms = 1;
 771
 772        *domains    = doms;
 773        *attributes = dattr;
 774        return ndoms;
 775}
 776
 777/*
 778 * Rebuild scheduler domains.
 779 *
 780 * If the flag 'sched_load_balance' of any cpuset with non-empty
 781 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 782 * which has that flag enabled, or if any cpuset with a non-empty
 783 * 'cpus' is removed, then call this routine to rebuild the
 784 * scheduler's dynamic sched domains.
 785 *
 786 * Call with cpuset_mutex held.  Takes get_online_cpus().
 787 */
 788static void rebuild_sched_domains_locked(void)
 789{
 790        struct sched_domain_attr *attr;
 791        cpumask_var_t *doms;
 792        int ndoms;
 793
 794        lockdep_assert_held(&cpuset_mutex);
 795        get_online_cpus();
 796
 797        /*
 798         * We have raced with CPU hotplug. Don't do anything to avoid
 799         * passing doms with offlined cpu to partition_sched_domains().
 800         * Anyways, hotplug work item will rebuild sched domains.
 801         */
 802        if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
 803                goto out;
 804
 805        /* Generate domain masks and attrs */
 806        ndoms = generate_sched_domains(&doms, &attr);
 807
 808        /* Have scheduler rebuild the domains */
 809        partition_sched_domains(ndoms, doms, attr);
 810out:
 811        put_online_cpus();
 812}
 813#else /* !CONFIG_SMP */
 814static void rebuild_sched_domains_locked(void)
 815{
 816}
 817#endif /* CONFIG_SMP */
 818
 819void rebuild_sched_domains(void)
 820{
 821        mutex_lock(&cpuset_mutex);
 822        rebuild_sched_domains_locked();
 823        mutex_unlock(&cpuset_mutex);
 824}
 825
 826/**
 827 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 828 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 829 *
 830 * Iterate through each task of @cs updating its cpus_allowed to the
 831 * effective cpuset's.  As this function is called with cpuset_mutex held,
 832 * cpuset membership stays stable.
 833 */
 834static void update_tasks_cpumask(struct cpuset *cs)
 835{
 836        struct css_task_iter it;
 837        struct task_struct *task;
 838
 839        css_task_iter_start(&cs->css, &it);
 840        while ((task = css_task_iter_next(&it)))
 841                set_cpus_allowed_ptr(task, cs->effective_cpus);
 842        css_task_iter_end(&it);
 843}
 844
 845/*
 846 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 847 * @cs: the cpuset to consider
 848 * @new_cpus: temp variable for calculating new effective_cpus
 849 *
 850 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 851 * and all its descendants need to be updated.
 852 *
 853 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
 854 *
 855 * Called with cpuset_mutex held
 856 */
 857static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
 858{
 859        struct cpuset *cp;
 860        struct cgroup_subsys_state *pos_css;
 861        bool need_rebuild_sched_domains = false;
 862
 863        rcu_read_lock();
 864        cpuset_for_each_descendant_pre(cp, pos_css, cs) {
 865                struct cpuset *parent = parent_cs(cp);
 866
 867                cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
 868
 869                /*
 870                 * If it becomes empty, inherit the effective mask of the
 871                 * parent, which is guaranteed to have some CPUs.
 872                 */
 873                if (cgroup_on_dfl(cp->css.cgroup) && cpumask_empty(new_cpus))
 874                        cpumask_copy(new_cpus, parent->effective_cpus);
 875
 876                /* Skip the whole subtree if the cpumask remains the same. */
 877                if (cpumask_equal(new_cpus, cp->effective_cpus)) {
 878                        pos_css = css_rightmost_descendant(pos_css);
 879                        continue;
 880                }
 881
 882                if (!css_tryget_online(&cp->css))
 883                        continue;
 884                rcu_read_unlock();
 885
 886                spin_lock_irq(&callback_lock);
 887                cpumask_copy(cp->effective_cpus, new_cpus);
 888                spin_unlock_irq(&callback_lock);
 889
 890                WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
 891                        !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
 892
 893                update_tasks_cpumask(cp);
 894
 895                /*
 896                 * If the effective cpumask of any non-empty cpuset is changed,
 897                 * we need to rebuild sched domains.
 898                 */
 899                if (!cpumask_empty(cp->cpus_allowed) &&
 900                    is_sched_load_balance(cp))
 901                        need_rebuild_sched_domains = true;
 902
 903                rcu_read_lock();
 904                css_put(&cp->css);
 905        }
 906        rcu_read_unlock();
 907
 908        if (need_rebuild_sched_domains)
 909                rebuild_sched_domains_locked();
 910}
 911
 912/**
 913 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 914 * @cs: the cpuset to consider
 915 * @trialcs: trial cpuset
 916 * @buf: buffer of cpu numbers written to this cpuset
 917 */
 918static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
 919                          const char *buf)
 920{
 921        int retval;
 922
 923        /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
 924        if (cs == &top_cpuset)
 925                return -EACCES;
 926
 927        /*
 928         * An empty cpus_allowed is ok only if the cpuset has no tasks.
 929         * Since cpulist_parse() fails on an empty mask, we special case
 930         * that parsing.  The validate_change() call ensures that cpusets
 931         * with tasks have cpus.
 932         */
 933        if (!*buf) {
 934                cpumask_clear(trialcs->cpus_allowed);
 935        } else {
 936                retval = cpulist_parse(buf, trialcs->cpus_allowed);
 937                if (retval < 0)
 938                        return retval;
 939
 940                if (!cpumask_subset(trialcs->cpus_allowed,
 941                                    top_cpuset.cpus_allowed))
 942                        return -EINVAL;
 943        }
 944
 945        /* Nothing to do if the cpus didn't change */
 946        if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
 947                return 0;
 948
 949        retval = validate_change(cs, trialcs);
 950        if (retval < 0)
 951                return retval;
 952
 953        spin_lock_irq(&callback_lock);
 954        cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
 955        spin_unlock_irq(&callback_lock);
 956
 957        /* use trialcs->cpus_allowed as a temp variable */
 958        update_cpumasks_hier(cs, trialcs->cpus_allowed);
 959        return 0;
 960}
 961
 962/*
 963 * cpuset_migrate_mm
 964 *
 965 *    Migrate memory region from one set of nodes to another.
 966 *
 967 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 968 *    so that the migration code can allocate pages on these nodes.
 969 *
 970 *    While the mm_struct we are migrating is typically from some
 971 *    other task, the task_struct mems_allowed that we are hacking
 972 *    is for our current task, which must allocate new pages for that
 973 *    migrating memory region.
 974 */
 975
 976static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
 977                                                        const nodemask_t *to)
 978{
 979        struct task_struct *tsk = current;
 980
 981        tsk->mems_allowed = *to;
 982
 983        do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
 984
 985        rcu_read_lock();
 986        guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
 987        rcu_read_unlock();
 988}
 989
 990/*
 991 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 992 * @tsk: the task to change
 993 * @newmems: new nodes that the task will be set
 994 *
 995 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 996 * we structure updates as setting all new allowed nodes, then clearing newly
 997 * disallowed ones.
 998 */
 999static void cpuset_change_task_nodemask(struct task_struct *tsk,
1000                                        nodemask_t *newmems)
1001{
1002        bool need_loop;
1003
1004        /*
1005         * Allow tasks that have access to memory reserves because they have
1006         * been OOM killed to get memory anywhere.
1007         */
1008        if (unlikely(test_thread_flag(TIF_MEMDIE)))
1009                return;
1010        if (current->flags & PF_EXITING) /* Let dying task have memory */
1011                return;
1012
1013        task_lock(tsk);
1014        /*
1015         * Determine if a loop is necessary if another thread is doing
1016         * read_mems_allowed_begin().  If at least one node remains unchanged and
1017         * tsk does not have a mempolicy, then an empty nodemask will not be
1018         * possible when mems_allowed is larger than a word.
1019         */
1020        need_loop = task_has_mempolicy(tsk) ||
1021                        !nodes_intersects(*newmems, tsk->mems_allowed);
1022
1023        if (need_loop) {
1024                local_irq_disable();
1025                write_seqcount_begin(&tsk->mems_allowed_seq);
1026        }
1027
1028        nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1029        mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1030
1031        mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1032        tsk->mems_allowed = *newmems;
1033
1034        if (need_loop) {
1035                write_seqcount_end(&tsk->mems_allowed_seq);
1036                local_irq_enable();
1037        }
1038
1039        task_unlock(tsk);
1040}
1041
1042static void *cpuset_being_rebound;
1043
1044/**
1045 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1046 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1047 *
1048 * Iterate through each task of @cs updating its mems_allowed to the
1049 * effective cpuset's.  As this function is called with cpuset_mutex held,
1050 * cpuset membership stays stable.
1051 */
1052static void update_tasks_nodemask(struct cpuset *cs)
1053{
1054        static nodemask_t newmems;      /* protected by cpuset_mutex */
1055        struct css_task_iter it;
1056        struct task_struct *task;
1057
1058        cpuset_being_rebound = cs;              /* causes mpol_dup() rebind */
1059
1060        guarantee_online_mems(cs, &newmems);
1061
1062        /*
1063         * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1064         * take while holding tasklist_lock.  Forks can happen - the
1065         * mpol_dup() cpuset_being_rebound check will catch such forks,
1066         * and rebind their vma mempolicies too.  Because we still hold
1067         * the global cpuset_mutex, we know that no other rebind effort
1068         * will be contending for the global variable cpuset_being_rebound.
1069         * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1070         * is idempotent.  Also migrate pages in each mm to new nodes.
1071         */
1072        css_task_iter_start(&cs->css, &it);
1073        while ((task = css_task_iter_next(&it))) {
1074                struct mm_struct *mm;
1075                bool migrate;
1076
1077                cpuset_change_task_nodemask(task, &newmems);
1078
1079                mm = get_task_mm(task);
1080                if (!mm)
1081                        continue;
1082
1083                migrate = is_memory_migrate(cs);
1084
1085                mpol_rebind_mm(mm, &cs->mems_allowed);
1086                if (migrate)
1087                        cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1088                mmput(mm);
1089        }
1090        css_task_iter_end(&it);
1091
1092        /*
1093         * All the tasks' nodemasks have been updated, update
1094         * cs->old_mems_allowed.
1095         */
1096        cs->old_mems_allowed = newmems;
1097
1098        /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1099        cpuset_being_rebound = NULL;
1100}
1101
1102/*
1103 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1104 * @cs: the cpuset to consider
1105 * @new_mems: a temp variable for calculating new effective_mems
1106 *
1107 * When configured nodemask is changed, the effective nodemasks of this cpuset
1108 * and all its descendants need to be updated.
1109 *
1110 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1111 *
1112 * Called with cpuset_mutex held
1113 */
1114static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1115{
1116        struct cpuset *cp;
1117        struct cgroup_subsys_state *pos_css;
1118
1119        rcu_read_lock();
1120        cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1121                struct cpuset *parent = parent_cs(cp);
1122
1123                nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1124
1125                /*
1126                 * If it becomes empty, inherit the effective mask of the
1127                 * parent, which is guaranteed to have some MEMs.
1128                 */
1129                if (cgroup_on_dfl(cp->css.cgroup) && nodes_empty(*new_mems))
1130                        *new_mems = parent->effective_mems;
1131
1132                /* Skip the whole subtree if the nodemask remains the same. */
1133                if (nodes_equal(*new_mems, cp->effective_mems)) {
1134                        pos_css = css_rightmost_descendant(pos_css);
1135                        continue;
1136                }
1137
1138                if (!css_tryget_online(&cp->css))
1139                        continue;
1140                rcu_read_unlock();
1141
1142                spin_lock_irq(&callback_lock);
1143                cp->effective_mems = *new_mems;
1144                spin_unlock_irq(&callback_lock);
1145
1146                WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
1147                        !nodes_equal(cp->mems_allowed, cp->effective_mems));
1148
1149                update_tasks_nodemask(cp);
1150
1151                rcu_read_lock();
1152                css_put(&cp->css);
1153        }
1154        rcu_read_unlock();
1155}
1156
1157/*
1158 * Handle user request to change the 'mems' memory placement
1159 * of a cpuset.  Needs to validate the request, update the
1160 * cpusets mems_allowed, and for each task in the cpuset,
1161 * update mems_allowed and rebind task's mempolicy and any vma
1162 * mempolicies and if the cpuset is marked 'memory_migrate',
1163 * migrate the tasks pages to the new memory.
1164 *
1165 * Call with cpuset_mutex held. May take callback_lock during call.
1166 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1167 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1168 * their mempolicies to the cpusets new mems_allowed.
1169 */
1170static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1171                           const char *buf)
1172{
1173        int retval;
1174
1175        /*
1176         * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1177         * it's read-only
1178         */
1179        if (cs == &top_cpuset) {
1180                retval = -EACCES;
1181                goto done;
1182        }
1183
1184        /*
1185         * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1186         * Since nodelist_parse() fails on an empty mask, we special case
1187         * that parsing.  The validate_change() call ensures that cpusets
1188         * with tasks have memory.
1189         */
1190        if (!*buf) {
1191                nodes_clear(trialcs->mems_allowed);
1192        } else {
1193                retval = nodelist_parse(buf, trialcs->mems_allowed);
1194                if (retval < 0)
1195                        goto done;
1196
1197                if (!nodes_subset(trialcs->mems_allowed,
1198                                  top_cpuset.mems_allowed)) {
1199                        retval = -EINVAL;
1200                        goto done;
1201                }
1202        }
1203
1204        if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1205                retval = 0;             /* Too easy - nothing to do */
1206                goto done;
1207        }
1208        retval = validate_change(cs, trialcs);
1209        if (retval < 0)
1210                goto done;
1211
1212        spin_lock_irq(&callback_lock);
1213        cs->mems_allowed = trialcs->mems_allowed;
1214        spin_unlock_irq(&callback_lock);
1215
1216        /* use trialcs->mems_allowed as a temp variable */
1217        update_nodemasks_hier(cs, &cs->mems_allowed);
1218done:
1219        return retval;
1220}
1221
1222int current_cpuset_is_being_rebound(void)
1223{
1224        int ret;
1225
1226        rcu_read_lock();
1227        ret = task_cs(current) == cpuset_being_rebound;
1228        rcu_read_unlock();
1229
1230        return ret;
1231}
1232
1233static int update_relax_domain_level(struct cpuset *cs, s64 val)
1234{
1235#ifdef CONFIG_SMP
1236        if (val < -1 || val >= sched_domain_level_max)
1237                return -EINVAL;
1238#endif
1239
1240        if (val != cs->relax_domain_level) {
1241                cs->relax_domain_level = val;
1242                if (!cpumask_empty(cs->cpus_allowed) &&
1243                    is_sched_load_balance(cs))
1244                        rebuild_sched_domains_locked();
1245        }
1246
1247        return 0;
1248}
1249
1250/**
1251 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1252 * @cs: the cpuset in which each task's spread flags needs to be changed
1253 *
1254 * Iterate through each task of @cs updating its spread flags.  As this
1255 * function is called with cpuset_mutex held, cpuset membership stays
1256 * stable.
1257 */
1258static void update_tasks_flags(struct cpuset *cs)
1259{
1260        struct css_task_iter it;
1261        struct task_struct *task;
1262
1263        css_task_iter_start(&cs->css, &it);
1264        while ((task = css_task_iter_next(&it)))
1265                cpuset_update_task_spread_flag(cs, task);
1266        css_task_iter_end(&it);
1267}
1268
1269/*
1270 * update_flag - read a 0 or a 1 in a file and update associated flag
1271 * bit:         the bit to update (see cpuset_flagbits_t)
1272 * cs:          the cpuset to update
1273 * turning_on:  whether the flag is being set or cleared
1274 *
1275 * Call with cpuset_mutex held.
1276 */
1277
1278static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1279                       int turning_on)
1280{
1281        struct cpuset *trialcs;
1282        int balance_flag_changed;
1283        int spread_flag_changed;
1284        int err;
1285
1286        trialcs = alloc_trial_cpuset(cs);
1287        if (!trialcs)
1288                return -ENOMEM;
1289
1290        if (turning_on)
1291                set_bit(bit, &trialcs->flags);
1292        else
1293                clear_bit(bit, &trialcs->flags);
1294
1295        err = validate_change(cs, trialcs);
1296        if (err < 0)
1297                goto out;
1298
1299        balance_flag_changed = (is_sched_load_balance(cs) !=
1300                                is_sched_load_balance(trialcs));
1301
1302        spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1303                        || (is_spread_page(cs) != is_spread_page(trialcs)));
1304
1305        spin_lock_irq(&callback_lock);
1306        cs->flags = trialcs->flags;
1307        spin_unlock_irq(&callback_lock);
1308
1309        if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1310                rebuild_sched_domains_locked();
1311
1312        if (spread_flag_changed)
1313                update_tasks_flags(cs);
1314out:
1315        free_trial_cpuset(trialcs);
1316        return err;
1317}
1318
1319/*
1320 * Frequency meter - How fast is some event occurring?
1321 *
1322 * These routines manage a digitally filtered, constant time based,
1323 * event frequency meter.  There are four routines:
1324 *   fmeter_init() - initialize a frequency meter.
1325 *   fmeter_markevent() - called each time the event happens.
1326 *   fmeter_getrate() - returns the recent rate of such events.
1327 *   fmeter_update() - internal routine used to update fmeter.
1328 *
1329 * A common data structure is passed to each of these routines,
1330 * which is used to keep track of the state required to manage the
1331 * frequency meter and its digital filter.
1332 *
1333 * The filter works on the number of events marked per unit time.
1334 * The filter is single-pole low-pass recursive (IIR).  The time unit
1335 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1336 * simulate 3 decimal digits of precision (multiplied by 1000).
1337 *
1338 * With an FM_COEF of 933, and a time base of 1 second, the filter
1339 * has a half-life of 10 seconds, meaning that if the events quit
1340 * happening, then the rate returned from the fmeter_getrate()
1341 * will be cut in half each 10 seconds, until it converges to zero.
1342 *
1343 * It is not worth doing a real infinitely recursive filter.  If more
1344 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1345 * just compute FM_MAXTICKS ticks worth, by which point the level
1346 * will be stable.
1347 *
1348 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1349 * arithmetic overflow in the fmeter_update() routine.
1350 *
1351 * Given the simple 32 bit integer arithmetic used, this meter works
1352 * best for reporting rates between one per millisecond (msec) and
1353 * one per 32 (approx) seconds.  At constant rates faster than one
1354 * per msec it maxes out at values just under 1,000,000.  At constant
1355 * rates between one per msec, and one per second it will stabilize
1356 * to a value N*1000, where N is the rate of events per second.
1357 * At constant rates between one per second and one per 32 seconds,
1358 * it will be choppy, moving up on the seconds that have an event,
1359 * and then decaying until the next event.  At rates slower than
1360 * about one in 32 seconds, it decays all the way back to zero between
1361 * each event.
1362 */
1363
1364#define FM_COEF 933             /* coefficient for half-life of 10 secs */
1365#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1366#define FM_MAXCNT 1000000       /* limit cnt to avoid overflow */
1367#define FM_SCALE 1000           /* faux fixed point scale */
1368
1369/* Initialize a frequency meter */
1370static void fmeter_init(struct fmeter *fmp)
1371{
1372        fmp->cnt = 0;
1373        fmp->val = 0;
1374        fmp->time = 0;
1375        spin_lock_init(&fmp->lock);
1376}
1377
1378/* Internal meter update - process cnt events and update value */
1379static void fmeter_update(struct fmeter *fmp)
1380{
1381        time_t now = get_seconds();
1382        time_t ticks = now - fmp->time;
1383
1384        if (ticks == 0)
1385                return;
1386
1387        ticks = min(FM_MAXTICKS, ticks);
1388        while (ticks-- > 0)
1389                fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1390        fmp->time = now;
1391
1392        fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1393        fmp->cnt = 0;
1394}
1395
1396/* Process any previous ticks, then bump cnt by one (times scale). */
1397static void fmeter_markevent(struct fmeter *fmp)
1398{
1399        spin_lock(&fmp->lock);
1400        fmeter_update(fmp);
1401        fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1402        spin_unlock(&fmp->lock);
1403}
1404
1405/* Process any previous ticks, then return current value. */
1406static int fmeter_getrate(struct fmeter *fmp)
1407{
1408        int val;
1409
1410        spin_lock(&fmp->lock);
1411        fmeter_update(fmp);
1412        val = fmp->val;
1413        spin_unlock(&fmp->lock);
1414        return val;
1415}
1416
1417static struct cpuset *cpuset_attach_old_cs;
1418
1419/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1420static int cpuset_can_attach(struct cgroup_subsys_state *css,
1421                             struct cgroup_taskset *tset)
1422{
1423        struct cpuset *cs = css_cs(css);
1424        struct task_struct *task;
1425        int ret;
1426
1427        /* used later by cpuset_attach() */
1428        cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1429
1430        mutex_lock(&cpuset_mutex);
1431
1432        /* allow moving tasks into an empty cpuset if on default hierarchy */
1433        ret = -ENOSPC;
1434        if (!cgroup_on_dfl(css->cgroup) &&
1435            (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1436                goto out_unlock;
1437
1438        cgroup_taskset_for_each(task, tset) {
1439                ret = task_can_attach(task, cs->cpus_allowed);
1440                if (ret)
1441                        goto out_unlock;
1442                ret = security_task_setscheduler(task);
1443                if (ret)
1444                        goto out_unlock;
1445        }
1446
1447        /*
1448         * Mark attach is in progress.  This makes validate_change() fail
1449         * changes which zero cpus/mems_allowed.
1450         */
1451        cs->attach_in_progress++;
1452        ret = 0;
1453out_unlock:
1454        mutex_unlock(&cpuset_mutex);
1455        return ret;
1456}
1457
1458static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1459                                 struct cgroup_taskset *tset)
1460{
1461        mutex_lock(&cpuset_mutex);
1462        css_cs(css)->attach_in_progress--;
1463        mutex_unlock(&cpuset_mutex);
1464}
1465
1466/*
1467 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1468 * but we can't allocate it dynamically there.  Define it global and
1469 * allocate from cpuset_init().
1470 */
1471static cpumask_var_t cpus_attach;
1472
1473static void cpuset_attach(struct cgroup_subsys_state *css,
1474                          struct cgroup_taskset *tset)
1475{
1476        /* static buf protected by cpuset_mutex */
1477        static nodemask_t cpuset_attach_nodemask_to;
1478        struct mm_struct *mm;
1479        struct task_struct *task;
1480        struct task_struct *leader = cgroup_taskset_first(tset);
1481        struct cpuset *cs = css_cs(css);
1482        struct cpuset *oldcs = cpuset_attach_old_cs;
1483
1484        mutex_lock(&cpuset_mutex);
1485
1486        /* prepare for attach */
1487        if (cs == &top_cpuset)
1488                cpumask_copy(cpus_attach, cpu_possible_mask);
1489        else
1490                guarantee_online_cpus(cs, cpus_attach);
1491
1492        guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1493
1494        cgroup_taskset_for_each(task, tset) {
1495                /*
1496                 * can_attach beforehand should guarantee that this doesn't
1497                 * fail.  TODO: have a better way to handle failure here
1498                 */
1499                WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1500
1501                cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1502                cpuset_update_task_spread_flag(cs, task);
1503        }
1504
1505        /*
1506         * Change mm, possibly for multiple threads in a threadgroup. This is
1507         * expensive and may sleep.
1508         */
1509        cpuset_attach_nodemask_to = cs->effective_mems;
1510        mm = get_task_mm(leader);
1511        if (mm) {
1512                mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1513
1514                /*
1515                 * old_mems_allowed is the same with mems_allowed here, except
1516                 * if this task is being moved automatically due to hotplug.
1517                 * In that case @mems_allowed has been updated and is empty,
1518                 * so @old_mems_allowed is the right nodesets that we migrate
1519                 * mm from.
1520                 */
1521                if (is_memory_migrate(cs)) {
1522                        cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1523                                          &cpuset_attach_nodemask_to);
1524                }
1525                mmput(mm);
1526        }
1527
1528        cs->old_mems_allowed = cpuset_attach_nodemask_to;
1529
1530        cs->attach_in_progress--;
1531        if (!cs->attach_in_progress)
1532                wake_up(&cpuset_attach_wq);
1533
1534        mutex_unlock(&cpuset_mutex);
1535}
1536
1537/* The various types of files and directories in a cpuset file system */
1538
1539typedef enum {
1540        FILE_MEMORY_MIGRATE,
1541        FILE_CPULIST,
1542        FILE_MEMLIST,
1543        FILE_EFFECTIVE_CPULIST,
1544        FILE_EFFECTIVE_MEMLIST,
1545        FILE_CPU_EXCLUSIVE,
1546        FILE_MEM_EXCLUSIVE,
1547        FILE_MEM_HARDWALL,
1548        FILE_SCHED_LOAD_BALANCE,
1549        FILE_SCHED_RELAX_DOMAIN_LEVEL,
1550        FILE_MEMORY_PRESSURE_ENABLED,
1551        FILE_MEMORY_PRESSURE,
1552        FILE_SPREAD_PAGE,
1553        FILE_SPREAD_SLAB,
1554} cpuset_filetype_t;
1555
1556static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1557                            u64 val)
1558{
1559        struct cpuset *cs = css_cs(css);
1560        cpuset_filetype_t type = cft->private;
1561        int retval = 0;
1562
1563        mutex_lock(&cpuset_mutex);
1564        if (!is_cpuset_online(cs)) {
1565                retval = -ENODEV;
1566                goto out_unlock;
1567        }
1568
1569        switch (type) {
1570        case FILE_CPU_EXCLUSIVE:
1571                retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1572                break;
1573        case FILE_MEM_EXCLUSIVE:
1574                retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1575                break;
1576        case FILE_MEM_HARDWALL:
1577                retval = update_flag(CS_MEM_HARDWALL, cs, val);
1578                break;
1579        case FILE_SCHED_LOAD_BALANCE:
1580                retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1581                break;
1582        case FILE_MEMORY_MIGRATE:
1583                retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1584                break;
1585        case FILE_MEMORY_PRESSURE_ENABLED:
1586                cpuset_memory_pressure_enabled = !!val;
1587                break;
1588        case FILE_MEMORY_PRESSURE:
1589                retval = -EACCES;
1590                break;
1591        case FILE_SPREAD_PAGE:
1592                retval = update_flag(CS_SPREAD_PAGE, cs, val);
1593                break;
1594        case FILE_SPREAD_SLAB:
1595                retval = update_flag(CS_SPREAD_SLAB, cs, val);
1596                break;
1597        default:
1598                retval = -EINVAL;
1599                break;
1600        }
1601out_unlock:
1602        mutex_unlock(&cpuset_mutex);
1603        return retval;
1604}
1605
1606static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1607                            s64 val)
1608{
1609        struct cpuset *cs = css_cs(css);
1610        cpuset_filetype_t type = cft->private;
1611        int retval = -ENODEV;
1612
1613        mutex_lock(&cpuset_mutex);
1614        if (!is_cpuset_online(cs))
1615                goto out_unlock;
1616
1617        switch (type) {
1618        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1619                retval = update_relax_domain_level(cs, val);
1620                break;
1621        default:
1622                retval = -EINVAL;
1623                break;
1624        }
1625out_unlock:
1626        mutex_unlock(&cpuset_mutex);
1627        return retval;
1628}
1629
1630/*
1631 * Common handling for a write to a "cpus" or "mems" file.
1632 */
1633static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1634                                    char *buf, size_t nbytes, loff_t off)
1635{
1636        struct cpuset *cs = css_cs(of_css(of));
1637        struct cpuset *trialcs;
1638        int retval = -ENODEV;
1639
1640        buf = strstrip(buf);
1641
1642        /*
1643         * CPU or memory hotunplug may leave @cs w/o any execution
1644         * resources, in which case the hotplug code asynchronously updates
1645         * configuration and transfers all tasks to the nearest ancestor
1646         * which can execute.
1647         *
1648         * As writes to "cpus" or "mems" may restore @cs's execution
1649         * resources, wait for the previously scheduled operations before
1650         * proceeding, so that we don't end up keep removing tasks added
1651         * after execution capability is restored.
1652         *
1653         * cpuset_hotplug_work calls back into cgroup core via
1654         * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1655         * operation like this one can lead to a deadlock through kernfs
1656         * active_ref protection.  Let's break the protection.  Losing the
1657         * protection is okay as we check whether @cs is online after
1658         * grabbing cpuset_mutex anyway.  This only happens on the legacy
1659         * hierarchies.
1660         */
1661        css_get(&cs->css);
1662        kernfs_break_active_protection(of->kn);
1663        flush_work(&cpuset_hotplug_work);
1664
1665        mutex_lock(&cpuset_mutex);
1666        if (!is_cpuset_online(cs))
1667                goto out_unlock;
1668
1669        trialcs = alloc_trial_cpuset(cs);
1670        if (!trialcs) {
1671                retval = -ENOMEM;
1672                goto out_unlock;
1673        }
1674
1675        switch (of_cft(of)->private) {
1676        case FILE_CPULIST:
1677                retval = update_cpumask(cs, trialcs, buf);
1678                break;
1679        case FILE_MEMLIST:
1680                retval = update_nodemask(cs, trialcs, buf);
1681                break;
1682        default:
1683                retval = -EINVAL;
1684                break;
1685        }
1686
1687        free_trial_cpuset(trialcs);
1688out_unlock:
1689        mutex_unlock(&cpuset_mutex);
1690        kernfs_unbreak_active_protection(of->kn);
1691        css_put(&cs->css);
1692        return retval ?: nbytes;
1693}
1694
1695/*
1696 * These ascii lists should be read in a single call, by using a user
1697 * buffer large enough to hold the entire map.  If read in smaller
1698 * chunks, there is no guarantee of atomicity.  Since the display format
1699 * used, list of ranges of sequential numbers, is variable length,
1700 * and since these maps can change value dynamically, one could read
1701 * gibberish by doing partial reads while a list was changing.
1702 */
1703static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1704{
1705        struct cpuset *cs = css_cs(seq_css(sf));
1706        cpuset_filetype_t type = seq_cft(sf)->private;
1707        int ret = 0;
1708
1709        spin_lock_irq(&callback_lock);
1710
1711        switch (type) {
1712        case FILE_CPULIST:
1713                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1714                break;
1715        case FILE_MEMLIST:
1716                seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1717                break;
1718        case FILE_EFFECTIVE_CPULIST:
1719                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1720                break;
1721        case FILE_EFFECTIVE_MEMLIST:
1722                seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1723                break;
1724        default:
1725                ret = -EINVAL;
1726        }
1727
1728        spin_unlock_irq(&callback_lock);
1729        return ret;
1730}
1731
1732static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1733{
1734        struct cpuset *cs = css_cs(css);
1735        cpuset_filetype_t type = cft->private;
1736        switch (type) {
1737        case FILE_CPU_EXCLUSIVE:
1738                return is_cpu_exclusive(cs);
1739        case FILE_MEM_EXCLUSIVE:
1740                return is_mem_exclusive(cs);
1741        case FILE_MEM_HARDWALL:
1742                return is_mem_hardwall(cs);
1743        case FILE_SCHED_LOAD_BALANCE:
1744                return is_sched_load_balance(cs);
1745        case FILE_MEMORY_MIGRATE:
1746                return is_memory_migrate(cs);
1747        case FILE_MEMORY_PRESSURE_ENABLED:
1748                return cpuset_memory_pressure_enabled;
1749        case FILE_MEMORY_PRESSURE:
1750                return fmeter_getrate(&cs->fmeter);
1751        case FILE_SPREAD_PAGE:
1752                return is_spread_page(cs);
1753        case FILE_SPREAD_SLAB:
1754                return is_spread_slab(cs);
1755        default:
1756                BUG();
1757        }
1758
1759        /* Unreachable but makes gcc happy */
1760        return 0;
1761}
1762
1763static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1764{
1765        struct cpuset *cs = css_cs(css);
1766        cpuset_filetype_t type = cft->private;
1767        switch (type) {
1768        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1769                return cs->relax_domain_level;
1770        default:
1771                BUG();
1772        }
1773
1774        /* Unrechable but makes gcc happy */
1775        return 0;
1776}
1777
1778
1779/*
1780 * for the common functions, 'private' gives the type of file
1781 */
1782
1783static struct cftype files[] = {
1784        {
1785                .name = "cpus",
1786                .seq_show = cpuset_common_seq_show,
1787                .write = cpuset_write_resmask,
1788                .max_write_len = (100U + 6 * NR_CPUS),
1789                .private = FILE_CPULIST,
1790        },
1791
1792        {
1793                .name = "mems",
1794                .seq_show = cpuset_common_seq_show,
1795                .write = cpuset_write_resmask,
1796                .max_write_len = (100U + 6 * MAX_NUMNODES),
1797                .private = FILE_MEMLIST,
1798        },
1799
1800        {
1801                .name = "effective_cpus",
1802                .seq_show = cpuset_common_seq_show,
1803                .private = FILE_EFFECTIVE_CPULIST,
1804        },
1805
1806        {
1807                .name = "effective_mems",
1808                .seq_show = cpuset_common_seq_show,
1809                .private = FILE_EFFECTIVE_MEMLIST,
1810        },
1811
1812        {
1813                .name = "cpu_exclusive",
1814                .read_u64 = cpuset_read_u64,
1815                .write_u64 = cpuset_write_u64,
1816                .private = FILE_CPU_EXCLUSIVE,
1817        },
1818
1819        {
1820                .name = "mem_exclusive",
1821                .read_u64 = cpuset_read_u64,
1822                .write_u64 = cpuset_write_u64,
1823                .private = FILE_MEM_EXCLUSIVE,
1824        },
1825
1826        {
1827                .name = "mem_hardwall",
1828                .read_u64 = cpuset_read_u64,
1829                .write_u64 = cpuset_write_u64,
1830                .private = FILE_MEM_HARDWALL,
1831        },
1832
1833        {
1834                .name = "sched_load_balance",
1835                .read_u64 = cpuset_read_u64,
1836                .write_u64 = cpuset_write_u64,
1837                .private = FILE_SCHED_LOAD_BALANCE,
1838        },
1839
1840        {
1841                .name = "sched_relax_domain_level",
1842                .read_s64 = cpuset_read_s64,
1843                .write_s64 = cpuset_write_s64,
1844                .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1845        },
1846
1847        {
1848                .name = "memory_migrate",
1849                .read_u64 = cpuset_read_u64,
1850                .write_u64 = cpuset_write_u64,
1851                .private = FILE_MEMORY_MIGRATE,
1852        },
1853
1854        {
1855                .name = "memory_pressure",
1856                .read_u64 = cpuset_read_u64,
1857                .write_u64 = cpuset_write_u64,
1858                .private = FILE_MEMORY_PRESSURE,
1859                .mode = S_IRUGO,
1860        },
1861
1862        {
1863                .name = "memory_spread_page",
1864                .read_u64 = cpuset_read_u64,
1865                .write_u64 = cpuset_write_u64,
1866                .private = FILE_SPREAD_PAGE,
1867        },
1868
1869        {
1870                .name = "memory_spread_slab",
1871                .read_u64 = cpuset_read_u64,
1872                .write_u64 = cpuset_write_u64,
1873                .private = FILE_SPREAD_SLAB,
1874        },
1875
1876        {
1877                .name = "memory_pressure_enabled",
1878                .flags = CFTYPE_ONLY_ON_ROOT,
1879                .read_u64 = cpuset_read_u64,
1880                .write_u64 = cpuset_write_u64,
1881                .private = FILE_MEMORY_PRESSURE_ENABLED,
1882        },
1883
1884        { }     /* terminate */
1885};
1886
1887/*
1888 *      cpuset_css_alloc - allocate a cpuset css
1889 *      cgrp:   control group that the new cpuset will be part of
1890 */
1891
1892static struct cgroup_subsys_state *
1893cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1894{
1895        struct cpuset *cs;
1896
1897        if (!parent_css)
1898                return &top_cpuset.css;
1899
1900        cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1901        if (!cs)
1902                return ERR_PTR(-ENOMEM);
1903        if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1904                goto free_cs;
1905        if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1906                goto free_cpus;
1907
1908        set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1909        cpumask_clear(cs->cpus_allowed);
1910        nodes_clear(cs->mems_allowed);
1911        cpumask_clear(cs->effective_cpus);
1912        nodes_clear(cs->effective_mems);
1913        fmeter_init(&cs->fmeter);
1914        cs->relax_domain_level = -1;
1915
1916        return &cs->css;
1917
1918free_cpus:
1919        free_cpumask_var(cs->cpus_allowed);
1920free_cs:
1921        kfree(cs);
1922        return ERR_PTR(-ENOMEM);
1923}
1924
1925static int cpuset_css_online(struct cgroup_subsys_state *css)
1926{
1927        struct cpuset *cs = css_cs(css);
1928        struct cpuset *parent = parent_cs(cs);
1929        struct cpuset *tmp_cs;
1930        struct cgroup_subsys_state *pos_css;
1931
1932        if (!parent)
1933                return 0;
1934
1935        mutex_lock(&cpuset_mutex);
1936
1937        set_bit(CS_ONLINE, &cs->flags);
1938        if (is_spread_page(parent))
1939                set_bit(CS_SPREAD_PAGE, &cs->flags);
1940        if (is_spread_slab(parent))
1941                set_bit(CS_SPREAD_SLAB, &cs->flags);
1942
1943        cpuset_inc();
1944
1945        spin_lock_irq(&callback_lock);
1946        if (cgroup_on_dfl(cs->css.cgroup)) {
1947                cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1948                cs->effective_mems = parent->effective_mems;
1949        }
1950        spin_unlock_irq(&callback_lock);
1951
1952        if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1953                goto out_unlock;
1954
1955        /*
1956         * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1957         * set.  This flag handling is implemented in cgroup core for
1958         * histrical reasons - the flag may be specified during mount.
1959         *
1960         * Currently, if any sibling cpusets have exclusive cpus or mem, we
1961         * refuse to clone the configuration - thereby refusing the task to
1962         * be entered, and as a result refusing the sys_unshare() or
1963         * clone() which initiated it.  If this becomes a problem for some
1964         * users who wish to allow that scenario, then this could be
1965         * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1966         * (and likewise for mems) to the new cgroup.
1967         */
1968        rcu_read_lock();
1969        cpuset_for_each_child(tmp_cs, pos_css, parent) {
1970                if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1971                        rcu_read_unlock();
1972                        goto out_unlock;
1973                }
1974        }
1975        rcu_read_unlock();
1976
1977        spin_lock_irq(&callback_lock);
1978        cs->mems_allowed = parent->mems_allowed;
1979        cs->effective_mems = parent->mems_allowed;
1980        cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1981        cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
1982        spin_unlock_irq(&callback_lock);
1983out_unlock:
1984        mutex_unlock(&cpuset_mutex);
1985        return 0;
1986}
1987
1988/*
1989 * If the cpuset being removed has its flag 'sched_load_balance'
1990 * enabled, then simulate turning sched_load_balance off, which
1991 * will call rebuild_sched_domains_locked().
1992 */
1993
1994static void cpuset_css_offline(struct cgroup_subsys_state *css)
1995{
1996        struct cpuset *cs = css_cs(css);
1997
1998        mutex_lock(&cpuset_mutex);
1999
2000        if (is_sched_load_balance(cs))
2001                update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2002
2003        cpuset_dec();
2004        clear_bit(CS_ONLINE, &cs->flags);
2005
2006        mutex_unlock(&cpuset_mutex);
2007}
2008
2009static void cpuset_css_free(struct cgroup_subsys_state *css)
2010{
2011        struct cpuset *cs = css_cs(css);
2012
2013        free_cpumask_var(cs->effective_cpus);
2014        free_cpumask_var(cs->cpus_allowed);
2015        kfree(cs);
2016}
2017
2018static void cpuset_bind(struct cgroup_subsys_state *root_css)
2019{
2020        mutex_lock(&cpuset_mutex);
2021        spin_lock_irq(&callback_lock);
2022
2023        if (cgroup_on_dfl(root_css->cgroup)) {
2024                cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2025                top_cpuset.mems_allowed = node_possible_map;
2026        } else {
2027                cpumask_copy(top_cpuset.cpus_allowed,
2028                             top_cpuset.effective_cpus);
2029                top_cpuset.mems_allowed = top_cpuset.effective_mems;
2030        }
2031
2032        spin_unlock_irq(&callback_lock);
2033        mutex_unlock(&cpuset_mutex);
2034}
2035
2036struct cgroup_subsys cpuset_cgrp_subsys = {
2037        .css_alloc      = cpuset_css_alloc,
2038        .css_online     = cpuset_css_online,
2039        .css_offline    = cpuset_css_offline,
2040        .css_free       = cpuset_css_free,
2041        .can_attach     = cpuset_can_attach,
2042        .cancel_attach  = cpuset_cancel_attach,
2043        .attach         = cpuset_attach,
2044        .bind           = cpuset_bind,
2045        .legacy_cftypes = files,
2046        .early_init     = 1,
2047};
2048
2049/**
2050 * cpuset_init - initialize cpusets at system boot
2051 *
2052 * Description: Initialize top_cpuset and the cpuset internal file system,
2053 **/
2054
2055int __init cpuset_init(void)
2056{
2057        int err = 0;
2058
2059        if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2060                BUG();
2061        if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2062                BUG();
2063
2064        cpumask_setall(top_cpuset.cpus_allowed);
2065        nodes_setall(top_cpuset.mems_allowed);
2066        cpumask_setall(top_cpuset.effective_cpus);
2067        nodes_setall(top_cpuset.effective_mems);
2068
2069        fmeter_init(&top_cpuset.fmeter);
2070        set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2071        top_cpuset.relax_domain_level = -1;
2072
2073        err = register_filesystem(&cpuset_fs_type);
2074        if (err < 0)
2075                return err;
2076
2077        if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2078                BUG();
2079
2080        return 0;
2081}
2082
2083/*
2084 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2085 * or memory nodes, we need to walk over the cpuset hierarchy,
2086 * removing that CPU or node from all cpusets.  If this removes the
2087 * last CPU or node from a cpuset, then move the tasks in the empty
2088 * cpuset to its next-highest non-empty parent.
2089 */
2090static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2091{
2092        struct cpuset *parent;
2093
2094        /*
2095         * Find its next-highest non-empty parent, (top cpuset
2096         * has online cpus, so can't be empty).
2097         */
2098        parent = parent_cs(cs);
2099        while (cpumask_empty(parent->cpus_allowed) ||
2100                        nodes_empty(parent->mems_allowed))
2101                parent = parent_cs(parent);
2102
2103        if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2104                pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2105                pr_cont_cgroup_name(cs->css.cgroup);
2106                pr_cont("\n");
2107        }
2108}
2109
2110static void
2111hotplug_update_tasks_legacy(struct cpuset *cs,
2112                            struct cpumask *new_cpus, nodemask_t *new_mems,
2113                            bool cpus_updated, bool mems_updated)
2114{
2115        bool is_empty;
2116
2117        spin_lock_irq(&callback_lock);
2118        cpumask_copy(cs->cpus_allowed, new_cpus);
2119        cpumask_copy(cs->effective_cpus, new_cpus);
2120        cs->mems_allowed = *new_mems;
2121        cs->effective_mems = *new_mems;
2122        spin_unlock_irq(&callback_lock);
2123
2124        /*
2125         * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2126         * as the tasks will be migratecd to an ancestor.
2127         */
2128        if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2129                update_tasks_cpumask(cs);
2130        if (mems_updated && !nodes_empty(cs->mems_allowed))
2131                update_tasks_nodemask(cs);
2132
2133        is_empty = cpumask_empty(cs->cpus_allowed) ||
2134                   nodes_empty(cs->mems_allowed);
2135
2136        mutex_unlock(&cpuset_mutex);
2137
2138        /*
2139         * Move tasks to the nearest ancestor with execution resources,
2140         * This is full cgroup operation which will also call back into
2141         * cpuset. Should be done outside any lock.
2142         */
2143        if (is_empty)
2144                remove_tasks_in_empty_cpuset(cs);
2145
2146        mutex_lock(&cpuset_mutex);
2147}
2148
2149static void
2150hotplug_update_tasks(struct cpuset *cs,
2151                     struct cpumask *new_cpus, nodemask_t *new_mems,
2152                     bool cpus_updated, bool mems_updated)
2153{
2154        if (cpumask_empty(new_cpus))
2155                cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2156        if (nodes_empty(*new_mems))
2157                *new_mems = parent_cs(cs)->effective_mems;
2158
2159        spin_lock_irq(&callback_lock);
2160        cpumask_copy(cs->effective_cpus, new_cpus);
2161        cs->effective_mems = *new_mems;
2162        spin_unlock_irq(&callback_lock);
2163
2164        if (cpus_updated)
2165                update_tasks_cpumask(cs);
2166        if (mems_updated)
2167                update_tasks_nodemask(cs);
2168}
2169
2170/**
2171 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2172 * @cs: cpuset in interest
2173 *
2174 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2175 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
2176 * all its tasks are moved to the nearest ancestor with both resources.
2177 */
2178static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2179{
2180        static cpumask_t new_cpus;
2181        static nodemask_t new_mems;
2182        bool cpus_updated;
2183        bool mems_updated;
2184retry:
2185        wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2186
2187        mutex_lock(&cpuset_mutex);
2188
2189        /*
2190         * We have raced with task attaching. We wait until attaching
2191         * is finished, so we won't attach a task to an empty cpuset.
2192         */
2193        if (cs->attach_in_progress) {
2194                mutex_unlock(&cpuset_mutex);
2195                goto retry;
2196        }
2197
2198        cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2199        nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2200
2201        cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2202        mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2203
2204        if (cgroup_on_dfl(cs->css.cgroup))
2205                hotplug_update_tasks(cs, &new_cpus, &new_mems,
2206                                     cpus_updated, mems_updated);
2207        else
2208                hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2209                                            cpus_updated, mems_updated);
2210
2211        mutex_unlock(&cpuset_mutex);
2212}
2213
2214/**
2215 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2216 *
2217 * This function is called after either CPU or memory configuration has
2218 * changed and updates cpuset accordingly.  The top_cpuset is always
2219 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2220 * order to make cpusets transparent (of no affect) on systems that are
2221 * actively using CPU hotplug but making no active use of cpusets.
2222 *
2223 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2224 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2225 * all descendants.
2226 *
2227 * Note that CPU offlining during suspend is ignored.  We don't modify
2228 * cpusets across suspend/resume cycles at all.
2229 */
2230static void cpuset_hotplug_workfn(struct work_struct *work)
2231{
2232        static cpumask_t new_cpus;
2233        static nodemask_t new_mems;
2234        bool cpus_updated, mems_updated;
2235        bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
2236
2237        mutex_lock(&cpuset_mutex);
2238
2239        /* fetch the available cpus/mems and find out which changed how */
2240        cpumask_copy(&new_cpus, cpu_active_mask);
2241        new_mems = node_states[N_MEMORY];
2242
2243        cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2244        mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2245
2246        /* synchronize cpus_allowed to cpu_active_mask */
2247        if (cpus_updated) {
2248                spin_lock_irq(&callback_lock);
2249                if (!on_dfl)
2250                        cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2251                cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2252                spin_unlock_irq(&callback_lock);
2253                /* we don't mess with cpumasks of tasks in top_cpuset */
2254        }
2255
2256        /* synchronize mems_allowed to N_MEMORY */
2257        if (mems_updated) {
2258                spin_lock_irq(&callback_lock);
2259                if (!on_dfl)
2260                        top_cpuset.mems_allowed = new_mems;
2261                top_cpuset.effective_mems = new_mems;
2262                spin_unlock_irq(&callback_lock);
2263                update_tasks_nodemask(&top_cpuset);
2264        }
2265
2266        mutex_unlock(&cpuset_mutex);
2267
2268        /* if cpus or mems changed, we need to propagate to descendants */
2269        if (cpus_updated || mems_updated) {
2270                struct cpuset *cs;
2271                struct cgroup_subsys_state *pos_css;
2272
2273                rcu_read_lock();
2274                cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2275                        if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2276                                continue;
2277                        rcu_read_unlock();
2278
2279                        cpuset_hotplug_update_tasks(cs);
2280
2281                        rcu_read_lock();
2282                        css_put(&cs->css);
2283                }
2284                rcu_read_unlock();
2285        }
2286
2287        /* rebuild sched domains if cpus_allowed has changed */
2288        if (cpus_updated)
2289                rebuild_sched_domains();
2290}
2291
2292void cpuset_update_active_cpus(bool cpu_online)
2293{
2294        /*
2295         * We're inside cpu hotplug critical region which usually nests
2296         * inside cgroup synchronization.  Bounce actual hotplug processing
2297         * to a work item to avoid reverse locking order.
2298         *
2299         * We still need to do partition_sched_domains() synchronously;
2300         * otherwise, the scheduler will get confused and put tasks to the
2301         * dead CPU.  Fall back to the default single domain.
2302         * cpuset_hotplug_workfn() will rebuild it as necessary.
2303         */
2304        partition_sched_domains(1, NULL, NULL);
2305        schedule_work(&cpuset_hotplug_work);
2306}
2307
2308/*
2309 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2310 * Call this routine anytime after node_states[N_MEMORY] changes.
2311 * See cpuset_update_active_cpus() for CPU hotplug handling.
2312 */
2313static int cpuset_track_online_nodes(struct notifier_block *self,
2314                                unsigned long action, void *arg)
2315{
2316        schedule_work(&cpuset_hotplug_work);
2317        return NOTIFY_OK;
2318}
2319
2320static struct notifier_block cpuset_track_online_nodes_nb = {
2321        .notifier_call = cpuset_track_online_nodes,
2322        .priority = 10,         /* ??! */
2323};
2324
2325/**
2326 * cpuset_init_smp - initialize cpus_allowed
2327 *
2328 * Description: Finish top cpuset after cpu, node maps are initialized
2329 */
2330void __init cpuset_init_smp(void)
2331{
2332        cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2333        top_cpuset.mems_allowed = node_states[N_MEMORY];
2334        top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2335
2336        cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2337        top_cpuset.effective_mems = node_states[N_MEMORY];
2338
2339        register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2340}
2341
2342/**
2343 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2344 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2345 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2346 *
2347 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2348 * attached to the specified @tsk.  Guaranteed to return some non-empty
2349 * subset of cpu_online_mask, even if this means going outside the
2350 * tasks cpuset.
2351 **/
2352
2353void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2354{
2355        unsigned long flags;
2356
2357        spin_lock_irqsave(&callback_lock, flags);
2358        rcu_read_lock();
2359        guarantee_online_cpus(task_cs(tsk), pmask);
2360        rcu_read_unlock();
2361        spin_unlock_irqrestore(&callback_lock, flags);
2362}
2363
2364void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2365{
2366        rcu_read_lock();
2367        do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2368        rcu_read_unlock();
2369
2370        /*
2371         * We own tsk->cpus_allowed, nobody can change it under us.
2372         *
2373         * But we used cs && cs->cpus_allowed lockless and thus can
2374         * race with cgroup_attach_task() or update_cpumask() and get
2375         * the wrong tsk->cpus_allowed. However, both cases imply the
2376         * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2377         * which takes task_rq_lock().
2378         *
2379         * If we are called after it dropped the lock we must see all
2380         * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2381         * set any mask even if it is not right from task_cs() pov,
2382         * the pending set_cpus_allowed_ptr() will fix things.
2383         *
2384         * select_fallback_rq() will fix things ups and set cpu_possible_mask
2385         * if required.
2386         */
2387}
2388
2389void __init cpuset_init_current_mems_allowed(void)
2390{
2391        nodes_setall(current->mems_allowed);
2392}
2393
2394/**
2395 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2396 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2397 *
2398 * Description: Returns the nodemask_t mems_allowed of the cpuset
2399 * attached to the specified @tsk.  Guaranteed to return some non-empty
2400 * subset of node_states[N_MEMORY], even if this means going outside the
2401 * tasks cpuset.
2402 **/
2403
2404nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2405{
2406        nodemask_t mask;
2407        unsigned long flags;
2408
2409        spin_lock_irqsave(&callback_lock, flags);
2410        rcu_read_lock();
2411        guarantee_online_mems(task_cs(tsk), &mask);
2412        rcu_read_unlock();
2413        spin_unlock_irqrestore(&callback_lock, flags);
2414
2415        return mask;
2416}
2417
2418/**
2419 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2420 * @nodemask: the nodemask to be checked
2421 *
2422 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2423 */
2424int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2425{
2426        return nodes_intersects(*nodemask, current->mems_allowed);
2427}
2428
2429/*
2430 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2431 * mem_hardwall ancestor to the specified cpuset.  Call holding
2432 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2433 * (an unusual configuration), then returns the root cpuset.
2434 */
2435static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2436{
2437        while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2438                cs = parent_cs(cs);
2439        return cs;
2440}
2441
2442/**
2443 * cpuset_node_allowed - Can we allocate on a memory node?
2444 * @node: is this an allowed node?
2445 * @gfp_mask: memory allocation flags
2446 *
2447 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
2448 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
2449 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
2450 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
2451 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2452 * flag, yes.
2453 * Otherwise, no.
2454 *
2455 * The __GFP_THISNODE placement logic is really handled elsewhere,
2456 * by forcibly using a zonelist starting at a specified node, and by
2457 * (in get_page_from_freelist()) refusing to consider the zones for
2458 * any node on the zonelist except the first.  By the time any such
2459 * calls get to this routine, we should just shut up and say 'yes'.
2460 *
2461 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2462 * and do not allow allocations outside the current tasks cpuset
2463 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2464 * GFP_KERNEL allocations are not so marked, so can escape to the
2465 * nearest enclosing hardwalled ancestor cpuset.
2466 *
2467 * Scanning up parent cpusets requires callback_lock.  The
2468 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2469 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2470 * current tasks mems_allowed came up empty on the first pass over
2471 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2472 * cpuset are short of memory, might require taking the callback_lock.
2473 *
2474 * The first call here from mm/page_alloc:get_page_from_freelist()
2475 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2476 * so no allocation on a node outside the cpuset is allowed (unless
2477 * in interrupt, of course).
2478 *
2479 * The second pass through get_page_from_freelist() doesn't even call
2480 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2481 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2482 * in alloc_flags.  That logic and the checks below have the combined
2483 * affect that:
2484 *      in_interrupt - any node ok (current task context irrelevant)
2485 *      GFP_ATOMIC   - any node ok
2486 *      TIF_MEMDIE   - any node ok
2487 *      GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2488 *      GFP_USER     - only nodes in current tasks mems allowed ok.
2489 */
2490int __cpuset_node_allowed(int node, gfp_t gfp_mask)
2491{
2492        struct cpuset *cs;              /* current cpuset ancestors */
2493        int allowed;                    /* is allocation in zone z allowed? */
2494        unsigned long flags;
2495
2496        if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2497                return 1;
2498        if (node_isset(node, current->mems_allowed))
2499                return 1;
2500        /*
2501         * Allow tasks that have access to memory reserves because they have
2502         * been OOM killed to get memory anywhere.
2503         */
2504        if (unlikely(test_thread_flag(TIF_MEMDIE)))
2505                return 1;
2506        if (gfp_mask & __GFP_HARDWALL)  /* If hardwall request, stop here */
2507                return 0;
2508
2509        if (current->flags & PF_EXITING) /* Let dying task have memory */
2510                return 1;
2511
2512        /* Not hardwall and node outside mems_allowed: scan up cpusets */
2513        spin_lock_irqsave(&callback_lock, flags);
2514
2515        rcu_read_lock();
2516        cs = nearest_hardwall_ancestor(task_cs(current));
2517        allowed = node_isset(node, cs->mems_allowed);
2518        rcu_read_unlock();
2519
2520        spin_unlock_irqrestore(&callback_lock, flags);
2521        return allowed;
2522}
2523
2524/**
2525 * cpuset_mem_spread_node() - On which node to begin search for a file page
2526 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2527 *
2528 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2529 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2530 * and if the memory allocation used cpuset_mem_spread_node()
2531 * to determine on which node to start looking, as it will for
2532 * certain page cache or slab cache pages such as used for file
2533 * system buffers and inode caches, then instead of starting on the
2534 * local node to look for a free page, rather spread the starting
2535 * node around the tasks mems_allowed nodes.
2536 *
2537 * We don't have to worry about the returned node being offline
2538 * because "it can't happen", and even if it did, it would be ok.
2539 *
2540 * The routines calling guarantee_online_mems() are careful to
2541 * only set nodes in task->mems_allowed that are online.  So it
2542 * should not be possible for the following code to return an
2543 * offline node.  But if it did, that would be ok, as this routine
2544 * is not returning the node where the allocation must be, only
2545 * the node where the search should start.  The zonelist passed to
2546 * __alloc_pages() will include all nodes.  If the slab allocator
2547 * is passed an offline node, it will fall back to the local node.
2548 * See kmem_cache_alloc_node().
2549 */
2550
2551static int cpuset_spread_node(int *rotor)
2552{
2553        int node;
2554
2555        node = next_node(*rotor, current->mems_allowed);
2556        if (node == MAX_NUMNODES)
2557                node = first_node(current->mems_allowed);
2558        *rotor = node;
2559        return node;
2560}
2561
2562int cpuset_mem_spread_node(void)
2563{
2564        if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2565                current->cpuset_mem_spread_rotor =
2566                        node_random(&current->mems_allowed);
2567
2568        return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2569}
2570
2571int cpuset_slab_spread_node(void)
2572{
2573        if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2574                current->cpuset_slab_spread_rotor =
2575                        node_random(&current->mems_allowed);
2576
2577        return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2578}
2579
2580EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2581
2582/**
2583 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2584 * @tsk1: pointer to task_struct of some task.
2585 * @tsk2: pointer to task_struct of some other task.
2586 *
2587 * Description: Return true if @tsk1's mems_allowed intersects the
2588 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2589 * one of the task's memory usage might impact the memory available
2590 * to the other.
2591 **/
2592
2593int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2594                                   const struct task_struct *tsk2)
2595{
2596        return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2597}
2598
2599/**
2600 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2601 * @tsk: pointer to task_struct of some task.
2602 *
2603 * Description: Prints @task's name, cpuset name, and cached copy of its
2604 * mems_allowed to the kernel log.
2605 */
2606void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2607{
2608        struct cgroup *cgrp;
2609
2610        rcu_read_lock();
2611
2612        cgrp = task_cs(tsk)->css.cgroup;
2613        pr_info("%s cpuset=", tsk->comm);
2614        pr_cont_cgroup_name(cgrp);
2615        pr_cont(" mems_allowed=%*pbl\n", nodemask_pr_args(&tsk->mems_allowed));
2616
2617        rcu_read_unlock();
2618}
2619
2620/*
2621 * Collection of memory_pressure is suppressed unless
2622 * this flag is enabled by writing "1" to the special
2623 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2624 */
2625
2626int cpuset_memory_pressure_enabled __read_mostly;
2627
2628/**
2629 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2630 *
2631 * Keep a running average of the rate of synchronous (direct)
2632 * page reclaim efforts initiated by tasks in each cpuset.
2633 *
2634 * This represents the rate at which some task in the cpuset
2635 * ran low on memory on all nodes it was allowed to use, and
2636 * had to enter the kernels page reclaim code in an effort to
2637 * create more free memory by tossing clean pages or swapping
2638 * or writing dirty pages.
2639 *
2640 * Display to user space in the per-cpuset read-only file
2641 * "memory_pressure".  Value displayed is an integer
2642 * representing the recent rate of entry into the synchronous
2643 * (direct) page reclaim by any task attached to the cpuset.
2644 **/
2645
2646void __cpuset_memory_pressure_bump(void)
2647{
2648        rcu_read_lock();
2649        fmeter_markevent(&task_cs(current)->fmeter);
2650        rcu_read_unlock();
2651}
2652
2653#ifdef CONFIG_PROC_PID_CPUSET
2654/*
2655 * proc_cpuset_show()
2656 *  - Print tasks cpuset path into seq_file.
2657 *  - Used for /proc/<pid>/cpuset.
2658 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2659 *    doesn't really matter if tsk->cpuset changes after we read it,
2660 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2661 *    anyway.
2662 */
2663int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2664                     struct pid *pid, struct task_struct *tsk)
2665{
2666        char *buf, *p;
2667        struct cgroup_subsys_state *css;
2668        int retval;
2669
2670        retval = -ENOMEM;
2671        buf = kmalloc(PATH_MAX, GFP_KERNEL);
2672        if (!buf)
2673                goto out;
2674
2675        retval = -ENAMETOOLONG;
2676        rcu_read_lock();
2677        css = task_css(tsk, cpuset_cgrp_id);
2678        p = cgroup_path(css->cgroup, buf, PATH_MAX);
2679        rcu_read_unlock();
2680        if (!p)
2681                goto out_free;
2682        seq_puts(m, p);
2683        seq_putc(m, '\n');
2684        retval = 0;
2685out_free:
2686        kfree(buf);
2687out:
2688        return retval;
2689}
2690#endif /* CONFIG_PROC_PID_CPUSET */
2691
2692/* Display task mems_allowed in /proc/<pid>/status file. */
2693void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2694{
2695        seq_printf(m, "Mems_allowed:\t%*pb\n",
2696                   nodemask_pr_args(&task->mems_allowed));
2697        seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2698                   nodemask_pr_args(&task->mems_allowed));
2699}
2700