linux/kernel/events/ring_buffer.c
<<
>>
Prefs
   1/*
   2 * Performance events ring-buffer code:
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   8 *
   9 * For licensing details see kernel-base/COPYING
  10 */
  11
  12#include <linux/perf_event.h>
  13#include <linux/vmalloc.h>
  14#include <linux/slab.h>
  15#include <linux/circ_buf.h>
  16#include <linux/poll.h>
  17
  18#include "internal.h"
  19
  20static void perf_output_wakeup(struct perf_output_handle *handle)
  21{
  22        atomic_set(&handle->rb->poll, POLLIN);
  23
  24        handle->event->pending_wakeup = 1;
  25        irq_work_queue(&handle->event->pending);
  26}
  27
  28/*
  29 * We need to ensure a later event_id doesn't publish a head when a former
  30 * event isn't done writing. However since we need to deal with NMIs we
  31 * cannot fully serialize things.
  32 *
  33 * We only publish the head (and generate a wakeup) when the outer-most
  34 * event completes.
  35 */
  36static void perf_output_get_handle(struct perf_output_handle *handle)
  37{
  38        struct ring_buffer *rb = handle->rb;
  39
  40        preempt_disable();
  41        local_inc(&rb->nest);
  42        handle->wakeup = local_read(&rb->wakeup);
  43}
  44
  45static void perf_output_put_handle(struct perf_output_handle *handle)
  46{
  47        struct ring_buffer *rb = handle->rb;
  48        unsigned long head;
  49
  50again:
  51        head = local_read(&rb->head);
  52
  53        /*
  54         * IRQ/NMI can happen here, which means we can miss a head update.
  55         */
  56
  57        if (!local_dec_and_test(&rb->nest))
  58                goto out;
  59
  60        /*
  61         * Since the mmap() consumer (userspace) can run on a different CPU:
  62         *
  63         *   kernel                             user
  64         *
  65         *   if (LOAD ->data_tail) {            LOAD ->data_head
  66         *                      (A)             smp_rmb()       (C)
  67         *      STORE $data                     LOAD $data
  68         *      smp_wmb()       (B)             smp_mb()        (D)
  69         *      STORE ->data_head               STORE ->data_tail
  70         *   }
  71         *
  72         * Where A pairs with D, and B pairs with C.
  73         *
  74         * In our case (A) is a control dependency that separates the load of
  75         * the ->data_tail and the stores of $data. In case ->data_tail
  76         * indicates there is no room in the buffer to store $data we do not.
  77         *
  78         * D needs to be a full barrier since it separates the data READ
  79         * from the tail WRITE.
  80         *
  81         * For B a WMB is sufficient since it separates two WRITEs, and for C
  82         * an RMB is sufficient since it separates two READs.
  83         *
  84         * See perf_output_begin().
  85         */
  86        smp_wmb(); /* B, matches C */
  87        rb->user_page->data_head = head;
  88
  89        /*
  90         * Now check if we missed an update -- rely on previous implied
  91         * compiler barriers to force a re-read.
  92         */
  93        if (unlikely(head != local_read(&rb->head))) {
  94                local_inc(&rb->nest);
  95                goto again;
  96        }
  97
  98        if (handle->wakeup != local_read(&rb->wakeup))
  99                perf_output_wakeup(handle);
 100
 101out:
 102        preempt_enable();
 103}
 104
 105int perf_output_begin(struct perf_output_handle *handle,
 106                      struct perf_event *event, unsigned int size)
 107{
 108        struct ring_buffer *rb;
 109        unsigned long tail, offset, head;
 110        int have_lost, page_shift;
 111        struct {
 112                struct perf_event_header header;
 113                u64                      id;
 114                u64                      lost;
 115        } lost_event;
 116
 117        rcu_read_lock();
 118        /*
 119         * For inherited events we send all the output towards the parent.
 120         */
 121        if (event->parent)
 122                event = event->parent;
 123
 124        rb = rcu_dereference(event->rb);
 125        if (unlikely(!rb))
 126                goto out;
 127
 128        if (unlikely(!rb->nr_pages))
 129                goto out;
 130
 131        handle->rb    = rb;
 132        handle->event = event;
 133
 134        have_lost = local_read(&rb->lost);
 135        if (unlikely(have_lost)) {
 136                size += sizeof(lost_event);
 137                if (event->attr.sample_id_all)
 138                        size += event->id_header_size;
 139        }
 140
 141        perf_output_get_handle(handle);
 142
 143        do {
 144                tail = ACCESS_ONCE(rb->user_page->data_tail);
 145                offset = head = local_read(&rb->head);
 146                if (!rb->overwrite &&
 147                    unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
 148                        goto fail;
 149
 150                /*
 151                 * The above forms a control dependency barrier separating the
 152                 * @tail load above from the data stores below. Since the @tail
 153                 * load is required to compute the branch to fail below.
 154                 *
 155                 * A, matches D; the full memory barrier userspace SHOULD issue
 156                 * after reading the data and before storing the new tail
 157                 * position.
 158                 *
 159                 * See perf_output_put_handle().
 160                 */
 161
 162                head += size;
 163        } while (local_cmpxchg(&rb->head, offset, head) != offset);
 164
 165        /*
 166         * We rely on the implied barrier() by local_cmpxchg() to ensure
 167         * none of the data stores below can be lifted up by the compiler.
 168         */
 169
 170        if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
 171                local_add(rb->watermark, &rb->wakeup);
 172
 173        page_shift = PAGE_SHIFT + page_order(rb);
 174
 175        handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
 176        offset &= (1UL << page_shift) - 1;
 177        handle->addr = rb->data_pages[handle->page] + offset;
 178        handle->size = (1UL << page_shift) - offset;
 179
 180        if (unlikely(have_lost)) {
 181                struct perf_sample_data sample_data;
 182
 183                lost_event.header.size = sizeof(lost_event);
 184                lost_event.header.type = PERF_RECORD_LOST;
 185                lost_event.header.misc = 0;
 186                lost_event.id          = event->id;
 187                lost_event.lost        = local_xchg(&rb->lost, 0);
 188
 189                perf_event_header__init_id(&lost_event.header,
 190                                           &sample_data, event);
 191                perf_output_put(handle, lost_event);
 192                perf_event__output_id_sample(event, handle, &sample_data);
 193        }
 194
 195        return 0;
 196
 197fail:
 198        local_inc(&rb->lost);
 199        perf_output_put_handle(handle);
 200out:
 201        rcu_read_unlock();
 202
 203        return -ENOSPC;
 204}
 205
 206unsigned int perf_output_copy(struct perf_output_handle *handle,
 207                      const void *buf, unsigned int len)
 208{
 209        return __output_copy(handle, buf, len);
 210}
 211
 212unsigned int perf_output_skip(struct perf_output_handle *handle,
 213                              unsigned int len)
 214{
 215        return __output_skip(handle, NULL, len);
 216}
 217
 218void perf_output_end(struct perf_output_handle *handle)
 219{
 220        perf_output_put_handle(handle);
 221        rcu_read_unlock();
 222}
 223
 224static void
 225ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
 226{
 227        long max_size = perf_data_size(rb);
 228
 229        if (watermark)
 230                rb->watermark = min(max_size, watermark);
 231
 232        if (!rb->watermark)
 233                rb->watermark = max_size / 2;
 234
 235        if (flags & RING_BUFFER_WRITABLE)
 236                rb->overwrite = 0;
 237        else
 238                rb->overwrite = 1;
 239
 240        atomic_set(&rb->refcount, 1);
 241
 242        INIT_LIST_HEAD(&rb->event_list);
 243        spin_lock_init(&rb->event_lock);
 244}
 245
 246#ifndef CONFIG_PERF_USE_VMALLOC
 247
 248/*
 249 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 250 */
 251
 252struct page *
 253perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
 254{
 255        if (pgoff > rb->nr_pages)
 256                return NULL;
 257
 258        if (pgoff == 0)
 259                return virt_to_page(rb->user_page);
 260
 261        return virt_to_page(rb->data_pages[pgoff - 1]);
 262}
 263
 264static void *perf_mmap_alloc_page(int cpu)
 265{
 266        struct page *page;
 267        int node;
 268
 269        node = (cpu == -1) ? cpu : cpu_to_node(cpu);
 270        page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
 271        if (!page)
 272                return NULL;
 273
 274        return page_address(page);
 275}
 276
 277struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
 278{
 279        struct ring_buffer *rb;
 280        unsigned long size;
 281        int i;
 282
 283        size = sizeof(struct ring_buffer);
 284        size += nr_pages * sizeof(void *);
 285
 286        rb = kzalloc(size, GFP_KERNEL);
 287        if (!rb)
 288                goto fail;
 289
 290        rb->user_page = perf_mmap_alloc_page(cpu);
 291        if (!rb->user_page)
 292                goto fail_user_page;
 293
 294        for (i = 0; i < nr_pages; i++) {
 295                rb->data_pages[i] = perf_mmap_alloc_page(cpu);
 296                if (!rb->data_pages[i])
 297                        goto fail_data_pages;
 298        }
 299
 300        rb->nr_pages = nr_pages;
 301
 302        ring_buffer_init(rb, watermark, flags);
 303
 304        return rb;
 305
 306fail_data_pages:
 307        for (i--; i >= 0; i--)
 308                free_page((unsigned long)rb->data_pages[i]);
 309
 310        free_page((unsigned long)rb->user_page);
 311
 312fail_user_page:
 313        kfree(rb);
 314
 315fail:
 316        return NULL;
 317}
 318
 319static void perf_mmap_free_page(unsigned long addr)
 320{
 321        struct page *page = virt_to_page((void *)addr);
 322
 323        page->mapping = NULL;
 324        __free_page(page);
 325}
 326
 327void rb_free(struct ring_buffer *rb)
 328{
 329        int i;
 330
 331        perf_mmap_free_page((unsigned long)rb->user_page);
 332        for (i = 0; i < rb->nr_pages; i++)
 333                perf_mmap_free_page((unsigned long)rb->data_pages[i]);
 334        kfree(rb);
 335}
 336
 337#else
 338static int data_page_nr(struct ring_buffer *rb)
 339{
 340        return rb->nr_pages << page_order(rb);
 341}
 342
 343struct page *
 344perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
 345{
 346        /* The '>' counts in the user page. */
 347        if (pgoff > data_page_nr(rb))
 348                return NULL;
 349
 350        return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
 351}
 352
 353static void perf_mmap_unmark_page(void *addr)
 354{
 355        struct page *page = vmalloc_to_page(addr);
 356
 357        page->mapping = NULL;
 358}
 359
 360static void rb_free_work(struct work_struct *work)
 361{
 362        struct ring_buffer *rb;
 363        void *base;
 364        int i, nr;
 365
 366        rb = container_of(work, struct ring_buffer, work);
 367        nr = data_page_nr(rb);
 368
 369        base = rb->user_page;
 370        /* The '<=' counts in the user page. */
 371        for (i = 0; i <= nr; i++)
 372                perf_mmap_unmark_page(base + (i * PAGE_SIZE));
 373
 374        vfree(base);
 375        kfree(rb);
 376}
 377
 378void rb_free(struct ring_buffer *rb)
 379{
 380        schedule_work(&rb->work);
 381}
 382
 383struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
 384{
 385        struct ring_buffer *rb;
 386        unsigned long size;
 387        void *all_buf;
 388
 389        size = sizeof(struct ring_buffer);
 390        size += sizeof(void *);
 391
 392        rb = kzalloc(size, GFP_KERNEL);
 393        if (!rb)
 394                goto fail;
 395
 396        INIT_WORK(&rb->work, rb_free_work);
 397
 398        all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
 399        if (!all_buf)
 400                goto fail_all_buf;
 401
 402        rb->user_page = all_buf;
 403        rb->data_pages[0] = all_buf + PAGE_SIZE;
 404        rb->page_order = ilog2(nr_pages);
 405        rb->nr_pages = !!nr_pages;
 406
 407        ring_buffer_init(rb, watermark, flags);
 408
 409        return rb;
 410
 411fail_all_buf:
 412        kfree(rb);
 413
 414fail:
 415        return NULL;
 416}
 417
 418#endif
 419